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Abstract: In the information-based pricing framework of Brody, Hughston & Macrina, the market
filtration {Ft}t≥0 is generated by an information process {ξt}t≥0 defined in such a way that at some
fixed time T an FT-measurable random variable XT is “revealed”. A cash flow HT is taken to depend
on the market factor XT , and one considers the valuation of a financial asset that delivers HT at time
T. The value of the asset St at any time t ∈ [0, T) is the discounted conditional expectation of HT
with respect to Ft, where the expectation is under the risk neutral measure and the interest rate is
constant. Then ST− = HT , and St = 0 for t ≥ T. In the general situation one has a countable number
of cash flows, and each cash flow can depend on a vector of market factors, each associated with an
information process. In the present work we introduce a new process, which we call the normalized
variance-gamma bridge. We show that the normalized variance-gamma bridge and the associated
gamma bridge are jointly Markovian. From these processes, together with the specification of a
market factor XT , we construct a so-called variance-gamma information process. The filtration is then
taken to be generated by the information process together with the gamma bridge. We show that the
resulting extended information process has the Markov property and hence can be used to develop
pricing models for a variety of different financial assets, several examples of which are discussed
in detail.

Keywords: information-based asset pricing; Lévy processes; gamma processes; variance gamma
processes; Brownian bridges; gamma bridges; nonlinear filtering

1. Introduction

The theory of information-based asset pricing proposed by Brody et al. (2007, 2008a, 2008b) and
Macrina (2006) is concerned with the determination of the price processes of financial assets from first
principles. In particular, the market filtration is constructed explicitly, rather than simply assumed,
as it is in traditional approaches. The simplest version of the model is as follows. We fix a probability
space (Ω, F ,P). An asset delivers a single random cash flow HT at some specified time T > 0, where
time 0 denotes the present. The cash flow is a function of a random variable XT , which we can think of
as a “market factor” that is in some sense revealed at time T. In the general situation there will be many
factors and many cash flows, but for the present we assume that there is a single factor XT : Ω→ R
such that the sole cash flow at time T is given by HT = h(XT) for some Borel function h : R → R+.
For simplicity we assume that interest rates are constant and that P is the risk neutral measure. We
require that HT should be integrable. Under these assumptions, the value of the asset at time 0 is

S0 = e−r T E [h(XT)] , (1)
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where E denotes expectation under P and r is the short rate. Since the single “dividend” is paid at
time T, the value of the asset at any time t ≥ 0 is of the form

St = e−r (T−t) 1{t<T} E
[
h(XT)

∣∣Ft
]

, (2)

where {Ft}t≥0 is the market filtration. The task now is to model the filtration, and this will be
done explicitly.

In traditional financial modelling, the filtration is usually taken to be fixed in advance.
For example, in the widely-applied Brownian-motion-driven model for financial markets, the filtration
is generated by an n-dimensional Brownian motion. A detailed account of the Brownian framework
can be found, for example, in Karatzas and Shreve (1998). In the information-based approach, however,
we do not assume the filtration to be given a priori. Instead, the filtration is constructed in a way that
specifically takes into account the structures of the information flows associated with the cash flows of
the various assets under consideration.

In the case of a single asset generating a single cash flow, the idea is that the filtration should
contain partial or “noisy” information about the market factor XT , and hence the impending cash
flow, in such a way that XT is FT-measurable. This can be achieved by allowing {Ft} to be generated
by a so-called information process {ξt}t≥0 with the property that for each t such that t ≥ T the
random variable ξt is σ{XT}-measurable. Then by constructing specific examples of cádlàg processes
having this property, we are able to formulate a variety of specific models. The resulting models
are finely tuned to the structures of the assets that they represent, and therefore offer scope for
a useful approach to financial risk management. In previous work on information-based asset
pricing, where precise definitions can be found that expand upon the ideas summarized above, such
models have been constructed using Brownian bridge information processes (Brody et al. (2007, 2008a,
2009, 2010, 2011), Filipović et al. (2012), Hughston and Macrina (2012), Macrina (2006), Mengütürk
(2013), Rutkowski and Yu (2007)), gamma bridge information processes (Brody et al. (2008b)), Lévy
random bridge information processes (Hoyle (2010), Hoyle et al. (2011, 2015, 2020), Mengütürk (2018))
and Markov bridge information processes (Macrina (2019)). In what follows we present a new model
for the market filtration, based on the variance-gamma process. The idea is to create a two-parameter
family of information processes associated with the random market factor XT . One of the parameters is
the information flow-rate σ. The other is an intrinsic parameter m associated with the variance gamma
process. In the limit as m tends to infinity, the variance-gamma information process reduces to the type
of Brownian bridge information process considered by Brody et al. (2007, 2008a) and Macrina (2006).

The plan of the paper is as follows. In Section 2 we recall properties of the gamma process,
introducing the so-called scale parameter κ > 0 and shape parameter m > 0. A standard gamma
subordinator is defined to be a gamma process with κ = 1/m. The mean at time t of a standard gamma
subordinator is t. In Theorem 1 we prove that an increase in the shape parameter m results in a transfer
of weight from the Lévy measure of any interval [c, d] in the space of jump size to the Lévy measure of
any interval [a, b] such that b− a = d− c and c > a. Thus, roughly speaking, an increase in m results
in an increase in the rate at which small jumps occur relative to the rate at which large jumps occur.
This result concerning the interpretation of the shape parameter for a standard gamma subordinator is
new as far as we are aware.

In Section 3 we recall properties of the variance-gamma process and the gamma bridge, and in
Definition 1 we introduce a new type of process, which we call a normalized variance-gamma bridge.
This process plays an important role in the material that follows. In Lemmas 1 and 2 we work out
various properties of the normalized variance-gamma bridge. Then in Theorem 2 we show that the
normalized variance-gamma bridge and the associated gamma bridge are jointly Markov, a property
that turns out to be crucial in our pricing theory. In Section 4, at Definition 2, we introduce the so-called
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variance-gamma information process. The information process carries noisy information about the
value of a market factor XT that will be revealed to the market at time T, where the noise is represented
by the normalized variance-gamma bridge. In Equation (58) we present a formula that relates the
values of the information process at different times, and by use of that we establish in Theorem 3 that
the information process and the associated gamma bridge are jointly Markov.

In Section 5, we consider a market where the filtration is generated by a variance gamma
information process along with the associated gamma bridge. In Lemma 3 we work out a version of
the Bayes formula in the form that we need for asset pricing in the present context. Then in Theorem 4
we present a general formula for the price process of a financial asset that at time T pays a single
dividend given by a function h(XT) of the market factor. In particular, the a priori distribution of the
market factor can be quite arbitrary, specified by a measure FXT (dx) on R, the only requirement being
that h(XT) should be integrable. In Section 6 we present a number of examples, based on various
choices of the payoff function and the distribution for the market factor, the results being summarized
in Propositions 1–4. We conclude with comments on calibration, derivatives, and how one determines
the trajectory of the information process from market prices.

2. Gamma Subordinators

We begin with some remarks about the gamma process. Let us as usual write R+ for the
non-negative real numbers. Let κ and m be strictly positive constants. A continuous random variable
G : Ω → R+ on a probability space (Ω, F , P) will be said to have a gamma distribution with scale
parameter κ and shape parameter m if

P [G ∈ dx] = 1{x>0}
1

Γ[m]
κ−m xm−1 e−x/κ dx , (3)

where
Γ[a] =

∫ ∞

0
xa−1 e−x dx (4)

denotes the standard gamma function for a > 0, and we recall the relation Γ[a + 1] = aΓ[a].
A calculation shows that E [G] = κ m, and Var[G] = κ2 m. There exists a two-parameter family
of gamma processes of the form Γ : Ω×R+ → R+ on (Ω, F , P). By a gamma process with scale
κ and shape m we mean a Lévy process {Γt}t≥0 such that for each t > 0 the random variable Γt is
gamma distributed with

P [Γt ∈ dx] = 1{x>0}
1

Γ[m t]
κ−m t xm t−1 e−x/κ dx . (5)

If we write (a)0 = 1 and (a)k = a(a + 1)(a + 2) · · · (a + k − 1) for the so-called Pochhammer
symbol, we find that E[Γn

t ] = κn(mt)n. It follows that E[Γt] = µ t and Var[Γt] = ν2 t, where µ = κ m
and ν2 = κ2 m, or equivalently m = µ2/ν2, and κ = ν2/µ.

The Lévy exponent for such a process is given for α < 1 by

ψΓ(α) =
1
t

logE [exp(αΓt)] = −m log (1− κα) , (6)

and for the corresponding Lévy measure we have

νΓ(dx) = 1{x>0} m
1
x

e−x/κ dx . (7)

One can then check that the Lévy-Khinchine relation
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ψΓ(α) =
∫
R

(
eαx − 1− 1{|x|<1} αx

)
νΓ(dx) + pα (8)

holds for an appropriate choice of p (Kyprianou 2014, Lemma 1.7).
By a standard gamma subordinator we mean a gamma process {γt}t≥0 for which κ = 1/m. This

implies that E[γt] = t and Var[γt] = m−1 t. The standard gamma subordinators thus constitute a
one-parameter family of processes labelled by m. An interpretation of the parameter m is given by
the following:

Theorem 1. Let {γt}t≥0 be a standard gamma subordinator with parameter m. Let νm[a, b] be the Lévy
measure of the interval [a, b] for 0 < a < b. Then for any interval [c, d] such that c > a and d− c = b− a
the ratio

Rm(a, b ; c, d) =
νm[a, b]
νm[c, d]

(9)

is strictly greater than one and strictly increasing as a function of m.

Proof. By the definition of a standard gamma subordinator we have

νm[a, b] =
∫ b

a
m

1
x

e−m x dx . (10)

Let δ = c− a > 0 and note that the integrand in the right hand side of (10) is a decreasing function of
the variable of integration. This allows one to conclude that

νm[a + δ, b + δ] =
∫ b+δ

a+δ
m

1
x

e−m x dx <
∫ b

a
m

1
x

e−m x dx , (11)

from which it follows that 0 < νm[c, d] < νm[a, b] and hence Rm(a, b ; c, d) > 1. To show that
Rm(a, b; c, d) is strictly increasing as a function of m we observe that

νm[a, b] = m
∫ ∞

a

1
x

e−m x dx−m
∫ ∞

b

1
x

e−m x dx = m (E1[m a]− E1[m b]) , (12)

where the so-called exponential integral function E1(z) is defined for z > 0 by

E1(z) =
∫ ∞

z

e−x

x
dx . (13)

See Abramowitz and Stegun (1972), Section 5.1.1, for properties of the exponential integral. Next,
we compute the derivative of Rm(a, b ; c, d), which gives

∂

∂m
Rm(a, b ; c, d) =

1
m (E1[m c]− E1[m d])

e−m a
(

1− e−m ∆
) (

Rm(a, b ; c, d)− em(c−a)
)

, (14)

where
∆ = d− c = b− a . (15)

We note that
1

m (E1[m c]− E1[m d])
e−m a

(
1− e−m ∆

)
> 0 , (16)

which shows that the sign of the derivative in (14) is strictly positive if and only if

Rm(a, b ; c, d) > em(c−a). (17)
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But clearly ∫ ∆ m

0

e−u

u + a m
du >

∫ ∆ m

0

e−u

u + c m
du (18)

for c > a, which after a change of integration variables and use of (15) implies

em a
∫ b m

a m

e−x

x
dx > em c

∫ d m

c m

e−x

x
dx, (19)

which is equivalent to (17), and that completes the proof.

We see therefore that the effect of an increase in the value of m is to transfer weight from the Lévy
measure of any jump-size interval [c, d] ⊂ R+ to any possibly-overlapping smaller-jump-size interval
[a, b] ⊂ R+ of the same length. The Lévy measure of such an interval is the rate of arrival of jumps for
which the jump size lies in that interval.

3. Normalized Variance-Gamma Bridge

Let us fix a standard Brownian motion {Wt}t≥0 on (Ω, F , P) and an independent standard
gamma subordinator {γt}t≥0 with parameter m. By a standard variance-gamma process with
parameter m we mean a time-changed Brownian motion {Vt}t≥0 of the form

Vt = Wγt . (20)

It is straightforward to check that {Vt} is itself a Lévy process, with Lévy exponent

ψV(α) = −m log
(

1− α2

2 m

)
. (21)

Properties of the variance-gamma process, and financial models based on it, have been investigated
extensively in Madan (1990), Madan and Milne (1991), Madan et al. (1998), Carr et al. (2002) and many
other works.

The other object we require going forward is the gamma bridge (Brody et al. (2008b), Emery and
Yor (2004), Yor (2007)). Let {γt} be a standard gamma subordinator with parameter m. For fixed T > 0
the process {γtT}t≥0 defined by

γtT =
γt

γT
(22)

for 0 ≤ t ≤ T and γtT = 1 for t > T will be called a standard gamma bridge, with parameter m,
over the interval [0, T]. One can check that for 0 < t < T the random variable γtT has a beta distribution
(Brody et al. 2008b, pp. 6–9). In particular, one finds that its density is given by

P [γtT ∈ dy] = 1{0<y<1}
ymt−1(1− y)m(T−t)−1

B[mt, m(T − t)]
dy , (23)

where

B[a, b] =
Γ[a] Γ[b]
Γ[a + b]

. (24)

It follows then by use of the integral formula

B[a, b] =
∫ 1

0
ya−1(1− y)b−1dy (25)
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that for all n ∈ N we have

E [γn
tT ] =

B[mt + n, m(T − t)]
B[mt, m(T − t)]

, (26)

and hence

E [γn
tT ] =

(mt)n

(mT)n
. (27)

Accordingly, one has

E[γtT ] = t/T , E[γ2
tT ] = t(mt + 1)/T(mT + 1) (28)

and therefore

Var[γtT ] =
t(T − t)

T2(1 + mT)
. (29)

One observes, in particular, that the expectation of γtT does not depend on m, whereas the
variance of γtT decreases as m increases.

Definition 1. For fixed T > 0, the process {ΓtT}t≥0 defined by

ΓtT = γT
− 1

2 (Wγt − γtT WγT ) (30)

for 0 ≤ t ≤ T and ΓtT = 0 for t > T will be called a normalized variance gamma bridge.

We proceed to work out various properties of this process. We observe that ΓtT is conditionally
Gaussian, from which it follows that E [ΓtT | γt, γT ] = 0 and E

[
Γ2

tT | γt, γT
]

= γtT (1− γtT).
Therefore E[ΓtT ] = 0 and E[Γ2

tT ] = E[γtT ]−E[γ2
tT ] ; and thus by use of (28) we have

Var [ΓtT ] =
mt (T − t)
T (1 + mT)

. (31)

Now, recall (Yor (2007), Emery and Yor (2004)) that the gamma process and the associated gamma
bridge have the following fundamental independence property. Define

G ∗t = σ {γs/γt, s ∈ [0, t]} , G +
t = σ {γu, u ∈ [t, ∞)} . (32)

Then, for every t ≥ 0 it holds that G ∗t and G +
t are independent. In particular γst and γu are

independent for 0 ≤ s ≤ t ≤ u and t > 0. It also holds that γst and γuv are independent for
0 ≤ s ≤ t ≤ u ≤ v and t > 0. Furthermore, we have:

Lemma 1. If 0 ≤ s ≤ t ≤ u and t > 0 then Γst and γu are independent.

Proof. We recall that if a random variable X is normally distributed with mean µ and variance ν2 then

P [X < x] = N
(

x− µ

ν

)
, (33)

where N : R→ (0, 1) is defined by

N(x) =
1√
2π

∫ x

−∞
exp

(
−1

2
y2
)

dy . (34)
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Since ΓtT is conditionally Gaussian, by use of the tower property we find that

FΓst , γu(x, y) = E
[
1{Γst≤x} 1{γu≤y}

]
= E

[
E
[
1{Γst≤x} 1{γu≤y}

∣∣∣ γs , γt , γu

]]
= E

[
1{γu≤y} E

[
1{Γst≤x}

∣∣∣ γs , γt , γu

]]
= E

[
1{γu≤y} N

(
x (γst (1− γst))

− 1
2
)]

= E
[
1{γu≤y}

]
E
[

N
(

x (γst (1− γst))
− 1

2
)]

,

(35)

where the last line follows from the independence of γst and γu.

By a straightforward extension of the argument we deduce that if 0 ≤ s ≤ t ≤ u ≤ v and t > 0
then Γst and γuv are independent. Further, we have:

Lemma 2. If 0 ≤ s ≤ t ≤ u ≤ v and t > 0 then Γst and Γuv are independent.

Proof. We recall that the Brownian bridge {βtT}0≤t≤T defined by

βtT = Wt −
t
T

WT (36)

for 0 ≤ t ≤ T and βtT = 0 for t > T is Gaussian with E [βtT ] = 0, Var [βtT ] = t (T − t)/T,
and Cov [βsT , βtT ] = s(T − t)/T for 0 ≤ s ≤ t ≤ T. Using the tower property we find that

FΓst , Γuv(x, y) = E
[
1{Γst≤x} 1{Γuv≤y}

]
= E

[
E
[
1{Γst≤x} 1{Γuv≤y}

∣∣∣ γs , γt , γu , γv

]]
= E

[
E
[
1{Γst≤x}

∣∣∣ γs , γt , γu , γv

]
E
[
1{Γuv≤y}

∣∣∣ γs , γt , γu , γv

]]
= E

[
N
(

x ((1− γst) (γst))
− 1

2
)]

E
[

N
(

y ((1− γuv) (γuv))
− 1

2
)]

, (37)

where in the final step we use (30) along with properties of the Brownian bridge.

A straightforward calculation shows that if 0 ≤ s ≤ t ≤ u and t > 0 then

Γsu = (γtu)
1
2 Γst + γst Γtu . (38)

With this result at hand we obtain the following:

Theorem 2. The processes {ΓtT}0≤t≤T and {γtT}0≤t≤T are jointly Markov.

Proof. To establish the Markov property it suffices to show that for any bounded measurable function
φ : R×R→ R, any n ∈ N, and any 0 ≤ tn ≤ tn−1 ≤ . . . ≤ t1 ≤ t ≤ T, we have

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2T , γt2T , . . . , ΓtnT , γtnT
]

= E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T
]

. (39)
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We present the proof for n = 2. Thus we need to show that

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2T , γt2T
]

= E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T
]

. (40)

As a consequence of (38) we have

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2T , γt2T
]

= E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2t1 , γt2t1

]
. (41)

Therefore, it suffices to show that

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2t1 , γt2t1

]
= E

[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T
]

. (42)

Let us write
f ΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1

(x, y, a, b, c, d) (43)

for the joint density of ΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1 . Then for the conditional density of ΓtT and γtT
given Γt1T = a, γt1T = b, Γt2t1 = c, γt2t1 = d we have

g ΓtT , γtT (x, y, a, b, c, d) =
f ΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1

(x, y, a, b, c, d)

f Γt1T , γt1T , Γt2t1 , γt2t1
(a, b, c, d)

. (44)

Thus,

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2t1 , γt2t1

]
=
∫
R

∫
R

φ(x, y) g ΓtT , γtT (x, y, Γt1T , γt1T , Γt2t1 , γt2t1)dx dy . (45)

Similarly,

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T
]

=
∫
R

∫
R

φ(x, y) g ΓtT , γtT (x, y, Γt1T , γt1T)dx dy , (46)

where for the conditional density of ΓtT and γtT given Γt1T = a, γt1T = b we have

g ΓtT , γtT (x, y, a, b) =
f ΓtT , γtT , Γt1T , γt1T (x, y, a, b)

f Γt1T , γt1T (a, b)
. (47)

Note that the conditional probability densities that we introduce in formulae such as those above
are “regular” conditional densities (Williams 1991, p. 91). We shall show that

g ΓtT , γtT (x, y, Γt1T , γt1T , Γt2t1 , γt2t1) = g ΓtT , γtT (x, y, Γt1T , γt1T) . (48)

Writing

FΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1
(x, y, a, b, c, d)

= E
[
1{ΓtT<x}1{γtT<y} 1{Γt1T<a}1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

]
(49)



Risks 2020, 8, 105 9 of 22

for the joint distribution function, we see that

FΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1
(x, y, a, b, c, d)

= E
[
1{ΓtT<x}1{γtT<y} 1{Γt1T<a}1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

]
= E

[
E
[
1{ΓtT<x} 1{γtT<y} 1{Γt1T<a} 1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

∣∣∣ γt2 , γt1 , γt, γT

]]
= E

[
1{γtT<y} 1{γt1T<b} 1{γt2t1<d} E

[
1{ΓtT<x} 1{Γt1T<a} 1{Γt2t1<c}

∣∣∣ γt2 , γt1 , γt, γT

]]
= E

[
E
[
1{ΓtT<x} 1{γtT<y} 1{Γt1T<a} 1{γt1T<b}

∣∣∣ γt1 , γt, γT

]
× N

(
c√

(1− γt2t1) (γt2t1)

)
1{γt2t1<d}

]
,

(50)

where the last step follows as a consequence of Lemma 2. Thus we have

FΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1
(x, y, a, b, c, d)

= E
[
1{ΓtT<x} 1{γtT<y} 1{Γt1T<a} 1{γt1T<b} N

(
c√

(1− γt2t1) (γt2t1)

)
1{γt2t1<d}

]

= E
[
1{ΓtT<x} 1{γtT<y} 1{Γt1T<a} 1{γt1T<b}

]
E
[

N

(
c√

(1− γt2t1) (γt2t1)

)
1{γt2t1<d}

]
= FΓtT , γtT , Γt1T , γt1T (x, y, a, b)× FΓt2t1 , γt2t1

(c, d) ,

(51)

where the next to last step follows by virtue of the fact that Γst and γuv are independent for 0 ≤ s ≤
t ≤ u ≤ v and t > 0. Similarly,

FΓt1T , γt1T , Γt2t1 , γt2t1
(a, b, c, d)

= E
[
1{Γt1T<a}1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

]
= E

[
E
[
1{Γt1T<a}1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

∣∣∣ γt2 , γt1 , γT

]]
= E

[
1{γt1T<b} 1{γt2t1<d} E

[
1{Γt1T<a} 1{Γt2t1<c}

∣∣∣ γt2 , γt1 , γT

]]
,

(52)

and hence

FΓt1T , γt1T , Γt2t1 , γt2t1
(a, b, c, d)

= E

N

 a√(
1− γt1T

) (
γt1T

)
 1{γt1T<b} N

(
c√

(1− γt2t1) (γt2t1)

)
1{γt2t1<d}


= E

N

 a√(
1− γt1T

) (
γt1T

)
 1{γt1T<b}

 E
[

N

(
c√

(1− γt2t1) (γt2t1)

)
1{γt2t1<d}

]

= FΓt1T , γt1T (a, b)× FΓt2t1 , γt2t1
(c, d) .

(53)
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Thus we deduce that

f ΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1
(x, y, a, b, c, d) (54)

= f ΓtT , γtT , Γt1T , γt1T (x, y, a, b)× f Γt2t1 , γt2t1
(c, d) , (55)

and

f Γt1T , γt1T , Γt2t1 , γt2t1
(a, b, c, d) = f Γt1T , γt1T (a, b)× fΓt2t1 , γt2t1

(c, d) , (56)

and the theorem follows.

4. Variance Gamma Information

Fix T > 0 and let {ΓtT} be a normalized variance gamma bridge, as defined by (30). Let {γtT}
be the associated gamma bridge defined by (22). Let XT be a random variable and assume that XT ,
{γt}t≥0 and {Wt}t≥0 are independent. We are led to the following:

Definition 2. By a variance-gamma information process carrying the market factor XT we mean a process
{ξt}t≥0 that takes the form

ξt = ΓtT + σ γtT XT (57)

for 0 ≤ t ≤ T and ξt = σXT for t > T, where σ is a positive constant.

The market filtration is assumed to be the standard augmented filtration generated jointly by {ξt}
and {γtT}. A calculation shows that if 0 ≤ s ≤ t ≤ T and t > 0 then

ξs = Γst (γtT)
1
2 + ξt γst . (58)

We are thus led to the following result required for the valuation of assets.

Theorem 3. The processes {ξt}0≤t≤T and {γtT}0≤t≤T are jointly Markov.

Proof. It suffices to show that for any n ∈ N and 0 < t1 < t2 < · · · < tn we have

E
[
φ(ξt, γtT)

∣∣ ξt1 , ξt2 , . . . , ξtn , γt1T , γt2T , . . . , γtnT
]
= E

[
φ(ξt, γtT)

∣∣ ξt1 , γt1T
]

. (59)

We present the proof for n = 2. Thus, we propose to show that

E
[
φ(ξt, γtT)

∣∣ ξt1 , ξt2 , γt1T , γt2T
]
= E

[
φ(ξt, γtT)

∣∣ ξt1 , γt1T
]

. (60)

By (58), we have

E
[
φ(ξt, γtT)

∣∣ ξt1 , ξt2 , γt1T , γt2,T
]

= E
[
φ(ξt, γtT)

∣∣ ξt1 , ξt2 , γt1T , γt2t1

]
= E

[
φ(ξt, γtT)

∣∣ ξt1 , Γt2t1 , γt1T , γt2t1

]
= E

[
φ(ΓtT + γtT σ XT , γtT)

∣∣ Γt1T + γt1T σ XT , Γt2t1 , γt1T , γt2t1

]
.

(61)
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Finally, we invoke Lemma 2, and Theorem 2 to conclude that

E
[
φ(ξt, γtT)|ξt1 , ξt2 , γt1T , γt2,T

]
= E

[
φ(ΓtT + γtT σ XT , γtT)

∣∣ Γt1T + γt1T σ XT , γt1T
]

= E
[
φ(ξt, γtT)|ξt1 , γt1T

]
.

(62)

The generalization to n > 2 is straightforward.

5. Information Based Pricing

Now we are in a position to consider the valuation of a financial asset in the setting just discussed.
One recalls that P is understood to be the risk-neutral measure and that the interest rate is constant.
The payoff of the asset at time T is taken to be an integrable random variable of the form h(XT) for
some Borel function h, where XT is the information revealed at T. The filtration is generated jointly by
the variance-gamma information process {ξt} and the associated gamma bridge {γtT}. The value of
the asset at time t ∈ [0, T) is then given by the general expression (2), which on account of Theorem 3
reduces in the present context to

St = e−r (T−t) E [h(XT) | ξt, γtT ] , (63)

and our goal is to work out this expectation explicitly.
Let us write FXT for the a priori distribution function of XT . Thus FXT : x ∈ R 7→ FXT (x) ∈ [0, 1]

and we have
FXT (x) = P (XT ≤ x) . (64)

Occasionally, it will be typographically convenient to write F(x)
XT

in place of FXT (x), and similarly
for other distribution functions. To proceed, we require the following:

Lemma 3. Let X be a random variable with distribution {FX(x)}x∈R and let Y be a continuous random
variable with distribution {FY(y)}y∈R and density { fY(y)}y∈R. Then for all y ∈ R for which fY(y) 6= 0
we have

F(x)
X|Y=y =

∫
u∈(−∞,x] f (y)Y|X=u dF(u)

X∫
u∈(−∞,∞) f (y)Y|X=u dF(u)

X

, (65)

where F(x)
X|Y=y denotes the conditional distribution P (X ≤ x | Y = y), and where

f (y)Y|X=u =
d

dy
P (Y ≤ y | X = u) . (66)

Proof. For any two random variables X and Y it holds that

P (X ≤ x, Y ≤ y) = E
[
1{X≤x} 1{Y≤y}

]
= E

[
E
[
1{X≤x}

∣∣Y]1{Y≤y}

]
= E

[
F(x)

X|Y 1{Y≤y}

]
. (67)
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Here we have used the fact that for each x ∈ R there exists a Borel measurable function Px : y ∈
R 7→ Px(y) ∈ [0, 1] such that E

[
1{X≤x}

∣∣Y] = Px(Y). Then for y ∈ R we define

F(x)
X|Y=y = Px(y) . (68)

Hence

P (X ≤ x, Y ≤ y) =
∫

v∈(−∞,y]
F(x)

X|Y=v dF(v)
Y . (69)

By symmetry, we have

P (X ≤ x, Y ≤ y) =
∫

u∈(−∞,x]
F(y)

Y|X=u dF(u)
X , (70)

from which it follows that we have the relation∫
u∈(−∞,x]

F(y)
Y|X=u dF(u)

X =
∫

v∈(−∞,y]
F(x)

X|Y=v dF(v)
Y . (71)

Moving ahead, let us consider the measure FX|Y=y(dx) on (R,B) defined for each y ∈ R by setting

FX|Y=y(A) = E
[
1{X∈A}

∣∣Y = y
]

(72)

for any A ∈ B. Then FX|Y=y(dx) is absolutely continuous with respect to FX(dx). Indeed, suppose

that FX(B) = 0 for some B ∈ B. Now, FX|Y=y(B) = E
[
1{X∈B}

∣∣Y = y
]
. But if E

[
1{X∈B}

]
= 0, then

E
[
E
[
1{X∈B}

∣∣Y]] = 0, and hence E
[
1{X∈B}

∣∣Y] = 0, and therefore E
[
1{X∈B}

∣∣Y = y
]
= 0. Thus

FX|Y=y(B) vanishes for any B ∈ B for which FX(B) vanishes. It follows by the Radon-Nikodym
theorem that for each y ∈ R there exists a density {gy(x)}x∈R such that

F(x)
X|Y=y =

∫
u∈(−∞,x]

gy(u)dF(u)
X . (73)

Note that {gy(x)} is determined uniquely apart from its values on FX-null sets. Inserting (73) into (71)
we obtain ∫

u∈(−∞,x]
F(y)

Y|X=u dF(u)
X =

∫
v∈(−∞,y]

∫
u∈(−∞,x]

gv(u)dF(u)
X dF(v)

Y , (74)

and thus by Fubini’s theorem we have∫
u∈(−∞,x]

F(y)
Y|X=u dF(u)

X =
∫

u∈(−∞,x]

∫
v∈(−∞,y]

gv(u)dF(v)
Y dF(u)

X . (75)

It follows then that {F(y)
Y|X=x}x∈R is determined uniquely apart from its values on FX-null sets,

and we have

F(y)
Y|X=x =

∫
v∈(−∞,y]

gv(x)dF(v)
Y . (76)

This relation holds quite generally and is symmetrical between X and Y. Indeed, we have not
so far assumed that Y is a continuous random variable. If Y is, in fact, a continuous random variable,
then its distribution function is absolutely continuous and admits a density { f (y)Y }y∈R. In that case,
(76) can be written in the form
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F(y)
Y|X=x =

∫
v∈(−∞,y]

gv(x) f (v)Y dv , (77)

from which it follows that for each value of x the conditional distribution function {F(y)
Y|X=x}y∈R is

absolutely continuous and admits a density { f (y)Y|X=x}y∈R such that

f (y)Y|X=x = gy(x) f (y)Y . (78)

The desired result (65) then follows from (73) and (78) if we observe that

f (y)Y =
∫

u∈(−∞,∞)
f (y)Y|X=u dF(u)

X , (79)

and that concludes the proof.

Armed with Lemma 3, we are in a position to work out the conditional expectation that leads to
the asset price, and we obtain the following:

Theorem 4. The variance-gamma information-based price of a financial asset with payoff h(XT) at time T is
given for t < T by

St = e−r (T−t)
∫

x∈R
h(x)

e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1∫
y∈R e(σ ξt y− 1

2 σ2 y2 γtT) (1−γtT)
−1

dF(y)
XT

dF(x)
XT

. (80)

Proof. To calculate the conditional expectation of h(XT), we observe that

E [h(XT) | ξt, γtT ] = E
[
E [h(XT) | ξt, γtT , γT ]

∣∣∣∣ ξt, γtT

]
, (81)

by the tower property, where the inner expectation takes the form

E [h(XT) | ξt = ξ, γtT = b, γT = g] =
∫

x∈R
h(x)dF(x)

XT |ξt=ξ, γtT=b, γT=g . (82)

Here by Lemma 3 the conditional distribution function is

F(x)
XT |ξt=ξ, γtT=b, γT=g =

∫
u∈(−∞, x ] f (ξ)

ξt |XT=u, γtT=b ,γT=g dF(u)
XT | γtT=b ,γT=g∫

u∈R f (ξ)
ξt |XT=u, γtT=b ,γT=g dF(u)

XT | γtT=b ,γT=g

=

∫
u∈(−∞, x ] f (ξ)

ξt |XT=u, γtT=b ,γT=g dF(u)
XT∫

u∈R f (ξ)
ξt |XT=u, γtT=b ,γT=g dF(u)

XT

=

∫
u∈(−∞, x ] e(σ ξ u− 1

2 σ2 u2 b) (1−b)−1
dF(u)

XT∫
R e(σ ξ u− 1

2 σ2 u2 b) (1−b)−1
dF(u)

XT

. (83)



Risks 2020, 8, 105 14 of 22

Therefore, the inner expectation in Equation (81) is given by

E [h(XT) | ξt, γtT , γT ] =
∫

x∈R
h(x)

e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1∫
y∈R e(σ ξt y− 1

2 σ2 y2 γtT) (1−γtT)
−1

dF(y)
XT

dF(x)
XT

. (84)

But the right hand side of (84) depends only on ξt and γtT . It follows immediately that

E [h(XT) | ξt, γtT ] =
∫

x∈R
h(x)

e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1∫
y∈R e(σ ξt y− 1

2 σ2 y2 γtT) (1−γtT)
−1

dF(y)
XT

dF(x)
XT

, (85)

which translates into Equation (80), and that concludes the proof.

6. Examples

Going forward, we present some examples of variance-gamma information pricing for specific
choices of (a) the payoff function h : R → R+ and (b) the distribution of the market factor XT .
In the figures, we display sample paths for the information processes and the corresponding prices.
These paths are generated as follows. First, we simulate outcomes for the market factor XT . Second,
we simulate paths for the gamma process {γt}t≥0 over the interval [0, T] and an independent Brownian
motion {Wt}t≥0. Third, we evaluate the variance gamma process {Wγt}t≥0 over the interval [0, T] by
subordinating the Brownian motion with the gamma process, and we evaluate the resulting gamma
bridge {γtT}0≤t≤T . Fourth, we use these ingredients to construct sample paths of the information
processes, where these processes are given as in Definition 2. Finally, we evaluate the pricing formula
in Equation (80) for each of the simulated paths and for each time step.

Example 1: Credit risky bond. We begin with the simplest case, that of a unit-principal credit-risky
bond without recovery. We set h(x) = x, with P(XT = 0) = p0 and P(XT = 1) = p1, where
p0 + p1 = 1. Thus, we have

FXT (x) = p0δ0(x) + p1δ1(x) , (86)

where

δa(x) =
∫

y∈(−∞,x]
δa(dy) , (87)

and δa(dx) denotes the Dirac measure concentrated at the point a, and we are led to the following:

Proposition 1. The variance-gamma information-based price of a unit-principal credit-risky discount bond
with no recovery is given by

St = e−r (T−t) p1 e(σ ξt − 1
2 σ2 γtT) (1−γtT)

−1

p0 + p1 e(σ ξt − 1
2 σ2 γtT) (1−γtT)

−1 . (88)

Now let ω ∈ Ω denote the outcome of chance. By use of Equation (57) one can check rather directly
that if XT(ω) = 1, then limt→T St = 1, whereas if XT(ω) = 0, then limt→T St = 0. More explicitly,
we find that

St

∣∣∣∣
XT(w)=0

= e−r(T−t)
p1 exp

[
σ
(

γ−1/2
T (Wγt − γtT WγT )− 1

2 σ γtT

)
(1− γtT)

−1
]

p0 + p1 exp
[
σ
(

γ−1/2
T (Wγt − γtT WγT )− 1

2 σ γtT

)
(1− γtT)−1

] , (89)
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whereas

St

∣∣∣∣
XT(w)=1

= e−r(T−t)
p1 exp

[
σ
(

γ−1/2
T (Wγt − γtT WγT ) +

1
2 σ γtT

)
(1− γtT)

−1
]

p0 + p1 exp
[
σ
(

γ−1/2
T (Wγt − γtT WγT ) +

1
2 σ γtT

)
(1− γtT)−1

] , (90)

and the claimed limiting behaviour of the asset price follows by inspection. In Figures 1 and 2 we
plot sample paths for the information processes and price processes of credit risky bonds for various
values of the information flow-rate parameter. One observes that for σ = 1 the information processes
diverge, thus distinguishing those bonds that default from those that do not, only towards the end of
the relevant time frame; whereas for higher values of σ the divergence occurs progressively earlier,
and one sees a corresponding effect in the price processes. Thus, when the information flow rate is
higher, the final outcome of the bond payment is anticipated earlier, and with greater certainty. Similar
conclusions hold for the interpretation of Figures 3 and 4.
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Figure 1. Credit-risky bonds with no recovery. The panels on the left show simulations of trajectories
of the variance gamma information process, and the panels on the right show simulations of the
corresponding price trajectories. Prices are quoted as percentages of the principal, and the interest rate
is taken to be zero. From top to bottom, we show trajectories having σ = 1, 2, respectively. We take
p0 = 0.4 for the probability of default and p1 = 0.6 for the probability of no default. The value of m is
100 in all cases. Fifteen simulated trajectories are shown in each panel.
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Figure 2. Credit-risky bonds with no recovery. From top to bottom we show trajectories having
σ = 3, 4, respectively. The other parameters are the same as in Figure 1.
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Figure 3. Log-normal payoff. The panels on the left show simulations of the trajectories of the
information process, whereas the panels on the right show simulations of the corresponding price
process trajectories. From the top to bottom, we show trajectories having σ = 1, 2, respectively.
The value for m is 100. We take µ = 0, ν = 1, and show 15 simulated trajectories in each panel.
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Figure 4. Log-normal payoff. From the top row to the bottom, we show trajectories having σ = 3, 4,
respectively. The other parameters are the same as those in Figure 3.

Example 2: Random recovery. As a somewhat more sophisticated version of the previous example,
we consider the case of a defaultable bond with random recovery. We shall work out the case where
h(x) = x and the market factor XT takes the value c with probability p1 and XT is uniformly distributed
over the interval [a, b] with probability p0, where 0 ≤ a < b ≤ c. Thus, for the probability measure of
XT we have

FXT (dx) = p0 1{a≤x<b} dx + p1 δc(dx) , (91)

and for the distribution function we obtain

FXT (x) = p0 x 1{a≤x<b} + 1{x≥c} . (92)

The bond price at time t is then obtained by working out the expression

St = e−r (T−t) p0
∫ b

a x e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1
dx + p1 c e(σ ξt − 1

2 σ2 γtT) (1−γtT)
−1

p0
∫ b

a e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1
dx + p1 e(σ ξt − 1

2 σ2 γtT) (1−γtT)
−1 , (93)

and it should be evident that one can obtain a closed-form solution. To work this out in detail, it will
be convenient to have an expression for the incomplete first moment of a normally-distributed random
variable with mean µ and variance ν2. Thus we set

N1(x, µ, ν) =
1√

2 π ν2

∫ x

−∞
y exp

(
−1

2
(y− µ)2

ν2

)
dy , (94)

and for convenience we set

N0(x, µ, ν) =
1√

2 π ν2

∫ x

−∞
exp

(
−1

2
(y− µ)2

ν2

)
dy . (95)
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Then we have

N1(x, µ, ν) = µ N
(

x− µ

ν

)
− ν√

2 π
exp

(
−1

2
(x− µ)2

ν2

)
, (96)

and of course

N0(x, µ, ν) = N
(

x− µ

ν

)
, (97)

where N( · ) is defined by (34). We also set

f (x, µ, ν) =
1√

2 π ν2
exp

(
−1

2
(x− µ)2

ν2

)
. (98)

Finally, we obtain the following:

Proposition 2. The variance-gamma information-based price of a defaultable discount bond with a
uniformly-distributed fraction of the principal paid on recovery is given by

St =e−r (T−t) p0
(

N1(b, µ, ν)− N1(a, µ, ν)
)
+ p1 c f (c, µ, ν)

p0
(

N0(b, µ, ν)− N0(a, µ, ν)
)
+ p1 f (c, µ, ν)

, (99)

where

µ =
1
σ

ξt

γtT
, ν =

1
σ

√
1− γtT

γtT
. (100)

Example 3: Lognormal payoff. Next we consider the case when the payoff of an asset at time T is
log-normally distributed. This will hold if h(x) = ex and XT ∼ Normal(µ, ν2). It will be convenient
to look at the slightly more general payoff obtained by setting h(x) = eq x with q ∈ R. If we recall
the identity

1√
2 π

∫ ∞

−∞
exp

(
−1

2
Ax2 + Bx

)
dx =

1√
A

exp
(

1
2

B2

A

)
, (101)

which holds for A > 0 and B ∈ R, a calculation gives

It(q) :=
∫ ∞

−∞
eq x 1√

2 π ν
exp

[
−1

2
(x− µ)2

ν2 +
1

1− γtT

(
σ ξt x− 1

2
σ2 x2 γtT

) ]
dx

=
1

ν
√

At
exp

(
1
2

B2
t

At
− C

)
, (102)

where

At =
1− γtT + ν2σ2 γtT

ν2(1− γtT)
, Bt = q +

µ

ν2 +
σ ξt

1− γtT
, C =

1
2

µ2

ν2 . (103)

For q = 1, the price is thus given in accordance with Theorem 4 by

St = e−r(T−t) It(1)
It(0)

. (104)

Then clearly we have

S0 = e−r T exp
[

µ +
1
2

ν2
]

, (105)
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and a calculation leads to the following:

Proposition 3. The variance-gamma information-based price of a financial asset with a log-normally distributed
payoff such that log (ST−) ∼ Normal(µ, ν2) is given for t ∈ (0, T) by

St = er t S0 exp
[

ν2 σ2 γtT (1− γtT)
−1

1 + ν2 σ2 γtT (1− γtT)−1

(
1

σ γtT
ξt − µ− 1

2
ν2
)]

. (106)

More generally, one can consider the case of a so-called power-payoff derivative for which

HT = (ST−)
q , (107)

where ST− = limt→T St is the payoff of the asset priced above in Proposition 3. See Bouzianis and
Hughston (2019) for aspects of the theory of power-payoff derivatives. In the present case if we write

Ct = e−r (T−t) Et
[
(ST−)

q] (108)

for the value of the power-payoff derivative at time t, we find that

Ct = er t C0 exp
[

ν2 σ2 γtT (1− γtT)
−1

1 + ν2 σ2 γtT (1− γtT)−1

(
q

σ γtT
ξt − q µ− 1

2
q2 ν2

)]
, (109)

where

C0 = e−r T exp
[

q µ +
1
2

q2 ν2
]

. (110)

Example 4: Exponentially distributed payoff. Next we consider the case where the payoff is
exponentially distributed. We let XT ∼ exp(λ), so P [XT ∈ dx] = λ e−λ x dx, and take h(x) = x.
A calculation shows that∫ ∞

0
x exp

[
−λ x +

(
σ ξt x− 1

2
σ2 x2 γtT

)
(1− γtT)

−1
]

dx =
µ− N1(0, µ, ν)

f (0, µ, ν)
, (111)

where we set

µ =
1
σ

ξt

γtT
− λ

σ2
1− γtT

γtT
, ν =

1
σ

√
1− γtT

γtT
, (112)

and ∫ ∞

0
exp

[
−λ x +

(
σ ξt x− 1

2
σ2 x2 γtT

)
(1− γtT)

−1
]

dx =
1− N0(0, µ, ν)

f (0, µ, ν)
. (113)

As a consequence we obtain:

Proposition 4. The variance-gamma information-based price of a financial asset with an exponentially
distributed payoff is given by

St =
µ− N1(0, µ, ν)

1− N0(0, µ, ν)
, (114)

where N0 and N1 are defined as in Example 2.
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7. Conclusions

In the examples considered in the previous section, we have looked at the situation where there
is a single market factor XT , which is revealed at time T, and where the single cash flow occurring
at T depends on the outcome for XT . The value of a security St with that cash flow is determined by
the information available at time t. Given the Markov property of the extended information process
{ξt, γtT} it follows that there exists a function of three variables F : R× [0, 1]×R+ → R+ such that
St = F(ξt, γtT , t), and we have worked out this expression explicitly for a number of different cases,
given in Examples 1-4. The general valuation formula is presented in Theorem 4.

It should be evident that once we have specified the functional dependence of the resulting asset
prices on the extended information process, then we can back out values of the information process
and the gamma bridge from the price data. So in that sense the process {ξt, γtT} is “visible” in the
market, and can be inferred directly, at any time, from a suitable collection of prices. This means,
in particular, that given the prices of a certain minimal collection of assets in the market, we can then
work out the values of other assets in the market, such as derivatives. In the special case we have just
been discussing, there is only a single market factor; but one can see at once that the ideas involved
readily extend to the situation where there are multiple market factors and multiple cash flows, as one
expects for general securities analysis, following the principles laid out in Brody et al. (2007, 2008a),
where the merits and limitations of modelling in an information-based framework are discussed in
some detail.

The potential advantages of working with the variance-gamma information process, rather than
the highly tractable but more limited Brownian information process should be evident—these include
the additional parametric freedom in the model, with more flexibility in the distributions of returns,
but equally important, the scope for jumps. It comes as a pleasant surprise that the resulting formulae
are to a large extent analytically explicit, but this is on account of the remarkable properties of the
normalized variance-gamma bridge process that we have exploited in our constructions. Keep in
mind that in the limit as the parameter m goes to infinity our model reduces to that of the Brownian
bridge information-based model considered in Brody et al. (2007, 2008a), which in turn contains the
standard geometric Brownian motion model (and hence the Black-Scholes option pricing model) as a
special case. In the case of a single market factor XT , the distribution of the random variable XT can
be inferred by observing the current prices of derivatives for which the payoff is of the form

HT = erT1XT≤K, (115)

for K ∈ R. The information flow-rate parameter σ and the shape parameter m can then be inferred from
option prices. When multiple factors are involved, similar calibration methodologies are applicable.
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