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Abstract
Empirical vulnerability models are fundamental tools to assess the impact of future 
earthquakes on urban settlements and communities. Generally, they consist of sets 
of fragility curves that are derived from georeferenced post-earthquake damage data. 
Following the 2015 Nepal earthquake sequence, the World Bank, through the Global 
Program for Safer Schools, conducted a Structural Integrity and Damage Assessment 
(SIDA) of about 18,000 school buildings in the earthquake-affected area. In this work, 
the database is utilized to identify the main structural characteristics of the Nepalese 
school building stock. For the first time, extended SIDA school damage data is processed 
to derive fragility curves for the main structural typologies. Data sets for each structural 
typology are used for a Bayesian updating of existing fragilities to obtain regional models 
for Nepalese schools. These fragility estimates can be adopted to assess potential seismic 
losses of the school infrastructure in Nepal. Additionally, they can be used for calibrating 
loss assessment studies in the wider Himalayan region where the structural typologies are 
similar.

Keywords  Empirical fragility · Earthquake damage · School buildings · Bayesian 
updating · Structural Integrity and Damage Assessment (SIDA) database · Global Program 
for Safer Schools (GPSS) · Nepal

1  Introduction

According to the last Global Assessment Report on Disaster Risk Reduction (UNDRR 
2019), since 1990, 92% of human losses from natural disasters have occurred in low-
to-middle-income countries. Low-income nations, with limited resilience against 
catastrophes, have also sustained larger relative asset losses with respect to advanced 
economies. Earthquakes, on average, have accounted for 20% of annual economic losses 
due to natural catastrophes. Despite those figures, international development aid for 
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disaster risk reduction still represents a slim percentage (3.8%) of the funding that is made 
available for post-disaster response.

As outlined in the Sendai Framework (UNISDR 2015), “while the drivers of disaster 
risk may be local, national, regional or global in scope, disaster risks have local and specific 
characteristics that must be understood for the determination of measures to reduce disaster 
risk”. This is particularly valid in low-income contexts where risk data scarcity remains 
a major issue (Robinson et al. 2018), and there is a tendency to perform risk assessments 
with models from other regional contexts. Referring to the education sector, a consistent 
effort has been put by the World Bank in addressing these aspects with the implementation 
of the Global Program for Safer Schools (GPSS) (World Bank 2017). Launched in 2014, 
the GPSS contributes to the Comprehensive School Safety Framework (UNDRR 2017) by 
financing and advising governments to implement safer school programs worldwide.

In response to the last 2015 (Gorkha) Nepal seismic sequence (Chiaro et al. 2015; EERI 
Earthquake Engineering Research Institute 2016; Sharma et al. 2016), the GPSS supported 
the Department of Education of Nepal and trained 150 local engineers to conduct a large-
scale Structural Integrity and Damage Assessment (SIDA). Approximately 18,000 school 
buildings located in the Earthquake-Affected Area (EAA) have been surveyed and the 
related information has been stored in a georeferenced database.

Post-earthquake damage data represents an important element to develop and validate 
vulnerability models in the form of vulnerability or fragility curves (Rossetto et al. 2014; 
Lallemant et  al. 2015). Fragility curves express the probability of physical damage with 
respect to a relevant seismic intensity measure (IM) (e.g., peak ground acceleration, PGA) 
while vulnerability curves are relationships between seismic loss (e.g., repair cost) and IM. 
Vulnerabilities can be directly derived from fragility curves by means of damage-to-loss 
consequence models (Rossetto et al. 2014).

In the Nepalese context, few empirical studies on residential buildings are available 
(Didier et  al. 2017; Gautam et  al. 2018) while reliable models for predicting school 
buildings fragility are currently lacking. This represents a limitation towards the 
implementation of comprehensive risk and loss assessment studies of school facilities (e.g., 
O’Reilly et al. 2018, Perrone et al. 2020). By processing the valuable damage information 
contained in SIDA, this work provides new observational fragility curves for the Nepalese 
school building stock that can be integrated into earthquake loss assessment platforms 
(Pagani et al. 2014). Different statistical methods are tested for fragility derivation and the 
main challenges in conducting empirical studies in data-scarce regions are discussed. Since 
the data (1) refers to a single earthquake event and (2) is insufficient to derive fragilities 
for each structural typology with traditional statistical techniques, a Bayesian approach has 
been undertaken to update existing analytical fragility models from the HAZUS database 
(Federal Emergency Management Agency 2015). The outcome is a set of new fragility 
curves that incorporates the information from SIDA and greatly enriches the understanding 
of schools’ vulnerability in Nepal.

2 � Existing empirical fragility estimates for the Nepalese building stock

Despite the multitude of post-disaster surveys conducted in the aftermath of the 2015 
Nepal earthquake (Lallemant et  al. 2017b), damage data are still hardly accessible, 
incomplete and sometimes conflicting. Therefore, over the last five years, a consistent 
number of studies have focused on developing building fragility models by adopting 
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analytical/numerical techniques (Guragain 2015; Chaulagain et al. 2016; Giordano et al. 
2019, 2020). This approach has been also followed by GPSS that provides guidelines 
for analytical derivation of fragility/vulnerability curves for archetype school buildings 
(World Bank 2019a).

To the best of the author’s knowledge, only two empirical studies are currently 
available in technical-scientific journals. The first one, by Didier et  al. (2017), 
presents empirical fragility curves for residential buildings by adopting a damage 
dataset of 30,000 buildings affected by the 2015 Gorkha earthquake. Specifically, a 
Bayesian procedure is implemented to update a set of prior analytical/opinion-based 
fragility curves. Four structural typologies are presented: adobe, brick in mud  mortar 
unreinforced masonry (URM), brick in cement mortar URM and reinforced concrete 
(RC) frames. Three damage states (DSs) are considered in the study (here indicated as 
DS#D):

•	 DS1D: no damage;
•	 DS2D: partially damaged;
•	 DS3D: collapsed or unrepairable.

Due to the geospatial inhomogeneity of the dataset (i.e., inspected buildings are 
concentrated in certain areas and are not uniformly distributed over the entire range 
of seismic intensities), only two out of three DS fragilities are updated with empirical 
evidence. Table  1 reports median η and lognormal standard deviation β of the PGA 
lognormal distributions.

Observational fragilities for Nepali residential buildings are also reported in Gautam 
et  al. (2018) with reference to three construction classes: RC frames, brick masonry 
and stone masonry constructions. The work adopts damage information from seven 
historical Nepali earthquakes occurred over the last 90 years, namely the 1934 Bihar-
Nepal earthquake, 1980 Chainpur earthquake, 1988 Eastern Nepal earthquake, 2011 
Eastern Nepal earthquake and the 2015 Gorkha earthquake. The results, expressed in 
PGA, consider three DSs (DS#G):

•	 DS1G: slight to minor damage;
•	 DS2G: moderate damage;
•	 DS3G: extensive damage to collapse.

Table 1   Existing empirical fragility curves for the Nepalese residential building stock (lognormal model 
where η [g] is the median PGA and β is the lognormal standard deviation)

Reference Typology DS1 DS2 DS3

η (g) β η (g) β η (g) β

Didier et al. (2017) Adobe – – 0.13 1.36 0.97 1.73
Brick-mud URM – – 0.14 1.93 1.26 1.96
Brick-cement URM – – 0.77 1.84 1.90 0.93
RC Frame – – 1.67 1.73 1.95 0.71

Gautam et al. (2018) Brick URM 0.13 0.38 0.16 0.42 0.22 0.48
Stone URM 0.29 0.70 0.32 0.71 0.39 0.69
RC Frame 0.29 0.38 0.63 0.70 1.29 0.83
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It should be noted that aggregated data from historical Himalayan earthquakes are likely 
to be inaccurate, non-georeferenced, and/or poorly correlated with seismic IMs. Therefore, 
these fragility curves must be used carefully. Table 1 reports the results of the study where 
DS2G and DS3G are considered equivalent to DS2D and DS3D.

3 � The World Bank’s SIDA database

The World Bank’s SIDA database was developed in the aftermath of the 2015 Gorkha 
earthquake and includes the georeferenced information of 17,595 school buildings from 
kindergarten to higher secondary school (Fig. 1a). As shown in Fig. 1b, the capacity of the 
inspected buildings is highly variable and ranges from less than 10 students/building to 
hundreds of students/building. Apart from the post-disaster damage assessment purpose, 
SIDA contributes to the Global Library of School Infrastructure (GLoSI), an online open-
access repository of evidence-based knowledge and information about taxonomy and vul-
nerability of school facilities worldwide (World Bank 2019b). Four main data classes are 
included in SIDA:

•	 School general details name, education facility code, district, address, geographical 
coordinates, type (public/private), level (grade), number of students, school contacts, 
etc.

•	 Exposure travel time to the closest source of building materials, distance from river/
body of water, flooding risk information, landslide risk information, topography, 
distance to main road and road condition, etc.

•	 Physical planning number of school buildings on campus, number of temporary learning 
centers, owner of school campus land, number of toilets, availability of drinking water, 
electricity supply, sketch of the site plan and indication of the school buildings, etc.

(a) (b)

Fig. 1   a Percentage of buildings by school level, b histograms representing the number of school buildings 
grouped by capacity (number of students)
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•	 Building assessment damage state, usability, year of construction, primary funders, 
building constructor (community/contractor), history of additions and modifications, 
retrofitting information, smallest gap between buildings, access to the building, in-plan 
shape, irregularity, number of stories, structural category, foundation type, floor/roof 
type, etc.

For the purpose of this work, mainly damage and structural typology data is discussed. 
Interested readers are invited to access the GLoSI database for additional information on 
school facilities in Nepal (World Bank 2019b).

3.1 � Description of the school building stock

In SIDA, Nepali school buildings are classified in five main structural typologies. 
This classification, based on an original work by the National Society for Earthquake 
Technology, NSET (2000), is extensively described in the reference GPSS document 
(ARUP 2015) and in a related paper (De Luca et  al. 2019). In summary, the following 
typologies are considered:

•	 Masonry (URM) buildings are realized with different combinations of units and joints: 
brick in cement mortar, brick in mud mortar, Compressed Stabilized Earth Block 
(CSEB) in mud mortar, dry stones, stone in cement mortar, stone in mud mortar, and 
stone in mud mortar with cement mortar pointing. Adobe structures complete the set of 
unreinforced construction types.

•	 RC Frame buildings are engineered/non-engineered reinforced concrete structures with 
brick masonry infill walls.

•	 Steel Frame buildings are light-gauge metallic frames, usually regular in plan, where 
perimeter walls are realized with stone/brick units in mud/cement mortar depending on 
the local availability of materials.

•	 Timber Frame buildings are braced timber frames with bamboo and mud infills.
•	 Mixed Structure buildings are combinations of different typologies which frequently 

results from incremental building construction practices (Lallemant et al. 2017a). SIDA 
includes four main mixed structure types: RC-masonry, RC-steel, steel-masonry and 
timber-masonry.

A sample of the information included in SIDA has been cross-validated using the 
SAFER database of school buildings (Sextos and Mason 2018). This dataset has been 
developed by the University of Bristol under the UK Global Challenges Research Fund-
Engineering and Physical Science Research Council “Seismic Safety and Resilience of 
Schools in Nepal” project (www.safer​nepal​.net). It gathers georeferenced information 
by means of a mobile app that is developed for rapid pre- and post-earthquake visual 
inspection. Data is automatically uploaded on a twin WebApp that facilitates visualiza-
tion, data processing and risk assessment decision making for prioritizing school portfo-
lios for potential retrofit. Since the first release of the mobile app in 2018 (freely available 
for download on Android mobile phones https​://play.googl​e.com/store​/apps/detai​ls?id=uk.
ac.brist​ol.rit.safer​), approximately 400 school buildings have been inspected thanks to 
in-field surveys carried out by the National Society for Earthquake Technology (NSET) 
and Save The Children in several districts. The validation has been carried out by com-
paring name of the school, education facility code (EMIS number), geographic location 

http://www.safernepal.net
https://play.google.com/store/apps/details?id=uk.ac.bristol.rit.safer
https://play.google.com/store/apps/details?id=uk.ac.bristol.rit.safer
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and structural typology. Figure 2 comparatively illustrates sample data from three school 
buildings in Sindhupalchwok retrieved from both SIDA and SAFER databases. Data also 
includes school name, location, building identification number and construction typology 
used in the two databases. Interestingly, the information obtained from the first and second 
set of inspections complement each other since correspond to a post-earthquake (2015) and 
a pre-future earthquake (2019) assessment, respectively.

Figure 3 shows the geographical distribution of the building typologies over the fourteen 
districts of the EAA. The corresponding data breakdown is given in Table 4 of “Appen-
dix”. URMs represent the vast majority of the school building inventory (54.5%) followed 
by steel frames (26.4%), RC frames (10.7%) and timber frames (2.4%). On the contrary, 
mixed structures represent a negligible portion of the school building stock. These figures 
compare reasonably well with previous statistics available in the literature. For instance, 
on a sample of 909 school buildings located in the Kathmandu Valley, NSET (2000) has 
found that more than 60% are URMs, while steel and RC buildings account for 22% and 
8% of the total. More recently the Asian Development Bank (2014) has estimated that 34% 
and 5% of the total school building stock are URM-brick buildings and RC frames, respec-
tively. 61% of the buildings belong instead to other structural typologies (e.g., URM-stone, 
timber frame). The high number of URMs that characterizes the Nepali building stock is 
also reflected by statistics of residential constructions. In the dataset used by Didier et al. 
(2017), the aggregated percentage of brick and stone URMs is 59%. Residential RC frames 
account for 38% of the total database, close to what has been reported by Chaulagain et al. 
(2016) for the Kathmandu Valley.

Looking at the distribution by district, Dhading, Nuwakot, Sindupalchwok and Kavre 
are the ones with the largest number of school buildings, each including around 1700 struc-
tures (around 10% of the total). Rasuwa is instead the less school-populated district with 
just 249 buildings. Masonry is the most frequent typology in the majority of the districts 

Fig. 2   Shree Pachkanya Primary School (EMIS230350008, Building A)—RC frame typology: a SIDA, 
d SAFER. It can be observed that the earthquake damage detected in 2016 by SIDA surveyors has been 
subsequently repaired as shown in the SAFER database. Shree Narayan Devi Higher Secondary School 
(EMIS280330001, Building B)—Masonry typology: b SIDA, e SAFER. Seti Devi Higher Secondary 
School (EMIS230770009, Building D)—steel frame typology: c SIDA, f SAFER
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Fig. 3   School building typologies distribution in the affected area subdivided by districts

with exception of Kavre, Laliptur, and Ramechap where steel frames are more frequent. As 
expected, the district of Kathmandu has a significant number of RC frames in proportion to 
the other building classes.

To better understand the composition of the masonry building portfolio, Fig. 4a depicts 
the percentage distribution of masonry sub-typologies. Brick in cement, brick in mud, 
stone in cement and stone in mud buildings account for 12%, 3%, 4% and 31% of the total 
respectively. Stone in mud with cement mortar pointing buildings represent 15% of the 
total. An important portion of the surveyed URMs has incomplete data (34%). Figure 4b 
shows the percentage distribution of SIDA buildings with respect to in-plan shape and reg-
ularity. About 90% of the structures are characterized by compact/elongated rectangular 
plans. Lastly, Fig. 4c reports the percentage breakdown by number of stories. Most of the 
school buildings, 85%, are single-story, while 12% are two-story.

3.2 � Seismic damage data

The Damage States adopted in the World Bank’s SIDA database (DS#SIDA) are consistent 
with the European Macroseismic Scale classification (Grünthal 1998) and are defined as 
follows:

•	 DS0SIDA: unaffected building (no damage);
•	 DS1SIDA: minor/cosmetic damage only;
•	 DS2SIDA: damage to non-structural components; no threat to structural stability
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•	 DS3SIDA: damage to structural components and/or infill walls for RC/steel frames with 
infills;

•	 DS4SIDA: partial collapse;
•	 DS5SIDA: collapse.

Figure 5 reports the geospatial damage distribution of URM structures that corresponds 
to 9587 buildings. It shows that URMs are homogeneously distributed over the EAA with 
a slightly higher density in the northern districts. In these same districts (namely, Gorkha, 
Dhading, Nuwakot and Sindhupalchwok), the largest number of collapses was recorded 
but this, of course, relates to the high intensity of seismic shaking. Masonry school build-
ings located in urbanized areas (Kathmandu, Lalitpur and Bhaktapur) were mostly undam-
aged or experienced minor-to-moderate damage. The percentage breakdown of DS over 
the EAA is 13% for DS0SIDA, 15% for DS1SIDA, 3% for DS2SIDA, 32% for DS3SIDA, 7% for 
DS5SIDA and 30% for DS5SIDA.

Figure 6 shows the geospatial distribution of DSs for RC frame typology (1878 build-
ings). In this case, buildings are not uniformly distributed across the EAA resulting in a 
consistent concentration of RC frames in and around Kathmandu. Generally, the damage 
experienced by RC frame schools was rather low. In particular, 41% of these buildings 
were undamaged, while 24%, 3% and 28% experienced a level of damage between DS1SIDA 
to DS3SIDA, respectively. Lastly, less than 4% of RC school buildings sustained partial or 
total collapse (i.e., DS4SIDA, DS5SIDA). The low percentage of collapses is also a direct 
consequence of the relatively low ground shaking experienced in the Kathmandu Valley 
with respect to the rural districts.

Steel frames’ DS geospatial distribution is shown in Fig. 7 (4651 buildings). Most of 
these school buildings are concentrated in the north-east part of the EAA (Sindhupalch-
wok, Ramechap and Kavre) while they are rather uncommon in the southern part. As indi-
cated in several post-earthquake reconnaissance reports (e.g., EERI Earthquake Engineer-
ing Research Institute 2016), these constructions were mostly affected by damage of the 
masonry infill walls. This observation is reflected in SIDA where most of the school build-
ings (47%) experienced DS3SIDA. The exact breakdown of DS for the steel frame typology 

(a) (b) (c)

Fig. 4   Percentage distribution of a school masonry buildings with respect to sub-typologies, b school build-
ings with respect to in-plan shape and c school buildings by number of stories
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Fig. 5   Spatial distribution of damage states for masonry school buildings in the EAA. The fault plane pro-
jections of April 25 2015 and May 12 2015 earthquake events are taken from USGS (2017a, b) respectively. 
The white stars indicate the location of the epicentre of the two events
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Fig. 6   Spatial distribution of damage states for RC frame school buildings in the EAA
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is: 21% for DS0SIDA, 15% for DS1SIDA, 7% for DS2SIDA, 47% for DS3SIDA, 8% for DS4SIDA 
and 3% for DS5SIDA.

Lastly, Fig. 8 reports the damage geospatial distribution for timber frame typology (424 
buildings). The vast majority of these buildings are located in the southern part of the EAA 
(districts of Makwanpur and Sindhuli) and naturally, experienced light to moderate dam-
age. In particular, 30% DS0SIDA, 17% DS1SIDA, 9% DS2SIDA, 33% DS3SIDA, 8% DS4SIDA 
and 3% DS5SIDA.

4 � Empirical fragilities derived from SIDA

The first step to derive empirical fragility curves is to quantify the severity of seismic shak-
ing for each building of the dataset (e.g., De Luca et al. 2018). In this way, georeferenced 
damage information can be correlated with spatial distribution of ground motion IMs 
such as PGA. This requires the adoption of “shake maps” which are the combined result 
of instrumental measurements, information about local geology, earthquake location and 
magnitude (Wald et  al. 2006). Once damage and shake intensity information are paired, 
fragility curves are estimated through statistical regression procedures (Rossetto et  al. 
2014). Obviously, the validity of the results relies on the quality of input data, which is 
particularly challenging when working on data-scarce regions like Nepal (Robinson et al. 
2018).

4.1 � Shake maps of the 2015 Nepal earthquake sequence

At the time of the 2015 mainshock only a limited number of seismic recording stations 
were operating in Nepal, mainly concentrated in the city of Kathmandu. Therefore, it is 
problematic: (1) to evaluate the extent of the area affected by ground shaking and (2) to 
estimate the variation of the seismic excitation within the area (McGowan et al. 2017). In 
addition, the limited knowledge on the country’s geology (Gilder et al. 2020) and the lack 
of representative Ground Motion Prediction Equations (GMPEs) for the region (Bajaj and 
Anbazhagan 2019) result in large uncertainties on shake maps. In the last five years, the 
United States Geological Survey (USGS) has released a set of shake maps for the Gorkha 
sequence, progressively updated to include more advanced studies (McGowan et al. 2017). 
In this work the following USGS maps are considered:

•	 M 7.8—36 km E of Khudi, Nepal earthquake (mainshock) occurred on April 25th 2015 
(USGS 2017a);

•	 M 7.3—19  km SE of Kodari, Nepal earthquake (aftershock) occurred on May 12th 
2015 (USGS 2017b).

These two shake maps are illustrated in Fig. 9a, b, where it is evident that the mainshock 
affected a larger area with respect to the aftershock. In terms of intensity, the April 25 
shake map had a maximum PGA of 1.0 g, while the value for the May 12 event reached 
0.85 g. Given the absence of disaggregated information on the damage generated by main-
shock and aftershock (SIDA surveying activities began after May 12), PGA values at indi-
vidual building locations are extracted from the maximum envelope of the two shake maps 
(Fig. 9c). This simplification, though inevitable due to lack of data, cannot take properly 
into account the effect of aftershocks (Dong and Frangopol 2015) and most importantly, 
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Fig. 7   Spatial distribution of damage states for steel frame school buildings in the EAA
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the sequence of nonlinear incremental damage (particularly relevant for masonry buildings 
(Sextos et al. 2018)).

In this study,  PGA is selected as the IM for the derivation of empirical curves. This 
choice is motivated by four reasons. First, PGA is usually a good predictor for stiff struc-
tures (Silva et al. 2019) such as one-story buildings [85% of SIDA (Fig. 4c)]. Second, PGA 
is preferred to spectral quantities (such as the spectral acceleration at the fundamental 
period of the structure Sa(T1)) given the consistent lack of attenuation equations of spectral 
ordinates for the Himalayan region (e.g., Bajaj and Anbazhagan 2019). Third, the use of 
spectral values would require the estimation of an average fundamental period for each 
SIDA building class through empirical equations, which would subsequently add a degree 
of epistemic uncertainty to the problem (Rossetto et al. 2014). Forth, PGA is a commonly 
used IM in vulnerability models (Calvi et al. 2006) and was selected in previous fragility 
studies for Nepal (Didier et al. 2017; Gautam et al. 2018; Giordano et al. 2019).

4.2 � Empirical fragility estimates for masonry school buildings

Once damage and seismic intensity at building locations are defined, fragility curves that 
express the probability of exceedance of different DSs can be derived adopting statistical 
regression methods (Rossetto et  al. 2014). As a first step, building data must be aggre-
gated in representative building classes which are characterized, for instance, by same 
structural typology and number of stories. The definition of classes should strike a balance 
between granularity (i.e., more classes result in a better description of the building stock 
vulnerability) and size of the corresponding sub-datasets (statistical regressions on small 
datasets can lead to meaningless results). To guarantee sufficiently large sub-datasets of 

Legend
PGA [%g]

High : 99.5
79.6
59.7
39.8
19.9
Low : 0.015

M 7.8 - 36km E of Khudi, Nepal
2015-04-25 06:11:25 (UTC)

M 7.3 - 19km SE of Kodari, Nepal
2015-05-12 07:05:19 (UTC)

Maximum Envelope

0 20 40 60 8010
Kilometers

(a) (b)

(c)

Fig. 9   Shake maps of a April 25 2015 mainshock, b May 12 2015 aftershock, c maximum envelope
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building classes, four classes are defined to match the four main SIDA structural typolo-
gies. Another aspect to be considered when deriving fragilities from observational data is 
the spatial distribution of the dataset. Several studies have shown that spatially inhomoge-
neous datasets (i.e., buildings concentrated in areas where the range of variation of PGA 
is limited) can lead to inconsistent results (De Luca et al. 2018). In these cases, Bayesian 
updating procedure of existing fragility curves should be adopted (Singhal and Kiremidjian 
1998; Miano et al. 2016). Given the observations presented in 3.2., only masonry school 
data is sufficient to derive fragilities with standard statistical methods, while fragility esti-
mates for other structural typologies are made by means of the Bayesian method as dis-
cussed in the following section.

Observational fragilities for masonry school buildings are calculated with the Maximum 
Likelihood Estimation (MLE) method. MLE is one of the most widely adopted techniques 
for deriving empirical fragility curves and it has been used to assess the performance of 
numerous structural types in different regional contexts (Shinozuka et al. 2000; Colombi 
et al. 2008; De Luca et al. 2015; Del Gaudio et al. 2019). The first step of MLE consists of 
subdividing the dataset in ranges of PGA (bins) for which the Damage State exceedance 
probabilities are computed (Fig. 10a). Each of these bins should contain the same amount 
of buildings (Porter et  al. 2007). Subsequently, given a probability distribution function 
(PDF) model, MLE permits the evaluation of the PDF parameters that maximize the prob-
ability of occurrence of the observed data (Lallemant et al. 2015). If the fragility curve is 
represented by a lognormal model, the estimates 𝜇̂log and 𝛽  of the logarithmic mean �log 
and standard deviation � are given by the following expression:

where m is the number of bins, PGAi is the average peak ground acceleration of the ith bin, 
ni is the number of buildings reaching or exceeding the considered DS in the ith bin, Ni is 
the total number of buildings in the ith bin, Φ(·) is the standard normal cumulative distribu-
tion function. The result of the MLE method can be graphically represented in the form of 
a linear regression as shown in Fig. 10b. Particularly, x is the logarithm of PGAi and y is 

(1)

𝜇̂log, 𝛽 = arg max
𝜇log,𝛽

m
∑

i=1

[

ni ln

(

𝛷

(

ln
(

PGAi

)

− 𝜇log

𝛽

))

+
(

Ni − ni

)

ln

(

1 −𝛷

(

ln(PGAi) − 𝜇log

𝛽

))

]

(a) (b)

Fig. 10   Masonry schools: a number of buildings exceeding damage states in different bins and b represen-
tation of damage data in the lognormal plane and corresponding estimated fragility curves
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the inverse standard normal distribution of (ni + 1)/(Ni + 1). The resulting fragility curves 
are shown in Fig. 11 (DS#-MLE), while corresponding statistical parameters are summa-
rized in Table 2.  

From Fig. 10b it is observed that the MLE method can lead to inconsistent results 
when fragility curves of consecutive DS cross with each other. These situations can be 
avoided by adopting a constant lognormal standard deviation (Porter et al. 2007):

and updated values for the median PGAs:

Resulting fragility curves are shown in Fig. 11 (DS#-MLE n.c.), while relative statistical 
parameters are included in Table 2.

4.3 � Bayesian updating of existing fragility models for different structural 
typologies

Bayesian Updating (BU) techniques are effective alternatives to traditional statistical meth-
ods when dealing with small or spatially inhomogeneous observational damage datasets. 
Several studies have suggested the adoption of Bayesian techniques to update preexisting 
fragility curves (e.g., Singhal and Kiremidjian 1998; Miano et al. 2016; De Risi et al. 2017; 
De Luca et al. 2018). As mentioned in the introduction, a Bayesian approach has been also 
used by Didier et al. (2017) in the context of Nepal, but the analysis was solely focused on 
residential buildings and did not include schools. Two main set of information are required 
to perform a Bayesian updating: the prior probabilistic model and the likelihood function 
of the empirical data (Singhal and Kiremidjian 1998). Subsequently, by applying the Bayes 

(2)𝛽� =
1

N

N
∑

i=1

𝛽

(3)𝜂� = exp
(

1.28
(

𝛽� − 𝛽
)

+ 𝜇̂log

)

Fig. 11   Empirical fragility curves for school masonry buildings. Solid lines represent fragilities derived 
with the MLE method, while dashed lines are fragilities estimated with the MLE procedure as modified by 
Porter et al. (2007)
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theorem, the probabilistic parameters of the posterior model are estimated. In details, 
by referring to the Bayesian regression analysis procedure reported by Faber (2012), the 
updated regression coefficients B′′ =

(

b
��

0
b
��

1

)T of a generic linear model y = b
��

0
+ b

��

1
x 

(such as the ones shown in Fig. 10b) are calculated as follow:

where B′ =
(

b
�

0
b

�

1

)T are the regression coefficients of the prior model and X̂ , ŷ are 
matrixes with the coordinates of the new empirical data as defined by Faber (2012).

The selection of the prior fragility models represents a crucial point of the BU proce-
dure. When several structural typologies are considered, it is fundamental to adopt a con-
sistent set of prior curves. Unfortunately, this information is lacking in data-scarce regions 
like Nepal. For instance, the fragility models presented by Didier et al. (2017) and Gau-
tam et al. (2018) cover exclusively the unreinforced masonry and RC typologies. In addi-
tion, these fragilities do not represent a general baseline since were extracted from damage 
data of residential buildings. Previous vulnerability and risk assessment studies in low-to-
middle income contexts have adopted the HAZUS models (Federal Emergency Manage-
ment Agency 2015) as general reference for building fragility curves. Gentile et al. (2019) 
have used HAZUS fragilities to define the baseline score of a seismic risk index for school 
buildings in Indonesia while Sevieri et al. (2020) have extended the approach to the Philip-
pines. HAZUS models have also been used in loss assessment studies in Nepal (Robinson 
et  al. 2018). By analogy with the Uniform Building Code 1994 (ICBO 1994), HAZUS 
models are subdivided into four seismic code levels: high code, moderate code, low code 
and pre-code (Gentile et al. 2019). In countries where the building standards have followed 
the evolution of the UBC, these four levels can be used in full (Sevieri et al. 2020). This 
is not the case of Nepal where: (1) most of the constructions have been realized according 
to mandatory rules of thumb rather than engineering design, (2) the first building stand-
ard, the Nepal National Building Code (Department of Urban Development and Building 

(4)B′′ = V
′′

B

(

(

V
′

B

)−1

B′ + X̂
T
ŷ

)

(5)
(

V
′′

B

)−1

=

(

V
′

B

)−1

+ X̂
T
X̂ and V

′

B
=

(

X̂
T
X̂

)−1

Table 2   Empirical fragility curves derived from SIDA damage data [η (g), β (–)]

Typology Method DS1 DS2 DS3 DS4 DS5

η β η β η β η β η β

Masonry MLE 0.021 2.76 0.15 2.00 0.22 1.69 0.81 1.14 0.97 0.94
MLE n.c. 0.006 1.71 0.11 1.71 0.22 1.71 1.67 1.71 2.59 1.71
B. Prior (HAZUS) – – 0.13 0.64 0.17 0.64 0.26 0.64 0.37 0.64
B. Posterior – – 0.14 0.97 0.18 0.93 0.39 0.82 0.55 0.76

RC Frame B. Prior (HAZUS) – – 0.12 0.64 0.17 0.64 0.26 0.64 0.44 0.64
B. Posterior – – 0.19 1.08 0.27 1.04 0.77 0.88 1.13 0.84

Steel Frame B. Prior (HAZUS) – – 0.10 0.64 0.13 0.64 0.20 0.64 0.38 0.64
B. Posterior – – 0.09 1.16 0.12 1.24 0.46 1.12 1.13 1.07

Timber Frame B. Prior (HAZUS) – – 0.18 0.64 0.29 0.64 0.51 0.64 0.77 0.64
B. Posterior – – 0.17 1.30 0.32 1.25 1.01 1.21 1.36 0.98
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Construction 1994) has been effectively enacted in 2003 (Giri et al. 2019). For these rea-
sons, this study refers to low-code and pre-code fragilities exclusively. In details:

•	 Masonry unreinforced masonry bearing wall, low-rise (URML), pre-code;
•	 RC Frame concrete frame building with unreinforced masonry infill walls, low rise 

(C3L), low-code;
•	 Steel Frame steel light frame (S3), low-code;
•	 Timber Frame wood light frame (W1), pre-code.

To account for the poor construction quality of traditional buildings in Nepal, pre-
code models (i.e., construction prior to seismic code enforcement) have been considered 
for masonry and timber frame typologies. RC frame school buildings are generally newer 
constructions with minimum seismic detailing. Therefore, low (i.e., older) code HAZUS 
fragilities are considered as prior. Lastly, low-code fragility curves are selected for the steel 
frame typology. In fact, most of these constructions are fairly designed since were built 
from 1992 to 1995 under the World Bank’s Earthquake-Affected Areas Reconstruction and 
Rehabilitation Project (NSET 2000) or, more recently, by the Japan International Coop-
eration Agency (JICA 2009). It should be noted that the steel light frame typology consid-
ered in HAZUS does not exactly correspond to the one of SIDA. In Nepal, perimeter walls 
are not realized with lightweight panels but with stone/brick units in mud/cement mortar 
depending on the local availability of materials. Figure 12 reports prior and posterior fra-
gility curves for the four structural typologies. The corresponding probabilistic parameters 
are given in Table 2. It can be observed that HAZUS fragility curves are defined for four 

(a) (b)

(c) (d)

Fig. 12   Prior (Pr) and posterior (Ps) fragility curves: a masonry, b RC frame, c steel frame, d timber frame
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damage states, namely: Slight, Moderate, Extensive and Collapse. Therefore, to execute the 
BU procedure, the following equivalences with DS#SIDA are considered: DS2SIDA ≈ Slight, 
DS3SIDA ≈ Moderate, DS4SIDA ≈ Extensive, DS5SIDA ≈ Collapse.

4.4 � Discussion of the fragility results

To facilitate the discussion of these results with respect to the existing observational fragil-
ities by Didier et al. (2017) and Gautam et al. (2018), the DS equivalences given in Table 3 
are considered.

General comments:

1.	 Relative fragility of masonry school buildings due to different statistical methods. As 
expected, for DS1SIDA, the MLE method provides consistently larger median PGA and 
standard deviation (0.021 g, 2.76) with respect to the MLE n.c. technique (0.006 g, 1.71). 
Conversely, for DS5SIDA, the MLE method gives conservative and less scattered results 
(0.97 g, 0.94) with respect to the MLE n.c. (2.59 g, 1.71). The BU method provides the 
lowest estimates of η and β at any DS. As expected, the intrinsic uncertainties of observa-
tional data and the inaccuracy of the shake map (Sect. 4.1.) affect the results of standard 
statistical methods. Median PGA for high DS appears unrealistically higher than previous 
analytical results available in the literature (Giordano et al. 2019). In this sense, the BU 
methodology seems to be an effective way to utilize the valuable set of observational 
data collected by the World Bank, while maintaining reasonable values for median PGA. 
Based on this observation the following comparisons focus on the BU method.

2.	 Masonry buildings fragility (BU method) and comparison with Didier et al. (2017): 
DS2-3SIDA fragilities are characterized by comparable values of η (0.14 g, 0.18 g) with 
respect to DS2D brick-mud URM (0.14 g). On the contrary, the median value of DS2D 
brick-cement URM is consistently higher (0.77 g). Dispersion of DS2D is about two 
times larger than DS2-3SIDA. Median PGAs of DS4-5SIDA (0.39 g, 0.55 g) are consid-
erably lower than DS2D brick-mud URM (1.26 g) and brick-cement URM (1.90 g). 
Corresponding β (0.82, 0.76) are comparable with the brick-cement value (0.93) while 
considerably lower than brick-mud dispersion (1.96). These large discrepancies likely 
derive from a combination of factors such as data inhomogeneity and differences in 
prior models. What appears unrealistic is that median PGAs for residential buildings 
(Didier et al. 2017) are systematically higher than the corresponding estimates for school 
buildings. In Nepal, residential URMs are usually constructed by homeowners, non-
engineered, non-compliant to building regulations and without basic seismic detailing 
(Gautam et al. 2016). On the contrary, schools are subjected to a stricter code enforce-
ment and the required level of safety is higher with respect to residential structures. The 
non-uniformity (i.e., non-uniform distribution of buildings in the full range of PGAs) 
of the database used by Didier et al. (2017) could be a reason for the high dispersions 
and median values with respect to the SIDA fragilities.

3.	 Masonry buildings fragility (BU method), comparison with Gautam et al. (2018). DS2-
3SIDA present comparable median values with respect to DS1-2G Brick URM (0.13 g, 
0.16 g). On the contrary, there is little agreement with respect to the results of DS1-2G 
Stone URM (0.29 g, 0.32 g). Median values of DS4-5SIDA are fairly similar to DS3G Stone 
URM (0.39 g) but consistently different from DS3G Brick URM (0.22 g). Theoretically, 
the empirical curves by Gautam et al. (2018) should be considered the best fragility 
estimate since they account for damage variability from five past earthquake events. 
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However, these historical datasets inevitably come with large uncertainties on damage 
data quality, shake maps, and geographical accuracy. It is also surprising that, despite 
these large uncertainties, dispersion values of DS#G are unexpectedly lower than DS#SIDA.

4.	 RC Frame buildings fragility (BU method), comparison with Didier et al. (2017). DS2-
3SIDA median PGAs (0.19 g, 0.27 g) are systematically lower than the corresponding 
value for DS2D (1.67 g). The corresponding β (1.08, 1.04) are consistently lower than the 
value for DS2D (1.73). DS4-5SIDA (0.77 g, 1.13 g) provides a more conservative estimate 
of η with respect to DS3D (1.95 g). The related dispersions are instead comparable (0.88, 
0.84 versus 0.71). Comments of point (2) can be extended to the case of RC.

5.	 RC Frame buildings fragility (BU method) comparison with Gautam et al. (2018). DS2-
3SIDA median PGAs are consistently lower than DS1-2G (0.29 g, 0.63 g). Analogously, 
median values of DS4-5SIDA are conservative with respect to DS3G (1.29 g). Comments 
of point (3) can be extended to this comparison.

A further way to compare the existing empirical fragilities with the ones derived in this 
study  is to assess the similarity of two probability distributions with information theory 
measures. Looking at the literature, some studies in the field of earthquake engineering have 
adopted the Kullback‐Leibler divergence as a measure of the statistical distance between 
a real distribution and its approximation (e.g., De Luca et  al. 2015; Tsioulou and Galasso 
2018). For instance, Tsioulou and Galasso (2018) have compared distributions of IMs from 
recorded and simulated ground motions. Since the fragility models presented in this study are 
all “approximations of the reality”, this works adopts the Bhattacharyya distance, DB, (Bhat-
tacharyya 1946) instead of the Kullback‐Leibler divergence. This quantity, which relates to 
the amount of overlap between two statistical models, is expressed by the following equation:

where p1(x) and p2(x) are two probability distribution functions. From Eq. 6 it can be observed 
that DB is a nonnegative parameter. Additionally, DB, unlike the Kullback–Leibler divergence, 
is a symmetric quantity, i.e., DB (p1, p2)= DB (p2, p1). Figure 13 presents a comparison of the 
three empirical studies in terms of DB at each damage level. Particularly Fig. 13a, b refers to 
masonry and RC respectively. In the context of this work, the absolute value of DB is informa-
tive only when relatively compared with the full set of distances. This last aspect differs from 
the study by Tsioulou and Galasso (2018) where a procedure to assess the similarity of two 
distributions from the absolute value of the Kullback‐Leibler divergence is reported.

The differences in DB values between the three models can be attributed to (i) the non-uni-
form quality and extension of the damage data, (ii) the different definition of damage states, and 
(iii) the difference in building characteristics (e.g., school buildings are mainly single-storied, 
while residential are usually multi-storied), (iv) the different shake map accuracy. The results 
show that the discrepancy between the empirical models is smaller for RC buildings than for 
URMs, especially when assessing higher damage states. This is probably an inevitable result 
of the intrinsic larger uncertainties around the response of non-engineered masonry structures.

(6)DB = − ln∫
√

p1(x)p2(x)dx
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5 � Conclusions

In this work, a set of empirical-based fragility curves for Nepalese school buildings has 
been produced by processing the damage information included in the World Bank’s Struc-
tural Integrity and Damage Assessment database. These fragilities are related to four rel-
evant structural types: masonry, RC frame, steel frame and timber frame. Firstly, traditional 
statistical regression methods have been tested for fragility derivation. Subsequently, a 
Bayesian procedure has been implemented by selecting appropriate prior fragility mod-
els and by updating them with the empirical evidence from the 2015 Nepal earthquake 
sequence. The comparison with two previous empirical studies on Nepali residential build-
ings (Didier et al. 2017; Gautam et al. 2018) has shown consistent differences in the results. 
This could be the consequence of (i) different building characteristics between schools and 
residential, (ii) non-uniform quality of damage/intensity/geographical data, (iii) different 
statistical approach and damage state definition. From these discrepancies, it is quite dif-
ficult to conclude which of the models better represents the reality. This is an answer that 
could be provided having further empirical references from future earthquakes. In general, 
the fragility models presented in this work represent the optimal solution when dealing 

DS2SIDA DS2D DS1G DS3SIDA DS2D DS2G

SIDA D-BM D-BC G-B G-S SIDA D-BM D-BC G-B G-S
SIDA 0 0.110 0.482 0.194 0.097 SIDA 0 0.132 0.414 0.146 0.066
D-BM 0 0.098 0.485 0.240 D-BM 0 0.098 0.440 0.240
D-BC 0 0.580 0.239 D-BC 0 0.509 0.227
G-B 0 0.645 G-B 0 0.406
G-S 0 G-S 0

DS4SIDA DS3D DS3G DS5SIDA DS3D DS3G

SIDA D-BM D-BC G-B G-S SIDA D-BM D-BC G-B G-S
SIDA 0 0.425 0.470 0.129 0.007 SIDA 0 0.346 0.343 0.233 0.028
D-BM 0 0.133 0.485 0.279 D-BM 0 0.133 0.485 0.279
D-BC 0 0.774 0.384 D-BC 0 0.774 0.384
G-B 0 0.210 G-B 0 0.210
G-S 0 G-S 0

(a)
Relative DB:

DS2SIDA DS2D DS1G DS3SIDA DS2D DS2G HIGH

SIDA D-RC G-RC SIDA D-RC G-RC 1

SIDA 0 0.560 0.253 SIDA 0 0.446 0.121 1

D-RC 0 0.563 D-RC 0 0.221
G-RC 0 G-RC 0

DS4SIDA DS3D DS3G DS5SIDA DS3D DS3G LOW

SIDA D-RC G-RC SIDA D-RC G-RC
SIDA 0 0.151 0.044 SIDA 0 0.060 0.003
D-RC 0 0.048 D-RC 0 0.048
G-RC 0 G-RC 0

(b)
Fig. 13   Bhattacharyya distance DB estimated for different DS (equivalence as for Table  3 is reported on 
top of each matrix). a Masonry, b RC. The following abbreviations are considered: SIDA = fragility from 
BU; D = Didier et al. (2017); BM = brick-mud URM; BC = brick-cement URM; G = Gautam et al. (2018); 
B = brick URM; S = stone URM
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with school building portfolios. The Bayesian approach adopted in this study allowed to 
incorporate rich observational information in well-established fragility models, obtaining 
more conservative/realistic damage state probability distributions for the specific case of 
schools. This appears to be the best strategy in data-scarce contexts where different sources 
of information are available, but none of them can provide a full understanding of the prob-
lem. These new empirical curves can be used in combination with existing analytical mod-
els for the region to better characterize the epistemic and aleatory uncertainties, leading to 
more robust risk assessments at territorial scale and at asset level.
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Table 3   DS equivalences adopted for fragility comparisons

Present 
study
(DS#SIDA)

DS0
unaffected 
building

DS1
minor/cosmetic 
damage

DS2
damage 
to non-
structural 
components

DS3
damage to 
structural 
components 
and/or infill 
walls for 
RC/steel 
frames with 
infills

DS4
partial collapse

DS5
collapse

HAZUS – – Slight Moderate Extensive Collapse
Didier 

et al. 
(2017) 
(DS#D)

�DS1 
no damage

DS1 
no damage

DS2 
partially 
damaged

DS2 
partially 
damaged

DS3 
collapsed or 
unrepairable

DS3 
collapsed or 
unrepairable

Gautam 
et al. 
(2018) 
(DS#G)

– DS1 
slight to 
minor 
damage

DS1 
slight to 
minor 
damage

DS2 
moderate 
damage

DS3 
extensive 
damage to 
collapse

DS3 
extensive 
damage to 
collapse

http://www.safernepal.net
https://gpss.worldbank.org
https://gpss.worldbank.org
http://creativecommons.org/licenses/by/4.0/
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