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Abstract 

Background: Testicular germ cell tumours (TGCTs) are characterised by an overall high cisplatin-sensitivity 

which has been linked to their continued expression of pluripotency factors. Recently, the Nodal signalling 

pathway has been implicated in the regulation of pluripotency factor expression in fetal germ cells, and the 

pathway could therefore also be involved in regulating expression of pluripotency factors in malignant 

germ cells, and hence cisplatin-sensitivity in TGCTs. 

Methods: We used in vitro culture of the TGCT-derived cell line NTera2, ex vivo tissue culture of primary 

TGCT specimens and xenografting of NTera2 cells to investigate the consequences of manipulating Nodal 

and Activin signalling on pluripotency factor expression, apoptosis, proliferation and cisplatin-sensitivity. 

Results: The Nodal signalling factors were markedly expressed concomitantly with the pluripotency factor 

OCT4 in GCNIS cells, seminomas and embryonal carcinomas. Despite this, inhibition of Nodal and Activin 

signalling either alone or simultaneously did not affect proliferation or apoptosis in malignant germ cells in 

vitro or ex vivo. Interestingly, inhibition of Nodal signalling in vitro reduced the expression of pluripotency 

factors and Nodal pathway genes, while stimulation of the pathway increased their expression. However, 

cisplatin-sensitivity was not affected following pharmacological inhibition of Nodal/Activin signalling or 

siRNA-mediated knockdown of the obligate co-receptor CRIPTO in NTera2 cells in vitro or in a xenograft 

model. 

Conclusion: Our findings suggest that the Nodal signalling pathway may be involved in regulating 

pluripotency factor expression in malignant germ cells, but manipulation of the pathway does not appear 

to affect cisplatin-sensitivity or tumour cell proliferation. 
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Background 

Testicular germ cell tumours (TGCTs) in young adults originate from a common precursor, germ cell 

neoplasia in situ (GCNIS, previously known as carcinoma in situ) [1-3]. GCNIS cells are considered to be 

transformed gonocytes that have failed to differentiate to pre-spermatogonia during fetal testis 

development, most likely as a consequence of altered signalling from the somatic niche [3]. The arrest of 

gonocyte maturation is regarded as the initial step in the testicular cancer pathogenesis and results in the 

presence of a sub-population of cells with retained expression of pluripotency factors in postnatal life [1-3]. 

Around puberty, the hormonal changes and re-organisation of the testes required to support 

spermatogenesis are hypothesised to promote increased proliferation and gain of invasive capacity of the 

GCNIS cells, resulting subsequently in formation of TGCTs. The two main types of TGCTs are seminoma 

(SEM) and non-seminoma (non-SEM), where the latter may contain undifferentiated embryonal carcinoma 

(EC) as well as the more differentiated yolk sac tumour (YST), choriocarcinoma (CHC) and teratoma (TER) 

components [4]. 

Treatment of TGCTs depends on the tumour subtype and stage, with generally excellent cure rates even for 

advanced disease. In most cases, orchiectomy followed by surveillance is sufficient, but TGCTs that 

metastasise (most often non-SEMs) may require a combination of surgery, chemotherapy and in a few 

cases radiation therapy [5]. TGCTs are generally highly sensitive to cisplatin-based chemotherapy 

presumably due to their fetal germ cell origin, but the mechanisms underlying this overall high cisplatin-

sensitivity of TGCTs and occasional treatment resistance, are not understood in detail [6, 7]. An association 

between the embryonic phenotype of the majority of TGCTs and high cisplatin-sensitivity has been 

established, whereas the differentiated types of TGCTs, such as TER and CHC, are generally considered 

more resistant to treatment [8]. The relationship between expression of pluripotency factors and cisplatin-

sensitivity has also been examined in a TGCT-derived EC cell line, in which loss of pluripotency factor 

expression by siRNA-mediated knockdown of OCT4, resulted in decreased sensitivity to cisplatin [9]. 
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Moreover, treatment with retinoic acid to induce differentiation of the EC-derived NTera2 cell line along 

the neuroectodermal lineage, resulted in decreased expression of the pluripotency factor OCT4 and 

increased cisplatin-resistance [10-12], thus supporting the association between pluripotency factor 

expression and cisplatin-sensitivity. Although cisplatin-based chemotherapy has provided high cure rates 

for TGCTs, the treatment regimen is associated with long-term complications, including cardiovascular side 

effects and infertility as well as relapse [5, 13]. Therefore, optimisation of the current treatment regimen 

would be beneficial. 

Despite the general understanding that expression of pluripotency factors is a hallmark of GCNIS and the 

majority of TGCTs, the underlying molecular mechanisms responsible for the maintenance or re-activation 

of pluripotency factor expression in these malignant germ cells are not well understood. Several 

independent studies have implicated the Nodal signalling pathway in the pathogenesis of TGCTs [12, 14-

19]. Recently, we found that stimulation of the Nodal pathway in human fetal testes prolonged the 

expression of OCT4 in gonocytes, thus directly implicating the pathway in the regulation of the gonocyte to 

pre-spermatogonia transition during human fetal testis development [19] and involvement in regulating 

pluripotency factor expression in fetal germ cells (reviewed in [20]). Furthermore, high expression of the 

Nodal signalling factors NODAL, LEFTY1 and CRIPTO has been reported in GCNIS cells, TGCTs and TGCT-

derived cell lines [12, 16, 17], and  several studies have found co-expression of Nodal signalling and 

pluripotency factors in NTera2 cells [12, 15]. Also, heterogeneous expression of the co-receptor CRIPTO was 

found in NTera2 cells, with highest expression in the subpopulation of cells displaying the most tumorigenic 

potential [15]. 

Nodal and Activin signal through essentially the same receptors, including the activin receptors type 1 

(Alk4/7) and type 2 (ActRIIA/IIB). An important difference is that Nodal also requires the presence of the co-

receptor Cripto for signal transduction. Among the target genes of the Nodal pathway are Nodal itself and 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

Page 6 of 35 
 

the endogenous inhibitor Lefty1/2, which blocks the formation of the receptor complex by binding Nodal 

directly or by interacting with Cripto [21]. The endogenous inhibitor of Activin signalling is Follistatin, which 

binds directly to Activin to inhibit this pathway. In recent years, Nodal signalling has emerged as a 

promising therapeutic target due to its aberrant re-expression and signalling in various types of cancers, 

including breast cancer, melanoma, prostate cancer and pancreatic cancer [22-26]. Interestingly, we found 

that simultaneous inhibition of Nodal and Activin signalling resulted in an almost complete loss of 

gonocytes in human fetal testes [19]. Despite the implication of the Nodal signalling pathway in the 

pathogenesis of TGCTs, the mechanisms by which this signalling pathway is dysregulated in TGCTs remain 

to be elucidated. Therefore, we hypothesised that dysregulation of the Nodal signalling pathway is involved 

in the regulation of pluripotency factor expression and proliferation in malignant germ cells, and thus is 

associated with the characteristically high cisplatin-sensitivity of these cells. 
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Methods 

The aim of the this study was to investigate the involvement of Nodal signalling in the regulation of 

pluripotency factor expression, tumour cell proliferation and cisplatin-sensitivity in malignant germ cells by 

experimental manipulation of this pathway in NTera2 cells in vitro and in a xenograft model as well as in 

primary ex vivo cultures of adult testis tissue containing GCNIS cells. 

Human tissue sample collection and preparation 

Tissue samples used in this study were collected according to the Helsinki Declaration following approval by 

the regional ethics committee (H-1-2012-007) and all patients gave their informed written and oral consent 

prior to surgery. Testicular tissue with and without presence of GCNIS cells and testicular tumour samples 

were obtained after orchiectomy for testicular cancer. Tissue samples were transported to the Pathology 

Department (Copenhagen University Hospital) immediately after the orchiectomy where a pathologist 

examined the testes, dividing it into tumour and macroscopically normal areas. The majority of the tissue 

was used for diagnostic evaluation, while the remaining tissue was allocated to research and either snap-

frozen and stored at -800C or fixed in formalin or Bouin’s fixative. Alternatively, the collected testis tissues 

were placed in cell culture media, immediately transported to the laboratory and set up in ex vivo culture 

as described below. Testis specimens included samples of ‘normal testis (NT)’, samples containing GCNIS, 

SEM, EC and TER (only used for gene expression analysis). Tissue fragments with normal morphology and 

containing complete spermatogenesis without the presence of malignant germ cells were used as ‘normal 

adult testis’ controls. All tissue samples were evaluated by an experienced pathologist using a panel of 

immunohistochemical markers to characterise GCNIS cells and tumour subtypes, including placental-like 

alkaline phosphatase (PLAP), podoplanin (PDPN/D2-40), OCT4 (POU5F1), and (for non-SEMs only) also 

alpha-fetoprotein (AFP) and beta-choriogonadotropin (hCG) [27].  Frozen tissue specimens used for gene 

expression analysis were sectioned from each end of the tissue fragment and evaluated using 

immunohistochemistry to confirm the histological tumour subtype prior to RNA extraction. 
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Immunohistochemistry 

Immunohistochemistry on formalin-fixed tissue was performed as previously described in detail [28]. The 

fixed tissue samples were dehydrated, paraffin-embedded and sectioned (4 μm). Immunohistochemistry on 

Bouin’s fluid-fixed testicular tissue, TGCT samples and formalin-fixed NTera2 cells grown on glass slides was 

conducted using a pressure cooker for antigen-retrieval as previously described [19]. Visualisation was 

performed with ImmPACT DAB peroxidase substrate (Vector Laboratories, Burlingame, CA, US). Primary 

antibodies, dilutions and retrieval buffers are listed in Table 1. All sections were counterstained with 

Mayer’s haematoxylin before mounting with Aquatex (Merck, Kenilworth, NJ, US). Positive and negative 

controls were included for both protocols. Positive control samples included tissue/cells known to express 

the studied protein, including OCT4 (adult testes with GCNIS cells), NODAL, CRIPTO, LEFTY (mouse fetal 

testes and EC tumours), cPARP (adult testes, nuclease-treated) and BrdU (fetal testis culture, BrdU-treated). 

Negative controls were processed with the primary antibody replaced by the dilution buffer alone with 

none of the negative controls exhibiting any staining. Sections were evaluated using a Nikon Microphot-FXA 

microscope, subsequently scanned using a Nano-Zoomer 2.0 HT (Hamamatsu Photonics, Herrsching am 

Ammersee, Germany) and analysed using the software NDPview version 1.2.36 (Hamamatsu Photonics). 

Quantitative RT-PCR 

Quantitative RT-PCR (RT-qPCR) was performed as previously described [19] using the QuantStudio 3 Real-

Time PCR System (Thermo Fisher, Rochester, NY, US). In brief, mRNA was extracted from frozen tissue 

specimens and cell lines using the RNAqueous Micro Kit (Ambion, Austin, TX, US) or Nucleospin RNA 

purification kit (Macherey-Nagel, Düren, Germany), respectively. cDNA was synthesised using 1 µg mRNA, a 

dT20 primer and random hexamers, resulting in 100 µl cDNA, with 1 µl cDNA used for each RT-qPCR 

reaction. Gene expression was analysed using pre-specific primers (Table 2) designed to span intron-exon 

boundaries. All primers had previously been verified (Eurofins Genomics, Ebersberg, Germany). cDNA used 
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for gene expression analysis in this study have also been used in a previous study [29]. RT-qPCR analyses 

were measured as duplicates and triplicates for frozen tissue specimens and cell line RNA extracts, 

respectively, using Brilliant II SYBR Green qPCR Master mix (Aligent technologies, Santa Clare, CA, US). The 

thermal cycling programme was: 950C for 15 min followed 40 cycles of 950C for 15 sec and 620C for 1 min. 

Changes in gene expression were examined using the 2-∆∆Ct method [30]. Expression levels were 

normalised to RPS20 or RPS29 and calculated as a ratio with NT samples or vehicle controls set to 1.  

 

Culture of TGCT-derived NTera2 cell line 

The TGCT-derived embryonal carcinoma cell line NTera2 was a kind gift from Professor Peter Andrews 

(University of Sheffield, UK) [31]. The NTera2 cells were cultured according to standard culture conditions. 

In brief, cells were cultured in DMEM supplemented with 10% fetal bovine serum, glutamine (58.5 mg/ml), 

penicillin (100 U/ml) and streptomycin (100 mg/ml) at 370C in a 5% CO2 atmosphere. Cell media and 

reagents were from Gibco (Invitrogen, Carlsbad, CA, US). For gene expression analyses and co-treatment 

experiments, the ALK4/5/7 inhibitor SB431542 [32] that simultaneously inhibits Nodal and Activin signalling 

(40 µM, 20 µM, 10 µM, 4 µM), recombinant Nodal (50 ng/ml), recombinant Activin (50 ng/ml), recombinant 

Lefty (100 ng/ml), recombinant Follistatin (100 ng/ml) and cisplatin (1 and 5 µM, stock solution 1 mg/ml 

dissolved in 0.9% NaCl from EberwePharma, Unterach am Attersee, Austria) were added to the media. 

SB431542 were dissolved in DMSO, while Nodal, Activin, Lefty and Follistatin were dissolved in PBS with 

0.1% BSA or 4 mM HCl, 0.1% BSA in PBS. The recombinant proteins were purchased from R&D systems 

(Minneapolis, MN, US), while SB431542 was purchased from Sigma Aldrich (St. Louis, MO, US). Cells were 

plated in 25 cm2 flasks (Nunc, Thermo Fisher), incubated overnight before treatment was initiated and 

during the treatment period cells were split every 48 h with complete media change. Half of the cells were 

plated in new 25 cm2 flasks and the other half were collected for analysis. NTera2 cells used for 

immunohistochemical analysis were grown on glass slides (Nunc™ Lab-Tek™ II Chamber Slide™ System) for 

48 h followed by fixation in 4% formalin. Slides were stored at 40C until further analysis. 
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Cell proliferation assay 

Proliferation of NTera2 cells was determined after 24 h and 48 h treatment with SB431542, and after co-

treatments with SB431542 or recombinant Lefty and cisplatin. Proliferation was evaluated using the WST-1 

assay according to the manufacturer’s instructions (Roche, Basel, Schweiz). 10,000 NTera2 cells were 

seeded into a 96-well plate with sixteen replicates of each sample and incubated overnight. Cells were then 

treated with SB431542 (5 µM, 10 µM and 20 µM) or vehicle control (0.1% DMSO) for 24 h and 48 h. To 

assess proliferation, 1:10 WST-1 dye (Roche) in serum-free DMEM was added to the cells for 2 h before 

absorbance was measured at 450 nm and 630 nm using a FLUOstar Omega microplate reader (BMG 

Labtech, Ortenberg, Germany) or an Epoch Microplate Spectrophotometer (Biotek, Brøndby, Denmark). For 

co-treatments, 4,000 cells/well were plated into 96-well plates with eight replicates of each sample and 

allowed to attach for 6 h. Treatment with SB431542 (5 µM and 20 µM), recombinant Lefty (100 ng/ml) or 

vehicle control (0.1% DMSO) was then initiated for 48 h. Subsequently, media were removed and replaced 

with media containing cisplatin (1 µM and 5 µM) or 0.9% NaCl for 48 h. Cell proliferation was assessed with 

the WST-1 assay as described above. 

Ex vivo culture of adult human testis samples 

Testis tissue samples (NT/GCNIS) obtained from orchiectomised testicular cancer patients (described 

above) were set up ex vivo in hanging drop cultures as described previously [33], with a few modifications. 

In brief, hanging drops were set up using 40 μl drops of culture medium ± treatment with addition of a 

single testicular fragment (1 mm3) per drop and complete media change every 48 h. Nine tissue fragments 

were set up for each treatment. Media composition was: DMEM:F12, penicillin (100 U/ml), streptomycin 

(100 mg/ml), insulin, transferrin, selenium (x1) and 10% fetal bovine serum. Media and supplements were 

all purchased from Gibco. Cultures were incubated for 48 h and 4 days at 34°C in 5% CO2. 6 h before the end 
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of the culture period, the testis pieces were incubated with BrdU-labelling reagent (Invitrogen). 

Subsequently, tissue fragments were fixed in 4% formalin. 

 

siRNA-mediated knockdown of CRIPTO expression 

siRNA-mediated knockdown was carried out as previously described [12]. siRNA specific for CRIPTO (TDGF1-

HSS144243, Invitrogen), a non-specific siRNA control (MISSION siRNA Universal Negative Control, SICOO1, 

Sigma Aldrich) and transfection agent RNAiMAX Lipofectamine (Life Technologies, Carlsbad, CA, US) was 

used. In brief, 1x106 NTera2 cells were seeded into a 6-well plate and at the time of transfection cells were 

approximately 60-70% confluent. A concentration of 50 nM siRNA was used. 24 h after transfection, cells 

were re-plated into a 96-well plate (4,000 cells/well) or cultured in T-25 cm2
 flasks for RNA extractions. 

After 48 h, media was removed from the 96-well plate and replaced with media containing cisplatin (1 μM 

or 5 μM) or 0.9% NaCl for 48 h. Cell proliferation was determined by the WST-1 assay as described above. 

 

Establishment of NTera2 xenografts and treatments in NMRI nude mice 

The establishment and experiments conducted in this model were set up by technicians at Pipeline Biotech 

A/S (Trige, Denmark). Animal experiments were conducted in compliance with the Danish Animal 

Experiments Inspectorate (license number 2011/561-1956) and conducted as previously described [10, 34], 

with few modifications. Briefly, 30 NMRI male mice (Foxnu1) aged 6-8 weeks (Janvier labs, Le Genest-Saint-

Isle, France) were injected once with 2x106 NTera2 cells into each flank. When the tumours reached an 

approximate size of 150 mm3, the mice were randomly allocated into three treatment groups of ten 

animals; treatment group 1, cisplatin (6 mg/kg i.p. once during experiment), treatment group 2, cisplatin + 

SB431542 (6 mg/kg cisplatin i.p. once during experiment and 10 mg/kg SB431542 i.p. 3 times weekly) and 

treatment group 3, vehicle (10 mg/kg DMSO i.p. 3 times weekly). Treatment groups 1 and 3 were also used 

in a separate study to reduce the total number of animals included (Lorenzen et al., unpublished). Body 

weight and tumour volume were measured 3 times weekly throughout the experimental period of 14 days. 
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Tumour volume was calculated as: tumour volume = length × width × ½ width. At the end of the 

experiment mice were euthanized by inhalation of CO2 followed by cervical dislocation. The mice were 

caged in European standard cages type II with Jeluxyl HW 300/500 bedding and the housing and changing 

system was designed to assure that MPF-status was preserved during the study. The air was exchanged 

approximately 12 times per hour and temperature was kept between 20°C and 24°C (controlled via the 

ambient ventilation system). Light cycle was 12-hour dark and 12-hour light. During the entire experimental 

period mice were fed ad libitum with Standard diet (Altromin 1234, 600 IE D3/kg diet; Altromin, Lage, 

Germany) and UV-sterilised water were administered ad libitum. All animals were inspected on a daily basis 

for their general condition. Any animal showing clinical signs of moderate pain or distress, any degree of 

suffering or clinical signs that exceed the limits of the study specific end-point would have been humanely 

euthanized according to the European and Danish legislation on animals in experimental studies. 

Statistical analysis 

Statistical analysis was performed using the Software GraphPad Prism 8 (San Diego, CA, US). Differences in 

gene expression and cell proliferation were tested using a two-tailed Student’s t-test, while differences in 

tumour growth were tested using a one-way ANOVA with Bonferroni correction. Statistically significant 

differences are indicated as * P<0.05, ** P<0.01 and *** P<0.001. The number of replicates in each 

experimental set-up and statistical significance are specified in figure legends. 
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Results 

Expression of Nodal signalling factors in normal testis, GCNIS, testicular tumours and NTera2 cells 

The expression levels of NODAL, CRIPTO and LEFTY1 were initially investigated by RT-qPCR in tissue from 

adult testis samples with full spermatogenesis and no presence of malignant germ cells (hereafter termed 

‘normal testis’ (NT)), samples containing pre-invasive GCNIS cells in the majority of tubules (GCNIS), 

seminoma tumour (SEM), embryonal carcinoma tumour (EC) and teratoma tumour (TER). OCT4 (POU5F1) 

and NANOG were included to verify the neoplastic content in GCNIS, SEM and EC samples. Overall, the 

investigated Nodal pathway genes were all expressed in the included samples, but at very different levels 

(Supplementary Fig. 1a). In GCNIS, SEM and EC, the expression of OCT4 (GCNIS, SEM, P<0.05; EC, P<0.001) 

and NANOG (all P<0.05) was significantly increased compared to NT, verifying the neoplastic content within 

these samples. The expression of Nodal signalling factors NODAL (P<0.001), CRIPTO (P<0.05) and LEFTY1 

(P<0.001) was significantly higher in EC samples compared to NT as well as GCNIS, SEM and TER.  

 

Protein expression of NODAL, CRIPTO and LEFTY (antibody detects both LEFTY1 and LEFTY2) was examined 

by immunohistochemistry in serial sections of NT, GCNIS, SEM and EC. OCT4 was included as a marker of 

malignant germ cells, and was detected in GCNIS, SEM and EC, but not in NT which is in accordance with 

the expected expression pattern (Supplementary Fig. 1b). NODAL, CRIPTO and LEFTY were expressed in all 

investigated samples, except NT. The expression of all three Nodal pathway proteins was more pronounced 

in EC compared to GCNIS and SEM, with co-expression of all three proteins in OCT4+
 EC cells. Interestingly, 

the expression of NODAL, CRIPTO and LEFTY was found only in a sub-population of GCNIS cells and 

expression in these cells was low. Additionally, the expression pattern of NODAL, CRIPTO, LEFTY and OCT4 

was also examined in the EC-derived NTera2 cell line (Supplementary Fig. 1c). Noticeably, CRIPTO was 

strongly expressed in the nuclei in addition to the expected cytoplasmic/membranous expression. NODAL 

was expressed in the cytoplasm, whereas LEFTY appeared to be present between adjacent NTera2 cells, 

possibly reflecting secretion from the cells. 
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Effects of simultaneous inhibition of Nodal and Activin signalling on proliferation and transcriptional 

expression in NTera2 cells 

In order to investigate the effects of inhibiting Nodal and Activin signalling on proliferation of NTera2 cells, 

treatment experiments with the ALK4/5/7 inhibitor SB431542 [32], were conducted. Treatment with 20 

μM, 10 μM and 5 μM SB431542 had no significant effect (P>0.05) on proliferation of NTera2 cells after 24 h 

or 48 h (Fig. 1a-b). In contrast, treatment with SB431542 (40 μM, 20 μM and 4 μM) for 48 h resulted in 

significantly lower expression of pluripotency factors OCT4 (40 μM and 20 μM, P<0.01; 4 μM, P<0.05) and 

NANOG (P<0.001) as well as NODAL, CRIPTO and LEFTY1 (all P<0.001) in NTera2 cells (Fig. 1c). After 7 days 

of treatment with SB431542 (40 μM, 20 μM and 4 μM), expression of all investigated genes remained 

significantly reduced (Fig. 1d). 

Effects of manipulating Nodal and Activin signalling separately on the transcriptional expression pattern 

in NTera2 cells and ex vivo cultures of adult testis tissue 

To separate the effects of inhibiting or stimulating Nodal and Activin signalling pathways individually, a 

series of treatment experiments were performed in the NTera2 cell line. The Nodal pathway was stimulated 

by treatment with recombinant Nodal (50 ng/ml) and inhibited by treatment with recombinant Lefty (100 

ng/ml). Nodal treatment for 48 h resulted in a significant upregulation of OCT4 (P<0.05) and NANOG 

(P<0.01) as well as NODAL (P<0.001), CRIPTO (P<0.01) and LEFTY1 (P<0.001) (Fig. 2a). The expression of 

OCT4 and CRIPTO (both P<0.01) remained upregulated after 7 days of treatment with recombinant Nodal 

(Fig. 2b). In contrast, Lefty treatment for 48 h significantly reduced the expression level of all investigated 

genes; OCT4 (P<0.05), NODAL (P<0.05), NANOG (P<0.01), CRIPTO (P<0.01) and LEFTY1 (P<0.001) (Fig. 2a). 

The expression of OCT4 (P<0.01), NANOG (P<0.001), NODAL (P<0.01), CRIPTO (P<0.01) and LEFTY1 

(P<0.001) continued to be downregulated following Lefty treatment for 7 days (Fig. 2b). The Activin 

pathway was stimulated using recombinant Activin A (50 ng/ml) and inhibited using recombinant Follistatin 
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(100 ng/ml). Activin treatment resulted in significantly higher expression of NANOG (P<0.05) and LEFTY1 

(48 h, P<0.05; 7 days, P<0.01) at both 48 h and 7 days (Fig. 2c-d), with increased expression of CRIPTO 

(P<0.05) also after 48 h. Follistatin treatment increased only the expression of NANOG (P<0.05) after 48 h. 

To examine the effects of manipulating Nodal and Activin signalling in malignant germ cells preserved 

within their somatic niche, the effects of SB431542, recombinant Nodal and Activin A were investigated in 

cultures of primary testis tissue from testicular cancer patients (Fig. 3 and Fig. 4). Tissue containing tubules 

with GCNIS cells (located adjacent to the TGCT tumour in the orchiectomised testis) from three patients 

was cultured ex vivo for 48 h (Fig. 3) and 4 days (Fig. 4). None of the treatments significantly affected 

(P>0.05) proliferation (BrdU+/mm2), apoptosis (cPARP+/mm2) or number of GCNIS cells (OCT4+/mm2) 

compared to the vehicle controls after 48 h (Fig. 3b-e) or 4 days (Fig. 4b-d). 

Effects of pharmaceutical inhibition of Nodal and Activin signalling on cisplatin-sensitivity in NTera2 cells 

To determine whether co-treatment with inhibitors of the Nodal signalling pathway affects cisplatin-

sensitivity, NTera2 cells were treated with SB431542 (5 μM and 20 μM) or recombinant Lefty (100 ng/ml) 

for 48 h followed by 48 h of cisplatin treatment (1 μM and 5 μM). Subsequently, effects on cell proliferation 

was assessed. Co-treatments were conducted in three independent experiments, with similar results 

obtained between the experiments (Fig. 5a). Overall, initial exposure to SB431542 or Lefty followed by 

cisplatin treatment did not affect the cisplatin-sensitivity in the NTera2 cells. However, co-treatment with 

20 μM SB431542 and 1 μM cisplatin significantly increased (P<0.05) proliferation compared to cells treated 

with 1 μM cisplatin only, indicating that the cells were less sensitive to the cisplatin treatment (Fig. 5b). 

Generally, there was a tendency towards reduced cisplatin-sensitivity when cells were co-treated with 

SB431542 and cisplatin regardless of the doses used, although for most combinations of doses this was not 

statistically significant (P>0.05). 
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Effects of siRNA-mediated knockdown of CRIPTO expression on cisplatin-sensitivity in NTera2 cells 

In order to examine whether the tendency towards reduced cisplatin-sensitivity found after inhibition of 

Nodal signalling (with SB431542) could be verified, the effect of CRIPTO knockdown on cisplatin-sensitivity 

was examined. Expression of the co-receptor CRIPTO, obligate for Nodal signalling, was knocked down in 

NTera2 cells by a siRNA approach. Subsequently, NTera2 cells were treated with cisplatin (1 μM and 5 μM) 

for 48 h and cell proliferation was assessed. The expression of CRIPTO was significantly reduced (P<0.05) 

upon transfection with siCRIPTO compared to the siCTRL (Fig. 6a-b) in all individual experiments and when 

combined. Despite the significant reduction in CRIPTO expression (P<0.05), no effect on cisplatin-sensitivity 

was found in the NTera2 cells when compared to the siCTRL-transfected NTera2 cells treated with cisplatin 

(Fig. 6c-d). 

Effects of simultaneous inhibition of Nodal and Activin signalling on cisplatin-sensitivity in a NTera2 

xenograft mouse model 

Simultaneous inhibition of Nodal and Activin signalling by SB431542 treatment in combination with 

cisplatin treatment was subsequently investigated in an NTera2 xenograft mouse model. NTera2 cells were 

injected into the flanks of nude mice and after the development of tumours, treatment was initiated. The 

animals were treated with either cisplatin alone, a combination of cisplatin + SB431542 or vehicle control. 

None of the animals exhibited observable negative effects of the experimental procedure or treatments. In 

the vehicle-treated control mice, tumour burden continued to increase throughout the experimental period 

(Fig. 7), while in mice treated with cisplatin alone and cisplatin + SB431542, the tumour size was 

significantly reduced (P<0.01 and P<0.001) compared to the vehicle controls already 3 days after the 

treatments were initiated. However, no significant difference (P>0.05) in tumour size was found between 

mice treated with cisplatin alone and cisplatin + SB431542 at any of the evaluated time-point (Fig. 7). 
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Discussion 

In the present study, we found high expression of the Nodal signalling factors in undifferentiated types of 

TGCTs and our results suggests that the Nodal pathway may be involved in the regulation of pluripotency 

factor expression in malignant germ cells. However, targeting Nodal signalling in the EC-derived NTera2 cell 

line by several different experimental approaches did not affect proliferation of the malignant germ cells or 

result in any pronounced effects on cisplatin-sensitivity, indicating that the Nodal pathway may not 

represent a promising clinical target to augment the effect of current chemotherapy regimens in testicular 

cancer patients. 

 

NODAL, CRIPTO and LEFTY1/2 were expressed at transcript and protein levels in GCNIS cells and the 

undifferentiated TGCTs, SEM and EC. The most pronounced expression of all Nodal pathway factors was 

found in EC and co-expressed in OCT4+
 cells. In accordance with previous studies [14, 16, 18], the 

expression of Nodal factors in ‘normal’ testis without malignant cells was low/absent, suggesting 

maintenance of Nodal factor expression in GCNIS and/or re-activation in malignant germ cells. Additionally, 

the overall expression of the Nodal factors at both gene and protein levels in GCNIS and SEM was lower 

compared to EC which is in accordance with a previous study [18]. Interestingly, the protein expression of 

the Nodal pathway factors was less pronounced in GCNIS cells compared to EC but also to some extent 

SEM, which supports the notion that Nodal signalling components might be maintained only at low levels in 

GCNIS cells and are upregulated in the invasive tumours, although it remains to be determined whether the 

Nodal pathway is involved in the transition from GCNIS to EC/(SEM). The observed high expression of 

LEFTY1/2 in undifferentiated TGCTs, indicates that the inhibitory feedback mechanism on Nodal signalling 

may not be dysregulated in TGCTs, despite a previous study suggested this based on the reported low 

expression of LEFTY1 in EC [16].  
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The Nodal signalling factors were all expressed in the NTera2 cell line, hence we used it as a model to 

examine effects of manipulating Nodal signalling in TGCTs. Simultaneous inhibition of Nodal and Activin 

pathways did not affect proliferation in NTera2 cells or in GCNIS cells in ex vivo cultured testis samples. 

Since Nodal and Activin signalling have been implicated in germ cell survival in both human and mouse fetal 

testes [19, 35], this may indicate a difference between normal fetal gonocytes and malignant germ cells, 

although it is important to consider that in contrast to normal fetal germ cells, malignant TGCTs have 

acquired features allowing them to survive outside of their normal niche. In the NTera2 cells, simultaneous 

inhibition of Nodal and Activin signalling resulted in reduced expression of the investigated pluripotency 

factors and Nodal pathway genes, and after separating the effects of Nodal and Activin signalling pathways 

it was evident that the Nodal pathway was responsible for the majority of observed effects. Additionally, 

the opposing effects observed after stimulating and inhibiting Nodal signalling, suggest that the pathway 

may be involved in the regulation of pluripotency factor expression in malignant germ cells. These results 

are in accordance with the reported involvement of Nodal signalling in regulating pluripotency factor 

expression in human fetal testes [19], mouse fetal testes [16, 36, 37] and human embryonic stem cells [38]. 

However, manipulation of Nodal and Activin signalling in ex vivo cultures of GCNIS-containing tissue (48 h 

and 4 days) did not overall affect the number of OCT4+
 GCNIS cells, although in one patient sample an 

increased number of OCT4+ GCNIS cells was observed following treatment with Nodal and Activin (48 h) 

and Nodal (4 days). The different responses between patient samples as well as the relative short-term 

culture periods used in this study, suggest that additional studies examining the effects of stimulated 

Nodal/Activin signalling on GCNIS cells may be relevant. Importantly, the overall low number of apoptotic 

germ cells and the presence of proliferating cells in the cultured tissue samples, suggest that the tissue was 

supported by the culture approach and that the selected treatment doses were not toxic. However, given 

the high variation in the tissue, which is expected in testicular cancer patients [33], minor effects of 

treatments can be difficult to detect using this experimental approach. 
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Aberrant re-activation of Nodal signalling has been reported in various types of cancers, including cancer 

stem cells which also express pluripotency factors, and several studies have shown that inhibition of 

Nodal/(Activin) signalling reduces the tumorigenic potential both in vitro and in cancer mouse models [22-

26]. Additionally, combined treatment with the SB431542 inhibitor and chemotherapy (gemcitabine) 

abolished tumours in a pancreatic cancer mouse model and resulted in complete survival of mice in this 

treatment group [24]. Moreover, given the almost complete germ cell loss following SB431542 treatment 

of human fetal testes, we examined whether co-treatment with this inhibitor could augment cisplatin-

sensitivity in NTera2 cells. Overall, we did not observe pronounced effects on cisplatin-sensitivity following 

inhibition of Nodal signalling in vitro or in the xenograft model, except tendencies toward reduced cisplatin-

sensitivity after in vitro pharmaceutical inhibition of Nodal/Activin signalling and siRNA-mediated 

knockdown of the obligate co-receptor CRIPTO. In vitro treatment with recombinant Lefty to inhibit only 

Nodal signalling did not result in reduced cisplatin-sensitivity (or showed tendencies in this direction), 

which could reflect the different levels at which inhibitory molecules and siRNA-mediated knockdown 

functions [39]. Additionally, the slightly increased cisplatin-resistance observed following blockage of both 

Nodal and Activin signalling (using the high dose of SB431542), but not after specific inhibition of Nodal 

signalling, could indicate some redundancy between the Nodal and Activin pathways. We speculate that 

inhibition of Nodal signalling promotes downregulation of pluripotency factor expression in the malignant 

germ cells driving them towards a more differentiated phenotype, which is associated with reduced 

cisplatin-sensitivity [8-12]. However, since both ECs (high Nodal expression) and SEMs (low Nodal 

expression) are highly sensitive to cisplatin-based treatment [6, 7], this may explain why we did not find 

pronounced effects on cisplatin-sensitivity upon manipulation of the Nodal signalling pathway. It has 

previously been demonstrated that calcitriol treatment (active form of vitamin D) of NTera2 cells resulted 

in both decreased expression of pluripotency factors and augmented effects of cisplatin, while treatment of 

NTera2 with retinoic acid decreased the expression of pluripotency factors and reduced cisplatin-mediated 

effects [10, 34]. This suggests that the relationship between pluripotency factor expression and cisplatin-
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sensitivity in malignant germ cells is not completely understood and that further studies examining this 

would be relevant. 
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Conclusions 

In conclusion, the Nodal signalling factors are highly expressed in the undifferentiated types of TGCTs and 

may be involved in the regulation of pluripotency factor expression in malignant germ cells. In contrast to 

several other types of cancers in which the Nodal pathway is also re-activated, inhibition of Nodal (and 

Activin) signalling did not affect tumour cell proliferation or augment cisplatin-sensitivity in TGCTs in vitro 

or in the xenograft model. Thus, the different response to the pharmaceutical pathway inhibitor SB431542 

in TGCTs compared to human fetal germ cells, suggests that regulation or feedback mechanisms related to 

the Nodal pathway may be altered in malignant germ cells, although additional studies are needed to 

examine these mechanisms in more detail. 
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List of abbreviations 

CHC Choriocarcinoma 

EC Embryonal carcinoma 

GCNIS Germ cell neoplasia in situ 

i.p. Intraperitoneal injection 

Non-SEM Non-seminoma 

NT Normal testis 

SEM Seminoma 

TER Teratoma 

TGCTs Testicular germ cell tumours 

YST Yolk sac tumour 
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Figure legends 

Fig 1. Effects of simultaneously inhibiting Nodal and Activin signalling in the NTera2 cell line. NTera2 cells 

were treated with 20 μM, 10 μM and 5 μM SB431542 for a) 24 h and b) 48 h followed by assessment of cell 

proliferation. Experiments were set up with 16 replicates per treatment and repeated in three independent 

experiments (n=3). Cell proliferation is set to 1 in the vehicle controls. Expression of pluripotency factors 

(OCT4, NANOG) and Nodal pathway genes (NODAL, CRIPTO, LEFTY1) in NTera2 cells following c) 48 h and d) 

7 days of treatment with SB431542 (40 μM, 20 μM and 4 μM). RPS20 was used as reference gene. 

Expression level is set to 1 in the vehicle controls. Experiments were conducted in triplicates in three 

independent experiments (n=3) and measured as technical triplicates. Values represent mean ± SEM. 

Significant difference compared to expression in vehicle control-treated cells, * P<0.05, ** P<0.01 and *** 

P<0.001. Note logarithmic scale. 

 

Fig 2. Effects of manipulating Nodal and Activin signalling separately in NTera2 cells. Expression of 

pluripotency factors (OCT4, NANOG) and Nodal signalling factors (NODAL, CRIPTO, LEFTY1) in NTera2 cells 

following a) 48 h and b) 7 days of treatment with recombinant Nodal (50 ng/ml) and Lefty (100 ng/ml) and 

c) 48 h and d) 7 days of treatment with Activin A (50 ng/ml) and Follistatin (100 ng/ml). RPS20 was used as 

reference gene. Expression level is set to 1 in the vehicle controls. Experiments were conducted in 

triplicates in three independent experiments (n=3) and measured as technical triplicates. Values represent 

mean ± SEM. Significant difference compared to expression in vehicle control-treated cells, * P<0.05, ** 

P<0.01 and *** P<0.001. Note logarithmic scale. 

 

Fig 3. Effects of manipulating Nodal and Activin signalling in GCNIS cells cultured ex vivo. a) Schematic 

illustration of the experimental ex vivo hanging drop culture approach. b) Immunohistochemical staining 

with BrdU (proliferation marker), cPARP (apoptosis marker) and OCT4 (pluripotency marker) in adult testis 

tissue containing GCNIS cells treated with SB431542 (20 μM), recombinant Nodal (50 ng/ml), Activin A (50 
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ng/ml) or vehicle for 48 h. Sections were counterstained with Mayer’s haematoxylin. Scale bar corresponds 

to 100 μm. Quantification of the number of c) BrdU+ cells per mm2, d) cPARP+ cells per mm2 and e) OCT4+ 

cells per mm2. Number of positive cells is normalised to vehicle controls (set to 1), and only apoptotic 

GCNIS cells were quantified. Tissue from three patients was evaluated (n=3). Top panel of c-e) shows 

results from the individual patient samples, while bottom panel represents mean ± SEM. 

Fig. 4. Effects of manipulating Nodal and Activin signalling in GCNIS cells cultured ex vivo. a) 

Immunohistochemical staining with BrdU (proliferation marker), cPARP (apoptosis marker) and OCT4 

(pluripotency marker) in adult testis tissue containing GCNIS cells treated with SB431542 (20 μM), 

recombinant Nodal (50 ng/ml) or vehicle for 4 days. Sections were counterstained with Mayer’s 

haematoxylin. Scale bar corresponds to 100 μm. Quantification of the number of b) BrdU+ cells per mm2, c) 

cPARP+ cells per mm2 and d) OCT4+ cells per mm2. Number of positive cells is normalised to vehicle controls 

(set to 1), and only apoptotic GCNIS cells were quantified. Tissue from three patients was evaluated (n=3). 

Top panel of b-d) shows results from the individual patient samples, while bottom panel represents mean ± 

SEM. 

Fig 5. Effects of pharmaceutical inhibition of Nodal/Activin or Nodal signalling on cisplatin-sensitivity in 

NTera2 cells. NTera2 cells were treated for 48 h with SB431542 (5 μM and 20 μM) or Lefty (100 ng/ml) 

followed by additional 48 h of cisplatin treatment (1 μM and 5 μM) and assessment of cell proliferation. a) 

Experiments were conducted in three independent experiments with eight replicates per treatment (shown 

as mean for each experiment). Cell proliferation is set to 1 in NTera2 cells not treated with cisplatin. b) 

Values represent mean ± SEM from the three independent experiments (n=3). Significant difference 

compared to proliferation of vehicle-treated control NTera2 cells receiving corresponding cisplatin 

treatment, * P<0.05. 
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Fig 6. Effects of siRNA-mediated knockdown of CRIPTO expression on cisplatin-sensitivity in NTera2 cells. 

Expression of CRIPTO determined by RT-qPCR after knockdown using a siRNA targeting CRIPTO (siCRIPTO) 

and a non-specific siRNA control (siCTRL). RPS29 was used as reference gene. a) Experiments were 

conducted in four independent experiments (n=4) and measured as technical triplicates (shown as mean 

for each experiment). Expression level of CRIPTO is set to 1 in vehicle-treated control NTera2 cells. b) 

Values represent mean ± SEM from the four independent experiments. Significant difference compared to 

expression level of CRIPTO in siCTRL-transfected NTera2 cells, * P<0.05. Following knockdown, cells were 

subjected to treatment with 1 μM and 5 μM cisplatin for 48 h and cell proliferation was assessed. c) 

Experiments were conducted in four independent experiments and set up with eight technical replicates 

per treatment. d)  Values represent mean ± SEM from the four independent experiments. Cell proliferation 

is set to 1 in vehicle-treated control NTera2 cells not treated with cisplatin. 

Fig 7. Effects of inhibiting Nodal/Activin signalling on cisplatin-sensitivity in a NTera2 xenograft model. 

NTera2 cells (2x106; single injection) were xenografted into the flanks of nude mice and allowed to grow to 

an average size of 150 mm3. Animals were allocated into three groups (n=10 for each group) and treated 

(day 0 on graph) with vehicle (10 mg/kg DMSO i.p. three times weekly), cisplatin (6 mg/kg i.p. once during 

the experiment) or cisplatin + SB431542 (6 mg/kg cisplatin i.p. once during the experiment and 10 mg/kg 

SB431542 i.p. three times weekly). Body weight and tumour size (mm3) were evaluated three times weekly 

during the experimental period of 11 days. Values represent mean ± SEM. Significant difference compared 

to vehicle control-treated mice, * P<0.05, ** P<0.01 and *** P<0.001. Abbreviations: i.p., intraperitoneal 

injection. 
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Tables 

Table 1. Antibody dilutions, retrieval buffer and details. Antigen-retrieval buffers: citrate buffer, 10 mM, 

pH 6.0; TEG buffer, 10 mM Tris, 0.5 mM EGTA, pH 9.0. 

Antibody Dilution (formalin) Retrieval buffer Species Company Cat. Number 

OCT4 1:50 TEG Mouse Santa Cruz Sc-5279 
NODAL 1:800 Citrate Mouse Abcam Ab55676 
CRIPTO 1:200 Citrate Rabbit Abcam Ab19917 
LEFTY 1:4000 Citrate Rabbit Abcam Ab22569 
cPARP 1:100 Citrate Rabbit Cell Signaling 5625 
BrdU 1:100 Citrate Mouse Dako M0744 

Table 2. Primer sequences. 

Gene Forward primer 5’-3’ Reverse primer 5’-3’ Amplicon 
size 

GenBank 
Accession no. 

OCT4 (POU5F1) TACTCCTCGGTCCCTTTCC CAAAAACCCTGGCACAAACT 166 bp NM_002701 
NANOG TGATTTGTGGGCCTGAAGAAAA GAGGCATCTCAGCAGAAGACA 60 bp NM_024865.4 
NODAL AGCATGGTTTTGGAGGTGAC CCTGCGAGAGGTTGGAGTAG 160 bp NM_001329906.1 
CRIPTO TCCTTCTACGGACGGAACTG ATCACAGCCGGGTAGAAATG 153 bp NM_001174136.1 
LEFTY1 GCCTCGACAGTGCATCGCCTC CAAGTAAACAATGACACATTGGGC 477 bp NM_020997.4 
RPS20 AGACTTTGAGAATCACTACAAGA ATCTGCAATGGTGACTTCCAC 179 bp NM_001023 
RPS29 CGCTCTTGTCGTGTCTGTTCA CCTTCGCGTACTGACGGAAA 91 bp NM_001032 
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