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ABSTRACT 

Wrapped Tow Reinforced (WrapToR) trusses are ultra-efficient structures that are produced from 

composite materials using a novel winding process. In this study, a structural model based on the 

stiffness method is developed for the novel truss configuration to predict the pre-failure mechanical 

response. To validate the model, the mechanical response of the structures is experimentally 

investigated to a high level of detail using a series of three-point bend tests. Results of the tests 

highlight the importance of modelling behaviour of the truss joints due to both internal joint 

deformations and their effect on load transfer between members. The results also show that the 

developed model can predict deflections and strains to a reasonable accuracy across a range of truss 

configurations.  

Keywords: Composite trusses; Computational modelling; Mechanical testing; Filament winding 

1 Introduction 

Lattice structures, such as trusses and space frames, offer high structural efficiencies making them the 

preferred configurations in a wide range of applications. By grouping material together into localised, 

discrete elements, they can move material far away from the axis of bending or torsion to create 

structures with very high stiffness and strength relative to their mass. Also contributing to the 

historical popularity of these structures is that they can be analysed using relatively simple techniques. 

Before the advent of computers, the response of a truss could be predicted by applying the assumption 

that the structure is formed of two-force members that only carry axial loads [1]. The advent of 
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modern computers led to the development of matrix methods which do not require such assumptions 

to reduce computational expense. By forming structural problems in a systematic manner that is ideal 

for computer implementation, the methods made it possible to conduct analyses of large and highly 

redundant lattice structures that were previously unfeasible to compute by hand [2].  

The use of composite materials in lattice structures is an idea that has been gaining popularity in 

recent years. By producing lattice members from composites, the inherent anisotropy can be taken 

advantage of by aligning the fibres along the length of the primarily axially loaded members. This 

synergistic combination of material and geometry can therefore produce highly efficient structures. 

One earlier example of a composite lattice is the truss concept presented by Schütze [3] which is used 

commercially in the Zeppelin NT airship. While Schütze’s work showed the carbon trusses to weigh 

roughly half that of a comparable aluminium truss, the manufacturing process requires the assembly 

of many parts and is, therefore, labour intensive. More modern examples of composite trusses tend to 

use more advanced manufacturing processes to avoid the need to assemble many parts. The majority 

of these structures fall into one of two categories: lattice core sandwich panels, such as those seen in 

[4]–[9], or lattice beams, such as the IsoTruss® [10], [11], Open-Architecture Composite Structures 

(O-ACS) [12], Advanced Composite Truss (ACT) [13], and other unnamed concepts [14], [15]. 

Relative to their weight, composite lattice beams have impressive flexural properties, making them 

highly suitable as lightweight beams members [14] or as compression columns [16], [17].   

The patented WrapToR truss concept [18] uses a simple winding process to produce composite lattice 

beams in which the fibres within each member of the truss are aligned along the length of that 

member. The novel manufacturing process involves holding premade tubular composite longitudinal 

members (referred to as chord members) on a rotating mandrel while fibre tow, that has been wetted 

out with resin, is wound around them. The wetted tow is then cured, forming shear members which 

are simultaneously co-cured to each other and co-bonded to the underlying chord members. The 

process can be used to create composite trusses with a variety of shapes and sizes, such as those 

shown in Figure 1.  
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Implementation within lattice structures has been highlighted as a means to maximise the benefits of 

composite materials [19] and the discussed lattice beam concepts have demonstrated highly 

impressive structural efficiencies. However, to fully unlock the potential of these technologies, the 

ability to both understand and accurately predict their mechanical response will be needed. This must 

be achieved through the development and detailed validation of structural models. 

Within the literature, several authors have developed structural models to predict lattice beam 

behaviour under axial, torsional and flexural loading scenarios. While the derivation of analytical 

expressions for this purpose has been investigated [20], the use of finite element (FE) methods is 

generally preferred [11], [12], [14], [21]. Although popular, these models are not always stringently 

validated with authors often comparing to experimental data from only one test configuration. In 

addition to this, models are generally validated using overall deflection data, meaning the model’s 

ability to predict member stresses or strains is not assessed.  

During the preliminary work on the WrapToR truss, a low-fidelity analysis tool based on the stiffness 

method employing a two force-member assumption was developed [22]. Within the study, this tool 

was validated by comparing it to experimental deflection data of one high aspect ratio truss subjected 

to torsional and flexural loads. Later work on the technology looked at improving and automating the 

WrapToR winding process [23], during which a variety of truss sizes were tested in bending. When 

comparing these experimental results to the previously developed analysis tool, the model was found 

to be inaccurate when predicting the flexural response of lower aspect ratio trusses.  

Within this study, an improved, higher fidelity truss analysis tool is developed to predict the 

mechanical response of WrapToR trusses. Two different idealisations of the WrapToR truss geometry 

are compared which use different methods of representing the truss joints. The model’s ability to 

predict flexural behaviour is validated through testing of five truss configurations under three-point 

bending. The response is captured to a high level of detail by using a variety of different measurement 

techniques.  This in-depth investigation compares model and experimental data for global truss 

stiffness, local strains, and local deformations. 
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Figure 1: WrapToR trusses. 

2 Experiment 

To experimentally characterise the mechanical response, five truss configurations were subject to a 

series of three-point bend tests. During these tests, deformations and member strains were measured 

using multiple experimental techniques. The experimental work is split into two sections. The first is 

focused on global truss stiffness and looks at determining the effective flexural rigidities of the truss 

beams. The second takes a more detailed look at the mechanical response by measuring local 

deformations and member strains. 

2.1 Sample manufacture 

For validation of the analysis methods over a range of truss geometries, five configurations were 

investigated. All configurations have an equilateral triangle cross-section formed of three chord 

members. For each configuration, three trusses were manufactured using the automated winding 

machine previously developed and detailed in [23]. Tow feed rate was controlled at 2 m / min 

resulting in a total winding time of 4 minutes and 20 seconds per truss. Curing of the epoxy shear web 

matrix was conducted at room temperature. The test samples were manufactured at a length of 1 m 
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and were tested at multiple spans to investigate any effects of varying aspect ratio. The five 

configurations are detailed in  Table 1 with the related geometric features depicted in Figure 2. 

 

Figure 2: Truss geometry definition. 

Table 1: Truss test sample geometric configurations. 

Truss 

configuration 

ID 

Truss 

height, H 

(mm) 

Chord tube 

diameter, 

∅𝑐(mm) 

Chord tube 

wall 

thickness 

(mm) 

Winding 

angle, θ 

(°) 

Tow 

size, 

𝑁𝑠 

Mass per 

unit length, 

(g/m) 

H33_1* 33 3 0.5 45.0 24k 33.0 

H33_2 33 3 0.5 56.3 24k 31.1 

H66_1 66 4 0.5 45.0 24k 41.2 

H66_2* 66 4 0.5 45.0 48k 56.2 

H99* 99 5 1.0 45.0 96k 102.0 

*Configurations tested in both global stiffness and strain tests. 

2.2 Global truss stiffness 

To determine global bending stiffness behaviour, the five truss configurations were tested in three-

point bending using an Intron 8872 universal test machine (UTS) and the custom-built loading rig 

displayed in Figure 3. The loading rig is built from modular aluminium extrusions allowing the test 

span to be easily adjusted. Two steel tubes form the end supports and load is introduced to the lower-

central truss joints using a 6 mm steel pin.  Load was measured with a 5 kN load cell and was applied 

at a displacement rate of 4 mm / min. Displacement was measured at the two lower central truss joints 

using laser sensors. To account for any deformations within the rig, displacement of the supports was 

measured using potentiometers. From the measured displacement, δ,  at the centre of truss, the 

effective flexural rigidity, 𝐸𝐼𝑒𝑓𝑓, of the truss beam was calculated using the following equation for 

deflection of a simply supported beam with length L, under loading, P: 
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𝐸𝐼𝑒𝑓𝑓 =  

𝑃𝐿3

48𝛿
 i 

   

 

Figure 3: Custom three-point bend test rig. 

2.3 Member strains and local deformations 

To investigate the mechanical response to a higher level of detail, a second round of testing was 

conducted in which member strains and local deformations were measured. For these tests, three of 

the five truss configurations (highlighted in Table 1) were again tested in three-point bending at spans 

of 792 and 396 mm. Load was applied using hanging weights to provide more space around the 

structure for positioning of measurement equipment.  For configuration H33_1 maximum loads of 10 

and 15 kg were applied for 792 and 396 mm span, respectively. All remaining configurations and 

spans were loaded to 30 kg. For each truss configuration, a variety of instruments were used to 

measure strains and local deformations, including Digital Image Correlation (DIC), strain gauges, and 

extensometers.  

Figure 4 shows a summary of where strains and local deformations were measured. Detailing of each 

of these measurements is given within the following sub-sections. 
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Figure 4: Summary of strain and local deformation measurement methods and locations. 

2.3.1 Chord member strain 

Two strain gauges were attached to one of the central upper-compressive chord members, as is seen in 

Figure 5a. This member was chosen because the analysis predicts it to be the most highly strained 

region of the truss. Strain gauges were placed at the centre span of the member on both the upper and 

lower surfaces so that bending and axial strain in the member could be determined.  

To determine the bending moment distribution within the upper-compressive chord members, the 

largest truss configuration (H99) was subjected to a series of measurements using clip extensometers 

(Figure 5b). Again, by taking readings on the top and bottom surfaces of the tube, both the axial and 

bending strain could be determined. Using the measured bending strain, 𝜀𝑥,  the moment, 𝑀𝑍, at each 

measurement point was calculated using the following rearranged form of the engineers bending 

equation: 

 𝑀𝑍 =
𝜀𝑥𝐸𝑥𝐼𝑧

𝑦
 ii 

where Ex is the longitudinal Young’s modulus and y is the section height. 

Using this method, the bending moment at one-quarter and three-quarters length of each upper chord 

member was determined. As loads are only introduced into members at the joints at their ends, the 

distribution of bending moment across a member will be linear. This means that by measuring the 

moment at two places within a member, the moment distribution across the length of that member can 

be determined. By doing this in each upper member along half the truss span and assuming a moment 
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distribution that is symmetric about the truss centre span, the moment distribution throughout the 

entire upper compressive pultrusion tube was determined.  

 
(a) 

 
(b) 

Figure 5: Strain measurements in chord members: a) strain gauge; b) clip extensometers. 

2.3.2 Shear member strain 

The shear members of the WrapToR truss configuration form a repeating cross pattern. Each cross 

contains two shear members which are connected at their crossing-point via an epoxy bond that is 

formed during winding. Using clip extensometers, strain was measured in each shear member above 

and below this crossing point. Again, to determine axial strain within the member it was necessary to 

account for bending by measuring the strain on opposing sides of the members. Strains in the shear 

members were only measured in configuration H66_2 as the smaller configurations were too small to 

fit the extensometers and the strains in the larger truss were too small to be measured by these 

devices.  

2.3.3 Internal joint deformations 

To investigate deformations within the joints that connect the shear and chord members, three joints 

on each of the trusses were inspected during testing using a 5 MP 3D Digital Image Correlation (DIC) 

system. Specifically, DIC was used to track the displacement of the joints along the truss length 

relative to the neighbouring chord members. Those inspected were the upper central joint and the two 

adjacent upper joints (as seen in  
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Figure 4). This method was used to get a qualitative interpretation of deflections within the joints. 

3 Analysis development 

3.1 Matrix structural analysis overview 

To predict the structural response of the WrapToR trusses, an analysis tool that uses matrix structural 

analysis (MSA) was coded in MATLAB®. MSA is a well-established approach to structural analysis 

and is well documented within the literature. For this reason, only a brief overview of the particular 

implementation used here is given. For in-depth detailing of MSA methods, the reader is directed to 

the following textbooks [2], [24], [25]. 

When using MSA a structure is first geometrically idealised into a series of discrete elements 

connected at nodes. Force-displacement relationships for each of the elements are then defined based 

on the element properties. Element geometries and force-displacement relationships are systematically 

organised using matrix algebra into a form that is convenient for computer implementation. Loads and 

boundary conditions are then similarly applied. Following this, conditions of equilibrium and 

compatibility are used to solve the matrix equations to give the element forces and nodal 

displacements. There are two variants of MSA methods: the force method, and the stiffness method. 

Within the lesser-used force (or compatibility) method, the element forces are taken as the primary 

unknowns which are first determined through solving of the compatibility equations. The stiffness (or 

displacement) method uses the nodal displacements as the primary unknowns which are found by 

initially solving the equations of equilibrium. Element forces are then determined using compatibility 

considerations and member force-displacement relationships. Due to its relatively easy 

implementation in computer codes, the stiffness method is more suitable for large and highly 

redundant structures which has led to more widespread use [2]. These advantages also make the 

stiffness method the most appropriate for analysing the WrapToR truss structures and hence, the 

method is used here. 



 

 

10 

 

A key stage within the stiffness method is the formation of the element’s stiffness matrix, k. Unlike a 

true pin-jointed truss structure WrapToR trusses contain bonded joints, meaning the members will 

carry both axial forces and bending moments. Previous work [23] has shown that modelling WrapToR 

members as truss (or bar) elements that are only capable of carrying axial loads is insufficient to 

predict deflections within the composite truss structures. To address this, within this study a higher-

fidelity model consisting of beam elements was developed and used. The specific stiffness matrix 

formulation employed here is for shear deformable beam elements, the derivation of which can be 

found in [24]. 

3.2 Geometric idealisation 

As stated previously the first stage to MSA is the idealisation of the structural geometry into a format 

that is suitable for computer implementation. When attempting to idealise the WrapToR truss 

configuration into a series of beam elements an issue is encountered at the truss joints. As the shear 

member tow is wrapped over the pultruded chord members (and does not run through their centres), 

placing beam elements along the centre line of the truss members results in an eccentricity where the 

shear and chord elements do not connect at a node. To deal with this joint eccentricity, two methods 

of geometric idealisation were investigated. The first, referred to as the concentric model, simply 

alters the angle of the shear members to remove the eccentricity at the joints, as is depicted in Figure 

6a. The change in angle between the physical truss and the geometrically idealised model is typically 

less than 2 degrees to create concentric joints.  The second method does not alter the geometry of the 

truss members and deals with the eccentricity using an additional beam element at the joint. This 

method, depicted in Figure 6b, is referred to as the eccentric model. As well as representing the actual 

truss geometry more closely, this method also has the benefit of being able to model displacements 

within the joints. The major disadvantage of this method is that representative stiffness properties are 

needed for the additional joint element. Determining these properties is not trivial and is discussed in 

the following subsection. 
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(a) 

 

(b) 

Figure 6: Joint geometric idealisation methods: a) Concentric; b) Eccentric. 

3.3 Determining constituent properties 

After idealising the structure into a series of elements and nodes, the stiffness properties of the 

individual elements need to be assigned. For the WrapToR truss configuration, three sets of element 

stiffness properties need to be defined: chord, shear, and for the eccentric model, joint members. The 

chord members are formed of carbon-epoxy pultruded tubes purchased from EasyComposites™ and 

the shear members of Tenax IMS60 carbon fibre tow impregnated with SuperSap™ CLV epoxy resin. 

To determine Young’s modulus, E, the pultruded tubes were tested using ASTM D3916-08 [23] and 

the impregnated carbon tow using ASTM D4018-17 [24]. For each configuration, a minimum of four 

samples were tested. Young’s moduli from these tests are displayed in Table 2. 

The cross-sectional area of the pultrusions was found by measuring the tubes with a micrometre. For 

the shear members, the area determined using microscopy in the previous study [23] for impregnated 

24k tow was used. For the 48k and 96k tow shear members it was then assumed that the areas would 

be 2 and 4 times larger, respectively. For the material shear modulus, G, a typical value for carbon-

epoxy of 4.5 GPa was used [26]. 

Table 2: Truss constituent properties. 

Truss component Member Young’s modulus (MPa) Area (mm2) 

CFRP tube: 3 mm Chord 137.1 3.86 

CFRP tube: 4 mm Chord 136.9 5.42 

CFRP tube: 5 mm Chord 125.1 11.79 

Impregnated CFRP 24k tow Shear 107.8 1.09 
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In the eccentric model, stiffness properties are also needed for the beam elements representing the 

joints. This includes the joint elements moduli and cross-sectional area. Accurately determining 

representative joint stiffness via localised joint testing would be extremely difficult for the given truss 

configuration. To determine appropriate joint stiffness properties, first, it was assumed that only shear 

deformations would occur within the joint elements and that axial and bending deformations are 

negligible. This simplifies the problem and is likely a reasonable assumption given the very low 

aspect ratio of the joint members. The Young’s modulus of the joint elements was therefore increased 

to a large value (1000GPa) such that changes in E had a negligible effect on the model deformations. 

A value for the shear stiffness of the elements was then determined by fitting the model results to the 

experimental data. Through this experimental fit, the shear stiffness of the joint elements that gave the 

lowest total absolute error across all the test cases was found to be 11,700 N. While it is likely that 

joint shear stiffness varies between truss configurations, it will later be seen that this constant value 

provides a reasonable prediction for all the configurations tested. 

3.4 MSA verification with commercial FE package 

To verify the coded MSA analysis tool, equivalent linear Finite Elements (FE) models for three truss 

configurations were built in Abaqus using shear deformable beam elements (B32). A single element 

was used for each truss member. Results comparing the models for a span of 792 mm and a load of 

400 N are shown in Table 3. Here it is seen that the MSA model predictions are within 1% of those 

from FE analysis. The primary advantage of the MATLAB coded MSA tool is that truss geometry is 

parametrically defined within the code, such that the user can generate new truss configurations and 

define new analyses by simply specifying the parameters of the truss configuration and the applied 

loading/boundary conditions. The run time of the MATLAB tool is also very fast. For the truss 

configurations investigated in this study, a full solution from geometry generation to results output 

took between 0.17-0.25 seconds on a desktop computer with a 3.4GHz processor and 16GB of RAM. 

This makes the analysis convenient for future design studies and optimisation.  
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Table 3: MSA and commercial FE comparison. 

Configuration  Load point displacement 

(mm) 

Max element axial force 

(N) 

Min element axial force 

(N) 

MSA FE % diff. MSA FE % diff. MSA FE % diff. 

H33_1 20.62 20.65 -0.14 1435 1436 -0.04 -2943 -2944 -0.04 

H66_2 5.286 5.296 -0.20 665.5 665.6 -0.02 -1411 -1412 -0.02 

H99_1 -2.284 -2.304 -0.88 417.9 418.2 -0.06 -917.4 -918.1 -0.07 

4 Results & Discussion 

4.1 Global stiffness 

In Figure 7 the experimentally determined effective flexural rigidities of each truss configuration are 

compared with predictions from the concentric and eccentric models. For each truss configuration, 

experimentally determined effective flexural rigidity is seen to increase with span; a trend that also 

features in the model results. This is due to the relative contributions of shear and bending deflections 

to the overall measured deflection at varying spans. At shorter spans, the contribution of shear 

deflection is larger and therefore lower effective flexural rigidities are observed. As the span 

increases, shear deformations become less significant and the bending rigidity approaches a constant 

value. 

Also plotted in Figure 7 are flexural rigidity , EI, predictions determined using parallel axis theorem 

assuming contributions from the chord members only. This method has been used by some authors to 

estimate IsoTruss® flexural rigidity for global buckling predictions [27], [28]. In all test cases, 

parallel axis theorem is seen to overpredict EI. However, for the smaller section beams (Figure 7a and 

b) the model and experimental results appear to approach the predictions of parallel axis theorem at 

larger spans. In fact, model results approach predictions from parallel axis theorem for all 

configurations if the beam aspect ratio is sufficiently high. When running the eccentric model for a 

high beam aspect ratio (span divided by height) of 120, the determined EI is found to be within 1% of 

that predicted by parallel axis theorem for all five configurations.  Again, this can be explained by the 

relative contributions of bending and shear deformations. At higher beam aspect ratios, bending 

deflections dominate meaning parallel axis theorem can provide reasonable predictions. 
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When comparing experimental results of the different test configurations, Figure 7 demonstrates how 

the WrapToR trusses take advantage of the non-linear scaling laws of stiffness to achieve impressive 

stiffness increases with only relatively small mass penalties. When comparing configurations H33_1 

and H66_1 at the largest span, a 25% increase in mass corresponds to a 200% increase in stiffness. 

This is possible because the truss configuration can move material further away from its neutral axis 

using relatively small amounts of additional material. 

One issue faced during testing was that it was difficult to precisely level the trusses so that all four 

support points and both load points were in contact with the testing rig. This was particularly 

challenging in the configurations with larger shear members as the truss joints protruded further. This 

gives some reasoning as to why there is a reasonable variation in measured stiffnesses between the 

three different specimens of each configuration, as shown by the plotted error bars. Manufacturing 

inconsistencies between samples is also likely to be a contributing factor, particularly the variation of 

resin content within the shear member tow. It should be noted here that due to the high stiffness of the 

structures the measured displacements were very small. For example, the H99 truss at 396 mm span 

had a maximum displacement of 1.34 mm at 405 N. At these low displacements small measurement 

errors can have a large effect on the calculated stiffness.  

Figure 7 also displays the predictions from the MSA models. When comparing the two geometric 

idealisation methods, large differences in predictive capabilities are observed. For the concentric 

model, the average absolute error is 102% with a maximum error of 313%. Comparing this to the 

eccentric model, which has an average absolute error of 6% and a maximum of 17%, shows that the 

eccentric model produces significantly more accurate predictions of the global truss stiffness. The key 

difference between the models is the insertion of an additional element at each joint. The results in 

Figure 7, therefore, indicate that the detailed joint mechanics have a significant effect on overall truss 

deflections. The first possible reason for this is due to displacements within the joint. The epoxy joints 

are the only elements within the trusses that do not have fibres directly aligned with their primary 

loading direction meaning that although they are small relative to the truss members, their deflections 
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may be significant. The second possible reason is that the eccentricity of the joint affects how forces 

are transferred between members. These reasons are investigated and discussed further in the 

following experimental sections. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7: Flexural rigidities of truss configurations at varying spans: a) H33_1; b) H33_2; c) H66_1; d) 

H66_2; e) H99. (Error bars denote the experimental range of 3 values) 
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As was stated previously in Section 3.3, the value of shear stiffness used for the joint elements in the 

eccentric model was found empirically via an experimental fit that minimised the average model error 

over all the configurations. Each configuration has different joint geometries and therefore the 

resulting shear stiffness would be expected to vary between configurations. However, it is seen in 

Figure 7 that using the determined value of 11,700 N provides a reasonable fit across all the 

configurations tested. To further study this, a sensitivity analysis was conducted to investigate the 

effect of varying the joint element shear stiffness on the overall average error of the eccentric model 

predictions. The sensitivity analysis results seen in Figure 8 show that around the determined optimal 

value, the model error is insensitive to changes in joint element shear stiffness. A 25% increase or 

decrease in the shear stiffness from the optimal value results in only a 1% change in the average 

model error. This likely explains why the shear value used provides reasonable predictions over the 

variety of truss configurations tested. 

 

Figure 8: Average error of eccentric model at varying joint elements shear stiffness. 

4.2 Member strains and local deformations 

4.2.1 Chord member strains 

Within Figure 9 readings from strain gauges are compared to the model predictions for each truss 

configuration. Readings were taken on the upper and lower surfaces of the central upper-compressive 

chord member on each truss. These two readings are plotted as the minimum and maximum values. 
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The average of the two readings gives the axial strain within the member which is also plotted within 

the graph. The difference between the axial and the minimum and maximum values represents the 

bending strain within the member. The results show that the two geometric idealisation methods are 

effective at predicting axial strains within the members, with the average error for the concentric 

method being 4% and the eccentric method being 5%. While both the models predict axial strain 

effectively, they produce substantially different predictions of the bending strain within the central 

upper chord member. The results in Figure 9 show the concentric model underpredicts the magnitude 

of the bending strain for all configurations and spans tested. Meanwhile, the eccentric model provides 

a more accurate prediction of the bending strain. 

 

Figure 9: Strain gauge results compared to predictions from MSA. 

To further asses the abilities of the models to predict member bending behaviour within the trusses, 

predicted bending moments in the upper compressive chord members are compared to experimental 

readings in Figure 10. As stated in Section 2.3.1, the experimental data points shown here were 

determined using clip extensometers positioned at two points per member. By assuming a linear 

distribution, the bending moment across the length of the member is then found by interpolating and 

extrapolating the data from the measured points. The results show that bending moments predicted by 

the eccentric model (Figure 10b) are larger and show closer agreement with the experimental results 

than the concentric model (Figure 10a). Within the eccentric model, forces are transferred from the 
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shear to the chord elements via a joint element. The length of this joint element creates a moment arm 

meaning that axial forces within the shear elements impart a moment on the chord elements at the 

joints. This explains why large step changes in bending moment are observed at the joints. This 

phenomenon has also been witnessed by Tousignant and Packer [29], where it was seen that 

modelling of the joint eccentricity was necessary for capturing bending moments within the chord 

members of hollow section metallic trusses. 

 
(a) 

 
(b) 

Figure 10:Bending moment distribution in upper chord members of H99 at 792 mm span. Experimental data 

and: a) concentric model; b) eccentric model. 

4.2.2 Shear member strains 

Shear member axial strains determined using clip extensometers are displayed for the tensile and 

compressive shear members in Figure 11. The experimental range plotted for each shear member 

represents the range of two readings: one above the shear member cross-over point and one below. To 

determine the axial strain within the member it was necessary to account for bending strain by 

averaging extensometer readings taken on opposite sides of the shear members.  

For the tensile shear member results in Figure 11, both models provide similar predictions of axial 

strain. Compared to the average of the experimental results, the models perform well for the first two 

bays (less than 3% error) but show some error for the latter three (15-21% error). For the compressive 

members, a larger difference between the two models is observed. A larger error is also observed 

when comparing the models to the compressive experimental data where the concentric model gives 
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an average error of 26% and the eccentric model 20%. This suggests again that as was seen for the 

chord members in Section 4.2.1, the two models provide similar levels of accuracy when predicting 

axial strains. The results here potentially show inaccuracies in the models’ ability to predict axial 

strain within the shear members. However, it should be noted here that acquiring the strain readings in 

these members was a difficult task. Firstly, the members are very small and have an uneven surface. 

This made it difficult to take readings on directly opposite sides of each member. Secondly, the strains 

being measured were very small and were close to the lower limit of what can be measured with the 

clip extensometers. 

 
(a) 

 
(b) 

Figure 11: Axial strain per unit load in the shear members for configuration H66_2 at 792 mm span. a) Tensile 

members; b) Compressive members. (Error bars denote the experimental range of two readings)   

4.2.3 Local joint deformations 

Tracking the local displacements of the three upper joints (positioning detailed in  

Figure 4) revealed an interesting phenomenon. Figure 12 shows the displacements transverse to the 

loading direction of a single joint measured using DIC. The specific joint shown is adjacent to the 

upper central joint on configuration H99 tested at a span of 792 mm. Within Figure 12 the joint 

displays larger displacements transverse to the loading direction than the neighbouring chord 

members. This shows that the joint deforms at a local level. For the image in Figure 12, the load point 

is to the left (in the negative x-direction) of the joint and the loading direction is in the image z-axis. 
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When the truss is loaded the shear members on the left of the image are in tension and on the right are 

in compression. This means a resultant force acting towards the centre of the truss is experienced 

which causes the joint to be pulled towards the truss centre. Transverse joint deflections relative to the 

chord members were not witnessed at the central upper joint. This would be expected as for the 

central joint all connected shear members are in tension meaning no resultant transverse force is 

exerted on the joint. This phenomenon potentially provides reasoning as to why the concentric model 

fails to predict global displacements correctly, as without deformable joint elements these local 

displacements cannot be captured. It should be noted here that while only results for configuration 

H99 are displayed, this was observed in all configurations.  

 

Figure 12: Displacements in truss joint for configuration H99 at 792 mm span and 294 N loading. 

4.3 Relevance of findings to other technologies 

While this study is focused on the WrapToR technology, findings related to the importance of 

modelling joints are likely to be useful when developing structural models for other composite lattice 

technologies. This is particularly the case for structures that feature eccentric member connections 

such as Open-Architecture Composite Structures (O-ACS) [12], Advanced Composite Truss (ACT) 

[13], and other unnamed concepts [14], [15]. Indeed recent work published by Shen et al. [21], 

highlighted the importance of joint torsional stiffness when modelling O-ACS. The IsoTruss® 

technology creates a concentric connection between members by interweaving the longitudinal and 

helical member tows. While results in Figure 7 suggest a concentric configuration should provide 
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higher flexural rigidity, results of a study by Hansen and Jensen [30] have shown interweaving of the 

member tow to be detrimental to member strength due to the resulting curved fibre paths. 

5 Conclusions and future work 

This paper details the development of a structural model for WrapToR composite trusses. A thorough 

experimental investigation used a range of measurement techniques to observe their flexural response 

to a high level of detail. These experimental findings are then compared with predictions from two 

analysis models that use different geometric idealisations of the truss geometry. Results highlight the 

importance of modelling effects of the truss joints using dedicated joint elements when predicting 

truss deformations and member bending strains. The investigation provided two reasons for the need 

to include joint members. Firstly, the eccentricity at the joint has a significant effect on how forces are 

transferred between members, specifically that axial forces within the shear members impart bending 

moments in the adjacent chord members. Secondly, investigation using digital image correlation 

(DIC) showed that displacements occur within the joints themselves. Without the use of joint 

elements within the model, neither of these physical effects can be captured.  When modelling the 

truss without using joint elements the model significantly overpredicts truss stiffness and 

underpredicts member bending strains. These results therefore clearly show that physical effects 

associated with the joints have a significant effect on the overall mechanical response. 

The work shows that when incorporating joint elements, the model can predict the detailed 

mechanical response to a reasonable level of accuracy. This includes predicting global bending 

behaviour, local deflections, and member strains. This is demonstrated across a range of truss 

configurations with varying section size, member dimensions and truss aspect ratios. While being able 

to predict stiffness is useful for design purposes, demonstrating the ability to predict strains is 

ultimately a step towards modelling failure. The next step therefore will focus on incorporating and 

validating failure criterion within the model. Following this, the model will be implemented within an 
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optimisation framework to allow efficient component design in which truss geometry is optimised to 

minimise mass. 
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