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Numerical results for the axially compressed
cylindrical shell demonstrate the post-buckling
response snaking in both the applied load and
corresponding end-shortening. Fluctuations in load,
associated with progressive axial formation of
circumferential rings of dimples, are well known.
Snaking in end-shortening, describing the evolution
from a single dimple into the first complete ring
of dimples, is a recent discovery. To uncover the
mechanics behind these different phenomena,
simple finite degree-of-freedom cellular models are
introduced, based on hierarchical arrangements
of simple unit cells with snapback characteristics.
The analyses indicate two fundamentally different
variants to this new form of snaking. Each cell has
its own Maxwell displacement, which are either
separated or overlap. In the presence of energetic
background disturbance, the differences between
these two situations can be crucial. If the Maxwell
displacements of individual cells are separated, then
buckling is likely to occur sequentially, with the
system able to settle into different localized states
in turn. Yet if Maxwell displacements overlap, then
a global buckling pattern triggers immediately as
a dynamic domino effect. We use the term Maxwell
tipping point to identify the point of switching between
these two behaviours.
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1. Introduction

Nonlinear instabilities in elastic structures such as thin plates and shells have been the focus
of considerable effort over the years, both before and after Koiter’s ground-breaking thesis
published in Dutch [1] at the end of the Second World War. Koiter’s work lay largely dormant
until translated into English at the start of the 1960s, following which, fuelled by new design
challenges from aerospace engineering in particular, the burst of activity was such that it
might have seemed that, to all intents and purposes, the story was complete. However, the
fact that important phenomena—localization, spatial chaos and snaking for example—remained
undiscovered for another two decades, pays testament to the subtleties that such systems possess.
Different types of post-buckled solutions can coexist, and the least energy, practically relevant,
localized forms have, at times, been masked by more readily obtained periodic counterparts. In
the course of the on-going development, it is arguably true that no single structural problem has
played a more central role than the buckling of the long and thin cylindrical shell under axial
compression; its capacity for symmetry-driven mode interaction [1,2], together with its notorious
sensitivity to small imperfections and disturbances [3], mark it out for special attention. Here,
with the buckling modes defined from the linearized problem as harmonic both axially and
circumferentially, it is not surprising that traditional approaches have tended to be Fourier-based
and come up with periodic solutions, once they have entered the post-buckling regime.

This paper uses the cylinder problem to draw attention to a behaviour that has received little
or no attention in the past, that of sideways or transverse snaking. Its counterpart, longitudinal
snaking, was identified in the late 1990s as a generic sequence of discretely occurring localized
buckles occurring along the length of a long structure [4,5]. In the dynamical phase-space sense,
this behaviour was described by a series of homoclinic orbits [6], leading in the long run to a
heteroclinic connection between the unbuckled state and the periodic buckle pattern that exists at
the classical Maxwell load [5,7]; it was found in a number of different problems [5], perhaps most
notably the 1D Swift-Hohenberg equation [4]. For the cylinder, the initial homoclinic solution
of the sequence was shown to take the form of a single circumferential ring of axially localized
buckles appearing in a central region away from the ends, with the more advanced homoclinics
describing the addition of further rings [8].

It has, however, recently been revealed that the single row of buckles of the initial homoclinic
shape is itself the end result of a more localized snaking process, starting with a single dimple and
progressing around the circumference (orthogonal to the loading direction) with extra dimples
being added in turn. While the longitudinal snaking sequence has the load rising and falling
under growing end-displacement and is centred about the classical Maxwell load, this second
sequence is marked by the end-displacement oscillating back and forth under falling load, and
is centred about its dual, the Maxwell displacement. One notable difference between these two
snaking sequences is that, while the former typically can appear in one dimension, the latter
clearly requires two.

The fact that a single localized dimple can initiate the buckling process in a cylinder is
a fairly recent observation. It was suggested initially by Hordk, Lord, & Peletier [9] and
later demonstrated in numerical solutions to the von Karmén-Donnell equations by Kreilos &
Schneider [10]. Both these analyses considered bifurcation from a linear fundamental equilibrium
path comprising pure axial squash and uniform dilation, a circumstance that would be hard
to realize in a physical experiment because of boundary constraints at the ends of the shell. In
numerical investigations such hidden mechanics have largely remained undiscovered. Explicit
finite-element formulations suffer from the same challenges as experimental tests, i.e. unstable
equilibria cannot be traced, while implicit schemes, based on pseudo arc-length path-following
methods, have previously modelled the cylinder as multiple ODEs defined axially, coupled by
periodic circumferential modes [5]. The latter approach naturally eliminates the localized single
dimple as an admissible solution, and only recently Groh & Pirrera [11] have demonstrated
the behaviour in a high-fidelity finite-element formulation using path-following continuation
methods. A set of results from this analysis are shown here in figure 1, and demonstrate that
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Figure 1. Equilibrium paths and pertinent mode shapes of snaking and laddering in the cylinder’s post-buckling regime.
(a) Equilibrium path of odd and even post-buckling solutions growing sequentially around the cylinder circumference through
series of destabilizations and restabilizations. (b) Deformation mode shapes for odd-numbered and even-numbered localized
solutions culminating in a single row of ten buckles. (c) Equilibrium path of the unstable ladders (or rungs) connecting the odd-
numbered and even-numbered dimple waveforms. (d) Pertinent deformation mode shapes on the ladders illustrating their
symmetry-breaking effect. (Online version in colour.)

although the fundamental and post-buckling equilibrium paths lie close to one another on a load
vs end-shortening plot, they remain disconnected, meaning that direct bifurcation from pre- to
post-buckling is absent. This effect is a result of choosing practically relevant clamped boundary
conditions, which means that uniform dilation is violated close to the ends.

As with longitudinal snaking [5], it is instructive to explore the character of the phenomenon
using uncoupled or weakly coupled low-dimensional cells. In earlier studies, such cells were
placed in series with each cell carrying the same load [12]. In this particular arrangement,
individual cells buckle-through sequentially with the pattern formation occurring in the direction
of the applied load. As the buckling sequence progresses, the applied load rises and falls with the
Maxwell load serving as an organizing centre for the load fluctuation.

Transverse snaking, i.e. a pattern formation orthogonal to the applied load, can be
demonstrated with the same kind of cellular system, but this time with individual cells placed
in parallel. It is instructive to assume that each cell has a tri-linear response made up of
three different positive stiffnesses. When uncoupled, in the well-known analogy to Ohm’s law,
resultant stiffnesses can readily be computed by adding component stiffnesses, either directly
(for the parallel system) or according to a reciprocal relation (for the series system). In the case
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of transverse snaking, the Maxwell displacement plays the role as an organizing centre for the
displacement fluctuation.

As shown in figure 1, the equilibrium states of the single dimple and subsequent snaking
scenario are mostly unstable under rigid loading. Even though the cylinder can be perturbed
onto regions where, say, a single dimple is statically stable, as observed by Esslinger [13], such
states are nevertheless hard to find experimentally in a robust manner. So why then are they of
practical significance? The answer lies in the nature of the triggering buckling mechanism. Work
by Thompson & Sieber [14] focuses on the issue by analytically ‘probing’ with a conceptual point
load, and measuring the work required to push the cylinder through to a single dimple. The
energy barrier resisting this process can be visualized on a plot of load against its corresponding
probe displacement, and the magnitude of the energy barrier provides a measure of the associated
shock sensitivity; i.e. the ease with which the cylinder can transition out of the pre-buckling state
via the single dimple by means of static or dynamic perturbations. Once an initial input of energy
has managed to overcome this barrier, the Maxwell displacement marks the point at which the
same energy is subsequently dynamically released to promote the next buckle in the sequence.
This suggests that the instability sequence could progress as a domino effect, with the released
energy each time being just sufficient to trigger the next buckle. In such a way, uncovering the full
range of equilibria is essential to expose the otherwise hidden mechanics of cylinder buckling.

We show herein, that a two-dimensional grid made up of destabilizing/restabilizing cells,
based on two degree-of-freedom arches placed in series and in parallel, is enough to illustrate
the full range of cylinder behaviour. It is found that whether the complete instability sequence
happens spontaneously as a cascade of localized buckles, or needs a steady increase in applied
end-shortening, depends on the degree of coupling between adjacent cells. Weak or zero coupling
between adjacent cells in a row means that buckling in a single cell is likely to cause instantaneous
buckling of an entire row. Alternatively, strong coupling between cells acts to stabilize the
response, such that at each stage extra energy is required to promote the next local buckling event.
These characteristics, which might at first seem counterintuitive, are examined in detail in §4a(ii)
and §4c. The point, i.e. the level of external loading, at which the system switches between these
two fundamentally different paradigms, is what we term the Maxwell tipping point.

The paper proceeds as follows. We start with recent results along the lines of Groh & Pirrera
[11], reproduced from a recent review of unstable buckling [15]. The resulting plot of load against
end-shortening demonstrates the snaking behaviour of interest, with the load falling while end-
shortening is fluctuating throughout the pattern formation. Next, by postulating a grid of four
uncoupled cells placed in series and in parallel, a typical overall behaviour is described according
to the resulting computed stiffnesses. A four-cell model comprising two degree-of-freedom arches
is then presented, highlighting the difference between weakly and strongly coupled systems
and describing the associated Maxwell tipping point. The paper closes by revisiting the cylinder
problem in the light of these new developments.

2. Localization in a thin-walled axially compressed cylindrical shell

A thin-walled isotropic cylindrical shell of thickness t=0.247 mm, radius R=100mm and
length L =160.9 mm, which is loaded in uniform axial compression via displacement control,
is considered. The cylinder is modelled as linearly elastic and isotropic with Young’s modulus
E =556 GPa and Poisson’s ratio v =0.3, representing Yamaki’s [16] longest cylinder (Batdorf
parameter Z =L2\/1 — v2/Rt = 1000). To replicate a typical experimental set-up, the cylinder is
rigidly clamped at both ends with uniform axial compression imposed at one end only. Hence, at
one end of the cylinder all six degrees of freedom are constrained, whereas at the other end, five
degrees of freedom are constrained with axial end-shortening a free parameter varied during the
analysis.

The cylinder is modelled using isoparametric, geometrically nonlinear finite elements based
on a total Lagrangian formulation. The finite elements used are so-called ‘degenerated shell
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elements’ [17] based on first-order shear deformation theory assumptions [18]. The full cylinder is
discretized into 193 axial and 480 circumferential nodes that are assembled into 25-noded spectral
finite elements defined by Payette & Reddy [19] and the large rotation parametrization of shell
normals described by Bathe [20]. The circumferential domain, s, is described by s/R € [—n, 7] and
the axial domain, x, by x/L € [-0.5,0.5]. In figure 1 below, blue segments denote stable equilibria,
red segments denote unstable equilibria, and black dots are critical points (limit points and
branching points). For additional details on the modelling set-up and the numerical continuation
algorithms used, see refs [11,21].

Figure 1a shows an equilibrium manifold of applied end-shortening u (normalized by the
cylinder length, radius and thickness) vs the ensuing reaction load P (normalized by the classical
buckling load P = 27 Et2//3(1 — v2)). The corresponding deformation mode shapes at the points
specified in figure 1a are shown in figure 1b on an ‘unrolled” cylinder. Running diagonally in
blue in figure 1a is the trivial pre-buckling path of uniform axial squashing and circumferential
dilation; see mode shape (PB) in figure 1b. Running almost coincident to the pre-buckling path are
two unstable solutions; one corresponding to a single dimple in the cylinder wall and the other
to a double-dimple solution. Both these equilibrium paths undergo a snaking sequence whereby
additional buckles are added to the left and right of the original pattern (thereby maintaining
symmetry) through a series of de- and restabilizations, i.e. the single-dimple solution grows in
the odd-integer sequence 1, 3,5, . . ., 9, while the double-dimple solution grows in an even-integer
sequence 2,4,6, ...,10. The two snaking sequences are intertwined and ultimately coalesce at the
same point (P1g in figure 1a) where the snaking sequence terminates in a single row of ten buckles.
As shown by Groh & Pirrera [11], point Py is a branching point where the two snaking sequences
connect to an extended stable segment of the ten-buckle waveform.

As previously mentioned in §1, interesting features of this snaking sequence are that (i) the
pattern formation occurs orthogonal to the loading direction, and (ii) the snaking sequence
fluctuates within a region of applied end-shortening (0.276 < uR/Lt < 0.391), while the reaction
force P is falling with each additional buckle in the waveform. This is significantly different from
earlier work on the cylinder [8], where it was shown that a snaking sequence causing pattern
formation along the length of the cylinder, i.e. the sequential formation of complete rings of
buckles in the direction of the applied load, leads to an increase in end-shortening while the
reaction force fluctuates. The latter behaviour has been recognized for many years as a generic
sequence typical of many mechanical systems [5,7], but its dual manifestation, which has end-
displacement fluctuating while the load drops, is explored here in detail for the first time; we
shall refer to it as transverse snaking.

However, as is usual in homoclinic snaking [7], the two intertwined odd- and even-numbered
snaking sequences—which in this case preserve left-right and up—~down symmetry in the mode
shapes—are connected by ladders (or rungs) that break the left-right symmetry group. As
shown in figure 1c, the ladders connect the odd- and even-numbered snaking sequences via
unstable equilibrium paths connecting a branching point on one snake (close to #R/Lt ~ 0.28) to
a branching point on the other snake (close to uR/Lt ~ 0.39). The deformation modes in figure 14
clearly show the symmetry-breaking effect of the ladders, whereby a dimple is only added to one
side of the current pattern to connect odd- and even-numbered waveforms.

As the ladders represent unstable equilibria, they can never manifest themselves as stable,
observable states in practice. However, unstable equilibria—such as the ladders and the unstable
portions of the two intertwined snaking sequences—form energy barriers between stable
equilibria. For example, to transition from the pre-buckling state to the post-buckling state
with a single dimple, say for uR/Lt =0.34 in figure 1a, the system has to traverse the energy
barrier associated with the unstable equilibrium path running parallel to the stable pre-buckling
path. Similarly, once the cylinder is stable in the post-buckling state with one dimple, it can
transition into other stable states by traversing other energy barriers. For example, to transition
from one stable dimple to two stable dimples, the cylinder would have to overcome the energy
barrier provided by ladder Lj, in figure lc. Alternatively, it could transition from one stable
dimple to three stable dimples by traversing the unstable portion of the odd-numbered snake in
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figure 1a, termed Sy3. Indeed, if sufficient disturbance energy is input into the system, the cylinder
might transition immediately into higher-order buckling modes, but in this case, multiple energy
barriers and valleys would need to be traversed.

The above scenario adds significantly to the known complexities surrounding cylinder
buckling. To aid understanding, in the following sections we demonstrate that the behaviours of
snaking, laddering and associated Maxwell displacements can be replicated using a hierarchical
arrangement of snapping cells. Even though these systems are discrete analogues to the
continuum cylinder, they retain the fundamental mechanics and flavour of the problem; namely,
a snaking sequence with pattern formation transverse to the direction of applied loading,
with reaction force falling and end-shortening oscillating. We start by outlining some simple
underlying characteristics of such systems, which can be obtained directly from well-known
stiffness relations.

3. Stiffness computations for tri-linear cells

(@) Elements in series

For linear springs placed in series such that they all carry the same load, it is well known that
a resultant stiffness is readily obtained by reciprocal addition of individual stiffnesses. If such
springs are given a bi-linear or tri-linear characteristic, then depending on the status of the
individual springs a number of different resultant stiffnesses are available. When individual cells
switch stiffness one-by-one, as in cellular buckling [5], it is then possible to trace a multi-linear
overall response on a load vs end-shortening plot, based on computations of resultant stiffnesses
alone.

Figure 2, reproduced from an earlier publication [5], demonstrates this behaviour. Figure 2a
depicts four cells configured in series such that they all carry the same load, but are otherwise
uncoupled. Each cell has a tri-linear response comprising an initial (infinite) pre-buckling
stiffness, a negative post-buckling stiffness —kj, and a final positive finite (restabilized) stiffness
ko, as seen in figure 2b. The response on a plot of load P against total end-shortening A shown
in figure 2c, at any stage, then depends on just two possibilities. If 7 individual elements are at
positive stiffness k, with the remainder at the pre-buckled infinite stiffness, then the response is
on a rising path with resultant stiffness, R;;, where

1 m
R, =k (3.1)

If, on the other hand one spring is at stiffness —kj, while m others are at positive stiffness k;, the
resultant stiffness F;, is given by

1_m_1_1 1 )

Fn k' ki Ram Kk
which can be positive or negative. Although in the absence of coupling the system is anti-
integrable and the order of buckling cannot be specified, the overall response depends simply
on the cells buckling one-by-one in turn. With increasing m, the pattern of equilibrium paths
shown as light lines in figure 2c is uniquely sketched out. Under dead load, all of the falling
(negative stiffness) portions of this path would be unstable, while under rigid load (controlled
end-shortening) each portion would be stable when the overall stiffness is negative but unstable
once it turns positive and ‘snapback’ becomes possible. The heavy line gives the response
under controlled end-shortening under the assumption that energy jumps are initiated at the
corresponding Maxwell displacement, as described in figure 3b.

Under controlled end-shortening, in the absence of coupling the ‘snapback’ events of figure 2c
occur in unspecified order along the length. With rigid pre-buckling there is initially no snapback
and no Maxwell displacement. As more cells buckle, the triggering load at the Maxwell
displacement drops and the response leans over further to the right. A1 and A; of figure 3b give
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(b)

Vo

Figure 2. Snaking solution for multiple cells in series. (a) Configuration of four cells. (b) Assumed tri-linear load-shortening
response of a typical cell. (c) Combined response for ten cells or more. The light curve denotes the as-computed snaking
behaviour, Py is the Maxwell load, and the bold curve is the likely behaviour as individual cells buckle in turn at their Maxwell
displacement (figure 3). (Reproduced from [5] with slight change in notation.).

(a) (b)

M

Figure 3. Typical segment of figure 2c. (a) Controlled load: A; = A, for the Maxwell load Py. (b) Controlled end-shortening:
A = A, for the Maxwell displacement A . (Reproduced from [5] with slight change in notation.)

respectively the energy hump to be overcome in escaping from the minimum in the initial state,
and the energy released as the system settles into the minimum of the buckled state, and are
readily computable [5]; A1 = A, defines the Maxwell displacement Apj, where the energies in the
two minima are equal.

(b) Elements in parallel

The next objective is to repeat the description for similar elements in parallel under controlled
end-displacement A, before moving on to two-dimensional arrays as seen in figure 4a. Parallel
sets of cells are assumed to displace by the same A, but are otherwise uncoupled. The chosen
load-deflection response for a single cell is shown in figure 4b, here given a tri-linear characteristic,
similar to that shown in figure 2b except with a finite initial stiffness to allow for snapback. With
the combined stiffness for different combinations of ki, k; and k3 being readily computable by
summing individual stiffnesses, the response of two cells in parallel must be as shown in figure 4c.
As with cells in series, a piecewise linear form of snaking is produced, except that it now is
arranged vertically around the Maxwell displacement rather than horizontally about the Maxwell
load.
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characteristic of a single cell. (c) Combined load to corresponding deflection response for two cells in parallel. Maxwell
displacement Ay defined when A, = A;.

For two cells in parallel, at the Maxwell displacement Aj; energy levels at all four stable
states—fundamental (stiffness 2k;), buckled (stiffness 2k3), and two non-homogeneous half-
buckled (stiffness ki + k3)—are the same. The two non-homogeneous unstable configurations
(stiffnesses k1 + kp and ky + k3), represent the energy humps separating these stable states. It is
immediately apparent that half the energy input is required to trigger just one of the instabilities,
or indeed two instabilities one after the other, than it is to trigger both simultaneously. The
Maxwell displacement Apj, where A1 =Aj, is as shown. For A > Ay, one or the other of the
stable non-homogeneous states is the most likely outcome under a sudden disturbance or shock.
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Figure 5. Equilibrium paths of the 2-by-2 system of figure 4a.

Assuming that the system remains conservative so that energy is not irreversibly lost (to heat,
friction, etc.), once the first instability is complete, the same level of disturbing energy remains
available to trigger the second instability. It should be noted however, that under conditions
of controlled end-displacement and in the absence of coupling terms between the elements,
transfer of energy between elements may not be possible, so the second instability is by no means
guaranteed.

(c) Series and parallel

Moving on to the 2-by-2 array of elements seen in figure 44, by analogy with Ohm’s law for
resistors/capacitors, the final stiffness for any given combination may be computed either by
summing stiffnesses for parallel elements, or via a reciprocal law for elements in series. The paths
of figure 5 are the result. Under controlled end-displacement, one row of elements first completes
the snaking process around its related Maxwell displacement Ay, as in figure 4c. The system
then restabilizes under positive stiffness until it reaches a second Maxwell displacement Apy,,
whereupon it follows a second snaking sequence in the previously unbuckled row.

4. Snapback arches

We next look for a physical system made up of cells with similar stiffness characteristics. It is
relatively easy to come up with a rigid-link and spring model that has a bi-linear response [22],
but a tri-linear system is harder to devise. Nonetheless, although simple stiffness calculations are
now out of the question, the tied arch set in series with a linear spring of figure 6a, behaves in a
similar way. The total potential energy can be written

1 2
V=U-PLA==kI*(2,/1 - Q2 —2y1—h2 “loLl%(A —h 2 _PLA,
u 2 (/1= Q=212 4 Ghata~h+Q)

where U = (1/2)kL2(2y/1 — Q% — 2\/1 — i2)? + (1/2)koL2(A — h 4 Q)? is the strain energy stored in
springs k and ky, and the final term is the work done by the dead load P. By differentiating V'
with respect to the two degrees-of-freedom Q and A, two equilibrium equations are produced.
These solve to give the load-deflection characteristic of figure 6b, which has an initially stable

€L20020 9Lk ¥ 205§ 204g edsy/jeuol/bioBuysiigndiiaosiefos



0.00085_f

0.0006 |- / o

-0.2 (i) 0.2

0.0008,

0.0007 / 0

=02 (i) 0.2

0.00085 -U\/
\

0.0006 | Y
T T
-0.2 (iif) 0.2

Figure 6. (a) Tied arch with spring in series, shown in the unstressed state. (b) Snapback response shown for h = 0.2, k =1
and k; = 0.04. A, and 4 represent, respectively, the energy barrier and energy available for release in moving from the upper
equilibrium position to the lower position. (c) Energy landscape at different values of A. (i) Ay > 4; at A =0.19 < Ay.
(ii) Ay = A, at Maxwell displacement Ay = 0.2. (iii) Ay < Ayat A =021 > Ay.

equilibrium path passing over a maximum limit point and into a region where it goes back
on itself, and then through a minimum limit point into a new region of positive stiffness. Like
the tri-linear system of figure 4, it has three distinct positive-stiffness regimes—two that are
stable and one that is unstable even under conditions of controlled displacement A. At the fixed
displacement A marked by the dashed line, A; represents the energy hump to be overcome via
the unstable equilibrium before the system can move to the second stable equilibrium state, and
Ay is the energy released once this hump has been traversed. The condition A; = A, again marks
the Maxwell displacement, where the two stable states have equal energy.

(a) Elementsin parallel

(i) Uncoupled system

For a row of two cells that are uncoupled apart from a frictionless connecting hinge, as seen in
figure 7a, the potential function becomes

1 2 2
Vincoupled = EkL2 (2,/ 1-Q3—2V1- h2> + EkL2 (2,/ 1-Q—2v1- h2>

+ %ksz(A —h+ Q)+ %kng(A —h+ Q)% — PLA. (4.1)

Differentiation with respect to the three degrees of freedom Q, Q» and A gives three solvable
equilibrium equations and lead to the response of figure 7b. The smooth path mirrors that
of figure 6b with equal displacements in each cell, while bifurcations mark a breaking of this
symmetry and provide an additional non-homogeneous solution Q1 # Q».

As in figure 4, there are now two potential instabilities, one in each cell, each taking place at
the Maxwell displacement Ap;. The inherent symmetry suggests that all four areas A; for i=1..4
are equal. Again it is immediately apparent from the areas involved that the required level of
disturbing energy required to initiate buckling in a single cell, or in one cell followed by the other,
is half that needed for both cells to buckle through simultaneously.

Figure 8 shows the load/displacement response for four uncoupled cells in parallel,
constrained to act together as in figure 7. The added complexity that comes with a relatively
modest increase in the number of degrees of freedom from three to five is immediately apparent.
The initial loading path, distinguished here by (») and shown in black, has all four cells deflecting
by the same amount at all stages. Starting from the origin, the path passes over a limit point and
encounters a multiple bifurcation point B, from which emerge a number of equilibrium paths;
these are distinguished by having either one, two or three cells deflecting by the same amount
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Figure 7. Uncoupled cells in parallel. (a) Physical system. (b) Load—displacement response demonstrating single Maxwell
displacement Ay when Ay = A, = A3 = As.DrawnforL =1,h = 0.2,k =Tand k, = 0.04.

and more markedly than the rest, and are respectively labelled O (in cadet blue), @ (in red) and
® (in green). As with the cylinder plot of figure 1, ladder solutions, marked as (© and shown in
blue, also exist, transitioning between the numbered solutions and providing energy humps to
be overcome during buckling. The extra complexity of this complete picture of the equilibrium
paths means that in some of the plots which follow, we only show immediately relevant paths.

(ii) Coupled systems

Coupling between elements in parallel can be accomplished in a number of ways, most simply by
adding a rotational spring to the common pin position as seen in figures 9 and 10. The main effect
of this addition is to shift the positions of the two Maxwell displacements relative to one another
as the cells buckle in turn. As A moves from Ay, to Ay, the difference between Ay, to Ay,
can be either positive, as seen in figure 9 or negative as in figure 10. The difference is significant
in that, if it is assumed that the first instability occurs at the Maxwell displacement (A = Ay, ) or
shortly thereafter, for the former set-up a finite increase in A is required to get from Ay, to Ay,
while for the latter case, once the initial instability has taken place at or beyond Ay, , the system
immediately has enough stored energy to trigger the second instability.

Both systems have the total potential energy for the uncoupled system of figure 7, Vuncoupled
of equation (4.1), with an additional term for the strain energy of the coupling spring, namely,

U.= %K (2 arcsinh — arcsin Q — arcsin Qp)> 4.2)
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Figure 8. Response of four uncoupled cells, set in parallel and constrained to deflect the same amount A, asinfigure 7. (Online
version in colour.)
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P T
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Figure 9. Sequential Maxwell displacements. Under controlled A, if instability occurs at or soon after the first Maxwell
displacement Ay, the system restabilizes in a localized state. Here the coupling spring K is unstressed when arcsin Q; 4
arcsin Q; = 2 arcsin h. Shows (a) system configuration and (b) load-deflection response for L =1,h = 0.2,k =1, k, = 0.04
and K = 0.005.
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Figure 10. Overlapping Maxwell displacements. Under controlled A, if the first instability occurs at or soon after the first
Maxwell displacement Ay, it can immediately trigger the second instability, as the energy released in the first is sufficient
to overcome the next energy hump. Here the coupling spring K is unstressed when arcsin ¢; = arcsin ;. Shows () system
configuration and (b) load-deflection response forL =1,h = 0.2, k =1, k; = 0.04 and K = 0.005.

for the system of figure 9 and
U, = LK (arcsin Q; — arcsin Q2)2 (4.3)

for that of figure 10. The difference in the responses comes from this energy term as the system
passes from the initial homogeneous state, through the non-homogeneous localized transition
and into the second homogeneous state. Equation (4.2) shows that U, increases with either Q1
or o, whereas equation (4.3) has U, depending on the difference, Q1 — Q2; so Q1 = Q2 means
that the coupling spring stores zero energy for figure 10 but not for figure 9. In comparison with
the uncoupled case of figure 8, the Maxwell displacement for the first instability, Apy, is therefore
delayed in both situations, reflecting the extra energy needed to overcome a larger energy hump.
However, while for figure 9 the second instability, Ayy,, is further delayed, reflecting the further
increase in U, necessarily found in the final homogeneous state, for figure 10 the opposite is the
case. Now, the energy level of U, drops back to zero in the final state where Q1 = Q», and so at
A, the energy level of this final minimum must lie below that of the first. This means that Ay,
has already been exceeded by the time A gets to Ayy,, and the Maxwell displacements overlap as
shown.
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Figure 11. (a) Four coupled cells in parallel. (b) Load—displacement response, showing overlapping Maxwell displacements.
Plotted forL =1,h = 0.2,k =1,k = 0.04 and K = 0.005.

When the system of figure 10 is extended to four cells, as shown in figure 11, an interesting
pattern starts to emerge. Here we take a little ‘modelling licence’, in that the individual cells are
positioned in-line, yet the end cells are assumed to be linked by a coupling spring, as though they
are arranged in a loop; in eliminating boundary effects this reflects the circumferential geometry
of the cylinder, but also avoids complex three-dimensional geometries associated with out-of-
plane curvature, which are not needed for this phenomenological description. The corresponding
potential function is given by

4 2 4
V= %kLz > (2,/1 -Q2-2/1- h2> + %ksz (A -h+ Q)
i=1 i=1

3
1
+ EK (Z(arcsin Qj41 — arcsin Q,‘)2 + (arcsin Q4 — arcsin Q1)2> . (4.4)
i=1

It is instructive to compare the response of figure 11b with the uncoupled paths of figure §;
because the tangle of equilibrium paths becomes even more complex in figure 115, only those of
direct relevance to the expected buckling sequence are shown. The second deflected shape on the
right of figure 11b is found on the path marked (O in figure 8; the active cell is second from the
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left in the row, but of course it could have have been any one of the four. The associated Maxwell
displacement Apj,—by the mechanism described above for the system of figure 10—is greater
than its uncoupled counterpart (at A =0.2), i.e. significant strain energy is being stored in the
coupling springs at each end of the active cell, thereby raising the energy hump and pushing the
Maxwell displacement forward. The second instability of the sequence, however, taking place in a
cell adjacent to the first (here to its left), has a reduced energy hump in comparison with the first.
The coupling spring at the left is storing energy, but the one at the other end of the cell is releasing
it as they approach the same Q; value. This results in a second Maxwell displacement, Ay,
(associated with the path shown as () in figure 8) lying much closer to its uncoupled counterpart
at A =0.2 than Ay, . The third Maxwell displacement Ay, (associated with the path shown as &
in figure 8) similarly has one spring storing energy while the other releases it, and so again lies
close to A =0.2, while the fourth releases energy in both springs, so has Ay, significantly less
than A =0.2.

One can image a similar effect to figures 10 and 11 for the cylinder, as there is likely to
be more localized stretching energy involved at the interface between a single dimple and the
adjoining cylindrical section, than between two adjacent dimples in a periodic sequence. The
circumferential interface between two dimples is effectively a bending-dominated fold, whereas
the interface at the end of the series involves stretching energy as the doubly curved dimple
transitions into the cylindrical shape. This also implies that the largest energy barrier to be
overcome in the cylinder is that of initiating a single dimple (two transition regions from doubly
curved dimple to cylinder shape). Additional energy barriers via ladders, see figure 1c, only
initiate one new transition region and therefore correspond to a smaller energy barrier. This
mirrors the particular arrangement and effect of the coupling springs depicted in figure 114,
and we would therefore expect the Maxwell behaviour of the cylinder to behave as depicted
in figure 11b.

(b) Elements in series

Figure 12 shows two cells in series. The system is similar to a recent re-entrant model used to
demonstrate changes in phase between auxetic and non-auxetic behaviour, with the addition
of a spring in series to lean the equilibrium path over and allow for snapback. The response
of figure 12 under controlled displacement A takes the typical form of longitudinal snaking, as
described in [5] and reproduced here in figures 2 and 3. Two Maxwell displacements exist, Ap;,
and Apy,, indicating that the two cells will buckle in turn.

(c) Series and parallel

If two systems as shown in figure 12 are placed in parallel, the bottom two cells are obliged to
displace by the same amplitude. To release this unwanted constraint, a second in-line spring k»
can be placed between the lower cells and the hard boundary, giving the system of figure 13.

This configuration carries extra freedom, in that, with all four cells being able to deflect
by different amounts, the central part may move upwards or downwards. An extra degree of
freedom I is introduced to allow for this. The issue resonates with cylinder buckling, in that a
row of dimples as seen in figure 1 necessarily forms away from the ends where hard boundary
conditions prevail.

The potential function for the system of figure 13 can be written

1 4 2 1 2 4
V= Ekﬁ; (2,/1 -Q?-2y1 —h2) + EkzL2 (;(A — T —h+Q)? +§(r —h+Qi)2)

1
+ EK ((2 arcsin 1 — arcsin Q1 — arcsin Q2)2 + (2arcsin h — arcsin Q3 — arcsin Q4)2) — PLA,
(4.5)
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Figure 12. Two elements in series. Note similarities with a recent re-entrant auxetic model [23]. Plotted for L =1, h = 0.2,
k=1and k, = 0.04.

Figure 13. Block of four elements. The central part comprising rigid vertical bars moves 1™ downwards.

and differentiation with respect to the six generalized coordinates, Q; for i=1,...,4, A and I,
and equating to zero leads to six solvable equilibrium equations.

The uncoupled system of figure 13 with K=0 has the response of figure 14. Here, different
colours have been used to distinguish equilibrium paths with differing symmetry properties. The
black line is the solution if all four cells deflect by the same amount, and mirrors the response of

€L20020 9Lk ¥ 205§ 204g edsy/jeuol/bioBuysiigndiiaosiefos



Pl
0.01 1
0.005 - — A% 0m0
- Q1=Q2 Q3=Q4
. Q1=Q2 Q37£Q4
- Q1=Q3 Q2=Q4

—-0.005 4
I Ql# QZ# Q35£ Q4

-0.01

Figure 14. Full set of equilibrium paths for the uncoupled four block system of figure 13. Plotted for h = 0.2, k =1, k, = 0.04
and K = 0. (Online version in colour.)
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Figure 15. Maxwell displacements for the model of figure 13, with only relevant parts of equilibrium paths shown. Rotational
springs are unstressed in the zero load position Q; = h. Plotted for h = 0.2, k =1, k; = 0.04. (a) K = 0: no Maxwell
displacements. (b) K = 0.01: overlapping Maxwell displacements per row as in figure 10. () K = 0.02: sequential Maxwell
displacements as in figure 9.

the single cell of figure 6. In addition, the blue line gives the same response as two cells in series,
keeping symmetry between the members of each row but allowing localization into either one
row or the other. The light green line is the opposite circumstance, maintaining symmetry about
the horizontal centreline while allowing localization about the vertical one, and in combination
with the black line, mirrors the uncoupled system of figure 7. The dark green lines, bifurcating
from either the black or blue lines, break symmetry between the cells of one row but maintain
it in the other. Finally, the red line represents solutions in which all the cells deflect by different
amounts.

Load-deflection responses for this system with three different values of coupling rotational
spring K are shown in figure 15. Here, because of the large number of possible equilibrium paths
that exist, only the parts relevant to the Maxwell displacement are shown. Figure 152 shows the
paths for the uncoupled case (K = 0). Now, although the initial restabilized regions lying below
areas Ay and Ay do exist, the system would be unlikely to remain there, as it would arrive with
enough excess energy (represented by areas A; and Az) to pass easily over the next energy barrier.

With moderate coupling (K = 0.01), as seen in figure 15b the situation is different, although the
outcome under moderate disturbance may end up much the same. Now, four different Maxwell
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Figure 16. Maxwell tipping point for the system of figure 13, at K = 0.011405, marking the changeover between overlapping
Maxwell displacements, as in figure 15b, and separated Maxwell displacements, as in figure 15¢. All the shaded areas are equal
in size, indicating that the same amount of energy is required to trigger each instability.

displacements, one for each cell, do exist, and overlap takes place for each row, as seen in figure 10.
The complete picture is then akin to that shown in figure 5, with both instabilities in a row
occurring at or near the same displacement, but extra end-shortening being required between
instability in the first row and the second.

Finally, for strong coupling (K =0.02), the four Maxwell displacements are all separated as
shown in figure 15c, with snap-through for both cells of a row having to complete first before
snap-through can take place in either cell of the second row.

(d) Maxwell tipping point

It is clear from figure 15 that a situation exists somewhere in the range 0.01 < K < 0.02, where
the Maxwell displacements for each cell in one row of figure 13 coincide. By trial and error, this
circumstance is found to occur at K = 0.011405, marking the point where the first instability of one
cell in a row releases just enough energy to trigger the instability of the second cell in the same
row. The load—deflection response for this special case, which we refer to as the Maxwell tipping
point, is plotted in figure 16. The end-displacements for two such points, one for each row of the
system, are here denoted as Apy;, and Apyy,.

5. (ylinder buckling revisited

The phenomena explored in the previous two sections help us understand the snaking and
intertwining sequences of figure 1; so we now turn our attention back to the axially compressed
cylinder. We start by detailing the two simplest cases of transitioning to the next pattern in a
dimpling sequence: (i) the energy barrier associated with traversing from one dimple to two
dimples, from two to three, from three to four, etc. via the unstable ladders; and (ii) the energy
barrier associated with traversing from one dimple to three dimples, from two to four, from three
to five, etc. via the unstable portions of the respective, odd- or even-numbered snake. The ladders
are henceforth denoted by L; and the unstable snaking portions by S;;, where each unstable
equilibrium path, L or S, represents the energy barrier to traverse from dimple mode i to dimple
mode ;.

As expected intuitively, the energy barrier associated with the ladders, L;;, connecting an odd
(even) dimple mode to the next even (odd) dimple mode in the sequence is always smaller than
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Figure 17. Energy barriers (A IT) of different unstable equilibria, asymmetric ladders and symmetric snakes, with respect
to a stable equilibrium path (single dimple and double dimple). (a) Energy humps with respect to the stable single-dimple
equilibrium path of the unstable ladder (L;,, one to two dimple connection) and the unstable portion of the snake (S, one
to three dimple connection). A IT = 0 corresponds to the strain energy in the stable single-dimple mode for all levels of u.
(b) Energy humps with respect to the stable two-dimple equilibrium path of the unstable ladder (L, two to three dimple
connection) and the unstable portion of the snake (S5, two to four dimple connection). A 7T = 0 corresponds to the strain
energy in the stable double-dimple mode for all levels of u.

the energy barrier associated with the snaking portions, S, i.e. traversing from an odd (even)
dimple mode to the next odd (even) dimple mode. The energy barriers for L1, S13 and L3, So4 are
compared, respectively, in figures 17a,b. In these plots, the x-axis denotes the range of compression
uR/Lt over which the ith mode exists (blue segments in figure 1a), and the y-axis denotes the
percentage difference between the energy in the stable equilibrium (energy well) of the ith mode
and the energy in the unstable equilibrium (energy hilltop) of the jth mode. It is clear that the
energy barrier of the ladders, L1, and Ly3, is always smaller than the energy barrier of the snaking
portions, S13 and Sy4, and this trend repeats for all other higher-order modes L;; and S;; (not shown
here). In all cases, the energy barrier provided by L;; and S;; with respect to the stable modes i
is always less than 1% of the strain energy associated with mode i, i.e. Ally = ((I1; — )/ 1T;) <
1% for all u. This suggests that the stable equilibria along both the odd- and even-numbered
snaking sequences are only marginally stable and easily perturbed into other modes by external
disturbances, shocks, etc. [14]. Finally, the two sets of curves are seen to intersect and converge
towards uR/Lt~0.39. This is because in the vicinity of uR/Lt~ 0.39, mode j of L;; connects to
mode i at a branching point, and mode j of S;; connects to mode i via a limit point (figure 1c).

As mentioned in the previous paragraph, the small energy barriers provided by both the
unstable ladders and the unstable snaking portions, mean that the cylinder is highly sensitive
to external disturbances and imperfections on any of the stable equilibria of the two (odd
and even) snaking sequences. Indeed, as shown by Groh & Pirrera [11], the same is true for
the pre-buckling path for levels of compression uR/Lt 2 0.3 (or equivalently u/uq Z 0.5, where
the classical buckling end-shortening is given by uq =Lt/R x 1/4/3(1 — v2)). As shown in the
previous two sections, one way to quantify the high sensitivity to external disturbances and
imperfections associated with small energy barriers, and the exceeding likelihood that the
cylinder will transition out of marginally stable equilibria, is again the Maxwell condition [5]. Here
it would mean that the system would be likely to transition out of a marginally stable equilibrium,
i.e. a fixed point with vanishingly small energy barriers, if an adjacent stable equilibrium exists
with less total potential energy. Hence, for the axially compressed cylinder, we look for the level
of end-compression, uM at which the strain energy of a stable higher-order mode j first falls
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Table 1. Maxwell displacements, uM for pairs of different dimple buckling modes, e.g. from pre-buckling (0) to one dimple (1),
from two dimples (2) to three dimples (3), etc. The classical buckling end-shortening is given by ug = Lt /R x 1/+/3(1 — v2).

dimple change Maxwell displacement

from mode " /uq

o
—_
o
[
]
=
o
[
=
S

via ladders 1 2 0.485 0.294

via snakes 1 3 n.a. n.a.
Jr o R G
jo g G e
G G G e
g G g G
G g g G

below the energy of the current marginally stable mode i. When this is the case, i.e. the Maxwell
displacement uM is exceeded, the energy barrier provided by ladder L;; or unstable snaking
portion S;; is sufficiently small to allow the system to transition spontaneously from the now
higher energy well i to the lower energy well ;.

The results of this energy analysis are summarized in table 1. The first line of the table provides
the level of end-shortening ™ at which the total potential of the stable single-dimple buckling
mode first falls below the total potential of the pre-buckling state. This occurs at a normalized
displacement of uM/uy = 0.524, which, interestingly, is close to the value u/uq = 0.5 obtained in
a linearized buckling analysis of an isotropic cylinder with degraded membrane energy [24,25].
Hence, following the argument of the Maxwell criterion, the cylinder is exceedingly likely to
transition out of the stable pre-buckling equilibrium for levels of compression u/u > 0.524.

Once in the stable single-dimple mode, the cylinder can undergo transitions to higher-order
dimple modes either by traversing the energy barrier associated to a ladder or an unstable
snaking portion. The results in table 1 show that the sequential Maxwell displacements to higher-
order modes, either via the ladders or the unstable snaking portions, tend to a decreasing
value of uM/uy = 0.482. This suggests that the cylinder considered here is in a configuration of
overlapping Maxwell displacements (figures 10, 11 and 15b), with the implication that once the
first instability is triggered beyond the first Maxwell (uM /1 > 0.524), enough disturbance energy
has been added to the system to trigger all further instabilities. The result is an unstable cascade
of dimples forming one by one in turn, finishing in a stable configuration with one fully formed
circumferential ring of dimples. Indeed, this dynamic buckling sequence is often described
qualitatively in high-speed photography experiments of buckling events in axially compressed
cylinders [13]. In summary, our analysis shows that the buckling behaviour of Yamaki’s longest
cylinder (Z =1000) [16] lies beyond the Maxwell tipping point. This means the cylinder is most
likely to stabilize into a fully formed ring of diamonds upon buckling, and this is indeed what
is observed in Yamaki’s experiments. For other cylinder geometries, i.e. Batdorf parameter Z, the
buckling behaviour may precede the Maxwell tipping point. Although such a parametric study is
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not investigated herein, Yamaki’s experiments on other geometries Z = [50, 100, 200, 500] suggest
similar behaviour to the case of Z = 1000 studied herein [16, p. 236].

We see from table 1 that the largest overlap in Maxwell displacements occurs during the
formation of the first dimple. The response of figure 11 for four coupled cells in parallel has a
similar trend, and allows us to infer some of the significant characteristics of cylinder buckling.
It is clear that the energy barrier to overcome during formation of the first dimple is greater
than that for later dimples in the sequence. Analogy with the role of the coupling spring K in
figure 11 then suggests that more membrane strain energy is being stored in the cylinder during
the first instability than in later instabilities. The first instability involves a transition from folded
(dimple) to cylindrical shape at each end of the dimple, whereas the following multi-dimple cases
all store energy in just one such transition. Both the cylindrical and folded shapes have zero
Gaussian curvature, but transitioning between them is apparently impossible without inducing
local membrane stretching. This means that the first instability of the dimpling sequence has an
advanced Maxwell displacement in comparison with the others.

6. Concluding remarks

We have presented a high-fidelity finite-element analysis of the thin cylindrical shell under
controlled axial end-shortening, and demonstrated conclusively that the route to instability starts
with a single inwards finite-sized dimple in the surface of the shell, remote from the boundaries.
The instability process then progresses with a sequence of further dimples popping inwards in
turn, until an entire circumferential row of dimples is created. Under further end-shortening the
response then restabilizes, the next stage being a repeat of the sequence into a second row of
dimples, adjacent to the first. Most of this behaviour is unstable even under controlled end-
shortening, and so has remained largely hidden during experiments, yet it remains absolutely
crucial to the buckling process. It identifies, for example, the localized energy hump necessary to
trigger buckling into a single dimple, which is then immediately followed by collapse into the
full row in a highly unstable domino effect. The related bifurcation sequence is seen to be part of
a complex snakes-and-ladders scenario of interacting, odd- and even-numbered localized waves.
This process of pattern formation, transverse to the direction of applied loading with the reaction
force falling and end-shortening oscillating has, we believe, been discussed in detail here for the
first time.

To elucidate the hidden mechanics of this buckling process further, we have introduced
a hierarchical arrangement of arch-like mechanisms placed both in series and in parallel.
Essentially, each arch corresponds to a cell coupled weakly or strongly to its neighbours in a
cellular arrangement. While each individual unit cell features a single limit point both under
either force- or displacement-control, the complexity of the response compounds rapidly as the
cellular arrangement is scaled up, replicating the response seen in the axially compressed cylinder.
First, the snaking sequence in the cellular model corresponds to each cell snapping through
individually or alongside other neighbours. Second, the snaking sequence proceeds in rows, i.e.
a single cell begins the instability process by snapping through, then cells to the left and right
follow, and when a full row is complete the next rows follow by replicating this sequence. Third,
by defining a specific degree of coupling between adjacent cells a situation occurs whereby the
snap-through of a single cell causes a cascade effect; namely, the energy released by snap-through
of a single cell is sufficient to force all other cells in a row to snap through as well. The level of
loading at which this occurs is here defined as the Maxwell tipping point. Indeed, such behaviour
has been observed in experiments of axially compressed cylinders conducted by Esslinger [13];
beyond a specific level of end-shortening, tapping a compressed cylinder with a finger creates
a single dimple that then induces a knock-on effect growing into a full ring of dimples. Below
a critical threshold of axial compression, this effect does not occur and the single dimple arrests
without growing further.

Data accessibility. This article has no additional data.
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