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A self-adaptive system (SAS) is a system that can adapt its behaviour in re-

sponse to environmental fluctuations at runtime and its own changes. Therefore,

the decision-making process of a SAS is challenged by the underlying uncertainty.

In this dissertation, the author focuses on the kind of uncertainty associated with

the satisficement levels of non-functional requirements (NFRs) given a set of design

decisions reflected on a SAS configuration. Specifically, the focus of this work is

on the specification and runtime handling of the uncertainty related to the levels

of satisficement of the NFRs when new evidence is collected, and that may create

the need of adaptation based on the reconfiguration of the system. Specifically, this

dissertation presents two approaches that address decision-making in SASs in the

face of uncertainty. First, we present RE-STORM, an approach to support decision-

making under uncertainty, which uses the current satisficement level of the NFRs in

a SAS and the required trade-offs, to therefore guide its self-adaptation. Second, we

describe ARRoW, an approach for the automatic reassessment and update of initial

preferences in a SAS based on the current satisficement levels of its NFRs. We eval-

uate our proposals using a case study, a Remote Data Mirroring (RDM) network.

Other cases have been used as well in different publications. The results show that

under uncertain environments, which may have not been foreseen in advance, it is

feasible that: (a) a SAS reassess the preferences assigned to certain configurations

and, (b) reconfigure itself at runtime in response to adverse conditions, in order to

keep satisficing its requirements.
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Chapter 1

Introduction

1.1 Motivation

Self-adaptive Systems (SASs) are expected to self-adapt to even unanticipated events

based on incomplete information about themselves and their environment. There-

fore, decision-making under uncertainty is paramount for self-adaptive systems [3].

Significant advances have been made in applying models to drive decision-making

under uncertainty [6, 39, 18, 73, 94, 93]. Recent progress in machine learning, in-

cluding Bayesian learning and inference [53], has been key to enable access to infor-

mation at runtime, to dynamically keep the models of decision-making up-to-date

during runtime [7, 44]. Moreover, SASs are subject to the satisficement of non-

functional requirements (NFRs) which are usually competing among them, and col-

lectively characterize how system’s goals are to be satisfied by their trade-offs [56,

81]. Several authors have approached different issues related to uncertainty and

NFRs trade-offs [24, 81, 23, 92, 73, 80, 17, 98, 79, 54]. However, critical challenges

need to be further explored. One of the issues that needs further research is that

current approaches that deal with uncertainty and the specification of NFRs and

their preferences mainly do it at design-time [24, 81, 58, 57, 22]. This is an issue as

initial specifications of NFRs and their preferences, settled for foreseen contexts at

design-time, may not be suitable anymore when unexpected contexts arise during

the system’s execution.

On the other hand, recent progress on Partially Observable Markov Decision Pro-

cesses (POMDPs) implementations [96] have shown promising results in the AI re-

search community for decision-making under uncertain environments [41, 75, 55, 96,
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82, 4]. In those research communities, different scalability issues [96] have been over-

come for the decision-making planning and when models and assumptions change

at runtime [55, 96]. However, these models scarce of support for specific definition

representation for trade-off of NFRs as the environment changes.

Given the above, two main challenges have been identified in this research work

(See Fig. 1.1):

(i) The need for new decision-making techniques driven by the current satis-

ficement levels of NFRs subject to uncertain environments based on new collected

evidence about the need for changing and,

(ii) The need of new techniques to reassess and update initial preferences accord-

ing to new and unforeseen contexts arised at runtime.

1.2 Overall aim and Research questions

The overall aim of this dissertation is to improve the specification and runtime han-

dling of the uncertainty related to the levels of satisficement of the NFRs when new

evidence is collected [37, 7, 8] to:

• Explicitly deal with the uncertainty associated with the current runtime con-

text represented as probability distributions over the system’s NFRs satisfice-

ment

• Balance different conflicting NFRs

• Maintain the definition of uncertainty over time as new evidence arrives in a

consistent way with the past using Bayesian learning

• Incorporate preferences (i.e. rewards and penalties) that properly address the

current runtime context modelled

In this dissertation, we move towards this direction by addressing the following

research questions:



Chapter 1. Introduction 16

RQ1: How can we represent the current state of NFRs and their evolution in

model-based self-adaptive systems that are subject to uncertain environments?

RQ2: How can we improve the trade-off among NFRs in model-based self-

adaptive systems that are subject to uncertain environments, by updating prefer-

ences and based on new evidence collected during execution?

RQ3: How can techniques for eliciting initial preferences about requirements,

used at design-time, be aplicable to runtime models for self-adaptive systems?

The research questions RQ1 and RQ2 are mainly related to the first challenge

identified in the previous section. The research question RQ3 is more related to the

second challenge (See Fig. 1.1).

1.3 Contributions

This section describes the contributions developed to tackle the previously stated

challenges in this work. A summary is shown in Fig. 1.1 and a detailed list of

publications can be consulted in Appendix A.

FIGURE 1.1: Research challenges and contributions

In order to address the first challenge, we have developed RE-STORM:

Requirements Trade-off for self-adaptation based on Partially Observable Markov

Decision Processes [9, 36, 37]. RE-STORM, a mathematical probabilistic framework
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based on POMDPs, serves as a requirements-aware runtime model that can be up-

dated with new learned evidence during execution to support reasoning and decision-

making about partial satisficement of NFRs and their trade-off according to changes

in the environment. RE-STORM is explained in detail in Chapter 4.

To address the second challenge, we have developed ARRoW:

Automatic Runtime Reappraisal of Weights [38, 67, 9], an approach to support the

dynamic update of preferences/weights associated with the NFRs and adaptation

actions in a SAS to therefore improve the levels of satisficement of NFRs when the

current preferences do not agree with newly found contexts. To develop ARRoW,

we have extended the Primitive Cognitive Network Process (P-CNP), a version of

the Analytical Hierarchy Process (AHP), to therefore enable the handling and up-

date of preferences during runtime. ARRoW works on top of RE-STORM and is

supported by a set of runtime models, which contains the updated preferences that

serve as input for the decision-making process in a SAS during execution. ARRoW

is presented in detail in Chapter 5.

We have also evaluated the contributions presented above, applying them to

at least a substantial case study. The contributions have been shared with the re-

search community in the form of several conference publications [9, 38, 67, 36, 35,

37] which are presented in detail in Chapter 7. As future work, we have identified

different challenges that even after our approaches have been applied, still remain

unaddressed (See Chapter 7).

1.4 Research strategy

To reach the aim the research described here, the following approach has been ap-

plied:

1. To undertake a survey of the state of the art on approaches for decision-making

under uncertainty in SASs, to therefore identify the research gaps.

2. To examine and evaluate the state of the art related to the specification and

reassessment of initial assumptions in SASs. Specifically, the specification, re-

assessment and update of preferences over NFRs and adaptation actions in a
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system. Publication [35] shows the initial results of this step.

3. To carry out an investigation on runtime models, MAPE-K feedback loops for

self-adaptation and systems that use runtime models as a mean to cope with

runtime uncertainty by exploiting new information available during the sys-

tem’s execution.

4. To investigate the complementary nature of the topics described in (1), (2) and

(3) when developing model-based self-adaptive systems to cope with runtime

uncertainty management, to study how they can be complemented between

them.

5. To propose a structured technique to support the runtime and up-to-date rep-

resentation of the levels of satisficement of the NFRs and the decision-making

driven by them. This technique is complemented with the reasessment and

update capabilities of initial assumptions in a SAS.

The research done aims to demonstrate the viability and the benefits of the ap-

proach using the proposed techniques to support decision-making under uncer-

tainty driven by the current satisficement level of the NFRs in a system.

1.5 Overview of the work developed

Fig. 1.2 shows an overview of the work performed and presented in this dissertation.

Row 1 identifies the Challenges that were addressed; row 2 shows the Research

Questions related to the challenges, row 3 list the Scientific Publications generated.
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FIGURE 1.2: Overview of the contributions

For the first challenge, runtime decision-making under uncertainty, two re-

search questions have been identified, i.e. RQ1 and RQ2, and 2 publications as-

sociated have been accepted: SEAMS’18 [37] and SASO’19 [38].

For the second challenge, runtime update of preferences, one research ques-

tion has been identified, RQ3, and three associated publications have been accepted:

CIBSE’17 [35], RE ’17 [68], RE-NEXT’17 [67], SAC’19 [38]. In addition, the paper

MODELS’19 [9]), consolidates the results in both challenges.

The work presented in this dissertation has also made contributions to (i) the

Software Engineering at Aston (SEA) research group and (ii) the research group of

the Systems Engineering department at Pontificia Universidad Javeriana (Bogota,

Colombia) [12]. As a result of collaboration activities within the SEA research group,

tools provided by the project: History-aware explanation capabilities in SAS [32,

33, 31] have been used in this work to support the implementation of time-aware

queries over the history of a requirements-aware runtime model. Specific resultant

behaviours due to the decision-making process of RE-STORM are reported in Chap-

ter 6.

1.6 Dissertation outline

The remainder of this dissertation develops as follows:
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Chapter 2, Research Baseline, presents the technical background and the funda-

mental approaches that are applied in the following parts of the dissertation, such

as decision-making under uncertainty, models at runtime and sequential decision-

making by using Partially Observable Markov Decision Processes (POMDPs).

Chapter 3, State of the Art on decision-making under uncertainty, discusses

the state of the art in relation to the scope of this dissertation: decision-making un-

der uncertain environments and runtime reassessment and update of preferences

over NFRs and decision-making strategies. This chapter motivates the approaches

presented.

Chapter 4, RE-STORM, presents a proposal for NFRs trade-offs and decision-

making by using POMDPs as runtime models. In this chapter, “partial observabil-

ity”, a intrinsic characteristic of a POMDP, is exploited to model at runtime the un-

certainty about the satisficement levels of NFRs and to drive the decision-making in

a SAS based on their current satisficement values.

Chapter 5, ARRoW, presents an approach for automatic runtime reappraisal of

preferences by updating reward values R(s,a) in a POMDP runtime model. New

preferences are obtained by using the Primitive Cognitive Network Process (P-CNP).

Specifically, pairwise comparisons of the current satisficement levels of the NFRs

and runtime models of P-CNP are used to derive the final preferences.

Chapter 6, Evaluation, presents the details of the evaluations performed to vali-

date the proposed approaches, the measurements and the results obtained.

Finally, in Chapter 7, Conclusions and Future Work are presented. The conclud-

ing remarks are discussed along with a brief outline of the dissertation that high-

lights the contributions of this research and answers to the research questions. The

future research agenda is also presented.
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Chapter 2

Research Baseline

In this chapter the research baseline of the dissertation is presented. Different tech-

niques and approaches, which serve as the starting point for this work, are ex-

plained. Firstly, uncertainty and models are presented. Secondly, the MAPE-K loop

and its relationship with runtime models is explained. Thirdly, the types of sys-

tems from which we leverage our work are presented. Finally, Partially Observ-

able Markov Decision Processess (POMDPs), decision-making under uncertainty

and their relationship with the Reinforcement Learning (RL) approach are depicted.

2.1 Uncertainty

In self-adaptation, uncertainty can be defined as a system state of incomplete or in-

consistent knowledge such that it is not possible for it to know which adaptation

decision hold at a specific point [1]. Uncertainty may arise for example, due to miss-

ing or ambiguous requirements, erroneous assumptions, unpredictable behaviour

in the execution environment, or incomplete information obtained by potentially

imprecise or unreliable sensors in the monitoring infrastructure.

The different sources of uncertainty mentioned above, may occur and affect a

software system, either at the requirements, design, or execution phases of the soft-

ware life cycle. If a source of uncertainty at the requirements or design-time levels is

not managed before the execution phase begins, then that source of uncertainty will

be propagated throughout the execution of the system. Our proposal contributes

an approach to dealing with uncertainty at runtime by using requirements-aware

runtime models.
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2.2 Models and uncertainty

A software system can successfully operate in multiple dynamic contexts by using

runtime models which augment the information available at design-time with in-

formation monitored at runtime [39]. We use runtime models and its capacity for

augmenting information available at design-time, as a means to cope with uncer-

tainty. In this work, we take a general definition of model formalised in [39]:

A model is a characterization with three main elements: an original the model refers

to, a purpose that defines what the model should be used for, and an abstraction function

that maps only purposeful and relevant characteristics of the original to the model.

A model may refer to more than one original and any model is used as a repre-

sentation of their originals to ease development or runtime activities.

2.2.1 Runtime models

A runtime model can be defined as a self-representation of its associated original

(e.g. the running system) that addresses an aspect of it. In a system, aspects could be

its structure, behaviour, or goals which can be manipulated at runtime for specific

purposes [11]. The first and most common original of a runtime model is the sys-

tem itself. The runtime model is causally-connected to the running system, meaning

that a change in the runtime model triggers a corresponding change in the running

system and vice versa. A runtime model captures relevant information of the run-

ning system for different purposes. In this work, one main purpose is the runtime

and up-to-date representation of the current satisficement levels of the NFRs of the

system to support the required decision-making, which is driven by the trade-off of

the levels of satisficement of the NFRs.

2.2.2 Kinds of Runtime models

Based on their possible originals, different kinds of runtime models can be identified.

Next, the runtime models related to our work are presented.
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System Models

A system is the most common original in a runtime model. In these models the run-

time model provides an abstract view on the running system. The runtime model

can be used to describe possible future configurations of the running system. Af-

terwards, to realise the causal connection, the update of the running system is trig-

gered.

In our work, the system behaviour is controlled by the runtime model, based on

its representation of the current satisficement levels of the NFRs. The current satis-

ficement level of the NFRs is not directly observable. It is inferred by using prob-

ability distributions and Bayesian inference [53] based on monitored values from

the system’s context during its execution. Details on the computation of the current

satisficement levels of the NFRs in a system are presented in Chapter 4.

Context Models

The context of the system is the part of the environment that can be observed by the

system [40]. This context can be an original of a runtime model. The runtime model

represents characteristics of the context via the use of sensors. In this model, the

causal connection implies that the runtime model is accordingly updated when the

context changes as indicated by changing measurements of the sensors.

It is possible that relevant characteristics of the context cannot be observed di-

rectly. Therefore, a dedicated analysis is required to derive them indirectly from

other observations. In this dissertation, observations collected from the system’s

context are used to infer the current state of the system, i.e. the current satisficement

level of its NFRs.

Requirement Models

The requirements of the system may be also subject of a runtime model [81]. In this

case, either some form of (i) online representation of the requirements exists that is

linked to the runtime model by a causal connection or (ii) changes of the require-

ments have to be manually reflected on to the runtime model. In both cases the run-

time model carries information about the relevant requirements within the system
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and therefore the system can, for example, check whether the current requirements

are fulfilled or try to adjust its behaviour such that the fulfillment of the require-

ments increases. Our approach follows this behaviour. In our proposal, an online

representation of the NFRs exist and the decision-making in a system is driven by

the current satisficement levels of its NFRs.

In this section, three different runtime models related to our proposal have been

presented. In practice, a single runtime model may refer multiple originals as in our

case. Our implementation of a requirements-aware runtime model refers:

• the system itself to modify its behaviour and

• the context of the system to infer at runtime, the current satisficement levels of

its NFRs.

2.3 MAPE-K loop and runtime models

Different kinds of software systems [17, 56] can be implemented via an autonomic

manager that steers the adaptation with a feedback control loop known as the MAPE-

K feedback loop [90, 51]. The MAPE-K loop shown in Fig. 2.1, emphasizes the role

of feedback for autonomic computing [51] .

FIGURE 2.1: MAPE-K feedback loop
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First, the system is split into a managed element (core system) and an autonomic

manager (adaptation engine). Four key activities are defined in a MAPE-K feedback

loop. They operate on the basis of a common knowledge base. (M) stands for the

monitoring process of the managed elements. Monitoring is responsible for gath-

ering raw data, such as measurements about the state of the managed system. It

typically defines the frequency at which the data must be acquired. (A) represents

the analysis of the monitored data, which could require filtering actions either be-

cause of noise on the monitored data or because it cannot be used directly from its

raw monitored values. Both, monitored and analyzed data, are used to update the

knowledge base of the MAPE-K loop. The knowledge base allows the system to use

data and historic information to underpin the decision-making process to satisfy its

goals [77, 54]. (P) stands for planning actions using the knowledge of the system

held in the knowledge base. (E) represents the execution of the planned action. It

consists of changing the value of the actuator(s) in a system at a frequency which is

most often equivalent to the sampling frequency of the monitoring phase [77].

An extended MAPE-K loop that includes runtime models is depicted in Figure

2.2. This extended version uses an adaptation engine that takes into account, in

addition to the core system, its context and requirements as part of the knowledge

base.

FIGURE 2.2: Runtime models in an extended MAPE-K feedback loop
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In the extended MAPE-K loop, the monitoring activity is gathering measure-

ments about the state of the system and its context, but additionally, this activity may

recognize updates to the requirements. The analysis activity interprets the collected

data and detects changes that might lead to adaptations. Afterwards the runtime

models are updated accordingly. The planning activity employs the runtime mod-

els to reason about how the running system should adapt in response to changes.

Finally, the execution activity uses the runtime models as basis to realize planned

adaptations.

Our proposal uses a requirements-aware runtime model to interact with the core

system and its context to deal with the runtime uncertainty regarding the current

satisficement levels of the system’s NFRs.

2.4 Types of systems using runtime models

Different types of systems take advantage of runtime models to control some as-

pects of their execution by using the MAPE-K loop. This section shows the types of

systems related to our work.

2.4.1 Context-aware systems

Context-awareness [91] implies that a system is able to monitor its context. Context-

aware systems select and apply adaptations depending on their context. Context-

aware systems can leverage runtime models to represent the context and cover all

processes of the MAPE-K loop and support adaptation.

In our approach, the context provides necessary sensory information required

to infer and represent the current satisficement levels of the NFRs in a system. The

analysis activity of the MAPE-K loop matches the perceived sensory information to

the NFRs and updates the runtime models accordingly. The planning activity iden-

tifies the actions that the system should perform based on the updated satisficement

levels of its NFRs (which are updated based on the recognized current system’s con-

text) and the execution activity applies these actions at runtime.
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2.4.2 Requirements-Aware systems

Requirement-awareness enables a system to identify changes to its own require-

ments. Requirements-aware systems use runtime models to represent their require-

ments [25, 26], track their changes [10, 88] and trigger adaptations in the system

behaviour in order to increase requirements satisfaction [5]. In these systems, re-

quirements can be revised and reappraised over short periods of time. Modifica-

tions of requirements can be triggered due to different reasons, for example, by their

varying satisfaction, changing market needs or changing final users preferences [40].

Our proposal leverages this definition.

In this dissertation, we use requirements-aware runtime models and the activi-

ties of the MAPE-K loop to support requirements-awareness and adaptation. The

analysis activity uses the data collected from the system’s context to update the run-

time model and recompute the NFRs satisficement levels. The planning activity

computes the adaptations to be performed by taking into account the current sat-

isficement levels of the NFRs and assumptions as captured by the runtime models.

One important assumption in our approach are the initial stakeholders’ preferences

about the NFRs and adaptation actions in a system, which may need to be updated

at runtime, under some specific situations detected during the system’s execution.

Afterwards, the execution activity applies selected adaptation actions on the system.

2.4.3 Self-adaptive Systems (SASs)

Self-awareness [60] is the capability of a system to monitor itself. Additionally, a self-

adaptive systems can also react to observed changes by applying proper adaptations

to themselves. At present, the term self-adaptive systems is used in a very broad

sense and it can include self-awareness, context-awareness as well as requirements-

awareness [40]. Our approach leverages this broad definition to use a requirements-

aware runtime model to drive the decision-making process based on the current

satisficement level of the NFRs in a SAS.
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2.5 SASs and runtime uncertainty management

Any source of uncertainty that is not managed before the SAS is deployed must

therefore be addressed by the SAS at runtime. Runtime uncertainty occurs primarily

from interactions between a SAS and its unpredictable environment. The execution

environment can introduce events or conditions that a SAS might be unable to in-

terpret or handle because they were unforeseeable at design-time. In this work, our

concern is related to the managament of runtime uncertainty and their impact on the

current satisficement levels of the NFRs in a SAS.

2.5.1 Probability theory and uncertainty management in SASs

Probability theory is the branch of mathematics concerned with the study of random

phenomena. Probability is the measure of the likeliness that an event will occur, and

is quantified as a number in the real interval [0, 1] (where 0 indicates impossibility

and 1 certainty). Within probability theory, information relative to the frequencies

of past outcomes can be used to derive probabilities that represent the likelihood

of possible outcomes for future events. This interpretation of probability, which is

related to statistical and Bayesian inference [53], may be employed by SASs:

• to estimate future contexts and system’s behavior for optimizing the system’s

operation.

• to deal with runtime uncertainty through reasoning under partial observabil-

ity.

Our approach uses Bayesian theory to infer at runtime the satisficement levels of

the NFRs in a SAS based on observations obtained from the current system’s context.

We realize this proposal by using Partially Observable Markov Decision Processes

(POMDPs).

2.6 POMDPs and decision-making under uncertainty

Our proposal represents a novel use of POMDPs in the research area of self-adaptation

and requirements management. POMDP foundations along with concepts of partial

observation and policies are explained below.
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2.6.1 POMDPs

They provide a principled approach to model sequential decision-making problems

and make rational decisions in the face of uncertainty within changing environments

[55, 71]. Fig. 2.3 shows a general POMDP with its main elements. A POMDP can be

specified as a 6-tuple (S, A, Z, T, O, R), where:

FIGURE 2.3: General POMDP: runtime model for sequencial
decision-making

• S, A and Z represents the system’s state space, action space and observation space,

respectively [4]. At each time slice, the system takes action a ∈ A to move from

a state s ∈ S (Fig. 2.3, time slice t) to s′ ∈ S (Fig. 2.3, time slice t + 1) and then

receives an observation z ∈ Z.

• S represents the state space, i.e. a set of distinct states s ∈ S the system could

reach. The number of states may be finite, countably infinite or continuous. We

will focus on discrete models with a finite number of states.

• A represents the action space. A system seeks to influence its state by executing

actions from the set A. The system’s goal is to choose actions in such a way that

desirable states s ∈ S are visited more frequently.

• T:SxAxS → [0,1] is the transition function. A POMDP allows action effects, which

are subject to uncertainty, to be modelled. This implies that the system has a cer-

tain probability of making a transition to any state s ∈ S as a result of an action
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execution. The stochastic nature of action effects is captured by the transition func-

tion T. Specifically, it describes a conditional probability function T (s, a, s’ ) = P(s’

|s, a) where at each time slice, the system takes action a ∈ A to move from a state

s ∈ S to s′ ∈ S and then receives an observation z ∈ Z. This transition function

exhibits the Markov property [53], which says that the probability of transition to

some state s at the next timeslice t + 1 depends only on the state s and the action a

at the current time slice t.

• Z represents the observation space. After executing an action, the system gets

an observation z ∈ Z. Observations corresponds to features of the environment

directly perceptible by system’s monitorables. In contrast, states correspond to

features which are not directly observable by the system.

• R: SxA→ R(s,a) is the reward function and represents the preferences of the sys-

tem. The system gets a reward R(s, a) for taking action a ∈ A at time t to arrive to

the new state s ∈ S at time t + 1.

• O:SxAxZ → [0,1] is the observation function. It describes the conditional probabil-

ity function O(s’, a, z) = P(z|s′, a) of observing z ∈ Z when action a is performed

and the resulting state is s′. This function models noisy sensors observations,

which represent only partial information to the system since the same observa-

tion may be experienced in different states. Observations z ∈ Z corresponds to

features of the environment directly perceptible by system’s monitorables. In con-

trast, states s ∈ S correspond to features which are not directly observable by the

system. In real contexts, a system should be able to use its observations z ∈ Z to

infer its current state s ∈ S. We reach this goal by using Bayesian inference as is

depicted below.

Partial information on the state S and Bayesian Inference. In a partially ob-

servable system, the system’s states are not directly observable. Instead, a belief

over possible states is maintained. Let bt−1 be the belief at time t− 1. If the system

takes action at−1 and receives observation zt at time t, then Bayes’ rule, i.e. Bayesian

inference is applied to obtain the new belief bt:

bt(s′) = ηO(s′, a, z) ∑
s∈S

T(s, a, s′)bt−1(s) (2.1)
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where η is a normalizing constant [96]. A belief b is a probability distribution that

represents the system knowledge about its current state. The next step is to choose

an action based on that belief, i.e. to use a policy.

A POMDP policy π. A policy π defines the system strategy for all possible

situations it can find [75]. In terms of a POMDP, a policy π defines a mapping that

specifies the action a = π(b) at belief b. The goal is to maximise the expected value

E, i.e. the possible amount of reward earned under the current belief b as is shown

below:

Vπ(b) = E(
∞

∑
t=0

γtR(st, π(bt))|b0 = b) (2.2)

The constant γ ∈ [0, 1) is the discount factor, which express preferences for

immediate rewards over future ones. POMDPs provide reasoning and decision-

making over time, using partial knowledge (i.e. beliefs) of the states s ∈ S of a

running system based on runtime evidence (i.e., observations z ∈ Z).

In our proposal, the belief b about the system’s state s ∈ S, represents the current satis-

ficement level of the NFRs in a SAS. The policy π, in the expression a = π(b), defines the

action taken by a SAS at the current satisficement level of its NFRs.

2.7 RE-STORM: a Reinforcement Learning POMDP approach

POMDP is a Reinforcement Learning (RL) technique. As such, it focuses on learning

a policy π by interacting with the environment. The learner (e.g. the planning ac-

tivity in a MAPE-K feedback loop in our case) should discover which actions yield

the most reward by testing them [89]. In this work, the learner is represented as a

requirements-aware runtime model, used as an online planner for decision-making

and supported by our POMDP implementation.

A POMDP, uses a reward function R(s,a) that captures the immediate or short-

term consequences of executing actions. To capture the long-term consequences and
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compute the expected value E in Equation 2.2, we apply the Bellman’s principle of

optimality by following the planning activity described in Chapter 4, section 4.4.2.

Specifically, during the system’s execution and per each time slice, we learn a policy

π for the current state of the system, i.e. the current belief b about the satisficement

level of its NFRs.

The environment to interact with, for discovering the action that yields the most

reward, is produced by the POMDP implementation of our approach, the DESPOT

algorithm [96]. By using online POMDP planning, we perform online training at

each time slice to determine an approximated optimal policy π under the current

belief b about the state of the system. Afterwards, an action a=π(b) is performed.

Details on online POMDP planning within a MAPE-K feedback loop are presented

in Chapter 4.

In RE-STORM, we use the RL approach to learn a new policy π, as the system runs and

per each time slice.

2.8 Summary

In this chapter, we have presented four main concepts related to our proposal: un-

certainty, runtime models, MAPE-K feedback loop and Partially Observable Markov Deci-

sion Processes (POMPDs). A POMDP is a discrete time stochastic process where the

decision-maker can not directly observe the underlying state of the system. Instead,

it mantains a probability distribution over the possible states. POMDPs allow our

proposal to support decision-making with incomplete information.

We use runtime models as a mean to manage uncertainty during the system’s

execution, through augmenting the information available at design-time with infor-

mation monitored at runtime. Different types of runtime models related to our work

have been depicted. System, context and requirements runtime models leverage our

proposals: RE-STORM and ARRoW. They both support a requirements-aware run-

time model which enable decision-making under uncertainty, based on the current

satisficement levels of the NFRs in a SAS.
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The interaction between a runtime model and a referred system, has been framed

within a MAPE-K feedback loop, where the core system, its context and requirements,

are part of the Knowledge Base, which offers support to the monitoring, analysis

and planning activities in the feedback loop.

Different types of systems take advantages of the use of runtime models. Our

proposal is oriented to support the execution of Self Adaptive Systems (SASs) in their

broad definition, i.e. SAS which may include self-awareness, context-awareness and

requirements-awareness capacities.

In this work, POMDPs enable the implementation of a requirements-aware run-

time model to support decision-making under uncertainty, with partial information

about the current satisficement levels of the NFRs in a SAS. POMDPs integrated

within a MAPE-K feedback loop, take advantage of Reinforcement Learning (RL)

techniques to “learn” per each time slice, which action produce the most reward,

considering the long term effect of the executing actions. Details on this approach

are presented in Chapter 4.

Next, the State of the Art on decision-making under uncertainty is presented in

Chapter 3.
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Chapter 3

State of the art on Decision-Making

under Uncertainty

This chapter presents the state of the art related to this dissertation: decision-making

under uncertain environments, driven by the current state of the NFRs in a SAS. The

results have been organised and classified using four criteria:

• C1 Techniques for decision-making under uncertainty

• C2 Requirements representation for decision-making

• C3 Specification of preferences at design-time

• C4 Runtime update of preferences

The criteria Ci take into account the two main challenges identified in Chapter 1:

• Decision-making under uncertain environments

• Update of preferences over NFRs and adaptation actions at runtime

The criteria (C1) Techniques for decision-making under uncertainty and (C2) Re-

quirements representation for decision-making allow us to study and structure the

state of the art with respect to the first challenge. The criteria (C3) Specification of

preferences at design-time and (C4) Runtime update of preferences, allow to struc-

ture the state of the art with respect to the second challenge. The approaches identi-

fied following this classification, departure but also extend the techniques identified

in [35]. They presented us with opportunities and the motivation to implement our

proposals: RE-STORM and ARRoW, depicted in Chapters 4 and 5 respectively.
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3.1 Techniques for decision-making under uncertainty (C1)

Different approaches supported by runtime models show progress on dealing with

decision-making under uncertainty in SASs [39]. Some approaches have scalability

issues, that is, it is not yet possible to easily apply them to real domain problems.

For example, In [86], Song et al. present scalability issues associated with the num-

ber of constraints. Authors in [34] suffers from scalability problems with respect to

the size of its configuration space. Bencomo et al. [8] use the mathematical model

provided by Dynamic Decision Networks (DDNs). However, it presents scalability

issues related to its planning horizon.

Other approaches tend to be reactive, adapting in response to changes without

anticipating what the subsequent adaptations needs will be. For instance, Peng et

al. [70] use a PID controller to dynamically adjust the trade-off among NFRs as

part of its decision-making process. They choose adaptation actions based on sensor

data related only to the current system’s state. They are not considering the possible

future evolution of the satisficement level of the NFRs. This may result on attractive

short-term actions with undesirable longer-term consequences.

Sousa et al. [87] propose the modelling of quality of service trade-offs based on

utility theory. A utility function maps the possible quality levels to a normalized

utility space U [0,1], where the user is “happy” with utility values close to 1, and

“unhappy” with utility values close to 0. A Solver determines the tactic that pro-

duce the highest utility. The Solver is invoked by the application before carrying

out each unit of work. Elahi et al. [22] present a trade-off analysis algorithm that

takes pairwise comparisons of alternative solutions to determine the best solution

among several alternatives. Valid satisfaction levels that the requirements may have

are enumerated with respect to the relative rankings of alternatives. To determine

the best alternative for each possible goal satisfaction level, the algorithm decides

the optimum alternative by using a heuristic method.

In [28], Filieri et al. introduce a mathematical framework for run-time probabilis-

tic model checking under uncertainty. The approach generates a set of verification

conditions at design-time that can be evaluated at runtime as soon as environmental
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changes occur. Changes in the environment are represented as changes on the prob-

ability distributions of a Discrete Time Markov Chain (DTMC) and requirements are

represented in Probabilistic Computation Tree Logic (PCTL). However, this proposal

ignores requirements evolution, e.g. evolution of preferences over NFRs. Sensitiv-

ity Analysis, a tool of probabilistic model checking, is used at runtime to support

self-adaptation by prioritizing an adaptation action among multiple possible alter-

natives. Moreno et al. in [61] present an approach that construct a Markov Decision

Process (MDP) to take optimal decisions. At design-time, most of the MDP is con-

structed by using formal methods. The approach considers at design-time the many

possible system’s states, and combinations of tactics. At runtime, the adaptation

decision is made by solving the MDP through stochastic dynamic programming.

In [15] Camara et al. introduce a technique based on probabilistic model checking

of stochastic multi-player games (SMG) that enables decision-making under uncer-

tainty. The authors present a case study where equal importance is assumed for the

NFRs. The PRISM language for Stochastic Multiplayer Games and Markov Decision

Processes (MDPs) are used to built a PRISM SMG model, where the reasoning about

strategies of adaptation is performed. They also assume that there is no uncertainty

on the impact of the adaptation actions on NFRs, i.e. the impact is deterministic.

The approaches in [28, 61, 15] scarce of explicit representation of preferences for

NFRs and adaptation actions. Additionally, initial assumptions settled for foreseen

contexts at design-time, can not be updated at runtime when new and possible un-

expected contexts arise during the system’s execution.

3.2 Requirements representation for decision-making (C2)

Fig. 3.1 shows different approaches that use goal models for decision-making under

uncertainty and requirements representation. A goal-oriented model is a framework

for capturing relationships between goals. Goal models have been used to model re-

quirements and decision-making of SASs [7]. Next, several model-based approaches

to represent requirements and their relationships are presented.
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FIGURE 3.1: Goal models for decision-making under uncertainty and
requirements representation

Song et.al. [86] presents an approach where adaptation goals represent func-

tional and NFRs. Structural runtime models are transformed into a Constraint Satis-

faction Problem (CSP) [43] to keep uptodate the current system’s context and config-

uration to facilitate posterior reasoning. Letier et.al. [57] propose the representation

of system’s goals as part of an Architecture Decision Model (ADM). The system’s

goals include NFRs such as performance and reliability. They are partitioned into

two main categories: G+ (goals to be maximized) and G- (goals to be minimized).

In [34], Garcia-Galan et al. propose a preference-based analysis method to identify

service configurations that maximize tenants’ satisfaction at runtime. The approach

involves the creation of an Extended Feature Model (EFM) and a Semantic Ontology

of User Preferences (SOUP) model [34]. The EFM is a variability model and repre-

sents functional requirements and NFRs. In [58], Liaskos et al. present a goal model

extension to support requirements. The goals are classified as either preference goals

or mandatory. The preference goals are used to evaluate alternative ways to achieve

mandatory goals. Weights are assigned to preference goals using a quantitative re-

quirement prioritization scheme: Analytic Hierarchy Process (AHP) [78]. Peng et

al. [70] propose the use of a goal model, with NFRs and functional requirements.

They also represent their contribution relationships, and its quantitatives expected

satisfaction. Sousa et al. [87] propose an approach that represents NFRs as quality

attributes. A model represents the trade-off among the NFRs and supports the co-

ordination of the resources usage in a software application. Bencomo et al. [8] use

random variables in a Dynamic Decision Networks (DDNs) to represent the NFRs in
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a SAS. Bowers et al. [13] present Providentia, an approach to automatically optimize

the selection of functional requirements and their corresponding weights to satisfice

NFRs objectives. In Providentia, a goal model represents both: functional and NFRs.

In [28], Filieri et al. use Discrete Time Markov Chain (DTMC) and Probabilistic

Computation Tree Logic (PCTL) to represent requirements. Authors in [61] present

an approach that construct a Markov Decision Process (MDP) to support system

goals (e.g. NFRs) and taking optimal decisions. In [15], Camara et al. introduce a

technique based on probabilistic model checking of stochastic multi-player games

(SMG) and MDPs to represent NFRs (e.g. security and user experience).

The approaches above use different types of runtime goal models to represent

requirements. Some of them [28, 61, 15] use sequential decision-making frameworks

(e.g. MDPs) and assume full observability of the current state, e.g. NFRs of the

system.

3.3 Specification of preferences at design-time (C3)

In this section we explore different model-based approaches to determine up to what

extent initial preferences about NFRs and adaptation actions in a SAS are specified

at design-time. A summary is shown in Fig. 3.2.

FIGURE 3.2: Specification of preferences at design-time
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The most widespread method for preference elicitation about NFRs and adap-

tation actions is by asking system’s stakeholders. Bencomo et al. [8], Sousa et al.

[87] and Song et al. [86] elicit initial preferences with information from system’s

stakeholders. Peng et al. [70] from a range of values between 1 and 10, initially set

the preferences of the NFRs to 5. Authors in [57, 22, 58] complement this approach

by using multi criteria decision analysis methods (MCDA), e.g. Analytic Hierarchy

Process (AHP). Elahi et. al. [22] incorporate Stakeholders’ preferences by using a

MCDA-based method: the Even Swaps Method [42]. This method determines pref-

erences based on an ordinal scale avoiding the elicitation of numerical weights. Au-

thors in [34] define the system’s preferences by using initial configurations defined

by stakeholders.

Other approaches [28, 61, 15] determine at design-time possible requirements

violations, verification conditions and uncertainty functions that should be evalu-

ated at runtime based on monitored data collected from the environment. These ap-

proaches scarce of explicit representation of preferences for NFRs and architectural

actions or assume equal importance for them [15].

In [13], Bowers et al. use an executable simulation of a SAS to initially determine

weights (a.k.a. preferences) of functional requirements to satisfice NFRs objectives.

These weights are used for decision-making during the system’s execution but they

can not be updated at runtime.

3.4 Reassessment and update of preferences at runtime (C4)

Initial specifications and assumptions about a SAS may be defined at design-time.

At runtime, such design assumptions can prove to be wrong or not valid anymore

[7].

FIGURE 3.3: Runtime reassessment and update of preferences
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Reassessment and update of preferences is a field that needs more exploration.

Different approaches [58, 57, 74, 13, 15] work with initial design-time preferences

and do not support preference update. Bencomo et al. [8] identify at runtime the

need of preferences reassessment.

Some other approaches admit preferences update but not in an autonomous way

as they require user intervention. In [86], if users do not agree with the final solution,

they can revise the configuration values. The new users’ preferences elicited allow

tuning the weights of existing goals or the generation of new ones. Authors in [87]

use a user interface for manipulating thresholds on preferences at runtime. Peng

et. al. [70] show first results of autonomous preference updating by monitoring the

environment at runtime and using a preference tuning algorithm.

3.5 Summary

In this chapter we have described several approaches for decision-making in SASs.

Different research gaps have been identified, which represent opportunities for the

implementation of our approaches. A summary is presented as follows.

• Criteria (C1) Techniques for decision-making under uncertainty and (C2) Require-

ments representation for decision-making. Several authors [86, 70, 34, 22, 87]

use runtime goal models with reactive control decision-making [4], i.e. they

ignore prediction uncertainty during decision-making which often results in

sub-optimal decisions over the long term. Some others [28, 61, 15] use more

refined runtime models, e.g. Markov Decision Processes (MDPs) to represent

requirements and their evolution over time. They assume full observability of

the current state of the system as part of their decision-making process. A bet-

ter runtime representation of requirements that can deal with modelling the

nature associated to NFRs and therefore drive decision-making, is needed.

• Criteria (C3) Specification of preferences at design-time and (C4) Runtime update of

preferences. A common finding among the studied approaches with the excep-

tion of [70, 86, 87] up to some extent, is that at design-time, initial preferences

(based on information provided by system’s experts or learned from foreseen
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possible contexts by using simulators [13]) may be specified. However, these

approches do not allow the update of preferences when new scenarios, not

previously foreseen, may arise at runtime. Also, scalability issues are an im-

portant barrier to make feasible the overcoming of these challenges.

Our proposals represents a contribution regarding these matters and are pre-

sented in the next chapters 4 and 5. Next, in chapter 4, based on the tailored ver-

sion of a state-of-the-art POMDP implementation, we present RE-STORM, a tech-

nique that uses a requirements-aware runtime model for decision-making in SASs

and which tackles some of the research issues identified before. In RE-STORM the

decision-making process takes into account the future evolution of the satisficement

levels of the NFRs and the actions taken in the system, i.e. the approach is able to do

projections on the future during decision-making. It is also possible in RE-STORM,

to update initial preferences in the requirements-aware runtime model. In chapter 5,

ARRoW, an approach to supports the runtime update of preferences over NFRs and

adaptation decisions is presented.
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Chapter 4

RE-STORM: Requirements

Trade-offs for Self-adaptation

using POMDPs

4.1 Overview

This chapter presents RE-STORM, a formal analysis technique, based on Partially

Observable Markov Decision Processes (POMDPs) to support decision-making driven

by the current satisficement level of NFRs in a self-adaptive system (SAS) [36, 37]

and evidence collected at runtime. The trade-offs between NFRs (i.e. the qualities

of a system) are embodied as a POMDP in the context of the MAPE-K loop. Based

on evidence about events monitored at runtime and using Bayesian learning, the

levels of satisficement of the NFRs are inferred and updated during execution using

runtime models which reside in the Knowledge Base (K) [9]. Specifically, we have

casted the decision-making problem of a SAS and the trade-off of the NFRs, such as

reliability and performance, in terms of a POMDP decision problem. The approach

involves:

• The specification of the NFRs in terms of a POMDP model [71, 14].

• An architecture that leverages the different activities of the MAPE-K loop to

support decision-making under uncertainty based on the current satisficement

level of the NFRs in a SAS [36, 9].

Next, the details of the approach are explained.
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4.2 Case study: Remote data mirroring (RDM) system

As an example to demonstrate the specification of NFRs and the architecture to sup-

port our approach, let us consider the case of the Remote Data Mirroring (RDM)

self-adaptive system (SAS) [73]. The RDM SAS is composed of data servers and

network links. It must replicate and distribute data in an efficient manner by min-

imizing consumed bandwidth and providing assurance that distributed data is not

lost or corrupted [47, 73]. The RDM can be configured by using two different topolo-

gies: Minimum Spanning Tree (MST) and Redundant Topology (RT). These two possible

configurations allow the system to selectively activate and deactivate network links

to change its overall topology at runtime [29].

Fig. 4.1 shows a goal-oriented requirements model of the RDM SAS, represented

in iStar (i*) notation [97].

FIGURE 4.1: Goal Model - RDM Case Study (i* notation)

In these models, a node represents a goal and an edge represents a specific type

of refinement. While goals that represent required functional properties can be eval-

uated in an absolute manner, a special category of goals called soft goals can only
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be satisficed [21] to a certain degree. Soft goals typically represent non-functional

requirements (e.g. Maximization of Reliability (MR) and Minimization of Cost (MC))

that constrain how functionality should be delivered to stakeholders. For example,

the goal model in Fig. 4.1 captures the following NFRs for the RDM SAS: Minimiza-

tion of Cost (MC), Maximization of Reliability (MR), and Maximization of Performance

(MP). In order to satisfice these NFRs, the RDM must achieve functional goals such

as constructing a connected network and distributing data. These functional goals

can be achieved through alternative goal realization strategies, modelled as tasks in

iStar (i*), that include constructing different network topologies, such as a MST or a

RT topology.

The RDM SAS self-adapts by reconfiguring itself at runtime according to changes

in the environment, which may include either delayed or dropped messages and net-

work link failures. Each network link in the RDM system involves an operational

cost, which is primarily measured in terms of inter-site network traffic [47]. Each link

also has a measurable throughput, latency, and loss rate. The reliability, performance

and cost of the RDM SAS are determined by these metrics according to the follow-

ing trade-off: RT topologies offer a higher level of reliability than MST topologies

(See Fig. 4.1, the “help” contribution link between RT topology and Maximization of

Reliability). However, the costs of maintaining a more reliable RT topology may be

prohibitive in some contexts (See Fig. 4.1, the “hurt” contribution link between RT

topology and Minimization of Cost). The performance, given the greater number of

data redundancy, is also reduced. Both configurations (i.e. MST and RT topologies)

provide their own levels of reliability, performance and cost which are taken into ac-

count while estimating at runtime the levels of satisficement of the NFRs observed,

i.e. MC, MR and MP.

Next, the details on the representation of these NFRs as part of a POMDP model

are presented.

4.3 NFRs decision-making as a POMDP

The use of equivalences between NFRs levels of satisficement and the states in a

POMDPs [37], which underpins RE-STORM, allow the specification and trade-offs
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of NFRs in terms of the states of a POMDP model. These equivalences are depicted

in this work as a set of mapping rules. The use of the mapping rules allow a POMDP

to support the decision-making process driven by the current satisficement levels of

the NFRs in a SAS. These rules are described in detail in sections 4.3.2 and 4.3.3.

Fig. 4.2 shows a POMDP representation of the RDM SAS and its NFRs with the

entire set of relationships among the POMDP’s elements.

FIGURE 4.2: POMDP requirements-aware model - RDM Case Study

Note how whilst in Fig. 4.1, a high level static view of the impacts of the topolo-

gies RT and MST over the NFRs is presented (i.e. the impacts are considered constant

over time), in Fig. 4.2, the impacts are dynamic and based on a temporal causal rela-

tion (specified by gray dotted arrows), which represents the probability distributions

of the transition function in a POMDP.

4.3.1 RDM SAS - POMDP representation

In our proposal, the states s ∈ S in a POMDP represent the levels of satisficement

of the NFRs of the RDM SAS. Note in Fig. 4.2 that the NFRs NFR1
t , NFR2

t , and
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NFR3
t are not directly observable. Instead, observations are obtained by using mon-

itoring variables (called MON variables). Three MON variables are specified in the

RDM SAS: Ranges of Bandwidth Consumption (RBC) (i.e., RBC <x, RBC in [x,y) and

RBC>=y), Active Network Links (ANL) (i.e., ANL<r, ANL in [r,s) and ANL >=s) and

Total Time for Writing (TTW) (i.e., TTW<f, TTW in [f,g) and TTW >=g). TTW is a per-

formance measure, which is the sum of the times to write each copy of data on each

remote site [47].

In the RDM SAS, the pair values (x, y); (r, s); and (f, g) represent range boundaries

for the MON variables RBC, ANL and TTW respectively. In the case of RBC and

TTW, the lower the monitored values, the greater the satisficement level of MC and

MP respectively. Conversely, in the case of ANL, the higher the monitored values,

the greater the satisficement level of MR.

The MON variables are influenced by their related NFRs and actions (See Fig.

4.2, causal and temporal relations). It is also possible to determine the effects of the

opposite influence. By applying Bayesian Inference [53], we can identify how the

state of a NFR is influenced by the current monitored values of its related MON

variable. This principle, together with the transition and observation functions of a

POMDP are used in Equation (2.1) to infer the beliefs, i.e. the probability distribu-

tions about the current levels of satisficement of the NFRs in the RDM SAS.

Definition 1. In our approach, a POMDP is a requirements-aware model that

serves as a runtime model to support decision-making driven by the trade-off of the

current levels of satisficement of NFRs in a SAS.

Next, we explain how POMDPs offer a frame for modelling NFRs trade-offs to

support the decision-making process when new evidence is collected from the envi-

ronment.

4.3.2 From Requirements to POMDPs: a requirements-aware model

Different mapping rules to represent NFRs in terms of states s ∈ S, rewards R(s,a)

and observations z ∈ Z in a POMDP are explained as follows.
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a) NFRs as POMDP states s ∈ S. Each state s ∈ S in a POMDP is represented by

a set of possible values (T=True or F=False) of the NFRs from NFR1 to NFRn,

where “n′′ is the number of NFRs in the model. The values True and False are

not directly observable. They have associated a probability distribution. Given

the identified relationship between NFRs and states in a POMDP, we formalize

the following mapping rule:

Mapping Rule 1. A state s ∈ S represents a set of values (combinations of True or

False) of the NFRs NFR1,...,NFRn. The values of the NFRs are not directly observable.

They have associated a belief, i.e. a probability distribution.

In the RDM SAS, three NFRs were specified: Minimization of Cost (MC), Max-

imization of Reliability (MR) and Maximization of Performance (MP). The related

states s ∈ S of a POMDP are shown in Table 4.1.

TABLE 4.1: RDM SAS - NFRs and states s ∈ S

The number of states s ∈ S is represented as |S| and depends on the number

of NFRs, |NFR|, and the number of values, i.e. |NFRsv|, for each NFR. |S| is

computed as follows:

|S| = |NFRsv||NFR| (4.1)
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The case study presented in fig. 4.2 contains 3 NFRs. Therefore, the number of

possible states |S| is (2)3=8.

b) NFRs, their probabilities of satisficement. NFRs are the qualities to be satis-

ficed in a system [21]. Satisficement and satisficing are portmanteau words of

satisfy and suffice, and refer to decision-making strategies that seek to meet an

acceptability threshold. This is because measuring the satisfaction of NFRs is

challenging; it may not be possible to conclude that a NFR is fully satisfied. In-

stead, they can be labelled as sufficiently satisficed [21]. Probabilistic approaches

have been used to model the lack of crispness about the satisfiability nature of

NFRs [8, 27, 24].

In our approach, theoretically each NFR has two possible values: True and False,

however they are not directly observable. Therefore, we use Equation (2.1) to in-

fer the current probability distribution about these values. The probability dis-

tribution represent the satisficement level of the NFR.

In RE-STORM, the satisficement level of each NFRi is represented by the probability

distribution P(NFRi=True) and P(NFRi=False).

For instance, in Fig. 4.2, the probability distribution for the satisficement level of

MC at time slice t + 1, given the previous adaptation action At and the previous

NFRt states (i.e. NFR1
t , NFR2

t and NFR3
t ), is represented by:

P(MCt+1=True|NFRt,At) and P(MCt+1=False|NFRt,At)

Probabilities are excellent tools to model the levels of satisficement based on

observations. The higher the probability P(MCt+1=True|NFRt,At) computed by

Equation (2.1), the higher the belief that MC is being satisfied.

In RE-STORM, for each time slice, we use these probabilities (i.e. beliefs) to choose the

best self-adaptation action a ∈ A.
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c) NFRs, preferences and the reward function R(s,a) in a POMDP. A reward func-

tion assigns a cardinal scale to each 2-tuple: state and action of the system [45],

indicating its desirability. Following Mapping Rule 1, the state “s” in a reward

function R(s,a) is represented by a set of possible values of the NFRs in a SAS.

Table 4.2 shows the reward values R(s,a) related to our case study.

TABLE 4.2: RDM SAS - Reward values R(s,a)

For example, we observe that when the levels of satisficement of the NFRs MC

and MP are the only ones below their expected minimum values, i.e. MC=False,

MR=True and MP=False (See rows r6 and r14 in Table 4.2) the specification sug-

gested by experts favours the topology MST (row r6=0.0660) over the topology

RT (row r14=0.0377). This suggests that under this specific context (i.e. when MP

and MC are considered not being satisficed), the Minimum Spanning Tree topology

(MST) as an adaptation action would be preferred over a Redundant topology (RT)

action that would offer more reliability. All other possible reward values R(s,a)

in Table 4.2, favour the topologies MST or RT, based on information provided by

the system’s experts at design-time.
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At design-time, the reward values R(s,a) are initially defined. However, under some

specific situations detected at the running system, they may need to be updated at run-

time.

The reward values R(s,a) (a.k.a. preferences or weights in RE-STORM) are used

by a POMDP to choose an optimal action after applying the Bellman’s principle

of optimality [36]. Given the above, we present the following mapping rule:

Mapping Rule 2. The reward values R(s,a) represent the preferences over the execution

of an action a ∈ A at time t, that as a result, produces a new state s, i.e. a new set of

satisficement levels of the NFRs (based on Mapping Rule 1) at time t+1.

The number of possible reward values R(s,a) is represented by |R| and depends

on: the number of NFRs represented by |NFR|, the number of state values

|NFRsv| for each NFR and the number of actions |A|. |R| is computed using

the equation 4.2 as follows:

|R| = |NFRsv||NFR| ∗ |A| (4.2)

The RDM case study contains 3 NFRs, 2 possible values for each NFR and 2 pos-

sible actions (i.e. MST and RT), therefore, the number of reward values |R| is

(2)3*2=16.

d) MON variables and POMDP observations z ∈ Z. MON variables provide the

observations required to infer at runtime the current satisficement levels of the

NFRs in a SAS. Each observation z ∈ Z in a POMDP, represents a set of possible

observation values obtained from MON1 to MONk, where k is the number of

MON variables.

Mapping Rule 3. An observation z ∈ Z represents a set of observation values of the

MON variables MON1,...,MONk. MON variables are variables of the environment that
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affect the levels of satisficement of the NFRs in a SAS and support their inference by us-

ing Equation (2.1).

The RDM SAS involves three MON variables, RBC, ANL and TTW. Each of them

has three possible values representing ranges of monitored observations. The

observations z associated with these MON variables are shown in Table 4.3.

TABLE 4.3: RDM SAS - MON variables and observations

The MON variables RBC, ANL, and TTW are associated to the NFRs MC, MR

and MP respectively (See Fig. 4.2). The number of observations z ∈ Z is repre-

sented as |Z| and depends on the number of MON variables |MON| and the

number of possible values |MONov| for each MON variable. The number of

observations |Z| is computed as follows:

|Z| =
|MON|

∏
i=1
|MONov| (4.3)

In the case of the RDM SAS, we have 3 MON variables and 3 possible range

values for each one, therefore the number of observations |Z| is 3*3*3=27.

4.3.3 From requirements to POMDPs: NFRs inference evolution

In RE-STORM, per each time slice during the system’s execution, the current sat-

isficement levels of the NFRs is inferred by using Equation (2.1). This inference

considers the transition and observation functions in a POMDP and represents a
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time-based relationship among POMDP elements (NFRs inference evolution). The

mapping rules to represent NFRs and MON variables in terms of the transition and

observation functions respectively are presented as follows.

a) NFRs and the POMDP transition function. In a POMDP, the transition function

T (s, a, s’ ) = P(s’ |s, a) represents the probability of the system making a transi-

tion from state s to state s’ when action a is executed under the current state s.

The following mapping rule allows the representation of the transition function

in a POMDP with respect to the state values of the NFRs in a SAS.

Mapping rule 4. The transition function T (s, a, s’ ) = P(s’ |s, a), represents a system

taking an action ’a’ under the current satisficement level of its related NFRs to update

the next time slice with a new satisficement level that better meets its NFRs.

Based on the previous rule, the transition function is derived as a function of the

NFRs:

T(s, a, s′) = P(NFR′(1)...NFR′(n)|NFR(1)...NFR(n), A) (4.4)

where NFR(i) and NFR′(i) represent the NFR “i” at the time slices t and t+1 re-

spectively, ∀i ∈ [1, n]. Using Bayes’ theorem [69, 53], the transition model can be

factored as a product of conditional distributions. Let us apply this concept on

the RDM SAS, where two possible actions exist: Minimum Spanning Tree (MST)

and Redundant topology (RT). These actions affect the NFRs Minimization of Cost

(MC), Maximization of Reliability (MR) and Maximization of Performance (MP). The-

fore, the factored transition model for this example is as follows:

T(s, a, s′) = P(MC′|MC, MR, MP, a)

P(MR′|MC, MR, MP, a)P(MP′|MC, MR, MP, a)
(4.5)

As it is observed in Equation (4.5) and visually in Fig. 4.2, MC’, MR’ and MP’ are

influenced by both, the previous action a ∈ A, and the previous state of MC, MR

and MP, i.e. they are interdependent. The conditional probability tables (CPTs)
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for the NFRs of the RDM SAS are shown in Tables 4.4, 4.5 and 4.6.

TABLE 4.4: CPT MC: P(MC’ |MC,MR,MP,a)

TABLE 4.5: CPT MR: P(MR’ |MC,MR,MP,a)
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TABLE 4.6: CPT MP: P(MP’ |MC,MR,MP,a)

The transition function T (s, a, s’ ), i.e. the probabilities in Tables 4.4, 4.5, and 4.6,

are used during the system execution in Equation (2.1), to compute the current proba-

bility distribution (i.e. belief) about the satisficement level of the NFRs in the RDM SAS.

b) Monitoring (MON) variables and the POMDP observation function. MON

variables allow to infer at runtime the current satisficement levels of the NFRs

in a system. The next mapping rule allows to represent the observation function

O(s’, a, z) = P(z|s’, a) of a POMDP in relation to the values of the MON variables

in a SAS.

Mapping rule 5. The observation function O(s’, a, z) = P(z|s’, a), represents a system

that gets observations z from its monitoring variables, under the current state of their

related NFRs and after taking action ’a’ in the previous time slice.
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The observation function derived from Mapping Rule 5, is represented as fol-

lows:

O(z, a, s′) = P(MON1|NFR1...NFRn, A)

P(MON2|NFR2...NFRn, A)...

P(MONl |NFRn...NFRn, A)

(4.6)

In the case of the RDM SAS, three NFRs: Minimization of cost (MC), Maximiza-

tion of Reliability (MR) and Maximization of Performance (MP) exist, that affect

the MON variables Ranges of Bandwidth Consumption (RBC), Active Network Links

(ANL) and Total Time for Writing (TTW) respectively. The factored observation

function for this example is:

O(z, a, s′) = P(RBC|MC′, a)P(ANL|MR′, a)

P(TTW|MP′, a)
(4.7)

Similar to the transition function, the observation function also requires initial

conditional probabilities for the MON variables. The conditional probabilities

for the MON variables above are shown in Tables 4.7, 4.8, and 4.9.

TABLE 4.7: CPT RBC: P(RBC|MC’,a)

TABLE 4.8: CPT ANL: P(ANL|MR’,a)
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TABLE 4.9: CPT TTW: P(TTW|MP’,a)

The observation function O(s’, a, z) = P(z|s’, a), i.e. the probabilities in Tables 4.7, 4.8,

and 4.9, are an input in equation (2.1), to update the current belief about the satisfice-

ment levels of the NFRs in a SAS.

In this section, we have specified the required mapping rules to allow the spec-

ification and trade-off of NFRs in terms of a runtime POMDP model. Next, the

details of the decision-making process of RE-STORM are presented.

4.4 MAPE-K loop and POMDPs for decision-making in self-

adaptation

The runtime behaviour of RE-STORM is based on a POMDP requirements-aware

model within a feedback control loop (See Fig. 4.3 with the runtime architecture of

this proposal). In this section, the different activities of the MAPE-K loop [51] and

the details of the decision-making driven by the satisficement levels of the NFRs in

the RDM SAS, are presented as follows.
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FIGURE 4.3: RE-STORM architecture: runtime models and managed
system

4.4.1 RE-STORM: MAPE-K loop activities

a) Monitoring. In this activity the necessary data from the context is collected. In

the RDM SAS the MON variables Ranges of Bandwidth Consumption (RBC), Active

Network Links (ANL) and Total Time for Writing (TTW) are monitored during the

system execution. The observed values for each MON variable constitute the

evidence to compute later in Equation (2.1) the current belief about the satisfice-

ment level of the NFRs in the RDM system.

b) Analysis. In requirements-aware systems, this activity uses the data about the

context to update the requirements model or recompute the requirements satis-

faction [39]. Any required data transformation to enable data to be used at the

next stage should be performed at this step. Therefore, the component labeled
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Belief Estimator in Fig. 4.3 is responsible for updating the belief about the sat-

isficement level of the NFRs based on the previous belief b, the last action, and

the last observation. This update is performed by using Equation (2.1) and the

result is a new belief b, which represents the most probable satisficement level

of the NFRs in a system given past experiences. The new belief will be the input

for the planning activity. It is also recorded in the Knowlege Base as part of the

POMDP runtime model.

c) Planning. The component labeled Action Planner in Fig. 4.3 is the policy π re-

sponsible for generating actions, as a function of the current belief b about the

satisficement levels of the NFRs in the system. We use online POMDP planning

[75] to choose the best action. Online POMDP planning is a technique that inter-

leaves planning with plan execution: at each time slice, the system searches for

an optimal action a ∈ A at the current belief b. It then executes the chosen action

immediately [96]. Details on this activity are presented in section 4.4.2.

d) Execution. Once an action has been selected it is executed by the system. As a

result, the system reaches a new state s’ with probability T (s, a, s’ ) = P(s’ |s, a)

and receives an observation z ∈ Z with probability O(s’, a, z) = P(z|s’, a). It also

receives a real number, i.e. a reward value R(s,a), which represents the reward

or penalty for arriving to the new state s’. Then, the MAPE-K loop starts again.

e) Knowledge Base. Inside the Knowledge Base of an autonomic system are one or

more models that support the Monitoring, Analysis, Planning and Execution

activities [16]. In our proposal, two runtime models (See Fig. 4.3), are kept in

the Knowledge Base: (i) a POMDP runtime model, which contains the current

beliefs about the satisficement level of the NFRs, along with the reward values

R(s,a) and (ii) the ARRoW model [38], a weights updater used to update reward

values R(s,a) in a POMDP when requirements about the satisficement levels of

the NFRs, i.e. Service Level Agreements (SLAs), are violated during the system’s

execution. Next, the planning activity for decision-making driven by NFRs is

explained in detail.
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4.4.2 RE-STORM: Details on the online planning activity using POMDPs

During planning in RE-STORM, we depart from the belief b0 about the current state

of the system. Further, and based on the “memoryless property” of a stochastic

Markov process [53, 75], we have that the future state of the system depends only

upon its current state, not on the past. Our proposal uses this assumption to project

future evolutions of the satisficement levels of the NFRs in a SAS from the current

belief b0. Specifically, we use the Determinized Sparse Partially Observable Tree

(DESPOT) algorithm [2, 96] as the planner of our proposal.

Proactive self-adaptation. One desirable capability of autonomic self-adaptive sys-

tems is anticipation, which is defined as being able to anticipate to some extent,

needs, behaviours to be able to manage itself in a proactive way [64]. Proactive self-

adaptation implies predictions of how the environment is going to evolve in the rel-

atively near future. The approach makes decisions under the uncertainty implied by

those predictions. RE-STORM provides a decision-making under uncertainty that is

proactive and self-adaptive. Its implementation is based on the DESPOT tree in or-

der to select the adaptation decisions. Next, relevant details of the approach are pre-

sented. The next two step are related to the capabilities of proactive self-adaptation

offered by RE-STORM during planning.

a) Build a DESPOT tree to project future evolutions of NFRs. The action planner

module of our approach, considers future evolutions of the satisficement level of

the NFRs to decide the next action a ∈ A, i.e. to reason about long-term effects of

immediate actions [96]. An example of this behaviour is presented in Chapter 6.

The future evolutions of the state of the system are represented by the following

DESPOT tree.
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FIGURE 4.4: DESPOT Belief Tree with 2 sampled scenarios marked
with green and red dots (The DESPOT tree is overlaid on a standard

belief tree)

DESPOT builds per each time slice, a sparse approximation of a standard belief

tree: a DESPOT tree (See Fig. 4.4), by using a simulation model [4]. The root

node of the tree is the belief b0 which represents the belief about the current state

of the running system. Each edge in the tree represents an action observation

pair. If a child node bt is connected to its parent bt−1 by an edge (at, zt), then bt =

τ(bt−1, at, zt) according to Equation (2.1). In RE-STORM, each node in a DESPOT

tree represents a belief about the level of satisficement of the NFRs. The DESPOT

tree represents the neighborhood of the current belief b0.

b) Select an optimal action a ∈ A. The Bellman’s principle of optimality [76] is

shown in equation (4.8). It is applied over a DESPOT tree to choose the best

action:

V(b) =

max
a∈A

{
∑
s∈S

b(s)R(s, a) + γ ∑
z∈Z

p(z|b, a)V∗(r(b, a, z))

} (4.8)

The algorithm searches the tree with root at the current belief b0. Specifically, the

action planner module (See Fig. 4.3) uses lookahead search [84] to approximate

the optimal discounted reward value V∗(b0) [83, 55, 2]. The search is guided by a
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lower bound l(b0) and an upper bound µ(b0) on the approximated optimal dis-

counted reward value V∗(b0). The explorations continue, until the gap between

the bounds µ(b0) and l(b0) reaches a target level ε0 or the allocated planning

time Tmax runs out. Equation (4.8) recursively computes over the tree the max-

imum value of action branches and the average value of observation branches

[55, 75, 4, 2]. The result is an approximately optimal policy for the current belief

b0 [2, 96].

A policy is learned by interacting with the environment as it was stated in Chapter 2,

section 2.7. (In this case the environment is represented by the DESPOT tree).

The system then executes the first action of the policy π(b0), i.e. the action with

the highest discounted reward value V∗(b0).

Definition 2. The belief b0 represents the current satisficement levels of the sys-

tem’s NFRs. The selection of the optimal action a ∈ A made in equation (4.8), is

based on the current and projected beliefs about the satisficement levels of the NFRs

in a SAS.

The algorithm 1, which is shown below, provides a high-level view of the process

to build and search a DESPOT tree. Two additional algorithms (Algorithms 2 and 3),

complement this process by implementing specific behaviours for exploration and

backup of belief nodes b, to determine an optimal action, which is derived from the

DESPOT tree.

In morel detail, the algorithm 1 constructs and searches a DESPOT tree incre-

mentally. Initially, it contains only a root node with belief b0 about the current sat-

isficement level of the NFRs in a system. The tree also contains the initial upper

and lower bounds associated to the belief b0 (lines 4–5). The algorithm performs

explorations using algorithm 2, to expand the DESPOT tree and to reduce the gap

ε(b0) between the bounds µ(b0) and l(b0) at the root node b0. Each exploration aims

at choosing and expanding a promising leaf node (line 8) and adds its child nodes

into the tree until the current leaf node is not heuristically promising [96]. Then, the
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Algorithm 1 Algorithm for building and searching a DESPOT tree D in each time
slice

1: Parameter(s):
2: - Initial belief b0 about the current satisficement level of the NFRs
3: Runtime execution:
4: -Use the belief b0 to create the root node of a new DESPOT tree D
5: -Initialize upper and lower bounds: µ(b0) and l(b0)
6: -Initialize ε(b0)← µ(b0) - l(b0)
7: while ε(b0) > ε0 and running time is less than Tmax do
8: b← Explore(D,b0) . (Explore a promising path)
9: Backup(D,b) . (Backup on bounds at each node b)

10: end while
11: Return: DESPOT tree with an approximated optimal policy π∗(b0)

algorithm traces the path back to the root and performs backup using Algorithm 3

on the upper and lower bounds at each node along the way to the root node (line 9).

The explorations continue until the gap between the bounds µ(b0) and l(b0) reaches

a target level ε0 (ε0 >= 0) or the planning time Tmax finishes (line 7).

Algorithm 2 Algorithm to expand the branches of a DESPOT tree D

1: Parameter(s):

2: -A DESPOT tree D and the current belief b

3: Runtime execution:

4: -Dh ← DESPOT tree height

5: -∆(b)← current height of the belief b

6: while ∆(b) <= Dh and E(b) > 0 do

7: if b is a leaf node in D then

8: Expand b one level deeper. Insert each new child b’ of b into D,

9: and initialize µ(b′) and l(b′)

10: a∗ ← arg maxa∈A µ(b, a)

11: z∗ ← arg maxz∈Zb,a∗ E(τ(b, a∗, z))

12: b← τ(b, a∗, z∗)

13: end if

14: end while

15: Return: An expanded DESPOT tree

In Algorithm 2, the exploration to expand the DESPOT tree starts at the root node

b0. At each node b along the exploration path, the best action branch a∗, according
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to the upper bound µ(b), is selected (line 10). Afterwards, the observation branch z

that leads to a child node b′ = τ(b, a∗, z) maximizing the excess uncertainty E(b′), is

selected (line 11). The excess uncertainty E(b′) measures the difference between the

current gap at b′ and the expected gap at b′ if the target gap ε(b0) at b0 is satisfied.

The exploration strategy seeks to reduce the excess uncertainty in a greedy manner

[96, 41]. The exploration at a node b is terminated under the following conditions

(line 6). First, ∆(b) <= Dh, i.e. the maximum tree height is exceeded, and second,

E(b) > 0, indicating that when the expected gap at b is reached, further exploration

from b onwards may be unproductive. When the exploration terminates, Algorithm

3 is performed.

Algorithm 3 Algorithm to perform backup on the bounds of each node b using Bell-
man’s principle

1: Parameter(s):

2: -A DESPOT tree D and the current belief b

3: Runtime execution:

4: for each node x on the path from b to the root D do

5: Perform backup on µ(x) and l(x)

6: end for

In Algorithm 3, the path back to the root node is traced, and the backup is per-

formed on the upper and lower bounds at each node b along the way, using the

Bellman’s principle of optimality [96]. Specifically, the bounds µ(b) and l(b) at each

node b are recomputed.

4.4.3 RE-STORM: Approximated optimal policy

In RE-STORM, a DESPOT tree represents the possible future evolutions of a belief b

about the current satisficement level of the NFRs in a SAS. An approximated optimal

policy π is derived from a DESPOT tree, for each time slice during the system’s

execution. The approach to derive an approximated policy π of size |π|, is deeply

related to the process of building a DESPOT tree. It is built through a set of randomly

sampled scenarios [96] from the root node of the tree, i.e., the belief b0 (See Fig. 4.4 )

about the current satisficement level of the NFRs in a SAS. A scenario is an abstract
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simulation trajectory with some start state s0. A scenario for a belief b, is a random

sequence Φ = (s0, φ1, φ2, . . . ), in which the start state s0 is sampled according to b

and each φi is a real number sampled uniformly and independently from the range

[0,1]. A DESPOT tree is defined constructively by applying a simulation model [96,

4] to all possible action sequences under K sampled scenarios. Fig. 4.4 shows how

a node b in a DESPOT tree branches into |A| action edges, and each action edge

further branches into a subset of |Z| observation edges.

While a standard belief tree of height Dh has |A|D|Z|D nodes, a corresponding

DESPOT tree has |A|DK nodes for |A| >= 2, because of reduced observation branch-

ing under the sampled scenarios, as observed in Fig. 4.4.

An approximated optimal policy π is derived by choosing K to be equal or

greather than |π|ln(|π||A||Z|) [96, 4]. Since a DESPOT tree has size |A|DK, the

choice of K allows to trade off computation cost and approximation accuracy. Specif-

ically, the default values provided by the DESPOT algorithm for domain independent

POMDP problems have been used in this implementation, i.e. K = 500, DESPOT tree

height Dh = 90, and max planning time Tmax = 1 second for each time slice.

4.5 Summary

In this chapter, RE-STORM, a proposal for decision-making driven by the current

satisficement levels of the NFRs in a SAS has been presented. Within the context

of the MAPE-K loop, the analysis activity uses Bayesian inference to compute the

current belief b about the satisficement levels of the NFRs. During the planning ac-

tivity, the Bellman’s principle of optimality formalised in Equation (4.8) is applied to

compute a policy π that yields an optimal action a = π(b).

At design-time, initial preferences about NFRs and adaptation actions are specified

and correspond to the reward values R(s,a) in a POMDP (Based on mapping Rule

2). These preferences, which are used in Equation (4.8), under some unforeseen

situations that arise at runtime, may be not suitable and affect the Service Level

Agreements (SLAs) of the system. Specifically, the thresholds of the levels of satis-

ficement of the NFRs in a SAS may be violated. To overcome this situation, ARRoW,
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a proposal to reassess and update initial preferences during the system’s execution

is presented next, in Chapter 5.
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Chapter 5

ARRoW: Automatic Runtime

Reappraisal of Weights for

Self-Adaptation

5.1 Overview

This chapter presents ARRoW (Automatic Runtime Reappraisal of Weights), a tech-

nique to support the dynamic update of preferences (a.k.a. weights) associated with

the NFRs and adaptation actions in SASs. ARRoW takes into account the current

levels of satisficement that NFRs can reach during the system’s operation in order

to update the initial preferences when needed. To develop ARRoW, the Primitive

Cognitive Network Process (P-CNP) has been extended to enable the handling and

update of weights during runtime. P-CNP is a version of the Analytical Hierarchy

Process (AHP). Specifically, the approach involves the following:

• The specification of NFRs and design decisions to deduce the corresponding

weights as a P-CNP problem.

• The use of P-CNP at runtime.

The extension made to P-CNP and an example to illustrate the application of

ARRoW is presented next.



Chapter 5. ARRoW: Automatic Runtime Reappraisal of Weights for

Self-Adaptation
67

5.2 A motivating example

As an example to facilitate the explanation of the ARRoW process, a reduced ver-

sion of the Remote Data Mirroring (RDM) SAS presented in Chapter 4 has been

considered (See Fig. 5.1). In this version, two NFRs: Minimization of Cost (MC) and

Maximization of Reliability (MR) are taken into account.

FIGURE 5.1: RDM example - POMDP representation

As explained in Chapter 4, in SASs, the decision-making process requires the

runtime quantification and trade-off of multiple non-functional requirements (NFRs)

and the cost-benefit analysis for alternative solution strategies [58]. Preferences as-

sociated with NFRs and adaptation actions, are used during the decision-making

process in self-adaptation [65].

In our proposal RE-STORM, these preferences coincide with the reward values R(s,a) in

a POMDP.

Table 5.1 shows the reward values R(s,a) (i.e. preferences) for the RDM example.
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TABLE 5.1: RDM example - Reward values R(s,a)

In self-adaptation, the initial preferences specified at design-time may be not suit-

able for some specific situations found at runtime. We tackle this challenge using

ARRoW, the technique presented in this Chapter.

When using ARRoW, new preferences, i.e. new reward values R(s,a), are calcu-

lated. They are used as an input in Equation (4.8) for the decision-making process

based on RE-STORM during execution. Next, we explain how the P-CNP frame-

work has been extended to enable dynamic reappraisal and update of weights in

SASs by using ARRoW.

5.3 P-CNP for reassessing NFR weights in Self-adaptation

This section overviews the P-CNP framework to derive the weights among several

competing alternatives by using a comparison scale and paired differential compar-

isons [102]. We briefly explain how these concepts have been associated with the

concepts of runtime decision-making by a SAS, underpinned by POMDPs, to dy-

namically reappraise weights based on the results shown in [38, 67, 66]. Under this

context, the use of P-CNP involves the following steps:

5.3.1 Step 1: Problem definition

In this step, a decision problem is formulated as a Structural Assessment Network

(SAN) [101]. A SAN is a model with a goal (i.e. a functional requirement in our

case), a criteria structure (i.e. the system’s NFRs) and a set of alternatives to achieve
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the goal based on the identified criteria. Fig. 5.2 shows an example of a SAN model

for the case of the RDM SAS.

FIGURE 5.2: RDM Example- Structural Assessment Network (SAN)

In our example, the goal is to construct a connected network to distribute data in

the RDM. Decisions taken by the system under the current runtime context, have an

impact on the satisficement levels of the NFRs Minimization of Cost (MC) and Maxi-

mization of Reliability (MR). These NFRs correspond to the criteria in the SAN model.

To meet its goal, the RDM SAS has a set of alternatives alt ∈ Alt, represented by the

possible NFRs’ states to be reached after taking a self-adaptation action MST or RT

topology.

In ARRoW, an alternative alt∈Alt represents a set of possible NFRs’ states to be reached

after taking a self-adaptation action.

For example, the alternative alt1 in Table 5.1, represents that after performing

action a1 = MST, the reached NFRs’ states are MC = True and MR = True. Each

alternative alt ∈ Alt should have a preference or numeric weight associated, i.e. a

reward value R(s,a) in a POMDP as shown in Table 5.1. Once formulated a SAN

problem as the shown in Fig. 5.2, the next step is to assign weights to the criteria

identified in the model as explained next.
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5.3.2 Step 2: Weights assignment to NFRs

The comparison and prioritization of the NFRs, is performed by using (i) the com-

parison scale shown in Table 5.2 and (ii) pairwise differential comparisons [102].

Different from the original use of P-CNP which is performed manually, in this work

the comparisons and prioritizations are made autonomously by the SAS at runtime.

Two basic concepts to perform this step are presented next.

TABLE 5.2: P-CNP scale of comparison

a) Pairwise differential comparisons. In P-CNP, the comparison of two objects

is represented by the difference between them. To make pairwise differential

comparisons, a single number is drawn from the scale shown in Table 5.2 to

represent dominance in view of the semantic form vij = vi − vj.

The knowledge representation of pairwise comparisons is divided as two parts:

syntactic form and semantic form. The syntactic form (a.k.a. verbal form) is the

comparison sentence using linguistic words for comparison. The semantic form

(a.k.a. numerical form) is the mathematical description or numerical representa-

tion of the syntactic form.

For example, with respect to a comparison, it can be said the following syntactic

form: alternative A is “moderately” more preferable than alternative B. Note in

Table 5.2 the different syntactic forms that can be used. The equivalent semantic

form for this example is: vij = value judgement of A - value judgement of B = 2.

To compare at runtime the satisficement levels of the NFRs, the semantic form is
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presented as follows: n f rij = n f ri − n f rj.

b) Pairwise opposite matrix (POM). A POM is a quadratic matrix that represents

the relative importance between each pair of compared elements [99]. Fig. 5.3

shows a generic POM, where nfrij = nfri - nfrj represents the differential pairwise

comparison between the values of the compared NFRs in the row “i” and the

column “j” in the POM.

FIGURE 5.3: POM - general structure to compare NFRs

When i = j, then nfrij = 0. The values nfrij correspond to the values of a mea-

surement scale schema as is shown in Table 5.2. Fig. 5.4 shows an example of

a POM after the comparison between two NFRs: Minimization of Cost (MC) and

Maximization of Reliability (MR) of the RDM SAS.

FIGURE 5.4: POM - example of NFRs comparison

The value 3 in the POM above, represents that MC is “fairly over" (See Verbal

Form in Table 5.2) than MR. The Row Average plus the Normal Utility (RAU)

priorization method [99] is used to derive weights from a POM:

wi =

(
1
p

p

∑
j=1

vij

)
+ κ (5.1)
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In Equation (5.1), p represents the number of compared elements. Kappa (κ)

represents the perception by people of the difference values of paired objects in

different scenarios. κ is greater than 0 and, by default, is the highest value of the

comparison scale [99]. The results presented in this dissertation were obtained

by using the default (κ).

5.3.3 Step 3: Comparison of alternatives alt ∈ Alt with respect to NFRs

This comparison is performed by using paired differential comparisons between the

alternatives alt ∈ Alt, with respect to each NFR identified as part of the criteria in

Step 1. Fig. 5.5 shows the comparison between alternatives with respect to the NFR

Minimization of Cost (MC).

FIGURE 5.5: Relatives weights of alt ∈ Alt in relation to MC

In the example above, we compare the alternatives alt ∈ Alt previously shown

in Table 5.1. For instance, we observe that the comparison between alt1 and alt7 is

equal to 5. The value 5 (See the scale of comparison in Table 5.2) indicates that alt1

is “strongly over” (i.e. more preferable) than alt7. The interpretation of this result

means that from the point of view of Minimization of Cost (MC), it is more preferable

to perform action a = MST to then reaches the NFRs’ states MC = True and MR =

True, than perform action a = RT and reaches the NFRs’ states MC = False and MR

= True.

As a result of this step we obtain a set of relative weights for the alternatives alt ∈

Alt in relation to each NFR. These relative weights are independent of the step 2 of

P-CNP and only need to be calculated once at design-time. The obtained POMs

are called POMAlt−{NFR}, where {NFR} is the specific NFR in relation to which
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the alternatives alt ∈ Alt were compared. In the RDM example, two POMs were

obtained: POMAlt−MC and POMAlt−MR.

5.3.4 Step 4: Information fusion and global weights

The global weights for each alternative alt ∈Alt are computed by using the weighted

arithmetic mean [99]:
alti =

n

∑
j=1

wj ∗ pij, i = 1, ..., m (5.2)

wj is a NFR weight (obtained at step 2), pij is a relative weight of the alternative

alti with respect to nfrj (obtained in step 3), and m is the number of alternatives alt

∈ Alt. As a result, a final matrix, called Decision Matrix Alt-Fusion (DMAlt−Fusion)

is derived (See Fig. 5.6). The final weights of alternatives alt ∈ Alt represented

by a DMAlt−Fusion are the updated reward values R(s,a) in the underlying POMDP,

which will be used by RE-STORM in equation (4.8) during the decision-making of

the running SAS.

FIGURE 5.6: P-CNP abstractions for weights propagation at runtime



Chapter 5. ARRoW: Automatic Runtime Reappraisal of Weights for

Self-Adaptation
74

5.4 Automatic Runtime Reappraisal of Weights: ARRoW

ARRoW is a technique created to be performed during the execution of a SAS. How-

ever, the fulfillment of some pre-conditions is required before its operation. In this

section, the initial setup of ARRoW, which is performed at design-time, is presented.

Afterwards, the details of its runtime process is explained through the RDM exam-

ple. Fig. 5.7, shows a summary of the ARRoW processes in both contexts: design-

time and runtime.

FIGURE 5.7: ARRoW process: design-time and runtime behaviour

5.4.1 ARRoW Initial Setup

The initial setting of ARRoW before runtime assumes:

• Service Level Agreements (SLAs) for the satisficement levels of the NFRs

• An underlying decision-making framework

Next, we briefly describe the content and purpose of these elements.
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a) Service level agrements (SLAs) for NFRs. Different approaches are used to

determine the Service Level Agreements (SLAs) in a system, for example they

can be learned or provided by experts. In the case of the RDM SAS, the SLAs

for the NFRs Minimization of Cost (MC) and Maximization of Reliability (MR) were

defined on the basis of information provided by system’s experts. The SLAs rep-

resent the satisficement threshold for each NFR. Any value below the threshold

of a NFR is in a zone of poor satisficement. In contrast, any value equal or greater

than the threshold is seen in a zone of suitable satisficement. The identified SLAs

are: P(MC=True>= 0.7) and P(MR=True>= 0.9). The specification of the SLAs

within the zones of satisficement (poor and suitable) is highlighted in Table 5.3.

TABLE 5.3: RDM example - SLAs

Note in Fig. 5.7, how the SLAs specified at design-time, represent an input of

the ARRoW process at runtime.

Ranges of levels of satisficement of NFRs. In order to perform the comparisons

among the satisficement levels of the NFRs at runtime (following the Step 2 of

P-CNP described in section 5.3.2), the zones of suitable satisficement and poor sat-

isficement for each NFR are divided in ranges. In ARRoW, each numeric factor of

the P-CNP scale of comparison shown in Table 5.2, is associated with a range of

satisficement.

In the case of the RDM example, the ranges of satisficement for the suitable zone

of the NFRs MC and MR are shown in Table 5.4. Table 5.5 shows the equivalent

ranges for the poor zone of the NFRs MC and MR.
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TABLE 5.4: RDM example - Ranges for suitable satisficement

TABLE 5.5: RDM example - Ranges for poor satisficement

The ranges above together the SLAs specified in this section, are an input of

the ARRoW process at runtime as is depicted in Fig. 5.7. They enable ARRoW

to perform runtime pairwise differential comparisons between the satisficement

levels of the NFRs to therefore assign them weights, i.e. a specific importance.

The computed weights represent the result of Step 2 in P-CNP.

Details on the use of the ranges in Tables 5.4 and 5.5 are presented in section

5.4.2, the ARRoW runtime process.

b) An underlying runtime decision-making framework. ARRoW relies on RE-

STORM, as its underlying runtime decision-making framework. RE-STORM

involves a requirements-aware runtime model based on Partially Observable

Markov Decision Processes (POMDPs) which offers ARRoW access to:

• The current belief about the satisficement levels of the NFRs in a SAS
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• The current reward values R(s,a) which in this work represent the current

preferences (a.k.a. weights) over the NFRs and adaptation actions in a sys-

tem.

Initial reward values R(s,a). In the decision-making process leveraged by RE-

STORM, the system gets a reward value R(s, a) after performing an action “a”

and achieving a new state “s”, i.e. a new satisficement level for its NFRs. For

the RDM case study, similar to the SLAs, initial reward values R(s,a) were also

defined on the basis of information provided by system’s experts. Note in Fig.

5.7, how these preferences are an input for the ARRoW process at runtime.

The reward values R(s,a) are used in Equation (4.8) for the selection of self-

adaptation actions during the online planning activity of RE-STORM. They may

need to be updated at runtime, when it is detected that the current values are not

suitable anymore for a better decision-making according to the current system’s

context. Details on this process are presented in the next section.

5.4.2 The ARRoW runtime process

ARRoW is mainly applied during the execution of the system as shown in Fig. 5.7.

The time is handled based on time slices. In Algorithm 4, a high level view of the

algorithm that summarizes the complete process to update weights, i.e., rewards

values R(s,a) in a POMDP, is shown. The steps of the ARRoW process at runtime are

summarized as follows:

Step 1: Monitoring NFR satisficement to detect poor levels

This step is performed at runtime for each time slice. If at least one NFR has its sat-

isficement level, i.e. probability P(NFR=True), labeled below its specified threshold;

then the following step will hold. Otherwise, the SAS continues using its current

weights.
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Algorithm 4 Automatic Runtime Reappraisal of Weights (ARRoW) per each time
slice

1: Pre conditions:
2: -Set thresholds and ranges of satisficement for each NFR.
3: -Set initial reward values R(s,a).
4: Runtime execution:
5: while the system is running do
6: Per each time slice, monitor NFRs satisficement (Step 1)
7: if at least one NFR is under its threshold then
8: -Compare satisficement levels of NFRs and
9: assign new weights to NFRs→ POMNFRs updated (Step 2.1)

10: -Using POMNFRs and POMAlt−NFRs derive new reward values R(s,a)→
11: DMAlt−Fusion updated (Step 2.2)
12: end if
13: Perform POMDP decision-making using possibly updated reward values
14: R(s,a)
15: end while

Step 2: Balancing weights of NFRs and actions

Step 2.1 - Compare and assign new weights to NFRs. First, pairwise differential com-

parisons among the satisficement levels of the NFRs are performed to update their

weights at runtime. The step departures from an empty POM POMNFRs as the

shown in Fig. 5.3. The needed comparisons are performed to fill up the matrix

and derive updated weights for each NFR (Algorithm 4, step 2.1).

At runtime and per each pairwise comparison of the NFRs nfri and nfrj, where

“i” is a row and “j” is a column in the POM, the ARRoW engine faces different situ-

ations which are presented as cases as follows:

• Case 1: probability P(nfri=True) < nfri_threshold and probability P(nfrj=True) >=

nfrj_threshold. In this case, nfri has its satisficement level under the threshold. On

the other hand, the satisficement level of nfrj is greater or equal to the threshold.

Under this context the ARRoW engine performs the following rule:

More importance is assigned to nfri. The P-CNP numeric factor associated to the current

range of satisficement of nfrj is selected as result.

• Case 2: probability P(nfri=True) >= nfri_threshold and probability P(nfrj=True) <

nfrj_threshold. This is the opposite of Case 1. Therefore:



Chapter 5. ARRoW: Automatic Runtime Reappraisal of Weights for

Self-Adaptation
79

More importance is assigned to nfrj. The P-CNP numeric factor associated to the current

range of satisficement of nfri is multiplied by -1 and selected as result.

• Case 3: probability P(nfri=True) >= nfri_threshold and probability P(nfrj=True) >=

nfrj_threshold. In this case, both NFRs have their satisficements levels greater or equal

to their thresholds. Therefore:

More importance is assigned to the NFR with lower satisficement. The substraction of the

P-CNP numeric factors associated to the current ranges of satisficement for nfri and nfrj

is selected as result.

• Case 4: probability P(nfri=True) < nfri_threshold and probability P(nfrj=True) <

nfrj_threshold. In this case both NFRs have their satisficement levels under their

thresholds. The ARRoW engine applies the same rule as in Case 3 but the P-CNP

numeric factors for both NFRs are taken from their zone of poor satisficement (See

Table 5.5).

For better understanding, examples of the cases mentioned above are shown as

follows.

• Case 1 example: probability P(MC=True)=0.62 and probability P(MR=True)=0.94

We observe that nfri, MC, has a satisficement level below its threshold (See Ta-

ble 5.5). Conversely, MR (i.e., nfrj) has a level of satisficement over its threshold,

within the range [93.75%, 95.50%]. Therefore, a higher priority is given to MC by

choosing the P-CNP numeric factor associated to the range [93.75% , 95.50%], i.e.,

the value 4. A POM representing this comparison is shown in Fig. 5.8.
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FIGURE 5.8: POMNFRs Example Case 1

• Case 2 example: probability P(MC=True)=0.83 and probability P(MR=True)=0.84

Whilst nfri, i.e. MC, has a satisficement levels over its threshold, within the range

[81.25% , 85.00%] (See Table 5.4), the nfrj MR has a satisficement level under its

threshold. A higher importance is assigned to MR by choosing the P-CNP numeric

factor associated to the range [81.25% , 85.00%], i.e., 4, and multiplying it by -1. A

POM representing this comparison is shown in Fig. 5.9.

FIGURE 5.9: POMNFRs Example Case 2

• Case 3 example: probability P(MC=True)=0.74 and probability P(MR=True)=0.97

MC has a satisficement level within the range [73.75% , 75.50%] and MR within

the range [96.25% , 97.50%]. Under this context, a higher importance is assigned

to MC by substracting their related P-CNP numeric factors (See Table 5.4), i.e., 6 -

2 = 4. This result also corresponds to the POM shown in Fig. 5.8. An equivalent

approach is applied for Case 4.

Once the pairwise comparisons between the NFRs are completed, their new weights

are derived using the Equation (5.1).

Step 2.2 - Derive new reward values R(s,a). The ARRoW engine performs the steps

3 and 4 of P-CNP specified in section 5.3, to compute the updated reward values
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R(s,a) in a POMDP. Table 5.6 shows an example of updated weights for the RDM

case study.

TABLE 5.6: RDM example - Updated reward values R(s,a)

The updated weights are further used in Equation (4.8) by RE-STORM to choose

the optimal action a ∈ A in the given time slice.

5.5 Summary

We have presented ARRoW in this chapter, a technique to improve the decision-

making in SASs by reappraising and updating unsuitable weights to leverage a

better-informed decision-making.

A main contribution is the mapping from the specification of NFRs to a P-CNP

problem to enable the runtime leverage of weights. The NFRs specification includes

the identification of a threshold of satisficement for each NFR to identify unaccept-

able poor zones and suitable zones of satisficement that will support the identifica-

tion of situations where the dynamic reassessment of weights is needed.

We have also shown how the P-CNP approach has been extended to be used at

runtime by allowing the runtime propagation of elements of P-CNP POM matrices

and the calculated weights.

ARRoW relies on an underlying Bayesian-based temporal framework, RE-STORM,

presented in Chapter 4. Crucially, ARRoW leverages the Bayesian inference process

underneath, which on the other hand, provides the mechanism to get access to evi-

dence about the levels of satisficement of the NFRs to inform ARRoW.
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Next, the evaluation and benefits of using RE-STORM and ARRoW, as opposed

to ignoring the impact of new evidence over the preferences in a SAS, is presented

in the following Chapter 6.
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Chapter 6

Evaluation

This chapter presents a set of experiments to evaluate our proposals RE-STORM

and ARRoW, using the RDM SAS case study explored earlier. The overall objective

of the RDM is to distribute data among remote servers in an efficient manner by

satisficing the NFRs of the system [73]. We have configured the RDM SAS with initial

preferences abouth their NFRs and adaptation actions. The initial configurations of

the RDM SAS are described in section 6.2.

In these experiments the validity of the initial preferences for new situations

found at runtime is studied. Several dynamic contexts are taken into consideration.

Such contexts were randomly created to affect the RDM SAS during its execution.

Let us revisit the three (3) Research Questions of this dissertation, which were stated

in Chapter 1:

• RQ1: How can we represent the current state of NFRs and their evolution in

model-based self-adaptive systems that are subject to uncertain environments?

• RQ2: How can we improve the trade-off among NFRs in model-based self-

adaptive systems that are subject to uncertain environments, by updating pref-

erences and based on new evidence collected during execution ?

• RQ3: How can techniques for eliciting initial preferences about requirements,

used at design-time, be aplicable to runtime models for self-adaptive systems?

With the experiments shown, we aim to demonstrate the validity of the follow-

ing hypothesis to therefore answer the three research questions of this dissertation:
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H: “Dynamic changes in the context, from the managed system observed at runtime,

require the reassessment and update of current reward values R(s,a) of the POMDP runtime

model to improve accordingly the trade-off levels of the satisficement of the NFRs for the new

environmental conditions.”

The first part of the hypothesis: “Dynamic changes in the context, from the managed

system observed at runtime, allow the reassessment and update of current reward values

R(s,a) ...”, allows us to answer the research question RQ3 proposed in Chapter 1,

section 1.2.

The second part of the hypothesis: “... POMDP runtime model to improve accord-

ingly the trade-off levels of the satisficement of the NFRs for the new environmental condi-

tions.”, allows us to answer the research questions RQ1 and RQ2.

The initial setup and the details of the experiments for decision-making under

uncertainty subject to dynamic environments are presented as follows.

6.1 Infrastructure used during the evaluation

The behaviour of the RDM SAS is implemented with the simulation model [4] pro-

vided by the DESPOT toolkit [96, 2, 4]. DESPOT has been selected due to its avail-

ability as open source and the results obtained on solving POMDPs for real settings

[4]. The RDM network and its behaviour is based on the substantial case study

presented in [29] and the more general specifications and expert-based knowledge

presented in [47]. The case study RDM SAS of this dissertation comprises 25 RDM

servers with 300 physical network links. Each link can be activated or deactivated.

While active, each link can be used to transfer data between RDM servers. For the

RDM configuration the minimum number of Active Network Links (ANL) expected

is equal to 24 (i.e., number of RDM servers - 1 = 25 -1 = 24) [29].

The RDM application has been simulated over 1000+ time slices (simulations

of 1000, 2000 and 3000 thousand time slices have been performed). During each
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simulation, periods of dynamic perturbances have been randomly inserted, which

are detailed in section 6.2.1, Step 3.

6.2 Initial setup of experiments with the RDM SAS

The sources of uncertainty, and initial requirements specifications used in the evalu-

ation are formalised below.

6.2.1 Identification of sources of uncertainty and their treatment

Expert judgement is an important source of information for the specification of the

system [63]. System’s experts and requirements engineers should identify sources

of uncertainty that can affect the SAS at runtime to then initialise the system ac-

cordingly. There are sources of uncertainty to be considered in a SAS during the

whole life cycle of the software system as shown in the taxonomy presented in [1].

In this dissertation, our main concerns are related to the uncertainty produced dur-

ing the system’s execution. Within this classification presented in [1], RE-STORM

deals specifically with the runtime uncertainty due to unpredictable environments

[1]. Two main POMDP elements deal with the sources of uncertainty provoked by

these unpredictable environments: the transition function T (s, a, s’ ) and the obser-

vation function O (s’, a, z). They both help model the uncertainty and require to be

initialised in the RDM SAS. The steps carried out for their specification are presented

as follows.

a) Step 1: Specification of the transition function T (s, a, s’ ). The transition func-

tion T (s, a, s’ ) = P(s’ |s, a), represents the probability that the system has of

making a transition from s to a state s′ ∈ S as a result of the execution of an

action a, which represents that the action effects in the new state of the system

are subject to uncertainty. Several techniques to initialise a model-based SAS

can be applied to capture the experts’ knowledge into the probability distribu-

tions. These include, for example, prior distributions for Bayesian Analysis [48,

62]. For instance, the RDM network parameters are initialized according to the

known probability that certain network links will fail at any given point during
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the system’s execution as described in [29] and [47]. The results of this step are

the specification of the conditional probabilities of the transition function T (s, a,

s’ ) shown in Tables 4.4, 4.5 and 4.6.

b) Step 2: Specification of the observation function O(s’, a, z). The observation

function O(s’, a, z) = P(z|s′, a), represents the probability of observing z ∈ Z

when the action a is performed and the current state is s′. The observation func-

tion models the uncertainty related to the stochastic nature of noisy sensors ob-

servations. The results of this step are the specification of the conditional proba-

bilities of the observation function O (s’, a, z) shown in Tables 4.7, 4.8 and 4.9.

c) Step 3: Configuration of dynamic changes in the environment. This step is

related to the nature of the experiment that uses a simulator. Therefore, the im-

pacts of the topologies MST and RT on the levels of satisficement of the NFRs of

the RDM SAS, which change at runtime, were simulated using DESPOT. To do

that the uncertainty modelled by the transition function T (s, a, s’) was randomly

modified to introduce the changes required explained as follows:

The probability distributions of the transition function T (s, a, s’ ) = P(s’ |s, a), were

randomly changed at runtime. They increment the uncertainty to be managed by our

proposals: RE-STORM and ARRoW, during the simulation of the RDM SAS.

Specifically, the new impacts were conceived to make the SAS to show peri-

ods of deteriorated satisficement of its NFRs and evaluate RE-STORM. Accord-

ingly, the probability taken from Equation (4.4): P(NFR′(1)...NFR′(n) = True

|NFR(1)...NFR(n), A), in the transition function P(s’|s,a), will be lower than if

these periods had not been simulated.

The different dynamic contexts have been simulated by randomly choosing the

duration of each period of deteriorated satisficement, which were between 5 and

15 time slices based on the data provided by [47]. A maximum deviation of 12%

from the current transition function P(s’|s,a) was targetted. Details on the dy-

namic contexts simulated during the system’s execution, are described in section
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6.4, , but before it is explained the setting of the initial preferences and the SLAs.

6.2.2 Setting of the initial preferences and Service Level Agreements (SLAs)

for NFRs

As part of the initial setting of ARRoW (depicted in section 5.4.1), Service Level

Agreements (SLAs) for the satisficement levels of the NFRs and initial preferences,

i.e. reward values R(s,a), require to be specified.

a) Service Level Agreements (SLAs). The identified SLAs for the NFRs Minimiza-

tion of Cost (MC), Maximization of Reliability (MR) and Maximization of Performance

(MP) were:

P(MC=True)>= 0.7 ,

P(MR=True)>= 0.9 , and

P(MP=True)>= 0.75

The zones of poor and suitable satisficement for each NFR are highlighted in

Table 6.1.

TABLE 6.1: RDM SAS - SLAs

b) Reward values R(s,a). The initial preferences of the RDM SAS are shown in the

column “Reward values R(s,a)” of Table 6.2.
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TABLE 6.2: RDM SAS - Reward values R(s,a)

They are used by RE-STORM for the selection of self-adaptation actions dur-

ing the online planning activity specified in section 4.4.2. During the execution

of the experiments, the preferences above may need to be updated at runtime

by ARRoW, to therefore favour the use of a topology which better contributes

to improve the satisficement level of NFRs when their SLAs are detected to be

unacceptable.

6.3 Implementation and evaluation of RE-STORM and AR-

RoW

In this section, details on the implementation and evaluation of our proposals RE-

STORM and ARRoW are provided to facilitate their adoption on other application

domains as a general framework to support decision-making in SASs subject to un-

certainty, and driven by the satisficement levels of their NFRs. Fig. 6.10 shows a

high level view of the configuration at design-time required by both approaches.
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RE-STORM and ARRoW represent a model-based approach to support decision-

making in SASs [96, 4, 55]. As such, the initial representation of the SAS environment

should be specified at design-time to be used during the system’s execution. Next,

the configuration files of this environment are briefly described:

FIGURE 6.1: Implementation and evaluation of RE-STORM and AR-
RoW: inputs and output

6.3.1 Configuration file of RE-STORM

At the current stage, it supports the behaviour of the SAS under the stable conditions

reported in section 6.4.2. In a future version, it will complement the RE-STORM

Simulation Tool (ST) described in section 6.9. Next, the main parameters of the con-

figuration file are presented:

• Transition function. It is a set of real values between [0,1]. They represent the

probability distributions of the transition function T (s, a, s’ ) = P(s’ |s, a) in a

POMDP. Details on their specification in terms of the NFRs of a SAS have been

presented in sections 4.3.3 and 6.2.1 (step “1”). The specific values assigned to

this parameter for the RDM SAS have been presented in the Tables 4.4, 4.5 and

4.6.

• Observation function. It is a set of real values between [0,1]. They represent

the probability distributions of the observation function O(s’, a, z) = P(z|s′, a)

in a POMDP. Details on their specification in terms of the MON variables of a
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SAS have been presented in the sections 4.3.3 and 6.2.1 (step “2”). The specific

values assigned to this parameter for the RDM SAS have been presented in

Tables 4.7, 4.8 and 4.9.

• Reward valuers R(s,a). It is a set of real value between [0,1]. They represent the

initial preferences of the system’s stakeholders, i.e the obtained reward R(s, a)

after taking action a ∈ A at time t, to arrive to the new state s ∈ S at time t + 1.

Details on their specification have been presented in sections 4.3.2 and 6.2.2.

The values assigned to this parameter for the RDM SAS have been presented

in Table 6.2.

• Thresholds for the levels of satisficement of NFRs. They represent the service

level agreements (SLAs) to be monitored during the system’s execution. They

are used by the ARRoW approach to trigger the need of update of reward

values R(s,a) in a POMDP. The default values used for the NFRs Minimization

of Cost (MC), Maximization of Reliability (MR) and Maximization of Performance

(MP) are [0.7, 0.9, 0.75]. Different thresholds have also been evaluated and

reported in section 6.6.

In the next section, the configuration file to enable the behaviour of the dynamic

contexts DC1 to DC6 is described.

6.3.2 Configuration file of the dynamic contexts DCi to DC6

This configuration file supports further simulation of the SAS under different dy-

namic environments. Next, its main parameters are presented:

• Dynamic context DCi to be activated. It is an integer value (between 0 and 5)

which represent the dynamic context DCi to be activated.

• Noise factor. It is a real value between [0,1] which represent the probability of

activation of the selected dynamic context DCi. The default value used during

this evaluation is 0.5.

• Deviation range of the selected dynamic context DCi. It is a range of values

[lowerBound, upperBound], from which a real number is randomly selected to
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decrease specific probability values (See Tables 4.4, 4.5 and 4.6), accordingly to

the dynamic context selected.

For example, for the range [0.1, 0.15] and the dynamic context DC1: P(MRt+1 =

True|NFRt , MSTt), a random value between 10% and 15% will be selected to

reduce the current positive impact of the topology MSTt over the realiability

of the system (i.e. MRt+1 = True).

• Length of the selected dynamic context DCi. It is a range of values [lower-

Bound, upperBound], from which an integer number is randomly selected to

specify the number of timeslices that the selected dynamic context is performed.

The default range of values used during this evaluation is [5, 15] .

• Flag to update reward values R(s,a). It is an integer value (0 or 1) to determine

if the ARRoW approach is performed when a NFR is detected below its thresh-

old of satisficement (i.e. below its SLA) during the execution of the dynamic

context selected. For example, the behaviour reported for each dynamic con-

text DCi in Appendix C, section “Behaviour before reassessment of reward values

R(s,a) ”, has been obtained by using the flag value 0. Conversely, the behaviour

reported under the section “Behaviour after reassessment of reward values R(s,a) ”,

has been obtained with the flag value 1.

• Thresholds for the levels of satisficement of NFRs. They represent the service

level agreements (SLAs) to be monitored during the system’s execution. They

are used by the ARRoW approach to trigger the need of update of reward

values R(s,a) in a POMDP. The default values used for the NFRs Minimization

of Cost (MC), Maximization of Reliability (MR) and Maximization of Performance

(MP) are [0.7, 0.9, 0.75]. Different thresholds have also been evaluated and

reported in section 6.6.

Our proposal has been successfully applied on other application domains [65, 12].

As in those cases, the implementation and evaluation of any new application do-

main supported by RE-STORM and ARRoW can be managed through the update

of the parameters in the configuration files described above. Additionally, further

customization of the SAS environment could be reached by updating the simulation
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model (See Fig. 6.1) provided by the DESPOT algorithm [96]. Details on its use are

presented as follows.

6.3.3 DESPOT simulation model

The DESPOT simulation model [96, 4] has been implemented in C++ and it is in-

cluded in the DESPOT toolkit1. It is used by RE-STORM to produce an approx-

imated optimal policy to support the decision-making process (See section 4.4.3).

One advantage of the use of a simulation model is that it comes with the flexibil-

ity of integrating the stakeholders’ domain knowledge into the representation of

the SAS environment. Therefore, a simulation model do not neccessarily require an

explicit representation of the POMDP model. For example, the probability distribu-

tions shown in Tables 4.4, 4.5 and 4.6, reflect an explicit representation of the transi-

tion function T (s, a, s’ ) = P(s’ |s, a) for the RDM SAS, i.e. each possible transition

is represented with an explicit probability distribution. Contrarily, a non-explicity

representation based on the stakeholders’ domain knowledge, can help to simplify

this representation. Listing 6.1 shows an excerpt of non-explicity representation for

the RDM SAS. For example, based on the stakeholders’ knowledge of the system, a

non-explicit representation could be the assumption that under the execution of the

MST topology (See Listing 6.1, line 7) the state values of the NFRs MC, MR and MP,

stochastically depend on a random factor previously determined at design-time (See

listing 6.1, lines 8, 9, and 10). This not explicit representation, would allow to sim-

plify the transition function T (s, a, s’ ), from the representation P(s’ |s, a) to a reduced

version P(s’ | a), based on specific domain knowledge of the system. One additional

advantage of this representation is that it support the specification of large problems,

e.g. a system with a state space of size 1056 [96], where an explicit representation for

each posible state of the system would be unviable. The use of simulation models

(a.k.a. generative models) in the Artificial Intelligence field, have enabled POMDP

solvers to produce approximated optimal solutions for real problems with large state

and observation spaces [41, 55, 96, 4].

1DESPOT toolkit git repository: https://github.com/AdaCompNUS/despot
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LISTING 6.1: DESPOT simulation model - Excerpt of the Step func-

tion

1 . . .

2 boo l Rdm : : Step ( S ta t e& s , doub l e random_num , i n t ac t i on , doub l e& reward ,

3 OBS_TYPE& obs ) con s t {

4

5 RdmState& s t a t e = s t a t i c_ca s t <RdmState&>(s ) ;

6

7 i f ( a c t i o n == MST ) {

8 s t a t e . mc_sa t i s f a c t i o n=random_num<=0.6 ? True : F a l s e ;

9 s t a t e . mp_sa t i s f a c t i on=random_num<=0.6 ? True : F a l s e ;

10 s t a t e . m r_s a t i s f a c t i o n=random_num<=0.2 ? True : F a l s e ;

11 }

12 . . .

In the next section, details on the experiments performed to evaluate RE-STORM

and ARRoW are presented.

6.4 Experiments for decision-making under uncertainty re-

lated to dynamic changes in the environment

In Chapter 4, the formalisation of Mapping Rule 2 stablished the link between the

preferences in a SAS and the reward values R(s,a) in a POMDP. In this section, the

evaluation of the need of reasessment for the current reward values R(s,a) due to

dynamic changes in the environment, and the way how RE-STORM and ARRoW

act accordingly is presented below. Specifically, we showcase:

• A template for the specification of dynamic contexts affecting the behaviour of

the RDM SAS.

• The behaviour of the RDM SAS under stable conditions.

• The behaviour of the RDM SAS under different dynamic contexts.
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6.4.1 Template for the specification of dynamic contexts

A Dynamic Context (DC) represents situations where unexpected changes are pro-

duced in the environment during the system’s execution (e.g. unexpected data pack-

ets loss in the RDM network). We have implemented different dynamic context by

randomly changing the transition function T (s, a, s’ ) = P(s’ |s, a) as it was stated in

section 6.2.1, Step 3. Fig. 6.2 overviews the template used for the specification of the

Dynamic Contexts DCi applied over the RDM SAS during its execution.

FIGURE 6.2: Dynamic context - specification template

The template is composed by two main parts. The first part specifies the name

of the context. It presents a title describing the changes introduced to affect the be-

haviour of the RDM SAS. The name also includes the conditional probability that

represent the specific changes performed over the current transition function T (s, a,

s’ ) = P(s’ |s, a).
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The second part of the template presents the details of the specification of the

dynamic context, which are described below:

a) Dynamic context description. The changes produced in the environment during

the system’s execution, in terms of the application domain, i.e. a Remote Data

Mirroring (RDM) network, are explained.

b) Behaviour before reassessment of reward values R(s,a). The RDM SAS continues its

execution using the initial reward values R(s,a) specified in section 6.2.2. The

decision-making provided by RE-STORM uses this initial setting. The effects of

the dynamic context on (i) the satisficement levels of the NFRs and (ii) the se-

lected topologies (MST or RT) are reported.

c) Behaviour after reassessment and update of reward values R(s,a). The initial reward

values R(s,a) have been updated by ARRoW and the decision-making process

provided by RE-STORM uses the updated values. The effects of the dynamic

context and the updated reward values R(s,a) on (i) the satisficement levels of

the NFRs and (ii) the selected topologies (MST or RT) are reported.

d) Average satisficement levels of NFRs before and after update of reward values R(s,a).

A comparison of the average satisficement levels before and after the update of

reward values R(s,a) for each NFR, is presented.

6.4.2 RDM SAS under stable conditions

Figs. 6.3, 6.4 and 6.5 show the behaviour of the RDM SAS using the setup speci-

fied in section 6.2. Under this configuration, as explained below, the satisficement

levels of the NFRs Minimization of Cost (MC), Maximization of Reliability (MR) and

Maximization of Performance (MP) are in general over their Service Level Agreements

(SLAs). This behaviour is taken as that shown by the RDM SAS in stable conditions.
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FIGURE 6.3: Minimization of Cost (MC) - satisficement level under
stable conditions

FIGURE 6.4: Maximization of Reliability (MR) - satisficement level
under stable conditions

FIGURE 6.5: Maximization of Performance (MP) - satisficement level
under stable conditions

Specifically, under stable conditions, the satisficement levels of MC and MP mostly

meets the SLAs previously identified in section 6.2.2, i.e. they are over their thresh-

old. The satisficement level of MR shows some values below its threshold, but this

behaviour is considered to be part of a tolerance level in the system.
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It is also observed that the preferred configuration is to use a Minimum Spanning

Tree Topology (MST) (See Fig. 6.6), which has a positive impact on the satisficement

levels of the NFRs MC and MP (e.g. by saving inter-site network traffic) in compar-

ison to the use of a Redundant Topology (RT), as was depicted in section 4.2.

FIGURE 6.6: Chosen topology under stable conditions

Under stable conditions, the current preferences of the RDM SAS, favour the use of the

MST Topology and the satisficement levels of the NFRs are in general over their satisficement

thresholds.

6.4.3 RDM SAS dynamic contexts

Six different dynamic contexts were defined to be used for further simulations of the

RDM SAS. In order to evaluate the approach, each of those dynamic contexts served

to simulate changes in the environment to therefore trigger the need for reasess-

ment of stakeholders’ preferences ( i.e. the reward values R(s,a) in the POMDP

requirements-aware model). The behaviour shown by the RDM SAS in stable condi-

tions serves as the context which, the rest of Dynamic Contexts are compared against.

The nature of the changes related to the six (6) different dynamic contexts are pre-

sented next:

• Dynamic Context DC1. Changes in the environment during the execution

of the MST topology are introduced to reduce the reliability of the system:

P(MRt+1 = True|NFRt , MSTt).
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Dynamic context DC1 description. A period of consecutive and unexpected

data packet loss during the execution of the MST Topology is generating a re-

duction on the reliability of the system. A MST topology is designed to connect

all remote sites in an RDM SAS by the identification of a minimum spanning

tree on the network of possible links among each remote site. Data packet loss

may represent link failures in a RDM system, which may be caused, for ex-

ample, by problems with the equipment (e.g. failures in a switch or router or

power failures [47]).

• Dynamic context DC2. Changes in the environment during the execution of

the RT topology are introduced to increment the cost and to reduce the perfor-

mance of the system: P(MCt+1 = True, MPt+1 = True|NFRt,RTt).

Dynamic context DC2 description. Unexpected data packet loss during the ex-

ecution of the RT Topology, are generating an unusual rate of data forwarding,

which would increase the bandwidth consumption (i.e. cost) and would re-

duce the system’s performance. In the RDM SAS, the cost for inter-site links

communication is a function of the data sent over them. Therefore, a Redundant

Topology (RT), which involves a bigger number of inter-site network links than

a Minimum Spanning Tree Topology (MST), is more expensive. Costs increase as

the number of network links increases and a reduction on the system’s perfor-

mance2 could also be expected.

• Dynamic context DC3. Simultaneous occurrence of the dynamic context DC1

and DC2.

• Dynamic context DC4. Changes on the environment during the execution of

the MST topology are introduced to increment the cost and to reduce the reli-

ability and the performance of the system: P(NFRst+1 = True|NFRt,MSTt).

2The performance in these systems is measured as the total time to perform the write of data, which
is the sum of the response times of the writes of each copy of data on each remote site [47].
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Dynamic context DC4 description. Unexpected data packet loss during the ex-

ecution of the MST Topology generates an unusual reduction on the reliability

of the system (i.e. DC1 context behaviour). In contrast to DC1, we also observe

the increment in bandwidth consumption and the reduction of the system’s

performance (NFRs MC and MP respectively).

• Dynamic context DC5. Changes on the environment during the execution of

the RT topology are introduced to increment the cost and to reduce the relia-

bility and the performance of the system: P(NFRst+1 = True|NFRt,RTt).

Dynamic context DC5 description. Unexpected data packet loss during the ex-

ecution of the RT Topology is generating an increment in bandwidth consump-

tion and reduction of the system performance (i.e. DC2 context behaviour), but

also a reduction on the positive impact of the RT topology over the reliability

of the system.

• Dynamic context DC6. Simultaneous occurrence of the dynamic context DC4

and DC5.

Dynamic context DC6 description. This context represents an unusual scenario

explicitly used to evaluate our approach under extreme detrimental condi-

tions. A case like this would be usually related to a significant site failure [47,

50], where both repeated and multiple concurrent failures are expected [47] as

in the previous two dynamic contexts but all at the same time. A full-scale

site failure may be caused by a power outage affecting all the buildings on

different campuses, an earthquake or flood affecting buildings within several

metropolitan areas. Under this context, the worst-case data loss [50] may oc-

cur in different sites (RDM nodes), i.e. a site can be destroyed or inoperative

before the full backup of information is shipped offsite. Site failure disasters

are usually modelled with a failure rate of once per year [50]. The main goal
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of this dynamic context is to study the behaviour of the RDM SAS using RE-

STORM in situations where it may be difficult to meet the SLAs regardless the

adaptation action selected.

Each of these contexts are fully specified in the Appendix C. The template pre-

sented in section 6.4.1 has been used to show the information of each dynamic con-

text. Specifically, details in terms of the application domain and their impacts on the

current satisficement levels of the NFRs in the RDM SAS are shown in the appendix.

A summary of their behaviour and main findings are presented next.

6.5 Results of experiments

Initial configurations and preferences under the stable conditions presented in section

6.4.2, favour the use of the MST topology in the RDM SAS. In general, during the

experiments and under these conditions, the satisficement levels of the NFRs agreed

with their SLAs (See Figs. 6.3, 6.4 and 6.5).

On the other hand, unexpected dynamic contexts detected at runtime (dynamic

contexts DC1 to DC6 ), have produced negative impacts on the satisficement levels

of the NFRs, causing that the initial assumptions do not fit anymore. A summary of

the impacts of the dynamic contexts DCi on the average satisficement levels of the

NFRs in the RDM SAS is shown in Table 6.3.
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TABLE 6.3: SLAs fulfillment based on the average satisficement levels
of NFRs

In each dynamic context depicted, we show whether the average satisficement

levels of the NFRs, agree with their SLAs before and after the update of reward

values R(s,a) (See Table 6.3, columns 2 and 3 respectively). Next, the results of each

dynamic context are described.

6.5.1 Summary and review of results of each of the 6 dynamic context

In the dynamic contexts DC1 and DC3, the simulation of perturbances on the envi-

ronment produced an important reduction on the reliability of the system. In both

contexts, the reliability was under its satisficement threshold (See Table 6.4, column

2) .
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TABLE 6.4: Dynamic contexts DC1 and DC3 - average satisficement
levels of NFRs

Initial preferences in DC1 and DC3 were not suitable anymore. Despite the new

detected contexts, the preferred topology continued to be MST. After the reassess-

ment performed by ARRoW, the reward values R(s,a) were updated at runtime, and

the reliability of the system is taken by the decision-making process of RE-STORM,

to levels where its average level of satisficement address the required SLA (See Table

6.4, column 3). A slight reduction on the performance and cost were also observed

due to the trade-off among NFRs, but this reduction does not imply any risk to con-

tinue meeting the SLAs of cost and peformance: both NFRs were over their thresh-

olds.

The dynamic contexts DC2 and DC4 represent situations where despite dynamic

changes at the environment, the current RDM configuration and preferences still

kept the average level of satisficement of the NFRs over their thresholds (See Table

6.5, column 2).
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TABLE 6.5: Dynamic contexts DC2 and DC4 - average satisficement
levels of NFRs

Table 6.5 shows that on average, the levels of satisficement of the NFRs were al-

ways meeting their SLAs. However, the reward values R(s,a) were updated in DC2

and DC4, when in specific time slices during the system’s execution, the satisfice-

ment levels of the NFRs were below their thresholds. The final result was a slight

improvement on the reliability of the system (See Table 6.5, column 3). The trade-off

effects over the cost and performance, also produced a reduction on their satisfice-

ment levels but still they were meeting their SLAs.

The dynamic context DC5 represents environments where the current impact of

the RT topology over the satisficement levels of the NFRs is less favourable, i.e. the

probability P(NFRst+1 = True|NFRt,RTt) has been reduced with respect to the stable

conditions of the RDM SAS.

Under stable conditions, the RT topology has a perceived positive impact on the

reliability of the system stated by the domain experts, and a less favourable impact

on the cost and performance. However, in DC5, the positive impact on the reliability
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of the system has been reduced, while the negative impacts on the cost and perfor-

mance have been incremented to take into account the changes introduced by this

dynamic context.

TABLE 6.6: Dynamic context DC5 - average satisficement levels of
NFRs

Accordingly, when the update of reward values R(s,a) is performed and the RT

topology is used, it can be seen that RT topology is used 37.1% (see Table 6.6, 100% -

62.9% = 37.1%). The final result is a trade-off with a slight reduction on the average

satisficement of the reliability, cost and performance of the system. Note, however,

that the satisficement levels of cost, reliability and performance still meet their SLAs

(See Table 6.6, column 3).

Finally, in the dynamic context DC6, the most hostile environment designed for

the experiments of this evaluation was studied. DC6 reflects the negative impacts

of the dynamic contexts DC4 and DC5 simultaneously. Under DC6, when apply-

ing RE-STORM with no re-assesment of weights, it was found that regardless the

adaptation action selected by the RDM SAS, the environment showed a trade-off

behaviour with a tendency to increment the cost (MC) while reducing the reliabil-

ity (MR) and performance (MP) levels. The levels of satisficement of all the NFRs

in DC6 were lower than those shown in the experiments with the stable conditions.

When repeating the experiments of DC6 but using RE-STORM to update the reward
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values R(s,a), it was found that the satisficement level of the reliability of the system

was incremented. However, unfortunately the increment was not enough to meet

its SLAs. Additionally, as a result of the trade-offs to give priority to reliability, the

satisficement level of the performance was reduced to a level below its threshold

(See Table 6.7, column 3). At this point, a natural question that arises is:

What if the approach, despite improving the satisficement level of a NFR, cannot take it

to a level to meet its SLA?

To answer this question, to therefore assess the suitability of the approach under

this context, would depend on the preferences that the stakeholders have chosen for

the NFRs in the SAS. For example, if the reliability of the system is considered to be

the most critical NFR, it can be seen as valid to tolerate low satisficement levels of

other NFRs, even if the improvement on reliability is too small that has not reached

its SLA. This is the case reported during the execution of the dynamic context DC6.

Different from the other contexts (DC1 to DC5), in DC6, the reliability of the system

(MR) was improved but the improvement was not enough to bring up its satisfice-

ment level to meet its SLA (See Fig. 6.7).

TABLE 6.7: Dynamic context DC6 - average satisficement levels of
NFRs
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FIGURE 6.7: Dynamic contexts DC1 to DC6 - average satisficement
levels of MR

Under extreme hostile contexts, e.g. dynamic context DC6 or contexts with vir-

tually unreachable SLAs under those conditions (See details in Appendix D, section

D.2 stricter scenario), a better trade-off of the NFRs is still offered by RE-STORM. To

determine how suitable is the approach under those specific contexts, is an oppor-

tunity for further evaluation of system’s stakeholders through the self-explanation

capacities of the system. Regarding this matter, it is part of the collaborative work

within the Software Engineering at Aston (SEA3) research group, towards the im-

provement of the reflective capabilities in SAS. At the current stage, the RDM SAS

is supporting the implementation of an externally-guided history-aware decision-

making approach with explanation capabilities [33, 32]. Specifically, we argue that

external entities (e.g. human stakeholders) will be able to evaluate and update the

parameters of the POMDP requirements-aware runtime model, based on live expla-

nations of the SAS behaviour, to therefore improve the self-adaptation and trade-off

of the NFRs in a SAS.
3Software Engineering at Aston (SEA) research group https://cs.aston.ac.uk/sea/
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6.5.2 Aggregated view of results

Figs. 6.8 and 6.9 synthesize the NFRs satisficement levels and preferred topology

of the RDM SAS under the dynamic contexts DC1 to DC6. It can be observed that

when the decision-making process is applied under new detected contexts that were

not foreseen in advance, and the Weights Updater module of RE-STORM was not used

to update the reward values R(s,a) (See Fig. 6.8), then the satisficement levels of the

cost (MC) and performance (MP) of the system met its Service Level Agreements

(SLAs), but the satisficement level of the reliability of the system (MR) was always

below its required SLA. Under this scenario, the preferred adaptation action is the

MST topology (See Fig. 6.9a), which is favoured by unmatching initial reward values

R(s,a), i.e. initial preferences over the NFRs and adaptation actions in the system. On

the other hand, when the reward values R(s,a) are updated accordingly to the new

detected contexts, the satisficement level of MR is improved and taken to a value that

meets its SLA. As a trade-off, a reduction on the satisficement levels of the cost (MC)

and performance (MP) of the system is also observed, but still continues meeting

their SLAs.

FIGURE 6.8: Dynamic contexts DC1 to DC6 - consolidated view of the
average satisficement levels NFRs

As is shown in Fig. 6.8, the reassessment and update of preferences, as well as the

decision-making driven by the current satisficement levels of the NFRs provided by
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(A) Preferred topology be-
fore update of reward val-

ues R(s,a)
(B) Preferred topology after update of

reward values R(s,a)

FIGURE 6.9: Dynamic contexts DC1 to DC6 - cosolidated view of pre-
ferred topologies

our proposal, have improved the general performance and trade-off of the NFRs in

the RDM SAS. RE-STORM provides the infraestructure to support the reassessment

and update of the current reward values R(s,a) when dynamic context not previ-

ously foreseen are observed during the system’s execution. An approximated opti-

mal policy, to choose the best adaptation action under the current runtime context,

is provided by the approach to improve the trade-off and the satisficement levels of

the NFRs in a SAS.

6.6 Further analysis: behaviour of the RDM SAS under dif-

ferent Service Level Agreements (SLAs)

We have shown in section 6.5 how, under different dynamic contexts (from DC1 to

DC6), the approaches RE-STORM and ARRoW have the following trade-off:

The NFR with the lowest satisficement level with respect to its SLA has been improved

by updating the current reward values R(s,a) and according to the new runtime context de-

tected. Further, an acceptable reduction of the satisficement level of the other NFRs has been

observed as a consequence of the trade-off performed.This reduction is usually affordable by

meeting the stablished SLAs.
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A NFR within a poor zone of satisficement (i.e. with respect to its SLA) is taken

to a suitable zone (i.e. over its threshold) with an acceptable reduction on the sat-

isficement level of the other NFRs affected, but still over their minimum threshold

of satisficement. This is the case of the dynamic contexts DC1 and DC3 reported in

Table 6.3. Under these sc enarios, a natural question arises:

How would the RDM behave, supported by RE-STORM and ARRoW, using different

SLAs as those used here for the experiments?

The answer to this question is twofold. On the one hand, if the SLAs, different

from the stablished in section 6.2.2, were less strict. For example by keeping the SLA

related to the cost of the system as P(MC = True>= 0.7), but reducing the required

reliabiliy from P(MR = True>= 0.9) to P(MR = True>= 0.8) and the performance

from P(MP = True>= 0.75) to P(MP = True>= 0.6). Under this scenario, the exe-

cution of ARRoW to update the reward values R(s,a) would not be necessary. The

satisficement levels of the NFRs MC, MR and MP and their SLAs under a less strict

scenario are presented in Appendix D, section D.1

On the other hand, if the SLAs were stricter, the expectation would be that RE-

STORM and ARRoW would have performed the trade-off identified at the beginning

of this section, i.e. they should improve the lowest satisficement level for a NFR,

even if it is not possible to take it to a suitable zone of satisficement over its threshold.

Details on the behaviour of RE-STORM and ARRoW to improve the satisficement

levels of the NFRs under a stricter scenario are presented in Appendix D, section

D.2.

Additional tests considering different SLAs have been performed. For example,

tests where the satisficement levels of the full set of NFRs are below their thresholds

have been carried out as well. The obtained behaviour after the update of the reward

values R(s,a) is equivalent to the presented above and detailed in Appendix D, i.e.

RE-STORM and ARRoW, perform the trade-off of the NFRs independently of the

SLAs in use, as stated at the beggining of this section.
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6.7 Time-aware queries for internal evaluations of the RDM

SAS

As part of our collaboration within the Software Engineering at Aston (SEA) research

group, we used the time-aware query language developed in the project “History-

aware explanation capabilities in SASs” [31, 33, 32]. It was used for our internal

evaluations during the simulation of the RDM SAS and the implementation of our

approaches RE-STORM and ARRoW.

Authors in [31], proposed temporal graph databases as a useful representation

to trace models to support self-explanation in SASs. One approach to feed a tem-

poral graph database is the following: a system runs as normal, while capturing

logs in a machine-parseable form. After the system has finished its execution, its

history is converted into a temporal graph database conforming to a reusable trace

metamodel. We can then study its history with a time-aware query language [31]. A

time-aware query is based on a time-aware query language and enables the access

to the information recorded of the traces of execution of a system.

The experiments and the analysis presented in this chapter have been supported

by different time-aware queries to help to explain why the system took a decision

and why it is showing the current behavior. The queries were performed over logs

that represent 1000 timeslices of execution of the system and have been presented in

[31, 33, 32].

An example of time-aware query, implemented to detect situations where RE-

STORM considers the behaviour described in section 4.4.2, i.e. “the long-term ef-

fects of inmediate actions”, can be consulted in Appendix B. In the next section, the

authour contrast his contribution against related research work.

6.8 Comparison with related work

In recent years, different approaches for decision-making under uncertainty and

driven by their NFRs have been proposed. Table 6.8 shows a summary of the work,

which have already been depicted in Chapter 3. A comparison against the proposals

RE-STORM and ARRoW is also presented to therefore complement the evaluation.
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TABLE 6.8: Comparison of RE-STORM and ARRoW to other ap-
proaches

The criteria for comparison of RE-STORM and ARRoW with respect to the other

approaches are listed below:

• Scalability issues

• “Long term effects” control in decision-making under uncertainty

• NFRs representation (Partially Observable)

• Preferences specification at design-time

• Runtime reassessment and update of preferences

The column Scalability issues in Table 6.8, shows that the authors in [34, 86, 7]

are still dealing with scalability issues, mainly related to the size of the state and

action spaces [34, 86] and the planning horizon [7] in their implementations. Other

approaches [70, 57, 22, 58, 28, 13, 61, 15, 87] do not present scalability problems.
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However, all of them have presented initial implementations mostly related to a sin-

gle application domain that still requires further exploration. Therefore, including

RE-STORM and ARRoW, we decided to classify them as “in process to fulfill the

criterion”. Specifically, for the case of RE-STORM, it uses a state-of-the-art POMDP

implementation (the DESPOT algorithm) [4] that relies on sampling and approxima-

tion techniques to overcome the two main curses of POMDPs: the curse of “History”

(i.e. beliefs grows exponentially with the planning horizon) and the curse of “Di-

mensionality” (i.e. belief grows exponentially with the number of states) [96]. Ac-

cordingly, RE-STORM overcomes previous scalability issues related to the planning

horizon [7] and can work with a big number of NFRs (e.g. the DESPOT algorithm

has been tested with a state spaces s ∈ S of size ≈ 1056 [96]).

The next column, Long term effect control, allows us to classify the evaluated ap-

proaches in two main categories, those that use reactive control decision-making [34,

86, 57, 22, 58, 87] and their decision-making process relies on techniques restricted

to the current state of the system, and those that takes into consideration the long

term effects of their inmediate actions [28, 8, 15, 61, 13] and uses sequential decision-

making approaches such as Markov Decision Processes (MDPs) and Partially Ob-

servable MDPs. In our case, RE-STORM supports a decision-making process based

on the Bellman’s principle of optimality. It considers the current state of the system

but also projects future evolutions of the satisficement levels of the NFRs, as it was

stated in Chapter 4, section 4.4.2. This capacity, enable RE-STORM to overcome, the

well known potential problem in reactive approaches: i.e. choosing attractive short

term actions with perhaps undesirable longer-term consequences [61].

The column NFRs representation shows how the approaches analysed assume full

observability of the current state of the NFRs. Whether they use a general goal model

[34, 86, 57, 22, 58, 87] or an implementation of a Markov Decision Process (MDP) [28,

8, 15, 61, 13], the approaches are not able to model the uncertainty related to the satis-

fiability of the NFRs in a system [8]. These approaches assume that the satisficement

levels of the NFRs are fully observable at every time step. This assumption often

does not hold in reality, as for example noisy sensors may limit the system’s per-

ceptual abilities. Instead, with RE-STORM we obtain observations associated to the



Chapter 6. Evaluation 113

NFRs. In a POMDP, the current observation alone is insufficient for choosing opti-

mal actions. Therefore, the system’s history, i.e. its past observations and actions,

is encoded into a belief b [49]. In RE-STORM, beliefs (probability distributions) rep-

resent the current satisficement levels of the NFRs in a SASs, which are used in the

decision-making process presented in section 4.4.2.

In column Preferences specification, it is observed that most of the approaches

present an explicit specification of preferences at design-time. These approaches

range from preferences provided by system’s stakeholders [7, 86, 87] to preferences

determined by using a simulator [13]. In constrast, other approaches [28, 15, 61]

scarce of explicit representation of preferences or assume the same weight, even if

violation conditions for their NFRs are determined. In our case, RE-STORM uses

a requirements-aware runtime model based on POMDPs to keep the initial prefer-

ences provided by system’s experts. Then, later at runtime, and based on the current

satisficement level of the NFRs in a SAS, initial preferences could be reassessed and

updated by ARRoW.

Finally, the column Update of preferences shows that most approaches do not up-

date preferences at runtime, with the exception of the approaches in [86, 70, 87].

Moreover, the update of preferences in [86, 87] is not autonomous.

Different from the above, in our case, initial assumptions at design-time (i.e. pref-

erences) may be updated during the system’s execution to improve the decision-

making according to new contexts, which may not have been foreseen. Specifically,

RE-STORM supports runtime preferences reassessment and update by using AR-

RoW [38]. However, based on the modularity of the architecture in RE-STORM,

another updaters can be used [9].

ARRoW is supported by a Multi Criteria decision-making technique: Primitive

Cognitive Network Process (P-CNP). P-CNP represents an improved approach of

the Analytic Hierarchy Process (AHP) in the aspects of paired interval scale and

the corresponding mathematical development [99, 100, 102, 101]. P-CNP overcomes

the drawbacks of knowledges representation with pairwise reciprocal matrices in

AHP [78], i.e. it provides a more precise and natural representation of stakeholders’

perception of paired comparisons [101].
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ARRoW assigns higher importance (i.e. preference) to a NFR when a require-

ments violation is detected at runtime, i.e. its satisficement level is below a preestab-

lished threshold. Both, the ARRoW model and the POMDP model, reside in the

Knowledge Base of the MAPE-K architecture as runtime models.

6.9 Towards a simulation tool supported by RE-STORM and

ARRoW

AS part of our research agenda, and the research collaborations reported in section

7.2, the approaches RE-STORM and ARRoW are intended to be available as a simula-

tion tool (ST) in a near future. The simulation tool provides a well-defined and gen-

eral abstract API, to enable users to quickly implement new elements in the POMDP

requirements-aware model (See Fig. 6.10).

FIGURE 6.10: Simulation tool: architecture of implementation sup-
ported by RE-STORM and ARRoW

The simulation tool provides a default implementation of a POMDP requirements-

aware model and a POMDP solver (based on the DESPOT algorithm [96]). Further-

more, the future improved version ideally, should provide an easy-to-use architec-

ture based on interfaces that, in conjunction with user-friendly configuration files,

would allow users to specify the SAS environment of a standard domain problem
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for decision-making under partial observability with no additional coding effort.

Fig. 6.10 shows different elements that would be updated by extending the simu-

lation tool abstract API. For example, at the current stage, the POMDP solver ele-

ment is implemented by the DESPOT algorithm [96, 4]. A possible new «POMDP

solver» with support for a different algorithm could be implemented to enrich the

set of POMDP solvers provided by the simulation tool. We envision the new ele-

ments will be implemented as shared libraries that are loaded dynamically during

runtime. They will be used to implement:

• the SLAs for each NFR,

• the transition function,

• the observation function, and

• the reward function of the model

The elements implemented as shared libraries will suppport their exchange at

runtime. Following the above, the simulation tool will provide better support for

dynamic changing environments. For example, when the quality of a sensor deteri-

orates, one new «Observation Function» could replace its current implementation,

while the ST is running.

6.10 Summary

In this chapter, we have presented the evaluation of the approaches: RE-STORM and

ARRoW, during the simulation of the RDM SAS.

It was highlighted that the main concern in this work is the managament of the

uncertainty produced during the system’s execution. To support modelling the run-

time uncertainty, two main POMDP elements have been studied: the transition and

the observation functions. During the execution of the experiments, six different

dynamic contexts, from DC1 to DC6, were introduced by randomly changing the

transition function T (s, a, s’ ) = P(s’ |s, a). These contexts, supported the evaluation

of the following hypothesis, which was proposed at the first part of this chapter:



Chapter 6. Evaluation 116

H: “Dynamic changes in the context, from the managed system observed at runtime,

require the reassessment and update of current reward values R(s,a) of the POMDP runtime

model to improve accordingly the trade-off levels of the satisficement of the NFRs for the new

environmental conditions.”

Based on the evaluation discussed, the author argues how the application of the

approaches RE-STORM an ARRoW in the RDM SAS gives enough evidence to sup-

port the hypothesis above.

First, RE-STORM is our contribution towards filling the lack of a time-history wise

scalable platform to support NFRs specification and runtime trade-off of the satisfice-

ment levels of NFRs to drive the decision-making in SASs. The experiments de-

scribed in section 6.4, show how RE-STORM deals with uncertainty in an explicit

way and updates its definition over time as new evidence arrives, keeping consis-

tency with the history of the execution. Specifically, RE-STORM uses Equation (2.1) to

update the probabilities of the satisficement level for each NFR (i.e., beliefs), based

on the previous belief b, the last action, and the last observation. The history of the ex-

ecution (the past observations and actions) is encoded into a belief b in a POMDP.

The POMDP implementation in RE-STORM is the DESPOT algorithm [96]. The

experimental results obtained using the RDM case study in section 6.4 and other

domains [65, 12] show that the adaptation actions made about the trade-off of the

satisficement levels of the NFRs are soundness and compatible with other experi-

ences [8, 7, 1]. Further, RE-STORM presents a scalable solution which respect to

previous seminal work in [8, 7].

Second, the experiments described in section 6.4, and the analysis performed in

sections 6.5 and 6.6, also show that different dynamic contexts, not previously fore-

seen, may negatively affect the satisficement level of a SAS. Specifically, the results

show that when the decision-making process provided by RE-STORM, continues

using the initial reward values R(s,a) under a new detected context, the satisficement

level of the NFRs can be drastically reduced (See summary in Table 6.3), even below

their required thresholds, due to unmatching initial reward values R(s,a). In con-

trast, when the reward values R(s,a) are updated by ARRoW, the decision-making

process provided by RE-STORM, improves the NFR with the lowest satisficement
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level, taken it to a suitable zone satisficement, (depending on the SLA stablished) by

leveraging access to new runtime evidence. As a trade-off, a slight reduction in the sat-

isficement levels of the other NFRs, depending on their SLAs, can also be observed.

Finally, the experiments have shown that the reassessment and update of the

reward values R(s,a) and the decision-making driven by the current satisficement

levels of the NFRs provided by RE-STORM, improve the general performance of the

RDM SAS by favouring a better trade-off of the satisficement levels of the NFRs, ac-

cording to the new runtime contexts detected. Based on these findings, the hypothesis

H is accepted as valid.

The author has also contrasted his research contributions against related research

work. The next chapter presents the conclusions of the thesis taking into consider-

ation the extent to which the work meets the research questions and the aim of this

dissertation.
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Chapter 7

Conclusions and Future Research

Agenda

This chapter sum ups the results presented and concludes the dissertation. The main

motivation for the implementation of the proposed approaches RE-STORM and AR-

RoW has been the challenges related to the need of new techniques for decision-

making under uncertainty and the dynamic update of preferences.

This chapter presents answers to the research questions of the dissertation in

section 7.1. The chapter also presents research collaborations which are part of our

ongoing work, in section 7.2. Finally, the chapter explores how the research can be

developed further in section 7.3.

7.1 Research Questions

The three (3) research questions of the dissertation have been addressed in Chapters

4 and 5, and the evaluations described in Chapter 6. We present answers to these

research questions in the following paragraphs:

• RQ1: How can we represent the current state of NFRs and their evolution in model-

based self-adaptive systems that are subject to uncertain environments?

To address RQ1, we have developed RE-STORM, an approach that support

decision-making under uncertainty driven by the current state (i.e. current

level of satisficement) of the NFRs in a SAS. To do this, first, the formalization

of several mapping rules (shown in section 4.3.2) allowed us to stablish the

equivalence between the levels of satisficement of the NFRs in a SAS and the
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states s ∈ S in a POMDP. The result is that a POMDP can provide a decision-

making mechanism for a SAS. Further, the POMDP can act as a requirements-

aware runtime model [9] in the context of the MAPE-K loop. The extended

version of the POMDP presented enclosed by RE-STORM, mantains the cur-

rent state of the NFRs and its evolution as is described as follows:

– Representation of the current state of the NFRs. By definition, the current

state of the system in a POMDP is not directly observable as it is the case

of the levels of satisficement of the NFRs in a SAS. Instead, the observa-

tions are obtained from the current runtime context, to therefore infer the

satisficement levels of the NFRs in a system. RE-STORM uses Bayesian

Inference and the mathematical background provided by POMDPs to

represent the uncertainty of the current system’s context as probability

distributions (i.e. beliefs) over the levels of satisficement of the NFRs in a

system.

– Representation of the evolution of the state of the NFRs. In RE-STORM,

the current belief b0 about the satisficement levels of the NFRs, is con-

stantly updated over time during the system’s execution. Per each time

slice, after executing an action a ∈ A, new evidence in the form of new

observations z ∈ Z, are collected from the environment. Afterwards,

Equation (2.1), shown in section 2.6.1, is applied to compute the new sat-

isficement levels of the NFRs (i.e. the new belief b0). This is part of the

continuous behaviour of the system determined by the transition function

P(s’ |s, a) and the observation function P(z|s′, a) in the POMDP. Based on

the “memoryless property” of any stochastic Markov Process described

in section 4.4.2, the new belief b0 should be consistent with the past ex-

ecution of the system. In a POMDP, the belief summarizes the previous

experience of the system [49].

With RE-STORM, the use of a requirements-aware runtime model based on the math-

ematical background of POMDPs allow for modelling the runtime uncertainty of the

environment and its evolution using probability distributions (i.e. beliefs) over the
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satisficement levels of the NFRs in a system.

The above is the base to answer the research question RQ2.

• RQ2: How can we improve the trade-off among NFRs in model-based self-adaptive

systems that are subject to uncertain environments, by updating preferences and based

on new evidence collected during execution?

To address RQ2, let’s focus on the fact that RE-STORM uses the Bellman’s

principle of optimality described in section 4.4. During the system’s execution,

per each time slice, the current belief b0 is used as the input of Equation (4.8),

which (i) projects to the future the possible evolution of the satisficement level

of the NFRs, makes the trade-off among them and (ii) computes an approxi-

mated optimal policy a = π (b0) to select the best adaptation action a ∈ A in a

SAS. The runtime architecture to support this behaviour has been depicted in

section 4.4, and is leveraged by a POMDP requirements-aware runtime model

framed within a MAPE-K feedback loop.

In Chapter 6 we have shown how RE-STORM improves the trade-offs by the

use of ARRoW, our proposal for the reassessment and update of preferences

over NFRs and adaptation actions. Specifically, ARRoW corresponds to the

weights updater module of the runtime architecture of RE-STORM (See Fig.

4.3), and is performed when a NFR is below its SLA. Afterwards, RE-STORM

continue with the execution of Equation (4.8).

The results show that when ARRoW updates unmatching preferences to the

current runtime context detected, RE-STORM improves the trade-off and the

satisficement levels of the NFRs in a SAS according to their Service Level

Agreements (SLAs).

• RQ3: How can techniques for eliciting initial preferences about requirements, used at

design-time, be aplicable to runtime models for self-adaptive systems?
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To address RQ3, we have developed ARRoW. In Chapter 5, we have shown

how the Primitive Cognitive Network Process (P-CNP), a technique to priori-

tize alternatives based on a given criteria, was extended to be executed at run-

time and support the specification of NFR states and adaptation actions as a

P-CNP problem. The new extended version relies on P-CNP runtime abstrac-

tions: Pairwise Opposite Matrices (POMs), for the propagation of pairwise

comparisons of the satisficement levels of the NFRs to therefore compute up-

dated reward values R(s,a) (i.e. preferences) in a POMDP. The results show

that the updated preferences provided by ARRoW, which match the current

runtime context, allows RE-STORM to improve the trade-off and the decision-

making in a SAS.

7.2 Exploited Research Collaborations

Our results, have currently fostered a collaboration within the Software Engineering

at Aston (SEA) research group, investigating History-Aware explanation capabili-

ties in SASs. Partial results of this collaboration have been presented in the publi-

cations “Reflecting on the past and the present with temporal graph-based models”

[31], “Back to the Past: Towards History-Aware Self-Adaptation with Explanation

Capabilities” [33] and “Querying and annotating model histories with time-aware

patterns” [32].

In this collaboration, the RDM SAS is currently used as the case study for the

evaluation of different levels of reflective capacities in SASs [33]. Four different

levels have been defined: Forensic self-explanation (Level 1), Live Self-explanation

(Level 2), Externally-Guided and History-Aware decision-making with explanation

capabilities (Level 3) and Autonomous History-Aware decision-making with expla-

nation/reasoning capabilities (Level 4). At the current stage, an extension over the

simulation of the RDM SAS has been implemented to support the Level 3. External

entities (in this case, human stakeholders) based on live explanations of the system’s

behaviour, will be able to update at runtime the parameters of the system.
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Other collaboration have been stablished with the research group of the Sys-

tems Engineering department at Pontificia Universidad Javeriana (Bogota, Colom-

bia). Partial results of this collaboration have been presented in the publication “Im-

proving the Decision-Making Support in Context-Aware Applications: The Case of

an Adaptive Virtual Education Learning Management System” [12] and a journal

paper is under preparation.

7.3 Future Research Agenda

The contributions presented in this dissertation can certainly be developed further.

Specifically, new areas of research that would allow researchers to further work to

eventually produce more useful knowledge have been identified. In this section the

author proposes different areas of reseach to carry out additional work.

7.3.1 Optimization of parameters for self-adaptation

• Learning the preferences. At the current stage, ARRoW uses P-CNP as a tech-

nique to dynamically update at runtime the reward values R(s,a) in a POMDP

to therefore, improve the decision-making process and the satisficement lev-

els of the NFRs in a SAS by using new evidence monitored at runtime. We

believe that a next step is the computation of optimal or at least better pref-

erences, that can produce better satisficement levels of the NFRs to follow the

Service Level Agreements (SLAs). Recent progress in the machine learning

technique Inverse Reinforcement Learning (IRL) [52, 95], offers the potential

to learn preferences from the interaction with simulated or real environments.

IRL represents the challenge of modeling preferences in a SAS to overcome a

manual specification of its reward function R(s,a) [30].

In this proposal two natural steps would be involved. First, initial preferences

provided by system’s stakeholders can be the departure point to learn an initial

reward function R(s,a) suitable for what has been identified as a context of

stable conditions in section 6.4.2. Next step would be to generalize the learned

reward function R(s,a) to different dynamic contexts such as those showcased

in section 6.4. Initial results from researchers in the machine learning field
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[20], show that the reward function can be a transferable representation of the

behaviour in a SAS to a different context, since it compactly represents the

agent’s objectives and preferences.

• Learning the transition function T (s, a, s’ ) = P(s’ |s, a) and the observation function

O(s’, a, z) = P(z|s′,a). Initial conditional probabilities (probability distributions)

provided by system’s stakeholders for modelling the uncertainty during the

system’s execution such as those described in section 6.2.1, can be a departure

point to learn or infer the transition and observation functions to therefore ob-

tain a more accurate representation of the runtime environment and improve

the decision-making process. Techniques for learning causality with data [59]

and approaches for learning POMDP models [19] are alternatives to be further

explored in this area.

7.3.2 Optimization of the decision-making process

• Continuous policy learning. RE-STORM builts a belief tree where the root node

is the current belief b of the SAS for each time slice during the system’s exe-

cution. The belief tree represents projections to the future of the satisficement

levels of the NFRs, adaptation actions and observations obtained from the en-

vironment. Over this structure, RE-STORM learns a policy a=π(b) for the cur-

rent belief b of the SAS. This process is repeated for each time slice, i.e. a new

policy a=π(b) is always “learned from scratch” on each time slice.

We believe that a natural following next step is the computation of a policy

under continuous learning during the system’s execution, as oppose to having

to calculate them from scratch on each time slice. The use of machine learn-

ing techniques, e.g. Reinforcement Learning (RL) approaches [46] or neural

network architectures for planning under partial observability [72] are possi-

ble paths to be explored. Initial results depicted in [72], show the feasibility of

an architecture that combines deep reinforcement learning and approximate

POMDP planning. These results prompt us to suggest that a policy could

be learned by connecting a POMDP model with an algorithm that solves the
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model (i.e. a POMDP solver such as DESPOT [96]), but embedding the solu-

tion structure of planning in a neural network learning architecture.

• History-aware and self-explanation. It is part of the ongoing research collabora-

tion about explanation capabilities exposed by a SAS to improve the decision-

making process by including the human in the loop, and promoting the under-

standing of the system by end users [31, 33, 32]. As part of our collaborations

presented in section 7.2, we are working on experiments where findings [33,

32] detected in the runtime behaviour of the system and supported by time-

aware queries [32], provide additional information to stakeholders for better

understanding of the decision-making exposed by a SAS. These findings may

trigger the need to eventually update at runtime parameters in a requirements-

aware runtime model.
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Appendix A

Publications

This appendix contains the titles and venues of the publications that the PhD re-

search has produced so far:

A.1 Conferences

1. ”RE-PREF: Support for REassessment of PREFerences of Non-functional Re-

quirements for Better Decision-making in Self-adaptive Systems“, Luis Garcia-

Paucar, Nelly Bencomo, Poster in 24th International Requirements Engineer-

ing Conference (RE ’16), Beijing, China, September, 2016

2. ”Survey on Preferences of Quality Attributes in the Decision-making for Self-

Adaptive Systems: the Bad, the Good and the Ugly“, Luis Garcia-Paucar, Nelly

Bencomo, in 20th IberoAmerican Conference on Software Engineering Steering

(CIbSE ’17), Buenos Aires, Argentina, May, 2017

3. ”Juggling Preferences in a World of Uncertainty“, Luis Garcia-Paucar, Nelly

Bencomo, Kevin Yuen, in 25th IEEE International Requirements Engineering

Conference (RE ’17), Lisbon, Portugal, September, 2017

4. ”ARRoW: Tool Support for Automatic Runtime Reappraisal of Weights“, Luis

Garcia-Paucar, Nelly Bencomo, Poster in 25th IEEE International Requirements

Engineering Conference (RE ’17), Lisbon, Portugal, September, 2017

5. ”RE-STORM: Mapping the Decision-Making Problem and Non-Functional Re-

quirements Trade-off to Partially Observable Markov Decision Processes“,
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Luis Garcia-Paucar, Nelly Bencomo, in 13th International Symposium on Soft-

ware Engineering for Adaptive and Self-Managing Systems (SEAMS ’18), Gothen-

burg, Sweden, May, 2018

6. ”ARRoW: Automatic Runtime Reappraisal of Weights for Self-Adaptation“,

Luis Garcia-Paucar, Nelly Bencomo, in 34th ACM/SIGAPP Symposium on

Applied Computing (SAC ’19), Limassol, Cyprus, April, 2019

7. ”Knowledge Base K Models to Support Trade-offs for Self-adaptation using

Markov Processes“, Luis Garcia-Paucar, Nelly Bencomo, in 13th IEEE Interna-

tional Conference on Self-Adaptive and Self-Organizing Systems (SASO ’19),

Umea, Sweden, June, 2019

8. ”RaM: Causally-connected and Requirements-aware Runtime Models using

Bayesian Learning“, Nelly Bencomo, Luis Garcia-Paucar, in IEEE / ACM 22nd

International Conference on Model Driven Engineering Languages and Sys-

tems (MODELS ’19), Munich, Germany, September, 2019

A.2 Workshops

1. ”The Reassessment of Preference Non-Functional Requirements for Better In-

formed Decision-making in Self-Adaptation“, Luis Garcia-Paucar, Nelly Ben-

como, in Third International Workshop on Artificial Intelligence for Require-

ments Engineering (AIRE ’16), Beijing, China, September, 2016

2. ”Runtime Models Based on Dynamic Decision Networks: Enhancing the Decision-

making in the Domain of Ambient Assisted Living Applications“, Luis Garcia-

Paucar, Nelly Bencomo, Kevin Yuen, in 11th International Workshop on Mod-

els@run.time (MRT ’16), Saint Malo, France, October, 2016

The author of this dissertation is the principal author of the publications enu-

merated above, with the exception of the publication A1.8. Additionally, the au-

thor’s effort has contributed to the publication of the following papers as providing

an application case study and evaluation support as well as being co-author:
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1. ”Reflecting on the past and the present with temporal graph-based models“,

Antonio Garcia-Dominguez, Nelly Bencomo, Luis Garcia-Paucar, in 13th Inter-

national Workshop on Models@run.time (MRT ’18), Copenhagen, Denmark,

October, 2018

2. ”Towards History-Aware Self-Adaptation with Explanation Capabilities“, An-

tonio Garcia-Dominguez, Nelly Bencomo, Juan Marcelo Parra-Ullauri, Luis

Garcia-Paucar, in IEEE 4th International Workshops Foundations and Appli-

cations of Self* Systems (FAS*W), Umea, Sweden, June, 2019

3. ”Querying and annotating model histories with time-aware patterns“, An-

tonio Garcia-Dominguez, Nelly Bencomo, Juan Marcelo Parra-Ullauri, Luis

Garcia-Paucar, in IEEE / ACM 22nd International Conference on Model Driven

Engineering Languages and Systems (MODELS ’19), Munich, Germany, Septem-

ber, 2019



128

Appendix B

Example of time-aware query for

the RDM SAS

In section 6.7, the use of time-aware queries is reported. Next, details on the im-

plementation of a time-aware query to detect situations where an apparently bad

decision in the current time slice, produced an increment on the satisficement level

of a NFR in the long term, are presented.

B.1 Time-aware query to show proactiveness in self-adaptation

It was stated in Chapter 4 that RE-STORM considers future evolutions of the satis-

ficement levels of the NFRs (i.e. projections into the future) to decide the next action

a ∈ A, and to therefore reason about long-term effects of immediate actions [85]. As

a consequence of this behaviour, it is possible that the RDM SAS may decide to make

a decision that is apparently bad in the short-term but good in the long-term, i.e. de-

ceiving at first while improving the behaviour in the long term. Situations as such

[32] may require an explanation. A scenario to clarify this behaviour is presented as

follows.

a) Scenario illustrating proactiveness in self-adaptation. We illustrate RDM’s

proactiveness with cases where a seemingly “bad” decision by the SAS turned

out to be a good one in the long run.
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Algorithm 5 Query to detect proactive adaptation: the long term effects of imme-
diate actions. L is the current runtime log, T the set of timeslices in L, SNFR(t) the
satisficement of the NFR at timeslice t, and αNFR the threshold for the NFR.

1: Result = {}

2: TB = {t ∈ T|SNFR(t) < αNFR}

3: for each tb ∈ TB do

4: if SNFR(tb + 1) < SNFR(tb)∧

∃n ∈N>0, ∀j ∈ [1, n] |

SNFR(tb + j + 1) > SNFR(tb + j) then

5: Add (tb, n) to Result

6: end if

7: end for

8: Result: Sequences showing proactive adaptation.

Algorithm 5 represents a query to find a timeslice during the system’s execu-

tion, where the satisficement level of a NFR is below its threshold (e.g. MR ≥

0.9), and the action suggested by the SAS under this context results in a further

reduction on the next timeslice. However, as the action is further continued in

the following timeslices, the satisficement gradually increases until reaching and

exceeding its threshold. This is an example of the type of reasoning used in the

RDM case study based on RE-STORM. The RDM SAS can predict in an uncer-

tain environment what is the likely impact of the current action in the future.

b) Query results.

Listing B.1 shows an excerpt of the examples found by the query.

One of the detected sequences started at timeslice 138, when the RDM SAS de-

cided to use the Minimum Spanning Tree (MST) topology. As an immediate con-

sequence, a reduction on the satisficement level of the NFR Maximization of Re-

liability (MR) is observed: from 0.8943 (timeslice 138) to 0.8525 (timeslice 139).

However, the satisficement grew during the following timeslices, until exceed-

ing its threshold in timeslice 141.

A similar situation was shown in timeslice 324, among others. This shows that



Appendix B. Example of time-aware query for the RDM SAS 130

LISTING B.1: Excerpt of output from Algorithm 5 about long term
effect of inmediate actions.

[ [ 1 3 8 , Minimum Spanning Tree Topology , Max imizat ion o f R e l i a b i l i t y ,
0 .894321707807189 , [ [ 1 3 9 , Minimum Spanning Tree Topology ,
Max imizat ion o f R e l i a b i l i t y , 0 .852577860667983 ] , [ 140 , Minimum
Spanning Tree Topology , Max imizat ion o f R e l i a b i l i t y ,
0 .897735592250711 ] , [ 141 , Minimum Spanning Tree Topology ,
Max imizat ion o f R e l i a b i l i t y , 0 . 928494865846856 ] ] ] ,

[ 324 , Minimum Spanning Tree Topology , Max imizat ion o f R e l i a b i l i t y ,
0 .861605674968342 , [ [ 3 2 5 , Minimum Spanning Tree Topology ,
Max imizat ion o f R e l i a b i l i t y , 0 . 8466796875 ] , [ 326 , Minimum Spanning
Tree Topology , Max imizat ion o f R e l i a b i l i t y , 0 .856691253951577 ] , [ 327 ,
Minimum Spanning Tree Topology , Max imizat ion o f R e l i a b i l i t y ,

0 . 925433890656174 ] ] ] , . . . ]

decisions with apparently immediate negative effects, in the long term, are pro-

ducing the expected increase of the satisficement level of the NFRs.
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Appendix C

Dynamic Contexts to represent

unexpected changes in the

environment

This appendix contains details on the specification of the dynamic contexts DCi, ran-

domly applied over the RDM SAS to evaluate our approaches during the system’s

execution. Each context represents a new scenario not previously foreseen to there-

fore trigger the need for reassessment of stakeholders’ preferences.

C.1 Dynamic Context DC1: changes in the environment dur-

ing the execution of the MST topology are introduced to

reduce the reliability of the system: P(MRt+1 = True|NFRt

, MSTt)

a) Dynamic context DC1 description. Let us revisit the description of the dynamic

context DC1, which was stated in section 6.4.3: “A period of consecutive and unex-

pected data packet loss during the execution of the MST Topology is generating a reduc-

tion on the reliability of the system. A MST topology is designed to connect all remote

sites in an RDM SAS by the identification of a minimum spanning tree on the network

of possible links among each remote site. Data packet loss may represent link failures in

a RDM system, which may be caused, for example, by problems with the equipment (e.g.
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failures in a switch or router or power failures [47]).”

Next, the behaviour of the RDM SAS under the execution of the dynamic context

DC1 is depicted.

b) Behaviour before reassessment of reward values R(s,a). Despite the new de-

tected conditions in context, and based on the initial RDM configuration, i.e the

initial stakeholders’ preferences, the most selected topology continues to be MST

(See Fig. C.1).

FIGURE C.1: DC1 - Chosen topology before the update of reward val-
ues R(s,a)

It is also observed in Figs. C.2, C.3 and C.4, that this configuration reduces the

satisficement level of the NFRs. In special, it clearly produces a poor satisfice-

ment level on the reliability of the system. Under the current dynamic context

DC1, the reward values R(s,a) (See Table 6.2), are not suitable anymore as they

continue favouring the use of a topology that does not contribute to improve the

satisficement level of MR, which is mainly under its tolerance threshold.
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FIGURE C.2: DC1 - Minimization of Cost: satisficement level before
the update of reward values R(s,a)

FIGURE C.3: DC1 - Maximization of Reliability: satisficement level
before the update of reward values R(s,a)

FIGURE C.4: DC1 - Maximization of Performance: satisficement level
before the update of reward values R(s,a)

Specifically, data packet loss are producing in the system more states MRt+1=False

when the MST topology is performed. For these states, the current reward val-

ues R(s,a) slightly favour the use of the RT topology. Therefore, in comparison to

normal conditions, a slight increment on the use of the RT topology is observed
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in Fig. C.1, but it is not enough to improve the reliability of the system under the

dynamic context DC1.

The reward values R(s,a) should be eventually reassessed and updated dynam-

ically to assign higher importance to NFRs with poor satisficement levels (e.g.

MR, the reliability of the system) and to improve the selection of the adaptation

action a ∈ A in the online planning activity of RE-STORM.

c) Behaviour after reassessment and update of reward values R(s,a). The thresh-

olds (i.e. SLAs) identified for each NFR are monitored. If the satisficement of

any NFR is detected below its threshold; the reassessment and possible update

of reward values R(s,a) is carried out by the weights updater module included in

the planning phase of the MAPE-K Loop presented in section 4.4.1.

Examples of possible implementations for updating preferences about NFRs in a

SAS are found in [86, 70, 67]. Our approach uses the ARRoW model (Automatic

Runtime Reappraisal of Weights) [67] given its ability to update rewards values

R(s,a) at runtime [38].

The updated reward values R(s,a) constitute an additional input to the action plan-

ner module in RE-STORM as it was depicted in Fig. 4.3. The latter will select the

best self-adaptation action a ∈ A based on the additional information.

Figs. C.5, C.6 and C.7, show a sample of the new satisficement levels for the

NFRs MC, MR and MP after updating the reward values R(s,a). Given that the

reliability of the system was below its satisficement threshold, a higher reward

value was assigned by ARRoW to MR (i.e. stronger preference for MR).

FIGURE C.5: DC1 - Minimization of Cost: satisficement level after the
update of reward values R(s,a)
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FIGURE C.6: DC1 - Maximization of Reliability: satisficement level
after the update of reward values R(s,a)

FIGURE C.7: DC1 - Maximization of Performance: satisficement level
after the update of reward values R(s,a)

The satisficement level of MR (the reliability of the system) improves as a result

of the better informed decision-making provided by RE-STORM. Note in Fig.

C.8, how after updating the reward values R(s,a), the most preferred topology

by the decision-making process is RT Topology.

FIGURE C.8: DC1 - Chosen topology after the update of reward val-
ues R(s,a)

It is also observed in Figs. C.5 and C.7, that the trade-off among NFRs provoques
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a slight reduction in the satisficement levels of cost and performance in compar-

isson to contexts where the reward values R(s,a) are not updated.

d) Average satisficement levels of NFRs before and after the update of reward

values R(s,a). Figs. C.9, C.10 and C.11 show the average of the levels of sat-

isficement of MC, MR and MP after 5 rounds during the first 1000+ time slices.

According to the legend, given a round [round-n], na indicates that ARRoW was

not used, while A indicates that ARRoW was used to update weights at runtime.

FIGURE C.9: DC1 - Average satisficement level for MC

The results in Fig. C.10 (specifically columns [round-n] na) show that during

each round, and when the weights are not updated, the average satisficement

level of reliability is below the required threshold, i.e. it is within a poor zone

of satisficement due to unmatching initial reward values R(s,a) for the new dy-

namic context DC1. Meanwhile, cost and performance are within a suitable zone

of satisficement levels (See Figs. C.9 and C.11, columns [round-n] na).
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FIGURE C.10: DC1 - Average satisficement level for MR

On the other hand, when the weights are updated by ARRoW (See Fig. C.10,

columns [round-n] A), the satisficement level of reliability is improved by lever-

aging access to new runtime evidence. As a trade-off, a reduction in the satis-

ficement levels of cost and performance was also observed. However, still these

levels were in a suitable zone (See Figs. C.9 and C.11, columns [round-n] A).

FIGURE C.11: DC1 - Average satisficement level for MP

In the dynamic context DC1, the update of reward values R(s,a) contribute to improve

the average satisficement level of the reliability in the RDM SAS. All the NFRs meet

their SLAs.
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C.2 Dynamic context DC2: changes in the environment dur-

ing the execution of the RT topology are introduced to

increment the cost and to reduce the performance of the

system: P(MCt+1 = True, MPt+1 = True|NFRt,RTt).

a) Dynamic context DC2 description. The description of this dynamic context has

been stated in section 6.4.3: “Unexpected data packet loss during the execution of the

RT Topology, are generating an unusual rate of data forwarding, which would increase

the bandwidth consumption (i.e. cost) and would reduce the system’s performance. In

the RDM SAS, the cost for inter-site links communication is a function of the data sent

over them. Therefore, a Redundant Topology (RT), which involves a bigger number of

inter-site network links than a Minimum Spanning Tree Topology (MST), is more ex-

pensive. Costs increase as the number of network links increases and a reduction on the

system’s performance1 could also be expected.”

Next, the behaviour of the RDM SAS under the execution of the dynamic context

DC2 is depicted.

b) Behaviour before reassessment of reward values R(s,a). Given the new de-

tected conditions in the dynamic context DC2, and based on the initial RDM

configuration, i.e the initial stakeholders’ preferences, it is observed that the MST

topology is used even more than before (See Fig. C.12).

1The performance in these systems is measured as the total time to perform the write of data, which
is the sum of the response times of the writes of each copy of data on each remote site [47].
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FIGURE C.12: DC2 - Chosen topology before the update of reward
values R(s,a)

Data packet loss and unusual data forwarding produce more state values MCt+1

= False and MPt+1 = False. For these states the current reward values R(s,a)

favour the use of MST topology (See Table 6.2). Therefore, during the planning

activity, MST topology is more selected by RE-STORM. This behaviour (i.e. the

use of MST topology) allows to “avoid” the negative effects of the dynamic con-

text DC2, where the impact of RT topology, over the cost and performance of

the system, is less favourable. By using more MST topology, the satisficement

levels of cost and performance are improved, but with a slight reduction on the

reliability of the system (See Figs. C.13, C.14 and C.15).

FIGURE C.13: DC2 - Minimization of Cost: satisficement level before
the update of reward values R(s,a)
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FIGURE C.14: DC2 - Maximization of Reliability: satisficement level
before the update of reward values R(s,a)

FIGURE C.15: DC2 - Maximization of Performance: satisficement
level before the update of reward values R(s,a)

c) Behaviour after reassessment and update of reward values R(s,a). Figs. C.16,

C.17 and C.18, show a sampled pattern of the new satisficement levels for the

NFRs MC, MR and MP after updating the reward values R(s,a).

FIGURE C.16: DC2 - Minimization of Cost: satisficement level after
the update of reward values R(s,a)
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FIGURE C.17: DC2 - Maximization of Reliability: satisficement level
after the update of reward values R(s,a)

FIGURE C.18: DC2 - Maximization of Performance: satisficement
level after the update of reward values R(s,a)

It is observed in Figs. C.16, C.17 and C.18, that the reliability is slightly improved

but a more considerable reduction on the cost and performance satisficement

levels is also observed in comparisson to the contexts where reward values R(s,a)

are not updated. After the update, RT topology is more used than before (See

Fig. C.19).

FIGURE C.19: DC2 - Chosen topology after the update of reward val-
ues R(s,a)
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d) Average satisficement levels of NFRs before and after the update of reward

values R(s,a). Figs. C.20, C.21 and C.22 respectively show the average of the

satisficement levels of MR, MC and MP after 5 rounds during the first 1000+

time slices.

FIGURE C.20: DC2 - Average satisficement level for MC

The results in Fig. C.21 (specifically columns [round-n] na) show that during

each round, and when the weights are not updated by using ARRoW, the aver-

age satisficement level of the reliability of the system is slightly over the required

threshold. Meanwhile, the cost and performance are within a suitable zone of

satisficement level (See Figs. C.20 and C.22, columns [round-n] na).

FIGURE C.21: DC2 - Average satisficement level for MR

On the other hand, when the weights are updated, the satisficement level of

reliability (i.e. MR) is slightly improved by leveraging access to new runtime

evidence (See Fig. C.21, columns [round-n] A). As a trade-off, a reduction on
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the satisficement levels of cost and performance is also observed but still within

a suitable zone (See Figs. C.20 and C.22, columns [round-n] A).

FIGURE C.22: DC2 - Average satisficement level for MP

In the dynamic context DC2, the behaviour after updating the reward values R(s,a) rep-

resents an opportunity for further evaluation by system’s stakeholders. There is a slight

improvement on the average satisficement of the reliability of the system. However, this

result could not be good enough to justify a rewards update, given the reduction on the

satisficement levels of the performance and cost when the update is performed (even if

they are still, on average, over their thresholds).

C.3 Dynamic context DC3: changes in the environment dur-

ing the execution of the topologies MST and RT are in-

troduced to increment the cost and to reduce the reli-

ability and the performance of the system: P(MRt+1 =

True|NFRt , MSTt) and P(MPt+1 = True, MCt+1 = True|NFRt

, RTt)

a) Dynamic context DC3 description. The situations described in the dynamic con-

texts DC1 and DC2.
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Next, the behaviour of the RDM SAS under the execution of the dynamic context

DC3 is depicted.

b) Behaviour before reassessment of reward values R(s,a). Given the new dy-

namic context DC3, and based on the initial RDM configuration, MST topology

is the only topology to be used (See Fig. C.23).

FIGURE C.23: DC3 - Chosen topology before the update of reward
values R(s,a)

Data packet loss and unusual rates of data forwarding favour the occurrence

of (i) more state values MCt+1=False and MPt+1=False when RTt topology is

used, and (ii) more state values MRt+1=False when MSTt topology is used. Un-

der these states, the current reward values R(s,a) strongly favours the use of

MST topology. Therefore, during the planning activity of RE-STORM, the only

selected topology is MST. This behaviour improves the performance and cost of

the system, but considerably reduce its reliability (See Figs. C.24, C.25 and C.26).

FIGURE C.24: DC3 - Minimization of Cost: satisficement level before
the update of reward values R(s,a)
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FIGURE C.25: DC3 - Maximization of Reliability: satisficement level
before the update of reward values R(s,a)

FIGURE C.26: DC3 - Maximization of Performance: satisficement
level before the update of reward values R(s,a)

c) Behaviour after reassessment and update of reward values R(s,a). Figs. C.27,

C.28 and C.29 show the satisficement levels of the NFRs after updating the re-

ward values R(s,a).

FIGURE C.27: DC3 - Minimization of Cost: satisficement level after
the update of reward values R(s,a)
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FIGURE C.28: DC3 - Maximization of Reliability: satisficement level
after the update of reward values R(s,a)

FIGURE C.29: DC3 - Maximization of Performance: satisficement
level after the update of reward values R(s,a)

A higher reward value was assigned to the reliability of the system (i.e. stronger

preference for MR) given it was under its threshold. It is observed in Fig. C.28

that the reliability improves in comparison to the satisficement level shown in

Fig. C.25. A reduction on the satisficement levels of cost and performance is

also observed in comparisson to contexts where the reward values R(s,a) are not

updated. Fig. C.30 also shows that after updating the reward values R(s,a), the

RT topology is used again during the system execution.
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FIGURE C.30: DC3 - Chosen topology after the update of reward val-
ues R(s,a)

d) Average satisficement levels of NFRs before and after the update of reward

values R(s,a). Figs. C.32, C.31 and C.33 respectively show the average of the

levels satisficement of MR, MC and MP after 5 rounds of execution during the

first 1000+ time slices.

FIGURE C.31: DC3 - Average satisficement level for MC

The results in Fig. C.32 (specifically columns [round-n] na) show that during

each round, and when the weights are not updated, the average satisficement

level of reliability is below the required threshold. Meanwhile, cost and perfor-

mance are within a suitable zone of satisficement levels (See Figs. C.31 and C.33,

columns [round-n] na).
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FIGURE C.32: DC3 - Average satisficement level for MR

On the other hand, when the weights were updated (See Fig. C.32, columns

[round-n] A), the satisficement level of reliability was improved. As a trade-

off, a reduction in the satisficement level of cost and performance was observed,

but in general still these levels were in a suitable zone (See Figs. C.31 and C.33,

columns [round-n] A).

FIGURE C.33: DC3 - Average satisficement level for MP

In the dynamic context DC3, the update of reward values R(s,a) contributes to improve

the reliability of the RDM SAS. As a trade-off there is some reduction on the satisfice-

ment levels of cost and performance but still on average over their thresholds.
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C.4 Dynamic context DC4: changes on the environment dur-

ing the execution of the MST topology are introduced to

increment the cost and to reduce the reliability and the

performance of the system: P(NFRst+1 = True|NFRt,MSTt)

a) Dynamic context DC4 description. Let us revisit the description of the dynamic

context DC4, which has been stated in section 6.4.3: “Unexpected data packet loss

during the execution of the MST Topology is generating an unusual reduction on the

reliability of the system (i.e. DC1 context behaviour), but also the increase in bandwidth

consumption and the reduction of the system’s performance (NFRs MC and MP respec-

tively).”

Next, the behaviour of the RDM SAS under the exection of the dynamic context

DC4 is depicted.

b) Behaviour before reassessment of reward values R(s,a). Given the new dy-

namic context detected in part a), and based on the initial RDM configuration, it

is observed that the RT topology is more used than before (See Fig. C.34).

FIGURE C.34: DC4 - Chosen topology before the update of reward
values R(s,a)

Data packet loss favours the occurrence of more state values MCt+1 = False,

MRt+1 = False and MPt+1 = False when MSTt topology is used. Under these

states, the current reward values R(s,a) favour the use of RT topology. There-

fore, during the planning activity after applying Equation (4.8) in RE-STORM,
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the preferred topology is RT. This behaviour slightly reduces the performance

and cost, and moderately improves the reliability of the system (See Figs. C.35,

C.36 and C.37).

FIGURE C.35: DC4 - Minimization of Cost: satisficement level before
the update of reward values R(s,a)

FIGURE C.36: DC4 - Maximization of Reliability: satisficement level
before the update of reward values R(s,a)

FIGURE C.37: DC4 - Maximization of Performance: satisficement
level before the update of reward values R(s,a)
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c) Behaviour after reassessment and update of reward values R(s,a). Figs. C.38,

C.39 and C.40, show the satisficement levels of the NFRs in the RDM SAS after

updating the reward values R(s,a).

FIGURE C.38: DC4 - Minimization of Cost: satisficement level after
the update of reward values R(s,a)

FIGURE C.39: DC4 - Maximization of Reliability: satisficement level
after the update of reward values R(s,a)

FIGURE C.40: DC4 - Maximization of Performance: satisficement
level after the update of reward values R(s,a)

It is observed in Figs. C.38, C.39 and C.40, that the satisficement level of the re-

liability of the system slightly improves. A slight reduction on the satisficement
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of performance is also observed in comparisson to contexts where the reward

values R(s,a) are not updated. After updating them, the RT Topology is more

used than before (See Fig. C.41).

FIGURE C.41: DC4 - Chosen topology after the update of reward val-
ues R(s,a)

d) Average satisficement levels of NFRs before and after the update of reward

values R(s,a). Figs. C.43, C.42 and C.44 respectively show the average of the

levels satisficement of MR, MC and MP after 5 rounds of execution during the

first 1000+ time slices.

FIGURE C.42: DC4 - Average satisficement level for MC

The results in Fig. C.43 (specifically columns [round-n] na) show that during

each round, and when the weights are not updated, the average satisficement

level of the reliability of the system is already over its threshold. Meanwhile, the

cost and performance are within a suitable zone of satisficement levels (See Figs.

C.42 and C.44, columns [round-n] na).
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FIGURE C.43: DC4 - Average satisficement level for MR

On the other hand, when the weights were updated (See Fig. C.43, columns

[round-n] A), the satisficement level of reliability was slightly improved. As a

trade-off, a reduction in the satisficement levels of cost and performance was

also observed but still with satisficement levels within a suitable zone (See Figs.

C.42 and C.44, columns [round-n] A).

FIGURE C.44: DC4 - Average satisficement level for MP

In the dynamic context DC4, the satisficement level of the NFRs is always over the

thresholds (before and after the update of reward values R(s,a)). Therefore, similar to

DC2, it may not be required to update them. A further evaluation by system’s stakehold-

ers may be needed to determine its suitability.
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C.5 Dynamic context DC5: changes on the environment dur-

ing the execution of the RT topology are introduced to

increment the cost and to reduce the reliability and the

performance of the system: P(NFRst+1 = True|NFRt,RTt)

a) Dynamic context DC5 description. The description of this dynamic context has

been stated in section 6.4.3: “Unexpected data packet loss during the execution of the

RT Topology is generating an increment in bandwidth consumption and reduction of the

system performance (i.e. DC2 context behaviour), but also a reduction on the positive

impact of the RT topology over the reliability of the system.”

Next, the behaviour of the RDM SAS under the execution of the dynamic context

DC5 is depicted.

b) Behaviour before reassessment of reward values R(s,a). Given the new dy-

namic context detected, and based on the initial RDM configuration, the MST

topology is the only one to be used (See Fig. C.45).

FIGURE C.45: DC5 - Chosen topology before the update of reward
values R(s,a)

Data packet loss favours the occurrence of more state values MCt+1 = False,

MRt+1 = False and MPt+1 = False when RTt topology is used. For these states

the current reward values R(s,a) favour the use of the topology MST. Therefore,

during the planning activity of RE-STORM, the selected topology is MST. As a
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result of this behaviour the reliability of the system is below its threshold dur-

ing several timeslices (See Figs. C.46, C.47 and C.48). Meanwhile, the cost and

performance are on a suitable zone of satisficement, i.e. over their thresholds.

FIGURE C.46: DC5 - Minimization of Cost: satisficement level before
the update of reward values R(s,a)

FIGURE C.47: DC5 - Maximization of Reliability: satisficement level
before the update of reward values R(s,a)

FIGURE C.48: DC5 - Maximization of Performance: satisficement
level before the update of reward values R(s,a)
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c) Behaviour after reassessment and update of reward values R(s,a). Figs. C.49,

C.50 and C.51, show the satisficement levels of the NFRs in the RDM SAS after

updating the reward values R(s,a).

FIGURE C.49: DC5 - Minimization of Cost: satisficement level after
the update of reward values R(s,a)

FIGURE C.50: DC5 - Maximization of Reliability: satisficement level
after the update of reward values R(s,a)

FIGURE C.51: DC5 - Maximization of Performance: satisficement
level after the update of reward values R(s,a)
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Under the current context a higher reward value was assigned to the reliability

of the system (i.e. stronger preference for MR). However, it is observed in Fig.

C.50 that the satisficement level of reliability is slightly reduced. A slight reduction

on the satisficement of cost and performance is also observed in Figs. C.50 and

C.51, in comparisson to contexts where rewards R(s,a) are not updated. It is also

observed that after updating the reward values R(s,a) the RT topology is used

again (See Fig. C.52).

FIGURE C.52: DC5 - Chosen topology after the update of reward val-
ues R(s,a)

d) Average satisficement levels of NFRs before and after the update of reward

values R(s,a). Figs. C.54, C.53 and C.55 respectively show the average of the

levels satisficement of MR, MC and MP after 5 rounds of execution during the

first 1000+ time slices.

FIGURE C.53: DC5 - Average satisficement level for MC

The results in Fig. C.54 (specifically columns [round-n] A) show that during
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each round, when the reward values R(s,a) are updated to improve the reliabil-

ity of the system , the effect is the opposite: a slight reduction on the average satis-

ficement of the reliability of the system (but still over its threshold). Meanwhile,

the cost and performance, show also a reduction on their average satisficement,

but still within a suitable zone (See Figs. C.53 and C.55).

FIGURE C.54: DC5 - Average satisficement level for MR

FIGURE C.55: DC5 - Average satisficement level for MP

In the dynamic context DC5, the positive impact of RT topology over the reliability

of the system has been lost. Therefore, when the reward values R(s,a) are updated to

assign more preference to reliability, when RT topology is performed, the result is coun-

terproductive, a lower reliability. Under this context, when RTt topology is used, states

MRt+1=False are more feasible than before.
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C.6 Dynamic context DC6: changes on the environment dur-

ing the execution of the topologies MST and RT are in-

troduced to increment the cost and to reduce the relia-

bility and the performance of the system: P(NFRst+1 =

True|NFRt,MSTt) and P(NFRst+1 = True|NFRt,RTt)

a) Dynamic context DC6 description. The situations described in the dynamic con-

texts DC4 and DC5.

Next, the behaviour of the RDM SAS under the execution of the dynamic context

DC6 is depicted.

b) Behaviour before reassessment of reward values R(s,a). Given the new de-

tected context, and based on the initial RDM configuration, it is observed that

the MST topology is the only one to be used (See Fig. C.56).

FIGURE C.56: DC6 - Chosen topology before the update of reward
values R(s,a)

Data packet loss are favouring the reduction of the satisficement level of the cost,

reliability and performance regardless of the topology to be used. This reduction

is observed in Figs. C.57, C.58 and C.59. In DC6, either we use MST or RT topol-

ogy, we obtain more state values MCt+1=False, MRt+1=False and MPt+1=False.

For these states, the current reward values R(s,a) strongly favour the use of the
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topology MST. Therefore, during the planning activity and after applying Equa-

tion (4.8), the selected topology is MST as it is observed in Fig. C.56.

FIGURE C.57: DC6 - Minimization of Cost: satisficement level before
the update of reward values R(s,a)

FIGURE C.58: DC6 - Maximization of Reliability: satisficement level
before the update of reward values R(s,a)

FIGURE C.59: DC6 - Maximization of Performance: satisficement
level before the update of reward values R(s,a)

c) Behaviour after reassessment and update of reward values R(s,a). Figs. C.60,

C.61 and C.62, show a sampled pattern of the new satisficement levels for the

NFRs MC, MR and MP after updating the reward values R(s,a).
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FIGURE C.60: DC6 - Minimization of Cost: satisficement level after
the update of reward values R(s,a)

FIGURE C.61: DC6 - Maximization of Reliability: satisficement level
after the update of reward values R(s,a)

FIGURE C.62: DC6 - Maximization of Performance: satisficement
level after the update of reward values R(s,a)

It is observed in Fig. C.61 that the reliability is slightly incremented. A reduc-

tion on cost and performance is also observed in comparisson to contexts where

rewards R(s,a) are not updated (See Figs. C.60 and C.62). After updating the

rewards R(s,a), the RT topology is used again (See Fig. C.63).
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FIGURE C.63: DC6 - Chosen topology after the update of reward val-
ues R(s,a)

d) Average satisficement levels of NFRs before and after the update of reward

values R(s,a). Figs. C.65, C.64 and C.66 respectively show the average of the

levels satisficement of MR, MC and MP after 5 rounds during the first 1000+

time slices.

FIGURE C.64: DC6 - Average satisficement level for MC
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FIGURE C.65: DC6 - Average satisficement level for MR

The results in Fig. C.65 (specifically columns [round-n] A) show that during

each round, a slight increment on the reliability is obtained when the reward

values R(s,a) are updated. However, the average satisficement is still below its

threshold. Meanwhile, the cost and performance experiment a reduction on their

satisficement levels (See Figs. C.64 and C.66).

FIGURE C.66: DC6 - Average satisficement level for MP

In the dynamic context DC6, the trade-off of NFRs is highlighted. Specifically, an in-

crement on reliability and simultaneously a decrement on the satisficement levels of cost

and performance is observed. However, under the current environmental conditions re-

gardless the topology in use, it is not feasible to improve the reliability of the system to

meet its SLA.
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Appendix D

RDM SAS under different Service

Level Agreements (SLAs)

In section 6.6, how the RDM SAS would behave using different SLAs has been re-

ported. In this section, more details on the implemented scenarios to demonstrate

the RDM SAS behaviour are presented.

D.1 SLAs: less strict scenario

Under this scenario, the satisficement levels of the NFRs would always meet their

SLAs as shown in Figs. D.1, D.2, D.3 and therefore ARRoW would not be called.

FIGURE D.1: Less strict scenario - Minimization of Cost: P(MC =
True>= 0.7)
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FIGURE D.2: Less strict scenario - Maximization of Reliability: P(MR
= True>= 0.8)

FIGURE D.3: Less strict scenario - Maximization of Performance: SLA
P(MP = True>= 0.6)

D.2 SLAs: stricter scenario

Under a stricter scenario, the thresholds for the satisficement level of the NFRs are in-

cremented. In the following two examples the behaviour of ARRoW under a stricter

scenario is described.

a) SLAs example 01: In this example, the required satisficement level for the cost,

reliability and performance of the system has been incremented. The new sta-

blished SLAs are P(MC = True>= 0.80), P(MR = True>= 0.95) and P(MP =

True>= 0.85).



Appendix D. RDM SAS under different Service Level Agreements (SLAs) 166

FIGURE D.4: SLAs example 01 - Minimization of Cost: P(MC =
True>= 0.8)

FIGURE D.5: SLAs example 01 - Maximization of Reliability: P(MR =
True>= 0.95)

FIGURE D.6: SLAs example 01 - Maximization of Performance: P(MP
= True>= 0.85)

It is observed in Figs. D.4, D.5 and D.6, that from the three NFRs under evalua-

tion, the reliability of the system has the lowest satisficement level in relation to

its SLA. Therefore, the reward values R(s,a) will be updated by ARRoW accord-

ingly to this context. The decision-making provided by RE-STORM, taking into
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account the new preferences, will improve the reliability but with a reduction on

the cost and the performance of the system due to the trade-off performed. Figs.

D.7, D.8 and D.9 show the new satisficement level of the NFRs after the update

of the reward values R(s,a).

FIGURE D.7: SLAs example 01 - Minimization of Cost: satisficement
level after the update of reward values R(s,a)

FIGURE D.8: SLAs example 01 - Maximization of Reliability: satis-
ficement level after the update of reward values R(s,a)

FIGURE D.9: SLAs example 01 - Maximization of Performance: satis-
ficement level after the update of reward values R(s,a)
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The average satisficement level for the NFRs shown in Figs. D.7, D.8 and D.9, is

MC = 0.8608, MR = 0.9373 and MP = 0.8354. Although, it is possible to observe

in Fig. D.8 that the satisficement level of the reliability is during some time slices

over its threshold, on average, it was not possible to meet its SLA.

RE-STORM and ARRoW always improve the NFR with the lowest satisficement level

with respect to its SLA. However, unusually high SLAs may be not reached.

b) SLAs example 02: Different from the previous example, an even higher satisfice-

ment level for the reliability of the system is required in this example. The new

stablished SLAs are: P(MC = True>= 0.80), P(MR = True>= 0.99) and P(MP =

True>= 0.85). Figs. D.10, D.11 and D.12, show the behaviour of the RDM SAS

before the update of the reward values R(s,a).

FIGURE D.10: SLAs example 02 - Minimization of Cost: P(MC =
True>= 0.8)

FIGURE D.11: SLAs example 02 - Maximization of Reliability: P(MR
= True>= 0.99)
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FIGURE D.12: SLAs example 02 - Maximization of Performance:
P(MP = True>= 0.85)

In Fig. D.11, it is observed that the satisficement level of the reliability is always

below its SLA. The reward values R(s,a) are updated by ARRoW accordingly to

this context, i.e. a higher importance than the allocated in Example 01 will be

assigned to the reliability of the system. Figs. D.13, D.14 and D.15 show the new

satisficement level of the NFRs after the update of the reward values R(s,a).

FIGURE D.13: SLAs example 02 - Minimization of Cost: satisficement
level after the update of reward values R(s,a)
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FIGURE D.14: SLAs example 02 - Maximization of Reliability: satis-
ficement level after the update of reward values R(s,a)

FIGURE D.15: SLAs example 02 - Maximization of Performance: sat-
isficement level after the update of reward values R(s,a)

The average satisficement level for the NFRs shown in Figs. D.13, D.14 and

D.15, is MC = 0.8435, MR = 0.9418 and MP = 0.8075. In this case, regardless of

the increment of the average satisficement level of the reliability of the system

in comparison to the Example 01, its satisficement level is constantly under its

SLA, as is shown in Fig. D.14.
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