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Temperature-Aware Optimization of Monolithic 3D
Deep Neural Network Accelerators

ABSTRACT

We propose a design automation methodology to help design of
energy-efficient Mono3D DNN accelerators with safe on-chip tem-
peratures for mobile systems. We introduce an optimizer capable
of investigating the impact of different aspect ratios of the chip and
chip footprint specifications, and selecting energy-efficient accel-
erators under user-specified thermal and performance constraints.
We also demonstrate that using our optimizer we can reduce en-
ergy consumption by 1.6× and area by 2× with a maximum of
9.5% increase in latency compared to aMono3D DNN accelerator
optimized only for performance.

1 INTRODUCTION

Deep Neural Networks (DNNs) are extremely popular for numer-
ous machine learning applications, such as image classification or
object detection [1]. There is an increasing demand for DNNs in
mobile systems, such as IoT devices, autonomous drones, tablets,
etc. To satisfy the performance demands of these devices, accel-
erators for DNNs are actively being developed [2]. However, the
high energy demand of DNNs (due to their heavy computation and
data movement) is a major design issue. In addition, mobile systems
have tight area and power/thermal budgets (e.g., due to the absence
of heat sinks and fans) that add to the constraints associated with
designing energy-efficient mobile DNN accelerators.

A systolic array-based DNN accelerator comprises a two dimen-
sional (2D) array of simple processing elements (PEs), with on-chip
scratchpad memories for input feature map (IFMAP), filter weights
(Filter), and output feature map (OFMAP), as shown in Fig. 1 [3].
Each PE consists of a Multiply-and-Accumulate (MAC) unit along
with internal registers to store the inputs and partial sums. In a sys-
tolic architecture, data flows into the array from the PEs along the
top and left edges in Fig. 1 and is passed onto their neighboring PEs
every clock cycle. This data flow is uni-directional. Straightforward
design and high compute density make systolic arrays a popular
choice for DNN accelerators in mobile systems [2].

With technology scaling slowing down, improving performance
under energy, power, and thermal constraints is increasingly more
challenging. Monolithic 3D (Mono3D) is a three-dimensional (3D)
integration technology that can overcome 2D scaling bottlenecks
by achieving small chip footprint, dense integration, wire length
savings, power savings, and high bandwidth [4]. These properties
makeMono3D attractive for designing DNN accelerators in mobile
systems. However, 3D architectures have significant thermal chal-
lenges due to high power densities and vertical thermal resistance
[5]. In addition, Mono3D systems have thin device layers, which re-
sult in limited lateral heat flow and high inter-tier thermal coupling
(unlike through silicon via based 3D stacking), thus exacerbating
thermal problems in mobile systems [6]. Consequently, tempera-
ture becomes an indispensable part of the methodologies and tools
used to architectMono3D systems.

Figure 1: 4×4 systolic array. Figure 2:Mono3D stack.

This work focuses on designing energy-efficient architectures
based on systolic arrays fabricated with Mono3D technologies,
enabling DNN inference tasks in mobile systems. The primary
contributions of this paper are as follows:
• We develop a design automation methodology to investigate the
performance, power, temperature, and energy trends inMono3D
DNN accelerators for a wide range of DNNs commonly used for
mobile inference tasks.
• We integrate a DNN performance model and Mono3D power
and thermal models to construct a comprehensive optimization
flow. We also provide validation for ourMono3D thermal model.
• A performance versus temperature tradeoff exploration with
our optimizer reports up to 2× and 1.6× savings in chip foot-
print and energy, respectively, while staying within the thermal
budget compared to a Mono3D DNN accelerator that is only
performance-optimized, while increasing latency by 9.5%.

2 RELATEDWORK

DNN accelerators. Energy efficiency is a major design objective
for DNN accelerators. Recent works target energy efficiency in
systolic array-based accelerators by adjusting DRAM design param-
eters, such as supply voltage and access latency [7], replacing off-
chip DRAM with non volatile memories [2], or designing dataflow
mechanisms to improve data re-use and reduce SRAM accesses [8].
Prior works have also focused on co-designing DNN models and
their corresponding hardware accelerators (e.g., [9]). These works
focus on 2D accelerators without considering temperature. Another
work achieves DNN energy efficiency and latency improvement by
stacking memory-on-logic using through-silicon vias (TSVs) [10].

Mono3D.Mono3D is an emerging 3D integration technology
where multiple tiers (or device layers) are fabricated sequentially,
separated by thin dielectrics, even though currentMono3D fabri-
cation challenges limit the number of tiers to two [4]. The vertical
connections between the tiers are achieved using nano-scale inter-
tier vias (MIVs) [4]. The thin tiers andMIVs can overcome 2D scaling
limitations and provide greater interconnect density, wire length
reduction, power savings, and denser integration than traditional
TSV-based 3D ICs. There are three types of partitions possible in
Mono3D: block-, gate-, and transistor-level. While there are several
works in gate- and transistor-level partition [11–13], we focus on a



Figure 3: Flow diagram of the optimization process.

two-tier block-level partition in this paper, in which 2D IP blocks
can be used in the design process of Mono3D.

Prior works have focused on designing DNN accelerators in
Mono3D but have not considered thermal awareness [14–17]. Yu et
al. design a block-level Mono3D architecture with an FPGA-based
accelerator and several resistive RAM tiers to improve performance,
power, and energy compared to a 2D baseline with an off-chip
DRAM [14, 15]. Chang et al. implement a single accelerator (with
MAC units and SRAMs) for two DNN models with different weight
compression on a two-tierMono3D system [16]. They use block-
level partition techniques and show up to 22.3% iso-performance
power savings. Do et al. integrate a two-tierMono3D scratchpad
memory on a GPU and provide 46% performance improvement [17].
In contrast, our work proposes a methodology to perform a com-
prehensive architecture-level performance, power, and temperature
analysis for various DNNs and underlying architecture parame-
ters to determine the most energy-efficient accelerator while also
satisfying the thermal and performance constraints.

Key Innovation. To the best of our knowledge, this is the first
work that offers a temperature-aware analysis and optimization
framework for DNN accelerators based on Mono3D technology.
The proposed framework enables navigating performance versus
temperature tradeoffs for systolic array-basedMono3D DNN ac-
celerators aiming mobile systems.

3 DESIGN AUTOMATION METHODOLOGY

FORMONO3D DNN ACCELERATORS

This section describes our proposed design automation method-
ology for optimization of Mono3D DNN accelerators in mobile
systems. As shown in Fig. 3, our methodology takes a DNN topol-
ogy (such as MobileNet or VGG11 [18]) and design constraints
as inputs to aMono3D optimizer that determines design parame-
ters for the accelerators for the subsequent iterations and finally
outputs a near-optimal accelerator with safe chip temperatures.
This optimization flow starts with performance evaluation using
SCALE-Sim, a cycle-accurate simulator for systolic array-based
DNN accelerators [19]. SCALE-Sim outputs, along with CACTI-6.5
[20] and Mono3D power models, are then used to generate power
traces for the accelerator. CACTI calculates power, energy, access
time, and area of SRAMs. We then use HotSpot v6.0 (which we

configure to simulate Mono3D systems) to obtain on-chip temper-
atures at steady state [21]. In addition, inter-tier thermal coupling
can affect the temperature-dependent static power, which further
influences peak temperature and energy. Therefore, we implement
a feedback loop that updates the power traces with the static power,
after which HotSpot reruns to obtain updated chip temperatures.
This loop continues until the temperature converges.

3.1 Mono3D DNN Accelerator Design

To simulate a realisticMono3D stack, we have limited our design
to two tiers (see Fig. 2 for a cross-sectional view) because existing
Mono3D technologies can typically support only two tiers due to
the low temperature requirements during the fabrication process
of upper tiers [4]. The number of metal layers, dielectric/device
layer thickness, and other material properties of the stack are taken
from recent work [4, 12]. The systolic array has a higher power
consumption than SRAMs and is placed on the tier closer to the
heat spreader. The systolic array and SRAMs have a high degree
of connectivity through the MIVs since there are many read/write
accesses to the SRAMs throughout the computations in the systolic
array. We assume a high logic density for the tier with the systolic
array, with SRAMs of the appropriate size on the other tier. Any
whitespace (as a result of area mismatch between the two tiers) al-
ways appears on the SRAM tier in our design. We place whitespaces
along chip edges so that thermal analyses are not affected.

3.2 Mono3D Optimizer

We construct a multi-start simulated annealing (MSA) based op-
timizer to systematically sweep a sufficient portion of the design
space of accelerators and select near-optimal energy-efficientMono3D
architectures for mobile systems. MSA is a probabilistic algorithm
that accepts solutions that temporarily degrade the optimization
goal to escape from local minima. MSA can launch multiple "start"s
in parallel to increase the probability of finding the global min-
ima. As shown in Fig. 3, our optimizer takes a DNN topology and
the following design constraints as inputs: (i) chip footprint bud-
get; (ii) bounds on chip aspect ratio; (iii) limits on systolic array
size, (iv) maximum SRAM size, (v) maximum allowed whitespace
(as a result of mismatch between the two tiers in the Mono3D
chip), (vi) thermal budget (i.e., maximum allowed peak temperature,
𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ), and (vii) maximum performance loss (𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 ) w.r.t.
the fastest design that satisfies the design constraints (i)-(vi). The
optimizer generates performance, power, and thermal traces for
systematically selectedMono3D accelerators, and converges to a
near-optimal design for the user-specified optimization goal (e.g.,
minimizing energy or latency) while satisfying performance and
thermal constraints. For the systematic selection of new design can-
didates, the optimizer uses the operating frequency, chip’s aspect
ratio, and combinations of systolic array and SRAMs (that satisfy
the whitespace constraint) as its control knobs.

Algorithm 1 details our optimizer, which is inherently paralleliz-
able because all the "start"s run in parallel (line 1). Each start is
assigned an operating frequency and an aspect ratio range (𝐴𝑅),
within which the optimizer determines a near-optimal solution
by minimizing the objective function, 𝑂𝑏 𝑗 . 𝑂𝑏 𝑗 can be execution
time (i.e., inference latency), chip power, energy or another energy
efficiency metric. 𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑓 𝑖𝑛𝑖𝑠ℎ , and decay (𝛿) are parameters of
the optimizer that define the annealing temperatures and the rate
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Algorithm 1:MSA-based Temperature-Aware Optimizer
Input :DNN, AR range, footprint budget, systolic array range,

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 , frequencies
Output :𝑆𝑏𝑒𝑠𝑡 with minimum𝑂𝑏 𝑗

Initialize :𝑇𝑠𝑡𝑎𝑟𝑡 ,𝑇𝑓 𝑖𝑛𝑖𝑠ℎ , 𝑁 , decay rate 𝛿 ,𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑎𝑟𝑡𝑠 ,𝑇 , AR range for
each start 𝑖 (𝐴𝑅𝑖 ),𝑇𝑝𝑒𝑎𝑘 for each start 𝑖 (𝑇𝑝𝑒𝑎𝑘,𝑖 )

1 while𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑎𝑟𝑡𝑠 > 0 do
2 𝑇𝑝𝑒𝑎𝑘,𝑖 ←𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 1
3 while𝑇𝑝𝑒𝑎𝑘,𝑖 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

4 randomly select an accelerator (𝑆𝑖 ) with𝐴𝑅𝑖 and a frequency
5 if 𝑆𝑖 meets design constraints (i)-(v) in Sec. 3.2 then
6 generate performance traces, calculate execution time𝐶𝑖

7 generate power traces, estimate peak temperature (𝑇𝑝𝑒𝑎𝑘,𝑖 )

8 set current solution: 𝑆𝑐𝑢𝑟𝑟 ← 𝑆𝑖 ,𝐶𝑐𝑢𝑟𝑟 ←𝐶𝑖 ,𝑇𝑝𝑒𝑎𝑘,𝑐𝑢𝑟𝑟 ←𝑇𝑝𝑒𝑎𝑘,𝑖
9 calculate𝑂𝑏 𝑗𝑐𝑢𝑟𝑟

10 initialize best performance,𝐶𝑏𝑒𝑠𝑡 ←𝐶𝑐𝑢𝑟𝑟

11 while𝑇 > 𝑇𝑓 𝑖𝑛𝑖𝑠ℎ do

12 while 𝑁 > 0 do
13 randomly perturb the systolic array design, 𝑆𝑝 , belonging to

the neighborhood of 𝑆𝑐𝑢𝑟𝑟 with𝐴𝑅𝑖
14 𝑁 -= 1
15 if 𝑆𝑖 meets design constraints (i)-(v) in Sec. 3.2 then

16 calculate𝐶𝑝 and loss in performance𝐶𝑙𝑜𝑠𝑠 =
𝐶𝑝−𝐶𝑐𝑢𝑟𝑟

𝐶𝑐𝑢𝑟𝑟

17 initialize status← ‘Reject’
18 if 𝐶𝑙𝑜𝑠𝑠 ≤ 𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 then

19 status← ‘Accept’
20 if status = ‘Accept’ then
21 status← ‘Reject’
22 generate power traces and calculate𝑇𝑝𝑒𝑎𝑘, 𝑝
23 calculate𝑂𝑏 𝑗𝑝
24 if 𝑇𝑝𝑒𝑎𝑘,𝑝 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

25 Δ𝑂𝑏 𝑗𝑎𝑣𝑔 = 𝑎𝑏𝑠 (𝑂𝑏 𝑗𝑝 −𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 )
26 if 𝑂𝑏 𝑗𝑝 ≤ 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 then

27 status← ‘Accept’
28 else if 𝑂𝑏 𝑗𝑝 > 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 then

29 if random(0,1) < 𝑒𝑥𝑝 (− Δ𝑂𝑏𝑗

Δ𝑂𝑏𝑗𝑎𝑣𝑔∗𝑇 )
then

30 status← ‘Accept’

31 if status = ‘Accept’ then
32 𝑆𝑐𝑢𝑟𝑟 ← 𝑆𝑝 ,𝐶𝑐𝑢𝑟𝑟 ←𝐶𝑝 ,𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 ←𝑂𝑏 𝑗𝑝
33 update Δ𝑂𝑏 𝑗𝑎𝑣𝑔
34 if 𝐶𝑝 < 𝐶𝑐𝑢𝑟𝑟 then

35 𝐶𝑏𝑒𝑠𝑡 ←𝐶𝑐𝑢𝑟𝑟

36 Store 𝑆𝑐𝑢𝑟𝑟 ,𝐶𝑐𝑢𝑟𝑟 ,𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 ,𝑇𝑝𝑒𝑎𝑘,𝑐𝑢𝑟𝑟 in a data structure
37 𝑇 ←𝑇 ∗ 𝛿
38 𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑎𝑟𝑡𝑠 -= 1
39 return 𝑆𝑏𝑒𝑠𝑡 s.t.𝑇𝑝𝑒𝑎𝑘 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , &𝐶𝑙𝑜𝑠𝑠 ≤ 𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥

of cooling1. Each start begins by randomly choosing an initial accel-
erator (𝑆𝑖 ) that satisfies the design constraints (i)-(vi) listed above
(lines 3-7). We set 𝑆𝑖 as the current solution (𝑆𝑐𝑢𝑟𝑟 ) and initialize
the execution time (𝐶𝑐𝑢𝑟𝑟 ), fastest execution time (𝐶𝑏𝑒𝑠𝑡 ), peak tem-
perature (𝑇𝑝𝑒𝑎𝑘,𝑐𝑢𝑟𝑟 ), and𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 with 𝑆𝑖 ’s parameters (lines 8-10).
We then randomly perturb 𝑆𝑐𝑢𝑟𝑟 to a nearby (neighboring) and
feasible design (𝑆𝑝 ) based on chip footprint (lines 11-15). If the exe-
cution time of the DNN on the perturbed design (𝐶𝑝 ) is smaller or
within a user-specified performance degradation (𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 ) from
𝐶𝑏𝑒𝑠𝑡 , this design (i.e., 𝑆𝑝 ) is ‘accepted’ for the next step. Otherwise,

1Annealing temperature is a unitless parameter in MSA that allows it to escape a local
minima by accepting a design with a higher𝑂𝑏 𝑗 value. Rate of cooling is the rate at
which the annealing temperature decays to achieve convergence.

it is ‘rejected’ (lines 16-19). The ‘accepted’ 𝑆𝑝 is then thermally
simulated for steady-state analysis. If the peak chip temperature
(𝑇𝑝𝑒𝑎𝑘,𝑝 ) is greater than the thermal budget (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ), 𝑆𝑝 is re-
jected. Otherwise, 𝑆𝑝 is checked for a lower𝑂𝑏 𝑗𝑝 . If𝑂𝑏 𝑗𝑝 is smaller
than 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 , then 𝑆𝑝 is ‘accepted’. Otherwise, it is ‘accepted’ with
a certain probability (lines 20-30). The term Δ𝑂𝑏 𝑗 is the difference
between 𝑂𝑏 𝑗𝑝 and 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 , while Δ𝑂𝑏 𝑗𝑎𝑣𝑔 refers to the running
average of Δ𝑂𝑏 𝑗 for the accepted designs. The ‘accepted’ 𝑆𝑝 is then
set as 𝑆𝑐𝑢𝑟𝑟 for the next iteration (lines 31-35).

The algorithm terminates when the termination conditions are
satisfied (lines 1, 11). The accepted designs are stored in a data
structure. Finally, the optimizer selects the best design among all
the starts with the least 𝑂𝑏 𝑗 while satisfying the performance and
thermal constraints (line 38). Note that if the objective of the user
is to design one accelerator that can run multiple DNNs efficiently,
then some additional meta strategies could be integrated to the
optimizer. For example, the optimizer can select the fastest/most
efficient design out of several optimized solutions for all target
DNNs on average, or pick the design that yields the best results for
the most frequently run DNNs.
3.3 Performance Model

SCALE-Sim is an open-source, state-of-the-art cycle-accurate sim-
ulator for DNN accelerators that operate on 8-bit integer data.
It takes the size of systolic array and scratchpad memories and
DRAM bandwidth as inputs, simulates a stall-free DNN inference,
and outputs compute cycles, non-overlapping DRAM cycles, ar-
ray utilization, SRAM accesses, and SRAM bandwidth to support
stall-free inference. Compute cycles include cycles spent in data
transfer between SRAMs and systolic array, along with DRAM cy-
cles that overlap with the computation. We divide the compute
cycles and non-overlapping cycles by chip and DRAM frequencies,
respectively, to calculate the latency. Among the several dataflows
SCALE-Sim supports, we use output stationary as it has been shown
to outperform the other dataflows [19].
3.4 Mono3D Power Models

We use SCALE-Sim outputs to obtain the average dynamic power
of the systolic array (𝑃𝑆𝐴,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 ) using Eqs. (1) and (2):

𝑈𝑎𝑣 = (
𝑁∑
𝑖=1

𝑈𝑖 ∗𝐶𝑖 )/(
𝑁∑
𝑖=1

𝐶𝑖 ), (1)

𝑃𝑆𝐴,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑈𝑎𝑣 ∗ 𝑃𝑀𝐴𝐶,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 , (2)
where 𝑁 is the total number of convolutional layers in the DNN,
𝑈𝑖 and 𝐶𝑖 are the utilization and compute cycles, respectively, for
the 𝑖𝑡ℎ layer, and 𝑃𝑀𝐴𝐶,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 is the dynamic power for a MAC
unit. We also integrate an exponential leakage model for MAC (see
Sec. 4.1.1 for details on MAC’s power model).

We use the minimum SRAM bandwidth (𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒) gener-
ated by SCALE-Sim to decide the number of banks in SRAM. We
use CACTI to calculate the SRAM dynamic power and leakage. To
estimate SRAM leakage at a finer granularity than the 10 degree
default granularity of CACTI, we fit a linear model (a linear model
can accurately estimate leakage across close temperatures [22]).

We deploy a generic interconnect power model, where the in-
terconnects consume 15% of the total chip dynamic power because
(i) DNNs require large amounts of memory for inputs, weights,
and outputs, and (ii) there is frequent data movement between the
systolic array and SRAMs [23]. We then reduce the interconnect



Systolic array size 16×16 to 256×256
Each SRAM size {32, 64, 128, 256, 512, 1024, 2048, 4096} 𝐾𝐵

Aspect ratio of the chip 0.7 to 1.3
Frequencies {735, 600, 500}𝑀𝐻𝑧

Table 1: Design space for DNN accelerators.

power by 10%, which is equal to Mono3D iso-performance power
savings obtained from a recent work [24]. The interconnect power
is then uniformly distributed across the metal layers.

We evaluate energy efficiency for the accelerators using the
following metrics: system energy (𝐸𝑠𝑦𝑠 , includes both the chip and
DRAM energy), energy-delay-area-product (𝐸𝐷𝐴𝑃 ), energy-delay2-
product (𝐸𝐷2𝑃 ), and energy-delay-product (𝐸𝐷𝑃 ). While 𝐸𝐷𝑃 and
𝐸𝐷2𝑃 emphasize the execution time, 𝐸𝐷𝐴𝑃 offers a comparison
across accelerators with different chip footprints.
3.5 Mono3D Thermal Model

We build a compact thermal model (CTM) in HotSpot for the chip-
stack shown in Fig. 2. The CTM has 32 layers (including tiers, metal
layers, etc.). We use HotSpot’s default ambient setting, i.e. 45 ◦𝐶 ,
and grid mode (grid length = MAC length) to conduct steady-state
thermal simulations with the power traces generated using CACTI
and Mono3D power models. To model a mobile system, we set the
heat spreader thickness to 50 `𝑚 and remove the heat sink by set-
ting its thickness to a negligible value. After every HotSpot run, we
read the SRAM andMAC temperatures and update the power traces
with their temperature-dependent leakage, and rerun HotSpot. This
feedback loop continues till the difference is < 1◦𝐶 for both MAC
and SRAM temperatures between consecutive HotSpot runs.

We validate our CTM with a model for the same design in COM-
SOL, a multiphysics simulator that uses finite element method to
solve a second order heat diffusion equation [25]. We model var-
ious aspect ratios, hot spot locations, sizes, and power densities.
Overall, we observe a maximum error in peak temperature of 3.89%
w.r.t. COMSOL. We also report average, maximum and RMS errors
of 1.53◦𝐶 , 4◦C (corresponds to 3.2% w.r.t. COMSOL), and 1.76◦𝐶 ,
respectively. We also observe that power profiles resembling our
Mono3D setup show amaximum error of 1◦ C (corresponds to 1.3%)
for peak temperatures close to 80◦𝐶 (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 in our analysis).

4 EXPERIMENTAL RESULTS

In this section, we describe our experimental setup, evaluate our
optimizer for correctness and speed, and present the results of our
optimization flow. For our analyses, we have used eight DNN infer-
ence benchmarks, six from MLPerf [18], namely VGG19, VGG16,
VGG11, ResNet50, MobileNet, and GoogLeNet, along with Faster
R-CNN [26] and Tiny-YOLO [27]. We group MobileNet, GoogLeNet,
ResNet50, and Tiny-YOLO as lower-complexity (LoC) DNNs because
of their lower memory usage and fewer number of MAC opera-
tions and the rest as higher-complexity (HiC) DNNs because of their
greater number of MAC operations and higher memory usage [28].
4.1 Experimental setup

4.1.1 SRAM/Systolic Array MAC model. We synthesize a 65 𝑛𝑚
8-bit MAC unit at 250𝑀𝐻𝑧 using the Synopsys Design Compiler
(DC) and scale it down to 22 𝑛𝑚 technology node. The scaled down
area, dynamic power, and the frequency are 121 `𝑚2 (length = 11
`𝑚), 0.25𝑚𝑊 , and 735𝑀𝐻𝑧, respectively. We also fit a temperature-
dependent exponential leakage model for a MAC unit using data
points (temperature, leakage) from our synthesized MAC model.

Furthermore, wemodel 22𝑛𝑚 SRAMs in CACTI-6.5 and the off-chip
DRAM is based on 8 𝐺𝑏 LPDDR2-800 x32 chips at 400𝑀𝐻𝑧, with
8.5 𝐺𝐵𝑝𝑠 bandwidth and 200 𝑝 𝐽/𝑏𝑦𝑡𝑒 energy consumption [29].
4.1.2 Constraints and Design Space. We set our chip footprint bud-
get to 8 𝑚𝑚2, desired systolic array size between 16×16 [2] and
256×256 (similar to Google’s Tensor Flow Processor), total allowed
SRAM size to 24 𝑀𝐵, thermal budget to 80◦𝐶 , and the maximum
whitespace allowed to 1% of the chip footprint. In addition to the
chip frequency of 735𝑀𝐻𝑧, we include 600𝑀𝐻𝑧 and 500𝑀𝐻𝑧 in
our search space. We set a constraint on maximum performance
loss of ≤ 10% w.r.t. the design with the lowest latency under the
given constraints. Note that this is a user-defined parameter and can
change as required. Each SRAM has 4 banks and provides a band-
width of 256 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 to match with the minimum SRAM
bandwidth for the given systolic array bounds as output by SCALE-
Sim. Table 1 shows the total design space for DNN accelerators, i.e.,
24.6𝑘 (3 frequencies × 8.2𝑘 accelerators) design points.
4.2 Optimizer Evaluation

4.2.1 Setup and Running Times. We launch 6 starts for each fre-
quency and each start is assigned an aspect ratio range. Each start
has 6 annealing temperatures with 35 perturbations. We ensure
convergence by observing that the optimizer does not accept worse
designs as it approaches termination. We run the optimizer multiple
times to tune its parameters, i.e., 𝑇𝑠𝑡𝑎𝑟𝑡 ,𝑇𝑓 𝑖𝑛𝑖𝑠ℎ and 𝛿 , to achieve
better solutions. Furthermore, our optimizer can work with a larger
range of frequencies and still select a near-optimal point (this may
require launching more starts in parallel).

SCALE-Sim and HotSpot take 10-60 and 5-45 mins, respectively,
depending on the chip footprint and DNN. HiC DNNs have a higher
number of MAC operations that lead to higher power densities and
peak temperatures (more active PEs), which increase temperature-
dependent leakage. Thus, these DNNs require more iterations (4-5)
to converge in HotSpot. LoC DNNs require fewer iterations (2-3)
due to fewer MAC operations [28] and lower chip power. Long
simulation times are bottlenecks to perform an exhaustive search
in our large design space and demonstrate the need for an optimizer.
4.2.2 Correctness of the Optimizer. To demonstrate the correct-
ness of our optimizer, we select a smaller design space with one
frequency (735𝑀𝐻𝑧), 0.94 to 1 aspect ratio range (step size of 0.01),
under the same constraints listed in Sec. 4.1.2. We evaluate the
optimizer with 10%, 5%, and 3% performance constraints. In total,
there are 1,196 valid accelerator configurations. We select 2 DNNs,
Tiny-YOLO and VGG11, and compare the designs chosen by our op-
timizer to those determined by an exhaustive search in this smaller
design space. The optimizer’s parameters {𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑓 𝑖𝑛𝑖𝑠ℎ , 𝛿} for
Tiny-YOLO and VGG11 are set to {1.446, 0.738611, 0.8} and {1.446,
0.885963, 0.85}, respectively. The 6 starts are assigned aspect ratio
ranges: [0.94, 0.95], (0.95, 0.96], and so on till (0.99, 1]. Across all the
objectives (performance, power, energy, EDP, ED2P, and EDAP),
the near-optimal designs selected by the optimizer and the global
optimal differ by ≤ 2% in 𝑂𝑏 𝑗 values, showing close agreement.
Exhaustive search for Tiny-YOLO and VGG11 requires 48.3 and 55
hours, respectively, with 6 parallel searches, while the optimizer
requires 4.8 and 5.5 hours, respectively, with 6 parallel starts.
4.3 Optimization Results

We next discuss the temperature-aware optimization results for
various objective functions. The 6 starts are assigned aspect ratio
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Figure 4: Performance versus temperature tradeoffs inMono3D DNN accelerators.
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Figure 5: Power-performance-temperature tradeoffs inMono3D DNN accelerators.

Optimization Goal MobileNet ResNet50 GoogLeNet Tiny-YOLO VGG11 VGG16 VGG19 Faster R-CNN
Performance

(Inference Latency)
212×172 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

198×184 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

190×192 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

174×208 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

212×172 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

194×188 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

170×214 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

160×228 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

Chip Power 170×214 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

126×144 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

192×198 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

122×150 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

160×228 735𝑀𝐻𝑧)
{4096, 64, 32} 𝐾𝐵

210×174 (600𝑀𝐻𝑧)
{4096, 64, 32} 𝐾𝐵

180×202 (600𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

152×120 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

System Energy 174×208 (735𝑀𝐻𝑧)
{32, 4028, 32} 𝐾𝐵

212×172 (735 MHz)
{4096, 64, 32} 𝐾𝐵

214×170 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

202×184 (735𝑀𝐻𝑧)
{4096, 128, 32} 𝐾𝐵

216×172 (735𝑀𝐻𝑧)
{4096, 128, 32} 𝐾𝐵

190×200 (735𝑀𝐻𝑧)
{4096, 256, 32} 𝐾𝐵

222×172 (600𝑀𝐻𝑧)
{4096, 256, 32} 𝐾𝐵

146×126 (735𝑀𝐻𝑧)
{2048, 64, 32} 𝐾𝐵

System EDAP 196×186 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

142×128 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

216×168 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

122×150 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

210×176 ( 735𝑀𝐻𝑧)
{4096, 128, 32} 𝐾𝐵

190×200 (735𝑀𝐻𝑧)
{4096, 256, 32} 𝐾𝐵

218×174 (600𝑀𝐻𝑧)
{4096, 256, 32} 𝐾𝐵

146x126 (735𝑀𝐻𝑧)
{2048, 64, 32} 𝐾𝐵

Table 2: Designs selected by our optimizer: systolic array (operating frequency) and {IFMAP, Filter, OFMAP} SRAMs.

ranges: [0.7, 0.8], (0.8, 0.9], and so on till (1.2, 1.3]. Note that in the
following results, the SRAM sizes are ordered as IFMAP, Filter, and
OFMAP. If we mention one size, we refer to the total SRAM size.
4.3.1 Performance. Fig. 4 shows performance versus temperature
results for all the designs that our optimizer evaluates before con-
verging to near-optimal solutions for ResNet50 and VGG19 when
minimizing latency. The dashed lines are the user-defined perfor-
mance and thermal constraints. The optimizer selects a 198×184
systolic array with a 4160 𝑀𝐵 SRAM at 735 𝑀𝐻𝑧 for ResNet50
(Fig. 4a). The figure also shows a few points with slightly worse
performance but higher temperature within the performance con-
straint. Those points have a slightly larger footprint (1%) with more
active PEs, which results in higher power and peak temperatures.
LoC DNNs have adequate thermal headroom to run on big systolic
arrays at 735𝑀𝐻𝑧 without sacrificing performance (see Table 2).

In contrast, HiC DNNs have a higher array utilization (due to
more MAC operations) and lead to more thermal violations (due to
higher chip power) compared to the LoC DNNs (e.g., VGG19 in Fig.
4b). The optimizer selects 170×214 with 4160 𝐾𝐵 SRAM for VGG19.
Fig. 4b shows a 5% performance tradeoff w.r.t. the lowest execution
time accelerator to obey the tight thermal budget for VGG19. The
lowest execution time accelerator has higher utilization (with same
SRAM size), which leads to better performance but higher dynamic
power and temperature in the systolic array tier. The inter-tier
thermal coupling in Mono3D further increases the static power by

4% (despite the same SRAM size), eventually leading to a 3◦𝐶 higher
peak temperature. On average, HiC DNNs tradeoff 2% performance
to operate under safe temperatures (Table 2).
4.3.2 Power. Fig. 5 shows performance, power, and temperature
tradeoffs for ResNet50 and VGG19. We see at low total chip power
(< 1 W), peak temperatures can be high (80◦C for ResNet50 and
82◦C for VGG19). Here, the DNNs are running on smaller chip
footprints (≈1𝑚𝑚2), i.e., with smaller systolic arrays and SRAMs ,
which leads to higher power density and peak temperatures. The
optimizer selects 126×144 with 2112 𝐾𝐵 SRAM at 735 𝑀𝐻𝑧 for
ResNet50. 600𝑀𝐻𝑧 designs present under the imposed constraints
have a larger chip footprint with more PEs operating in parallel,
which results in a net higher power (than the selected design). 500
𝑀𝐻𝑧 accelerators violate the performance constraint and thus, are
not selected by the optimizer. Similarly, the optimizer selects 735
𝑀𝐻𝑧 designs for the other LoC DNNs (Table 2).

For VGG19, the optimizer selects a 180×202 systolic array with
2080 𝐾𝐵 SRAM at 600 𝑀𝐻𝑧 (see Fig. 5b). At 735 𝑀𝐻𝑧, the most
power-efficient design under the user-specified constraints is almost
of the same size as the selected design (≈0.99×) with a similar array
utilization and same SRAM size. The higher dynamic power (due
to faster PEs) causes higher temperature in the systolic array tier,
which further increases the static power by 9% due to inter-tier
thermal coupling (despite the same size of the SRAM), eventually
resulting in a 7◦𝐶 higher peak temperature. Similarly, a 600𝑀𝐻𝑧
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Figure 6: Energy distribution inMono3D DNN accelerators under performance and temperature constraints.

design is selected for VGG16. On the other hand, Faster-RCNN
and VGG11 have lower power and lead to relatively fewer thermal
violations. Hence the optimizer finds power-efficient accelerators
at 735𝑀𝐻𝑧 under the thermal constraint (see Table 2).
4.3.3 Energy Efficiency. Fig. 6 shows system energy (𝐸𝑠𝑦𝑠 ) distribu-
tion for ResNet50 and VGG19. The optimizer selects 212×172 with
2112 𝐾𝐵 SRAM at 735 𝑀𝐻𝑧 for ResNet50. While there exist few
600 𝑀𝐻𝑧 accelerators with lower power under the performance
constraint, the higher execution time negates the power savings.
Similarly, 735 𝑀𝐻𝑧 accelerators are selected for the other LoC
DNNs. Even for HiC DNNs, the optimizer selects 735𝑀𝐻𝑧 acceler-
ators for all but VGG19 (Table 2). VGG19, being the highest power
DNN, benefits from both Mono3D iso-performance power savings
and slower PEs, thus making up for the performance loss w.r.t. 735
𝑀𝐻𝑧 designs. On average, our optimizer achieves 1.2× energy and
1.1× area savings, with a performance loss of 5.3% across all the
DNNs. Finally, selections made by the optimizer for minimizing
𝐸𝐷𝐴𝑃 achieve up to 2× chip footprint and 1.6× 𝐸𝑠𝑦𝑠 savings, by sac-
rificing up to 9.7% latency (average: 1.2×, 1.4×, 5.5%, respectively).
5 CONCLUSION

We propose a design automation methodology that yields near-
optimal energy efficient DNN accelerators based onMono3D un-
der user-specified thermal and performance constraints. Based on
tradeoff analysis few conclusions can be drawn: (i) HiC DNNs with
higher dynamic power result in higher temperature, which further
increases leakage due to inter-tier thermal coupling, eventually re-
sulting in thermal violations. As a result, HiC DNNs have to tradeoff
performance to operate under safe temperatures. (ii) Although we
can add more SRAM and PEs (i.e., larger systolic array) to utilize the
two tiers in a given chip footprint, power efficiency can drop (even
at lower frequencies) due to (a) higher dynamic power (more active
PEs) and (b) higher SRAM static power, as a result of both SRAM
size and inter-tier thermal coupling inMono3D across all DNNs.
(iii) HiC DNNs (e.g., VGG19) with more PEs running in parallel
can benefit from running at lower frequency, along with Mono3D
power savings, thereby achieving higher energy efficiency.
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