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Cells coordinate interphase to mitosis transition but recurrent cytogenetic lesions appear at common 

fragile sites (CFSs), ‘CFS expression’, in a tissue-specific manner following replication stress, 

marking regions of instability in cancer. Despite such a distinct defect no model fully explains their 

molecular configuration. We show that CFSs are characterised by impaired chromatin folding 

manifested as disrupted mitotic structures visible using molecular FISH probes in the presence and 

absence of replication stress. Chromosome condensation assays reveal that compaction-resistant 

chromatin lesions persist at CFSs throughout the cell cycle and mitosis. Cytogenetic and molecular 

lesions are marked by faulty condensin loading at CFSs, a defect in condensin I mediated 

compaction and are coincident with mitotic DNA synthesis (MIDAS). This model suggests that in 

conditions of exogenous replication stress, aberrant condensin loading leads to molecular defects 

and CFS expression, concomitantly providing an environment for MIDAS, which, if not resolved, 

result in chromosome instability. 
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Introduction 
The folding of chromosomes in preparation for mitosis is the most profound structural change the 

genome undergoes throughout a cell’s lifetime (Antonin and Neumann, 2016). Mitotic condensation 

is linked to successful cell division and cell cycle progression in a functional and regulatory manner 

and its failure can be costly, leading to lagging chromosomes and aneuploidy (Gordon et al., 2012; 

Saldivar et al., 2018; Zhu et al., 2018).  Much effort has been made to define the molecular basis of 

the condensation process and bridge the cytogenetic features of mitotic chromosomes with 

molecular-level understanding of the chromatin and scaffolding proteins that comprise them. As a 

result, it is now accepted that a fully folded, cytogenetically normal metaphase chromosome is the 

product of successful and timely completion of inter-connected processes including replication, sister 

chromatid separation and chromatin condensation (Gibcus et al., 2018; Ono et al., 2013; Wechsler 

et al., 2011). Consequently, the cytogenetic integrity of chromosomes is affected by the disruption 

of these processes; common fragile sites (CFSs)(Durkin and Glover, 2007), regions of the genome 

known for forming lesions on metaphase chromosomes when cells are challenged with replication 

stress (Zeman and Cimprich, 2014), in a process called CFS expression, are a prominent example. 

Illustrating the importance of mitotic compaction for genome stability, these sites overlap with 

recurrent cancer deletions and tumour suppressor genes frequently lost in cancer (Bignell et al., 

2010; Negrini et al., 2010; Le Tallec et al., 2013). Unlike constitutively fragile locations such as 

Fragile X, CFSs form in a cell type specific manner, leading to suggestions that an epigenetic 

component plays a role in their fragility (Letessier et al., 2011; Le Tallec et al., 2011). A number of 

factors have been identified, including late replication timing, transcription of long genes and features 

of the underlying DNA sequence (Blin et al., 2019; Brison et al., 2019; Fungtammasan et al., 2012; 

Helmrich et al., 2011; Maccaroni et al., 2020; Okamoto et al., 2018; Le Tallec et al., 2014; Wei et al., 

2016; Wilson et al., 2015). CFSs also require FANCD2 for efficient replication (Madireddy et al., 

2016; Pentzold et al., 2018) and have been identified as regions where active DNA synthesis is 

apparent on mitotic chromosomes in a process dependent on POLD3 and the Mus81 nuclease 

(Minocherhomji et al., 2015). The steps involved in triggering synthesis remain unknown but it also 

requires the TRAIP ubiquitin ligase (Sonneville et al., 2019). Recent high-resolution mapping of 

MIDAS (Macheret et al., 2020) has shown that mitotic synthesis occurs at genomic locations 

measuring up to 1.2 Mb in size, overlapping with previously identified CFSs. Assessment of 

replication dynamics at these sites confirms that CFSs take a long time to replicate and remain 

unreplicated in late S-phase under conditions of replication stress. 

 

While the replication states of CFS regions have recently been characterised, there is little 

mechanistic insight into how replication defects lead to the condensation defects observed on mitotic 

chromosomes.  Condensation defects have also been shown to underlie HR-deficiency mediated 

mitotic lesions, and if not resolved lead to DNA damage and chromosomal instability (Chan et al., 

2018). The effectors of such condensation failures are likely to be proteins that drive mitotic folding 
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such as the condensin I and II complexes which are crucial for chromosome compaction (Gibcus et 

al., 2018; Lipp et al., 2007; Samejima et al., 2012). Furthermore, mechanisms established in yeast 

show that the post-replicative chromatin state is monitored by the ATR homologue Mec1; in the 

absence of Mec1, a subset of genomic locations including slow replicating zones, which resemble 

CFS, become sensitive to mitotic condensation and develop breaks in a condensin dependent 

manner (Cha and Kleckner, 2002; Hashash et al., 2012). 

 

Given the close relationship between replication and mitotic compaction (Ono et al., 2013), we 

hypothesised that disrupted mitotic folding may arise as a consequence of replication stress at 

sensitive regions such as CFS. Using a FISH-based approach, we show that CFS are characterised 

by failure of local chromatin to compact for mitosis: this is the case at cytogenetic lesions but also 

when the sites appear cytogenetically normal, where we demonstrate a previously unknown 

propensity for smaller scale molecular lesions (100 kb), visible only at the molecular (imaged by 

FISH) and not the cytogenetic level. We show that molecular and cytogenetic instability at CFSs is 

dependent on condensin and remodel chromatin at the G2/M boundary to facilitate mitotic folding. 

Analysis of condensin complexes indicates that condensin I, rather than condensin II, is the effector 

of disrupted mitotic compaction at CFSs. Our model suggests that after replication non-fragile 

regions undergo structural and compositional ‘priming’ of chromatin in preparation for mitosis. In 

contrast CFSs are regions of the genome where, even in unperturbed conditions, chromatin is 

inefficiently ‘primed’ for mitotic compaction, likely due to delayed replication or the presence of post-

replicative intermediates, which can be resolved by extending the duration of G2. CFS are 

characterised by aberrant condensin loading, leading to molecular lesions, whilst in the extreme 

conditions of exogenous replication stress cytological chromosome abnormalities are apparent.  
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Results 
CFS frequency and repertoire in RPE1 and HCT116 cells  
To analyse the relationship between chromosome architecture and CFS structure we characterised 

the CFS repertoire and frequency in two epithelial chromosomally near-normal diploid cell lines 

(HCT116 and RPE1), using DAPI banding, after inducing replication stress with aphidicolin (APH). 

372 lesions across 371 metaphases for APH concentrations ranging from 0.1 to 0.6 μM were 

observed, showing that higher APH concentration led to increased rate of breakage and more severe 

CFS phenotypes (Supplementary Figure 1A-B), with a concomitantly delayed cell cycle 

(Supplementary Figure 1C). Cytogenetic lesions were mapped and scored in metaphase spreads 

prepared from HCT116 (n= 94) and RPE1 (n = 64) cells following 24-hour treatment with 0.4 μM 

APH (Figure 1A-B, Supplementary Figure 1D-E, Supplementary Table 1). Despite both cell lines 

being of epithelial origin, the CFS repertoire differed significantly: FRA3B was the most fragile site 

in the HCT116 line (23% of all breaks), followed by locations on chromosome 2 (FRA2I, 2q33.2; 

FRA2T, 2q24.1). In contrast, the most fragile location in the RPE1 cell line, FRA1C on 1p31.2 was 

only weakly fragile in HCT116 (18.6% of all breaks in RPE1; 5.8% in HCT116); additionally, 4q32.2, 

one of the most common break sites (approx. 10% of all breaks) in the RPE1 cell type has not been 

previously identified as a CFS location, although it was observed once in a previous study (Mrasek 

et al., 2010). A previous analysis of CFS distribution in HCT116 cells (Le Tallec et al., 2013) also 

indicated that FRA3B was the most common site but there were also differences: in our study FRA4F 

and FRA2I instability were more frequent whilst FRA4D and FRA16D instability was not readily 

apparent. In contrast, a further study found that FRA16D was the most common fragile site in 

HCT116 cells (Hosseini et al., 2013) indicating differences in CFS repertoire and frequency between 

sub-clones. 

 

CFSs are reported to share a number of structural characteristics: the presence of long genes, AT-

rich sequences and late replication timing (Arlt et al., 2009; Fungtammasan et al., 2012; Wilson et 

al., 2015). The genomic features of the sites we identified were consistent with these trends, although 

CFSs do not contain either the most GC-poor regions in the genome or the longest genes (Figure 

1C-D), or the latest replicating regions (Zhao et al., 2020)(Supplementary Table 1). Among the most 

fragile locations in our study, 9 out of 11 overlapped with genes larger than 0.3 Mb including FRA3B 

(FHIT), FRA4F (GRID2, CCSER), 4q32.2 (MARCH1, 0.85 Mb; FSTL5, 0.78 Mb) and FRA7E, which 

spans MAGI2 (1.4 Mb).  While the frequent FRA1C site in the RPE1 cell line does not overlap with 

any long genes, it is in close proximity to LRRC7 (0.32 Mb) and 2.5 Mb away from NEGR1 (0.89 

Mb). COSMIC mutation data also showed that, as expected, the majority of the most frequent CFSs 

(8 out of 11) overlapped with recurrent cancer deletion clusters (Le Tallec et al., 2013). 

 

CFS regions have irregular chromatin structures in the absence of replication stress 
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Cytogenetic mapping after replication stress revealed a range of phenotypes at mitosis including 

chromatid breaks and gaps, chromosome gaps, concatenations and other complex abnormalities, 

with no relationship between particular locations and the abnormality observed (Supplementary 

Figure 1E). As cytogenetic mapping provides relatively low-resolution information on the molecular 

location of a fragile site lesion a BAC-walking strategy was used to fine-map five cytogenetically 

identified CFS regions (Supplementary Table 1). Probes were selected spanning the sites and the 

frequency of chromosomes showing cytogenetic lesions overlapping with the probes were quantified 

(Figure 2A, Supplementary Figure 2A).  Rather than always occurring at the same location, breaks 

appeared across large genomic regions encompassing CFS sites:  a high frequency of breaks were 

observed at a fragile “core” region, which tailed off at BACs located upstream or downstream (80% 

break overlap at the core of the sites reduced to 33% at the flanks). Fluorescent BAC signals were 

often observed to span CFS lesions, with the fluorescence intensity of the probes peaking over the 

DAPI faint regions, consistent with DNA being present within the cytogenetically visible breaks 

(Supplementary Figure 2B). 

 

To better characterise mitotic chromosome fragility the chromatin state of CFSs was assessed using 

the FISH signal from the BAC probes as a marker for chromatin condensation, at a molecular level. 

After aphidicolin treatment probes within CFS regions showed a propensity to have atypical FISH 

signals even in the absence of cytogenetic lesions at the corresponding CFS site, (Figure 2B and 

Supplementary Figure 2D). Rather than twin symmetric foci on mitotic chromosomes, CFS spanning 

probes frequently formed multiple, asymmetric spots, or appeared as a single spot sitting between 

the two chromatids. However, the most extreme of these atypical signals was a phenotype in which 

BACs extended away from the chromosome, spreading far beyond the DAPI-dense area. Although 

aberrant chromatin folding is often seen in FISH of mitotic chromosomes, under the conditions used 

for these studies control loci rarely showed chromatin compaction defects (Supplementary Figure 

2D). Instead these signals are reminiscent of abnormal FISH signals formed at telomeres in 

response to replication stress termed “fragile telomeres” (Sfeir et al., 2009) and are indicative of 

problems with mitotic condensation and decatenation. 

 

To investigate how irregular FISH signals related to cytological fragility, the frequency of 

chromosomes showing such signals for each of the BAC probes was quantified (Figure 2A and 

Supplementary Figure 2A). This fine-mapping of molecular-level misfolding phenotype (i.e. irregular 

FISH signals) revealed that the frequency of these signals had a similar distribution along the CFS 

regions as the cytological breaks. A more extensive analysis at FRA1C and FRA4F indicated that 

the frequency of misfolding extended beyond the region most affected by cytogenetic lesions and 

abnormal compaction signals were observed at BACs that did not frequently overlap with breaks 

(probes L24, N7 and C16 in Figure 2A). Furthermore, irregular FISH signals were observed at a 

similar frequency irrespective whether cytological lesions were present or absent (Supplementary 
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Figure 2C). This analysis revealed that CFS regions, while highly prone to forming cytogenetic 

abnormalities, are also characterised by an additional level of instability at a molecular level, 

indicative of a defect in mitotic chromosome condensation. 

 

As molecular misfolding was observed in chromosomes exposed to replication stress, we 

determined if such signals were present in unperturbed cells, which do not show cytogenetic lesions.  

Signal phenotypes for two BACs at FRA1C and at FRA4F were examined and surprisingly molecular 

misfolding was elevated at fragile sites compared to control loci even in the absence of replication 

stress (Figure 2C). This was particularly pronounced in HCT116 cells, where 60% of chromosomes 

carried disruptions in FRA4F in the absence of replication stress and argues against these folding 

defects being caused by rare replication events. Conversely, to determine how replication stress 

affected mitotic condensation at non-CFS regions, the signal phenotypes for two control regions, 

located on HSA 1q42.3 and 11q13.2 were examined after aphidicolin treatment. The frequency of 

atypical signals increased at these non-fragile loci in the presence of replication stress, but remained 

much lower compared to CFS regions (7 to 27% in RPE1, 11% to 28 % in HCT116) but demonstrate 

that replication stress, per se, can lead to an increase in the frequency of mitotic condensation 

defects at typical genomic locations.  

 

Extending G2 reduces cytogenetic lesions and molecular defects at CFS 
CFS regions are sites of DNA synthesis on metaphase chromosomes: by utilising a short pulse with 

the thymidine analogue EdU in mitosis, mitotic DNA synthesis (MIDAS) foci can be observed at 

cytogenetic CFS lesions (Minocherhomji et al., 2015). To characterise the relationship between 

MIDAS, cytological lesion formation and molecular misfolding in these cell lines a similar labelling 

approach was used (Figure 3A). MIDAS occurred at DAPI-faint regions and on many occasions 

could be seen bridging gaps in chromosomes (Figure 3A and Supplementary Figure 3A). In a subset 

of metaphases showing extensive damage and wide-spread under condensation, mitotic synthesis 

foci joined chromosome fragments, overlapping with regions of under-condensation. Consistent with 

the severity of cytogenetic phenotypes, mitotic synthesis was more frequent in HCT116 than in RPE1 

cells: mean number of foci per metaphase was 23.2 and 1.53, respectively (Mann- Whitney U test p 

< 2.2×10-16). Mitotic synthesis was very frequently associated with cytogenetically visible lesions, 

especially in the HCT116 cell line (91% of EdU foci coincided with lesions, Figure 3A) suggesting 

that mitotic DNA synthesis preferentially occurs in the context of cytologically under-condensed 

mitotic chromatin. We also examined the concurrence between molecular-scale misfolding and 

mitotic synthesis at the FRA4F site by combining FISH with MIDAS labelling. At this site MIDAS 

never appeared on cytogenetically normal regions of the chromosome, even if chromatin at the site 

showed molecular scale disruptions indicated by an abnormal FISH signal (Figure 3B). Strikingly, 

this is similar to observations of MIDAS at telomeres, where the fragile telomere phenotype did not 

correlate with the appearance of MIDAS foci (Özer et al., 2018). This observation suggests that 
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unlike cytogenetic disruptions, molecular level misfolding is not accompanied by MIDAS, and raises 

the possibility that the misfolding phenotypes represent structures that are independent of DNA 

replication. To assess whether ongoing DNA synthesis was required for the appearance of classic 

CFS cytogenetic defects, cells were treated with a high dose of aphidicolin during mitosis. The 

frequency of cytogenetic lesions did not change, indicating that the mitotic condensation defects are 

not caused by mitotic DNA synthesis (Supplementary Figure 3B). 

 

Although the structures underlying both cytogenetic and molecular lesions are unclear, we examined 

whether they represent intermediates that can be resolved or are permanent defects in mitotic 

chromatin structure. The duration of G2 following induction of replication stress was artificially 

prolonged using the CDK1 inhibitor RO3306, to enable aberrant chromatin structures to be resolved 

prior to releasing cells for 2 hours to go into mitosis (Figure 3C). The frequency of both cytological 

lesions and molecular misfolding was significantly reduced following RO3306 treatment, indicating 

that the structures underlying these phenotypes can be subject to replication and / or repair during 

G2.  

 

Chromatin at CFS regions is not remodelled for mitosis 

As the mechanism(s) giving rise to aberrant chromatin compaction observed at metaphase (Figure 

1A, 2B) were unclear we investigated the possibility that they might arise as interphase chromatin 

defects. To test this a two-probe FISH approach was used to examine interphase chromatin 

compaction at two fragile sites: FRA3B (HCT116 cells) and FRA1C (RPE1 cells), in the presence 

and absence of aphidicolin (Figure 4A) in synchronised cell populations, at different time points 

throughout the transition from the G1/S boundary through to G2 and mitosis (Figure 4A and 

Supplementary Figure 4A).  For each site, two differentially labelled probes, encompassing a 1.5 Mb 

region were hybridised and the physical distance between the probes, indicative of the underlying 

chromatin structure, was measured. No replication-stress induced changes in interphase chromatin 

structure were observed in FRA3B and FRA1C post-replication, but there was a change in 

compaction in FRA1C coincident with when the locus replicated in early to mid S-phase.  This data 

indicated that replication-stress per se does not induce interphase chromatin structure changes 

which could explain mitotic condensation failure. 

 

Compaction for mitosis involves many compositional and structural changes, which are required to 

prepare chromatin for condensation, so we speculated that this process was disrupted at CFS 

regions, due to the presence of unreplicated DNA or post-replicative intermediates. To assess the 

frequency of misfolding lesions at CFS loci throughout the cell cycle, a premature chromosome 

condensation assay was used at three CFSs and a control, non-fragile region on HSA 11q13.2. Cells 

were treated with the phosphatase inhibitor calyculin A, which triggers chromosome condensation, 

irrespective of cell cycle stage (Figure 4B). This resulted in the formation of prematurely condensed 
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chromosomes with morphologies that are indicative of the cell cycle stage they are derived from: thin 

and zig-zag shaped in G1; fragmented chromatin in S-phase; cross shaped chromosomes with fuzzy 

boundaries in G2 cells and typical metaphase chromosomes in mitotic cells (El Achkar et al., 2005; 

Ono et al., 2013).  To assess the condensation capacity of FRA4F, FRA2I, FRA3B and the control 

location at different phases of the cell cycle, FISH probes mapping to the three locations were 

hybridised and the morphology of the FISH signals were scored for the different cell cycle stages 

(G1, S, G2 and M) in the absence of replication stress. To verify the accuracy of our approach, we 

quantified the frequencies of one-spot (unreplicated) and two-spot (replicated) signals throughout 

the different cell cycle stages and found that, as expected, one-s/pot signals were more common at 

the early stages of the cell cycle and two-spot signals were more frequent in G2 and mitotic 

chromosomes, especially at the control location (Supplementary Figure 4B). The analysis revealed 

contrasting dynamics in chromatin competence for condensation at the CFS sites and the control 

region (Figure 4B). At the control locus, the frequency of atypical signals decreased in the later 

phases of the cell cycle, with only a small proportion of signals retaining the misfolded phenotype in 

G2 and M chromosomes. This indicated that chromatin at the locus acquires competency for mitotic 

compaction as the cell cycle proceeds. In contrast, at the three CFSs, the atypical FISH signals 

persisted throughout the cell cycle and remained high in mitotic chromosomes, indicating that the 

process which allows genomic locations to remodel their chromatin environment and compact for 

mitosis may be disrupted at CFSs. These results also indicated that the molecular lesions manifested 

at CFSs in mitosis (Figure 2B) are initiated at earlier cell cycle stages. To examine condensation 

dynamics in the context of replication stress, we also induced PCC in cells treated with APH. While 

chromosome morphologies indicative of G1 and S could still be distinguished in these cells, post-

replicative chromosomes from G2 and mitotic populations could not be distinguished as separate 

morphologies, instead appearing as G2 chromosomes displaying high levels of fragmentation 

(Supplementary Figure 4C). We found that both the control and the FRA4F locus showed high levels 

of misfolding in post-replicative chromosomes in the presence of APH, suggesting that replication 

stress, combined with premature condensation can induce compaction failure even at non-fragile 

locations, indicating that the timing of both replication and condensation are important for successful 

mitotic folding. Additionally, in the presence of replication stress, high levels of mis-folding were 

observed at the FRA4F region even at G1, possibly due to exposure to APH during S phase in the 

previous cell cycle. 

 

Cytologically observed defective condensin loading at CFS regions 
Since we observed that CFS coincide with large scale defects in mitotic chromosome topology we 

considered defects in condensin – mediated compaction as a potential mechanism that may affect 

mitotic compaction at CFS loci. Previous work in yeast has indicated that failure to detect post-

replicative defects in slow replication zones leads to break formation in a condensin - dependent 

manner (Hashash et al., 2012). In mammalian cells condensin recruitment is coupled to replication 



 9 

and abrogated after DNA damage (Zhang et al., 2016). To determine if similar processes are 

applicable here we examined condensin localisation to cytogenetic breaks at CFS loci. Using an 

antibody against SMC2, a component of both condensin complexes in mammalian cells, CFS 

cytogenetic lesions were frequently found to be depleted of condensin (Figure 5A, Supplementary 

Figure 5A, 5B). Furthermore, the region of condensin depletion appeared to encompass a larger 

area than the cytogenetic break. On a very small proportion of chromosomes in both the control and 

APH-treated samples, large regions of SMC2 depletion could be observed in the absence of a 

cytogenetic break, and at cytogenetic locations that were consistent with frequent CFSs, such as 

FRA1C (Figure 5A, Supplementary Figure 5B). Co-staining with an antibody targeting the H3 serine 

10 phosphorylation mark, which is acquired on chromatin in preparation for mitotic folding, showed 

that large depletions of SMC2 could be observed in areas that showed high levels of H3S10p signal, 

indicating that the drop off in SMC2 signal is not due to reduced DNA content at these regions (Figure 

5B, Supplementary Figure 5C). To verify that regions of SMC2 depletion in the absence of 

cytogenetic abnormalities occur at CFSs, SMC2 immuno-fluorescence was combined with FISH 

using probes for the FRA1C and FRA4F CFS regions and confirmed that SMC2 depletions occur at 

CFS regions (Figure 5C, Supplementary Figure 5D). Condensin depletion appeared to be relevant 

for repair processes at CFSs; MIDAS labelling with SMC2 immunostaining revealed that DNA 

synthesis only occurs in regions of mitotic chromosomes depleted of SMC2, and showing cytological 

defects, raising the possibility that uncondensed chromatin, lacking condensin, maybe a necessary 

condition for mitotic DNA synthesis (Figure 5D). 

 

As condensin phosphorylation by Cdk1 (Abe et al., 2011) and Chk2 (Zhang et al., 2016) is necessary 

for chromosome compaction, we speculated that failure of condensin loading at CFSs could be 

triggered by ATM or ATR signaling, particularly as inhibition of the Chk2 kinase after DNA damage 

restores SMC2 association with mitotic chromosomes (Zhang et al., 2016). ATM inhibition in the 

presence of replication stress caused an increase in cytogenetic lesions per metaphase 

chromosome and an increase in MIDAS, indicative of a role for ATM in registering damage 

(Supplementary Figure 5E). However, SMC2 lesions were still present, both at cytogenetic breaks 

and on cytogenetically normal chromosomes, suggesting that the ATM-Chk2 pathway was not 

responsible for blocking condensin loading after replication stress. 

 

As ATR has a critical role in maintaining replication-dependent genome stability (Cimprich and 

Cortez, 2008; Saldivar et al., 2018; Zeman and Cimprich, 2014) we also analyzed chromosome 

architecture after replication stress in the presence of ATR inhibitor. Consistent with previous studies 

(Casper et al., 2002; Durkin et al., 2006) inhibition of the ATR-Chk1 axis caused widespread 

chromosome shattering and Immunostaining indicated SMC2 was not correctly recruited to the 

chromosomal fragments (Supplementary Figure 5F). Since ATR plays a role in ensuring coordination 

between S-phase and mitosis (Saldivar et al., 2018), it is likely that chromosome shattering results 
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from premature compaction of under-replicated chromosomes on a genome-wide scale, indicating 

that condensin cannot be recruited to under-replicated chromatin.   

 

Condensin I depletion causes mitotic folding defects at non-fragile locations 
As local condensin depletion correlates to CFS misfolding in mitosis (Figure 5), we sought to 

examine the effects of global depletion of the condensin complexes. Initially condensin loss was 

examined in an HCT116 cell line in which both copies of SMC2 were fused to an AID tag 

(Supplementary Figure 6A). The HCT116-SMC2-AID cell line showed severe defects in mitotic 

chromosome structure upon SMC2 degradation: individual chromosomes could not readily be 

distinguished and metaphases appeared as a mass of condensed fragments, as described 

previously (Green et al., 2012). However, MIDAS foci could still be observed in SMC2 depleted 

metaphases, although at reduced levels (Supplementary Figure 6B), whilst FISH showed an 

increase in molecular misfolding at both control and fragile sites (Supplement Figure 6C). These 

results indicated that the absence of the condensin complexes can cause molecular misfolding. 

 

To explore the different roles of the condensin complexes siRNAs against CAP-H and CAP-D3 were 

used to deplete condensin I and condensin II complexes, respectively (Supplementary Figure 6D). 

As for SMC2 depletion (Supplementary Figure 6B) depletion of either condensin complex resulted 

in defects in mitotic chromosome morphology (Green et al., 2012); condensin II depleted 

chromosomes had a pronounced wavy appearance (Figure 6A). Scoring of cytogenetic lesions 

(Figure 6A) and MIDAS foci (Supplementary Figure 6E) in these chromosomes revealed that 

although CAP-H or CAP-D3 depletion did not induce cytogenetic lesion formation in unperturbed 

conditions, there was a significant increase in the frequency of CFS cytogenetic lesions in condensin-

depleted chromosomes and MIDAS once replication stress was induced. This is indicative of both 

replication stress and aberrant condensin exerting additive effects on cytogenetic lesion formation 

at CFS. 

 

We next examined the effect of CAP-H or CAP-D3 siRNA depletion on the mitotic misfolding 

phenotype at CFS and control, non-fragile locations by FISH, in the absence of replication stress.  

The frequency of misfolding at CFS locations was significantly higher than control loci in cells treated 

with scrambled siRNA  (siCTRL) in both the RPE1 and HCT116 cell line (Figure 6B). In cells depleted 

of CAP-H, the frequency of misfolding was unaltered at CFSs, but significantly increased at control 

loci, to levels that matched CFSs, suggesting that depletion of condensin I is sufficient to recapitulate 

the misfolding phenotype characteristic of CFS sites at a non-fragile location. In contrast, depletion 

of CAP-D3 (condensin II) did not affect the frequency of misfolding at non-fragile locations, indicating 

that the condensin I complex is the primary effector of mitotic misfolding at CFS locations. 

Additionally, the frequency of misfolding, observed at the control locus was similar following SMC2 
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depletion (46 %, Supplementary Figure 6B) and CAP-H depletion (34 %, Figure 6B), suggesting that 

the effect of SMC2 depletion is explained by removing Condensin-I from chromosomes. 

  

To further investigate the role of condensin using an orthogonal approach, we used HCT116 cell 

lines in which both copies of CAP-H or CAP-H2  were fused to an AID tag, which enabled rapid 

depletion of either condensin I or II upon addition of auxin (IAA) for 8 hours (Supplementary Figure 

6F)  (Takagi et al., 2018). Mitotic misfolding in the absence of replication stress, measured by 

irregular FISH signals, for a control locus at 11q13.2 and the FRA4F fragile site were analysed before 

and after auxin treatment. As already observed at these sites (Figure 6B) the fragile site locus had 

a greater extent of mitotic chromosome misfolding in the absence of condensin degradation 

compared to the control. While the levels of misfolding  remained unchanged at the CFS following 

degradation of CAP-H, increased misfolding was observed for the control locus after CAP-H 

degradation was triggered (Figure 6C), indicating that defects in condensin I loading are sufficient to 

induce mitotic misfolding. In contrast, CAP-H2 degradation did not lead to an increase in misfolding 

at the control locus, confirming that condensin I is the primary effector of mitotic defects at CFS. 

 

 

Discussion 
Replication stress affects genome-wide alterations in fork behaviour, leading to activation of extra 

origins, changes in origin efficiency and potentially, altered replication dynamics (Courbet et al., 

2008; Macheret and Halazonetis, 2018). A number of factors can trigger replication stress: oncogene 

activation, misincorporation of nucleotides or replication-transcription conflicts (Helmrich et al., 2011; 

Hills and Diffley, 2014; Reijns et al., 2015) but an often overlooked aspect of replication stress is the 

local chromatin environment, pre and post -replication. Pre-replication,  DNA supercoiling (Naughton 

et al., 2013), catenanes, paucity of active chromatin marks and unusual DNA structures such as R 

loops and G-quadruplexes have all been shown to interfere with replication dynamics, suggesting 

that features of the underlying chromatin environment could be a critical factor linking replication 

stress to genome instability (Comoglio et al., 2015). We suggest that replication stress interferes with 

the set-up of the post-replicative chromatin environment (Figure 7). This is most obvious at CFS 

regions, where under-replication or persisting post-replicative intermediates prevent condensin 

loading. In unperturbed conditions, this results in subtle mitotic misfolding, specific to CFS regions, 

which is only visible by FISH. In conditions of replication stress, the severity of condensin loading 

defects increases, leading to classic cytogenetic lesions accompanied by MIDAS. Extending G2 

allows for structures impeding condensin loading, to be resolved, leading to a decrease in both 

molecular misfolding and cytogenetic lesions. In contrast, inducing premature condensation in the 

presence of replication stress or preventing condensin loading through condensin depletion induces 

high levels of misfolding at non-fragile genomic regions. These results hint at the careful coordination 
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between replication and mitotic compaction, which is disrupted at CFS in both unperturbed 

conditions and following replication stress. 

 

During our analysis of the impact of replication stress on mitotic compaction, we report a new layer 

of instability at CFSs, visible at the molecular but not the cytogenetic level (Figure 2). These aberrant 

structures bear similarity to phenotypes previously seen at telomeres and at centromeres following 

replication stress (Sfeir et al., 2009). At telomeres, lesions are thought to result from replication 

problems such as fork collapses or G-quadruplex structures formed by GC-rich telomeric repeats; 

however, CFSs are not composed of repetitive sequences and it is unclear how small-scale events 

can lead to fragility and failure of mitotic compaction on such a large genomic scale, suggesting 

additional factors like chromatin structure, epigenetics and replication dynamics play a role, as 

previously proposed (Letessier et al., 2011; Macheret et al., 2020). The similarity between CFS 

phenotypes support the idea that mitotic misfolding is a universal feature of CFSs and potentially, 

other difficult to replicate regions. While classic cytogenetic lesions that characterise CFSs cannot 

be observed in the absence of aphidicolin, this newly characterised low level of instability, apparent 

using FISH, is present at these loci at a low frequency even when cells undergo normal replication 

(Figure 7). It is unclear what the exact relationship between the aberrant folding observed by FISH 

and the classic, cytogenetic CFS lesions, however aberrant folding is necessary but not sufficient for 

the formation of classical CFS abnormalities. This finding indicates the inherent fragility present at 

CFS regions even in the absence of exogenous replication stress and implicates a model for their 

instability in physiological contexts such as during tumour development (Alexandrov et al., 2013). 

Surprisingly our data also shows that after aphidicolin treatment molecular scale lesions are also 

present at control loci (Figure 2C), indicating a genome-wide link between replication stress and 

chromatin compaction.  

 

 

While traditional models envision that CFS instability is mediated primarily through replication 

dynamics, we suggest that the aberrant processing of post-replicative chromatin, resulting in 

disrupted mitotic folding, also plays a role. Most genomic regions undergo compositional and 

structural remodelling, or ‘priming’ of chromatin, that facilitates mitotic condensation and sister 

chromatin separation. This idea is not without precedent: the Kleckner group have suggested that 

through the cell cycle chromatin is continuously remodelled using energy stored in the chromatin 

fibre, through tethering, that when released allows chromatin expansion (Kleckner et al., 2004; Liang 

et al., 2015). The mechanistic steps for chromatin folding from interphase to mitosis are poorly 

defined, but key events include condensin loading, histone H3 phosphorylation and catenane 

resolution, by topoisomerases, all of which may influence the potential energy stored within the fibre. 

Our data indicates that CFSs are inefficiently primed (Figure 4), show faulty condensin recruitment 

(Figure 5)  and remain refractory to compaction (Figure 7). 
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In addition to an inherent high level of molecular misfolding (Figure 2), mitotic DNA synthesis 

(MIDAS) is a frequent feature of CFSs (Figure 3). Chromosome lesions provide a permissive 

environment for the MIDAS process, and most synthesis occurs in the context of uncondensed 

chromatin, which is free of condensin (Figure 5D). Our data suggested that neither condensin I nor 

condensin II were required for MIDAS (Figure 6B, Supplementary Figure 6E) in contrast to a previous 

study (Minocherhomji et al., 2015); in this study SMC2 was depleted using a degron-based system, 

instead of RNAi. This resulted in low levels of SMC2 and a very aberrant chromosome morphology. 

It has been previously proposed that the MIDAS process constitutes a repair pathway for lesions 

prior to the completion of mitosis (Minocherhomji et al., 2015; Naim et al., 2013) but our observations 

suggest that altered chromatin compaction at CFS could also aid their repair. Remarkably, under-

condensation in mitosis at unresolved homologous recombination intermediates was found to aid 

cell division,  although these mitotic structures  represented a distinct phenotype from CFS lesions 

(Chan et al., 2018). The primary causes of impaired compaction at CFS are complex: our data 

suggests that under-replication, repair intermediates, or aberrant chromatin structures resulting from 

them, impair condensin recruitment. Consistently extending G2 to allow for the repair of 

intermediates, results in reduction of both cytogenetic abnormalities and mitotic misfolding (Figure 

3C). 

 

Chromosome misfolding is not restricted to CFSs as normal genomic regions show a low frequency 

of lesion formation in the presence of replication stress suggesting that common fragile sites do not 

have a unique set of chromatin features (Figure 2). Instead, CFSs are at the extreme end of a 

spectrum of aberrant chromatin structures that have a propensity to exhibit replication stress and 

inefficient priming leading to misfolding in mitosis and subsequent chromosome instability if not 

repaired. Counterintuitively cytological lesions may provide a chromosomal environment to facilitate 

processes like MIDAS to repair chromatin. 
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Figure1: Characterisation of CFSs in HCT116 and RPE1 epithelial cells.  
A. Representative metaphase spreads (reverse DAPI banding) from RPE1 (left) and HCT116 (right) 
cell lines, showing CFS fragility (red arrows) following aphidicolin treatment (top); bottom, extreme 
chromosomal defects in HCT116 cells; Scale bar, 5 μm. 
B. Ideograms showing most frequent aphidicolin dependent common fragile site locations in RPE1 
and HCT116 epithelial cells, cytogenetically scored using DAPI banding. CFSs specific to HCT116 
cells (blue), RPE1 (green) and both (mauve) are indicated.  
C.  Length of largest transcript (top) and GC content (bottom) at sites fragile in HCT116 (blue), RPE1 
(green) or both cell lines (mauve). 
D. Left, genome-wide GC (% in 0.5 Mb windows) density plot with GC density at CFSs in HCT116 
(blue), RPE1 (green) or both cell lines (mauve). Right, genome-wide gene length (NCBI genes) 
density plot with gene length of genes encompassed within CFSs in HCT116 (blue), RPE1 (green) 
or both cell lines (mauve). 
 
See also Figure S1, Supplementary Table 1 
 
Figure 2: Irregular chromatin structures at CFSs in the presence and absence of aphidicolin-
induced replication stress.   
A. Quantification of FISH probe signals across FRA4F (HCT116 cells, n = 439) and FRA1C (RPE1 
cells, n = 180) to fine map cytological lesions (top) and distribution of molecular chromatin disruptions 
(bottom). FISH probe IDs are described in methods. 
B. Irregular FISH probe phenotypes (magenta) on cytogenetically normal chromosomes. Regular – 
symmetrical signals; Concatenated - a single signal sitting between the two sister chromatids; 
Fragmented - multiple, asymmetric signals; Extended - a signal extending beyond the DAPI stained 
chromosome area. Scale bar, 2.5 μm. 
C. Chromosomes from untreated cells (top) or cells treated with aphidicolin (APH, bottom), to 
induce replication stress, hybridised to FISH probes for a non-fragile locus 11q13.2 (Probe ID: P21, 
n = 84 for HCT116, n = 87 for RPE1), or fragile loci FRA4F (Probe ID: A17; HCT116 cells, n = 123 
) and FRA1C (Probe ID: A14; RPE1 cells, n = 146). Scale bar, 2.5 μm. Bottom, quantification of 
irregular FISH signals in the presence and absence of APH. p values for a χ2 test.  
p values: *p < 0.05; **p < 0.001; ***p < 0.001; ****p < 0.0001. 
 
See also Figure S2, Supplementary Table 2 
 
Figure 3: Mitotic DNA synthesis (MIDAS) is coincident with large-scale chromatin disruptions 
at cytologically visible CFS.  
A. Top, staining procedure for MIDAS visualised using EdU and FITC-azide. Bottom left, 
representative metaphase spreads prepared from cells treated with or without aphidicolin. Insets 
show MIDAS (green signal) and widespread chromosome compaction defects. Right, quantification 
of MIDAS in RPE1 (n = 65) and HCT116 (n = 82) metaphase spreads from APH treated cells and 
overlap between cytogenetic lesions and mitotic DNA synthesis in HCT116 (n = 1622 foci) and RPE1 
(n = 96 foci) cells. Scale bar, 10 μm.  
B. Atypical FISH signals, cytogenetic lesions and mitotic DNA synthesis (MIDAS) after aphidicolin 
treatment at the FRA4F locus (Probe ID: A17) in HCT116 cells. Representative chromosomes are 
shown, with increasing degrees of lesions and aberrant condensation. Right, graph showing overlap 
frequency of FRA4F probe with MIDAS foci on chromosomes in the presence or absence of 
cytogenetic lesions. Scale bars, 2.5 μm.  
C. Top left, treatment conditions for delaying G2 using RO3306, following induction of replication 
stress. Top right, flow cytometry analysis of cells stained with propidium iodide to assess cell cycle 
stage. Bottom left, representative images of FISH signals at the FRA4F (Probe ID: A17; HCT116 
cells) or FRA1C (Probe ID: A14; RPE1) loci following aphidicolin treatment followed by a normal 
duration (left) or extended G2 (right). Bottom middle, lesions per metaphase (boxplots; p-values are 
for a Wilcoxon test) and bottom right, irregular FISH signals (bar graph; n = 84, 34 and 48 
chromosomes per condition for RPE1 cells and n = 58, 49 and 70 chromosomes per condition for 
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HCT116 cells; p-values for a χ2 test) after aphidicolin treatment followed by a normal (dark grey) or 
delayed (light grey) G2. Scale bars, 2.5 μm. 
p values: NS, not significant; *p < 0.05; **p < 0.001; ***p < 0.001; ****p < 0.0001. 
 
See also Figure S3, Supplementary Table 2 
 
Figure 4: Molecular chromatin disruptions at CFS are not remodelled for mitosis.  
A. Top, model detailing experimental strategy to analyse interphase chromatin folding at CFS 
regions. Cells progressing synchronously through the cell cycle were harvested every two hours and 
fosmid probes approximately 1.5 Mb apart surrounding FRA1C (Probe B3 and C1) or FRA3B (Probe 
E4 and F5) were hybridised to nuclei and imaged. Bottom left, representative FISH images. Bottom 
right, boxplot of normalised inter-fosmid distances (d) between pairs of probes hybridised to nuclei 
(n > 60 nuclei for each time-point).  P-values are for a Wilcoxon test.  
B. Depiction of premature chromosome condensation (PCC) assay (see methods) in HCT116 cells. 
Cells labelled with EdU (6 h) were condensed using calyculin (1 h), harvested and hybridised to FISH 
probes for a control locus (11q13.2, probe P21) and CFSs (FRA3B, probe C2; FRA4F, probe A17; 
and FRA2F, probe K5). Right, representative chromosome images. Bottom left, quantification of 
irregular FISH probe signals at FRA3B (n = 122 chromosomes), FRA2F (n = 136), FRA4F (n = 119) 
and 11q13.2 control probe (n = 116); p-values for a χ2 test. 
Scale bars, 2.5 μm. 
p values: NS, not significant; *p < 0.05; **p < 0.001; ***p < 0.001; ****p < 0.0001. 
 
See also Figure S4, Supplementary Table 2 
 
Figure 5: SMC2 depletion at CFSs 
A. Representative images of mitotic chromosomes from RPE1 cells with SMC2 staining in control, 
untreated, cells (top) and cells treated with aphidicolin (APH) showing regions of cytogenetic 
lesions (middle) and on cytogenetically normal chromosomes (bottom) with intensity profiles of 
DAPI and SMC2 (regions of interest are marked in Supplementary Figure 5A). Scale bars, 2.5 μm. 
Right, frequency of cytogenetic lesions and lesion-free SMC2 depletion in the presence or absence 
of aphidicolin (n = 59 and 76 metaphases for control and APH conditions, respectively). Far right, 
quantification of SMC2 occupancy at cytogenetic lesions (n = 46 lesions).  
B. Representative immunofluorescence staining in RPE1 and HCT116 cells for SMC2 and H3S10 
phosphorylation on mitotic chromosomes after replication stress, showing regions of SMC2 depletion 
(arrows). Right, intensity profiles across regions of interest indicated by white line in Supplementary 
Figure 5C. Scale bars, 2.5 μm. 
C. Representative images showing immunofluorescence staining for SMC2 and FISH for CFSs after 
replication stress. FISH probes for the FRA1C (Probe A14; RPE1 cells, top) or FRA4F (Probe A17; 
HCT116 cells, bottom) sites overlap with regions of SMC2 depletion on metaphase chromosomes. 
Right, intensity profiles across the region of interest marked by white line. Scale bars, 2.5 μm.  
D. Representative images of EdU incorporation marking MIDAS on chromosomes from HCT116 
cells co-stained for SMC2. Scale bars, 2.5μm. Inset shows enlarged area marked by white box. 
 
See also Figure S5, Supplementary Table 2 
 
Figure 6: Condensin I depletion causes molecular chromatin lesions in mitosis 
A. Left, representative images of chromosomal defects in the HCT116 and RPE1 cell lines following 
siRNA depletion of condensin components CAP-H (condensin I) or CAP-D3 (condensin II) compared 
to siRNA control (siCTRL). Scale bars, 2.5 μm. Right, quantification of cytogenetic lesions per 
metaphase following condensin depletion in the HCT116 cell line in the absence (green) or presence 
(blue) of aphidicolin (n > 20 metaphases / condition). P-values are for Student’s t-test. 
B. Left, representative images of chromosomal defects visualised by FISH at FRA1C (probe A14) 
and FRA4F (probe A17) fragile sites and control loci (11q13.2, probe P21; 3p21.31, probe C14) in 
RPE1 and HCT116 cell lines following depletion of the condensin components CAP-H. Scale bars, 
5 μm. Right, quantification of abnormal FISH signals, indicative of chromatin disruptions, per 
metaphase following condensin depletion in the HCT116 and RPE1 cell lines (n > 40 for each 
condition. P-values are for a χ2 test. 
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C. Left, representative images showing FISH probes at the fragile FRA4F (probe A17) region and a 
non-fragile control region (11q13.2, probe P21) following degradation of the condensin I component 
CAP-H in HCT116 cells. Scale bars, 2.5μm. Right, quantification of the frequency of irregular FISH 
signals, indicative of CAP-H dependent mitotic chromosome misfolding (n > 100 chromosomes / 
condition). P-values are for a χ2 test. 
P-values: NS, not significant; *p < 0.05; **p < 0.001; ***p < 0.001; ****p < 0.0001. 
 
See also Figure S6, Supplementary Table 2 
 
Figure 7: Model showing the formation of chromosome lesions, due to faulty condensin 
loading, after replication stress. 
A. Under normal cell cycle conditions control loci are replicated and recruit condensin in 
prometaphase. Together condensin I and II activity results in helically arranged nested loop arrays 
giving rise to metaphase chromosomes. Although this occurs at most sites across the genome there 
are some regions including common fragile sites where the local chromatin environment is refractory 
to replication. This could occur through transcriptional interference, aberrant DNA resolution or other 
unknown processes but affects condensin loading. Loss of condensin results in molecular lesions, 
visible by FISH, caused by a local inability to package loci into mitotic chromosomes. 
B. Aphidicolin treatment creates additional replication stress. At typical chromosomal loci this may 
result in replication intermediates or enhanced transcriptional interference that reduces condensin 
loading leading to chromatin disruptions that can be observed by FISH. At CFSs this phenomena is 
more extreme resulting in under DNA replication which prevents condensin loading. After 
prometaphase cytological lesions are coincident with MIDAS. Extending G2 provides time for 
replication to complete suppressing chromosome lesions and irregular FISH signals at CFSs. 
 
 
 
STAR METHODS 
RESOURCE AVAILABILITY 
 
Lead Contact 
Further information and requests for resources and reagents should be directed to the Lead 
Contact, Nick Gilbert (nick.gilbert@ed.ac.uk). 
 
Materials Availability 
 
All unique/stable reagents generated in this study are available from the Lead Contact without 
restriction. 
 
This study generated SMC2-AID HCT116 cells. 
 
Data and Code Availability 
 
This study did not generate any large-scale datasets.  

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
RPE1 (female) and HCT116 (male) cells were cultured in Dulbecco’s Modified Eagle Medium F12 
(Gibco, Cat No. 12500-062), supplemented with 10% foetal calf serum, 1% Pen-Strep and 1% L-
glutamine. Additionally, growth media for RPE cells also contained 0.3% (w/v) Sodium Bicarbonate 
(Sigma, Cat. No. S5761). All cells were maintained at 37 °C in an atmosphere of 5% CO2. HCT116 
degron cell lines were grown in McCoy’s 5A medium (Gibco, Cat No. 26600-023) supplemented 
with 10% foetal calf serum and 3 mM L-glutamine. All cell lines were subjected to regular 
mycoplasma testing. Cell authentication was performed via karyotyping. 
 
METHOD DETAILS 
Cell culture transfections 
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Vectors were transfected into cells using Lipofectamine 2000 (Invitrogen, Cat. No. 11668-019) and 

Opti-MEM Reduced Serum Medium (Invitrogen, Cat. No. 31985-070). For each transfection 1 μg of 

construct DNA was mixed with 400 μl Opti-Mem and 5 μl Lipofectamine-2000. To avoid aggregation 

of DNA and Lipofectamine-2000, the DNA was pre-mixed in 200 μl of Opti-Mem and separately, the 

5 μl of Lipofectamine were mixed into 200 μl of Opti-mem. The two components were then mixed 

together and incubated for 20 min at RT. This transfection mixture was added to the tissue cultures 

in 2 ml of antibiotic-free media. 
Protein gels and western blotting 
 
Cells were suspended in NuPAGE LDS sample buffer (ThermoFisher) with 10 mM DTT, incubated 

at 100°C for 5 min and sonicated briefly. Protein samples were resolved on 8% bis-tris gels 

(ThermoFisher) and transferred to Immobilon-P PVDF 0.45 μm membrane (Merck Millipore) by wet 

transfer. Membranes were probed with antibodies using standard techniques and detected by 

enhanced chemiluminescence. Antibodies used for western blotting were as follows: CAP-H (Bethyl 

A300-603A, 1:1000), CAP-D3 (Bethyl, A300-604A, 1:1000) and GAPDH (Cell Signaling 2118L, 

1:5000). 

Cell cycle synchronisation and replication stress induction  
Cells were synchronised at the G1/S boundary by addition of high dose aphidicolin (APH, 

Calbiochem). Media containing 5 μg/ml APH was added to cells for 2 h to block cell cycle and retain 

cells at the G1/S boundary. Cells were washed in PBS and released in normal growth media. FACS 

analysis and immunofluorescence of cell populations at 2 h – 10 h following release showed that 

cells progressed synchronously from S-phase into G2. Replication stress was induced by low dose 

treatment of APH (0.4 μM APH), for extended periods (12 – 24 h). 

Preparation of human metaphase chromosomes 
RPE1 cells were treated with 0.1 μg/ ml colcemid (Life Technologies, Cat No 15210-040) for 1 h prior 

to harvest, and HCT116 for 30 min to induce mitotic arrest and increase the number of mitotic cells. 

Cells were trypsinised and washed in PBS. Hypotonic solution, containing 75 mM KCl was added 

drop wise to a final 5 ml volume. Hypotonic treatment was performed at RT for 10 min, after which 

cells were pelleted by centrifugation at 1200 rpm for 5 min and fixed three times in 5 ml of freshly 

prepared solution of 3:1 ratio (v/v) methanol: acetic acid. The MAA fixative was added to the cell 

pellet dropwise with constant agitation. Chromosome preparations were stored at -20°C. To prepare 

slides with metaphase spreads, metaphase chromosome preparations were dropped onto glass 

slides. The glass slides were pre-treated in a dilute solution of HCl in ethanol for at least an hour 

prior to use. The chromosome preparations were pelleted by centrifugation at 1500 rpm for 5 min 

and resuspended in freshly prepared MAA solution until the suspension became cloudy. Two drops 

of the suspension were dropped onto a pre-treated glass slide from a height of 20 cm and dried at 

RT overnight before staining or hybridisation. 

Cytogenetic analysis of common fragile sites 
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To map the location of fragile sites two complementary approaches were used. Firstly, a visual 

inference of the fragile locus position was made using reverse DAPI banding. Secondly, the position 

of the fragile site was determined by calculating the distance along the chromosome arm. In this 

ratio-based approach, the total length (a), in pixels, of the chromosome arm that the break occurred 

on and the pixel length of the distance between the centromere and the break (b) were measured. 

The ratio (b) / (a) was calculated and used on scaled models of banded chromosomes (from the 

International System for Human Cytogenetic Nomenclature) to infer genomic locations for the 

breaks. The ratios clustered along the chromosome arms, indicating recurrent breaks at CFS 

locations and the mid-point of each cluster was taken as a putative CFS location. However, as 

fixation and spreading of chromosomes is likely to cause some distortion, molecular fine-mapping of 

the most frequent CFS regions was also undertaken using FISH. 

Fluorescence in situ hybridization (FISH) 
Probes used in this study are listed in Supplementary Table 2. After mapping fragile sites, the 

following probes were used to interrogate genomic loci by FISH (probe ID: A14, A17, K5, C2, L12, 

A13, P21, C14). DNA was prepared from the BACs or Fosmids and labelled as previously described 

(Naughton et al., 2010). Probes were labelled using a nick translation reaction with the uridine 

analogues biotin-16-dUTP (Roche, CatNo 11093070910) or digoxigenin-11-dUTP (Roche, CatNo 

11093088910). Nick translation was performed in a 20 μl reaction volume, containing 1-1.5 μg DNA 

with 5 μl each of 0.5 mM dATP, dCTP and dGTP and either 2.5 μl of 1 mM biotin-16-dUTP or 1 μl of 

1 mM digoxigenin-11-dUTP. DNase I (Roche, Cat No 4716728001) was added to a final 

concentration of 1 U/ml and DNA polymerase I (Invitrogen, Cat No 18010025) was added to a final 

concentration 0.5 U/μl. The reaction was performed in 1 x nick translation salts (NTS) buffer, 

containing 50 mM Tris pH7.5, 10 mM MgSO4, 0.1 mM DTT and 50 μg/ml BSA for 90 min at 16°C. 

Unincorporated nucleotides were removed by gel filtration of the NTS reaction through a G50 

Sephadex spin column (Roche, Cat No G50DNA-RO). Slides, containing either MAA-fixed 

chromosome spreads or PFA-fixed nuclei, were treated with 100 μg/ml RNaseA (Invitrogen, Cat No 

12091039) in 2 x SSC for 1 h at 37°C, washed briefly in 2 x SSC and dehydrated through an ethanol 

series (2 min each in 70%, 90% and 100% ethanol). Slides were air dried and baked at 70°C for five 

min before denaturing. Denaturation was performed in 70% formamide (v/v) in 2 x SSC (pH 7.5). 

Slides containing MAA-fixed chromosome spreads were denatured at 70°C for 1 min, while slides 

on which cells were cultured and then fixed in 4% PFA were denatured at 80°C for 20 min. Following 

denaturation, slides were submerged in ice-cold 70% ethanol for 2 min and then dehydrated through 

90% and 100% ethanol for 2 min each at RT. For hybridisation, 150 ng of labelled probe was 

combined with 5 μg of salmon sperm and 10 μg of human Cot1 DNA (Invitrogen, Cat No 15279011). 

Two volumes of ethanol were added and the probe mix was collected by centrifugation and dried. 

Dried probes were resuspended in 10 μl of hybridisation buffer containing 50% formamide (v/v), 1% 

Tween-20 and 10% dextran sulphate (Sigma Aldrich, Cat No D8906-100G) in 2 x SSC. Probes were 

denatured at 70°C for 5 min and reannealed at 37°C for 15 min and chilled on ice. Probes were 
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pipetted onto slides and hybridisation was performed at 37°C overnight. Coverslips were then 

removed and slides were washed four times in 2 x SSC at 45°C for 3 min and four times in 0.1 x 

SSC at 60°C for 3 min. Slides were then blocked in 5% milk in 4 x SSC for 5 min at RT. Detection of 

biotin label was performed with sequential layers of fluorescein (FITC)-conjugated avidin, 

biotinylated anti-avidin and a further layer of FITC-avidin. Digoxigenin was detected with sequential 

layers of Rhodamine-conjugated anti-digoxigenin and Texas-Red (TR) –conjugated anti-sheep IgG. 

Slides were DAPI stained, mounted in Vectashield and imaged on a Zeiss epifluorescence 

microscope using a 100x objective. Data was collected using micromanager software and analysed 

using custom scripts in iVision or ImageJ. FISH signals were scored based on symmetry and overlap 

with DAPI chromosome staining: FISH probes showing asymmetric signals or signals extending 

outside the chromosome scaffold were classified as irregular, while symmetric signals contained 

within the chromosome scaffold were classified as regular. Whenever possible, scoring was 

performed blindly to experimental conditions. In FISH experiments measuring inter-probe distance, 

ambiguous images in which the two alleles could not be distinguished, were not used in the analysis. 

Premature chromosome condensation (PCC) assay 
Premature chromosome condensation was induced using the protein phosphatase 1 inhibitor 

calyculin (Sigma, C5552-10UG).  To determine the cell cycle stage of prematurely compacted 

chromosomes, asynchronously growing HCT116 cells were pulsed with EdU (5 μM) for 6 hours 

and then treated with 50 ng/ml calyculin for 1 hour.  Cells were then harvested using trypsin/versene. 

As calyculin treatment induced significant cell detachment, media containing the detached cells was 

collected and centrifuged together with the trypsinised cells. Metaphase spreads were prepared and 

dropped onto glass slides using the methods described above. Incorporated EdU was labelled in a 

click reaction by incubating slides with a reaction mixture containing 500 μg/ml CuSO4, 40 μM Alexa 

Fluor™ 488 Azide (Thermo Fisher Cat. No. A10266) and 20 mg/ml ascorbic acid for 1 hour at RT. 

Slides were washed three times in PBS for 5 min, stained with DAPI and mounted in Vectashield. 

Slides were imaged on a Zeiss Epifluorescence microscope using 100x objective. Chromosomal 

morphology and EdU staining pattern were used to classify chromosomes into G1, S, G2 and M-

stage chromosomes. 

 

 

Immunofluorescence 
For immunofluorescence on metaphase chromosomes, cell suspensions fixed in 3:1 methanol: 

acetic acid were dropped onto glass slides, allowed to dry incompletely and immediately immersed 

in PBS for 5 minutes at room temperature. Slides were washed in TEEN buffer (10 mM 

Triethanolamine- HCl pH 8.5, 2 mM EDTA, 250 mM NaCl) and blocked in 10% fetal calf serum (FCS) 

at 37°C for 10 minutes. Primary antibodies were added at the required dilutions and incubated in a 

humidified chamber at 37°C for 30 minutes. Slides were then washed in KB buffer (100 mM Tris-HCl 

pH 7.7, 1.5 M NaCl, 1% BSA). Secondary antibodies, raised in donkey and conjugated to 
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fluorophores (Jackson Immuno Research), were diluted 1:500 in TEEN buffer, added to the slides 

and incubated at 37°C for 30 minutes. Slides were washed in KB buffer and stained in 50 μg / ml 

DAPI for 3 min at RT to detect DNA and nuclei. Slides were mounted in Vectashield (Vector 

Laboratories, Cat No H-1000) and imaged on a Zeiss Epifluorescence microscope using 100x 

objective. Primary antibody anti-H3S10p (1:100 dilution, clone CMA313) was a gift from Hiroshi 

Kimura (Hayashi-Takanaka et al., 2009), and detected with a Texas Red anti-mouse secondary 

antibody (1:500 dilution, Jackson Immuno Research). Anti-SMC2 antibody was detected with an 

FITC labebelled anti-rabbit secondary antibody (1:500 dilution, Jackson Immuno Research). 

 

EdU labelling and detection 
EdU was added to exponentially growing cell cultures for 30 min at 5 μM for replication labelling or 

20 μM for analysing mitotic DNA synthesis. EdU was detected by incubating slides with a click 

reaction mixture containing 500 μg/ml CuSO4, 40 μM Alexa Fluor™ 488 Azide (Thermo Fisher Cat. 

No. A10266) and 20 mg/ml ascorbic acid for 1 hour at RT. Slides were washed three times in PBS 

for 5 min, stained with DAPI and mounted in Vectashield. Slides were imaged on a Zeiss 

Epifluorescence microscope using 100x objective. 

 

Flow cytometry 
For dual EdU and propidium iodide (PI) staining for cell cycle analysis, cells were trypsinised, 

pelleted and resuspended in PBS at a density of 1.5 x 106 cells/ml. Ethanol was slowly added to the 

cell suspension to a concentration of 70% to fix and permeabilise the cells, which were incubated on 

ice for a minimum of 30 min or stored at 4°C for up to 2 weeks. EdU staining was performed using 

the Click-iT Plus EdU Alexa Fluor 647 Flow Cytometry Assay Kit (Invitrogen, CatNo C10634) 

following the manufacturer’s instructions.  Cells were stained in a solution containing 1 μg/ml PI and 

4 μg/ml RNase A in PBS at 2 x 106 cells/ml for a minimum of 30 min at RT. Cell cycle analysis was 

performed on a LSR Fortessa analyser (BD Biosciences) and analysed using FlowJo software. 

 

HCT116 condensin degron cell lines 
SMC2-AID-mClover cells were a derivative of tet-OsTIR1 HCT116 cells established in the Kanemaki 

laboratory (Natsume et al., 2016). C-terminus targeting constructs for the SMC2 gene contained a 

5’ homology arm (410 bp), mAID tag, mClover, resistance cassette and a 3’ homology arm (482 bp) 

(mAID tag, mClover tag and Hygromycin or G418 resistance cassettes were taken from pMK289 

and pMK290. The guide RNA target sequence was TCCACATGTGCTCCTTTGGG. Constructs and 

resultant cell lines were established using published approaches from the Kanemaki laboratory 

(Natsume et al., 2016). CAPH-AID-mCherry and CAPH2-AID-mCherry HCT116 cells were a kind 

gift from the Imamoto lab, RIKEN, Japan (Takagi et al., 2018). For SMC2 degradation SMC2-AID-

clover cells were incubated with 1µg/mL doxycycline overnight to induce OsTir1 expression and 

treated with 500µM Indole-3-acetic acid (IAA) for 24 h. For CAP-H and CAP-H2 degradation, 
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HCT116 cells expressing AID tagged proteins were incubated with 500 µM Indole-3-acetic acid (IAA) 

for 8 h. 

 

Computational analysis 
All genomic coordinates are HG38. COSMIC mutations were assessed at CFSs by examining the 
COSMIC track on the UCSC browser.  
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QUANTIFICATION AND STATISTICAL ANALYSIS  
The statistical significance of locus compaction was tested using a nonparametric Mann–Whitney U 

(Wilcoxon) test (using R programming). Comparisons between normally distributed data were tested 

for significance using a two-tailed Student t-test. A Chi square test was used to determine if there 

was a statistically significant difference between the expected frequencies and the observed 

frequencies in one or more categories of a contingency table. p < 0.05 was taken as statistically 

significant. 
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CFS 
Name

Cell type specificity (% of all 
breaks observed in cell type)

Genom-
ic Loca-
tion

Finemapping Replication 
timing

RPE1 HCT116
FRA1C 18.6 % 5.8 % 1p31.2 Fine mapping with BAC probes. Fra-

gility found at a 0.6 Mb region around 
chr1: 68.7-69.3 Mb

Mid/late

Novel 11.9 % Not fragile 4q32.2 Fine-mapping with BAC probes. 
Fragility found to span a 1Mb region 
overlapping with the MARCH1 gene at 
4q32.2-4q32.3 boundary

Late

FRA3B Not fragile 23.4 % 3p14.2 Fine-mapping with fosmid probes. 
Fragility localised to a 1 Mb region 
overlapping with the FHIT gene at 
3p14.2

Mid/Late

FRA4F Not fragile 11.0 % 4q22.2 Fine-mapping with BAC probes. 
Fragility localised to a 5 Mb region 
between chr4: 88.3-94.2 Mb

Late

FRA2F 8.5 % 5.8 % 2q22.2 Fine-mapping with BAC probes. 
Fragility localised to a 2 Mb region 
between chr2: 141.4-143.3 Mb

Mid

FRA3O 16.9 % 1.3% 3q26.31 Late
FRA7E 10.2% Not fragile 7q21.11 Mid
FRA2I Not fragile 17.5 % 2q33.2 Mid/Late
FRA2T Not fragile 9.7 % 2q24.2 Mid
FRA4C 6.8 % Not Fragile 4q31.1 Early /Mid
FRA7K Not Fragile 7.1 % 7q31.1 Mid / Late
Control Not fragile Not fragile 11q13.2 Early

Supplementary Table 1. Common fragile sites analysed in HCT116 and RPE1 cell lines 
using DAPI banding and fine-mapping using FISH probes (co-ordinates hg38). Relates to 
Figure 1.



Table S2. List of fosmid and BAC probes, relates to Figures 2, 3, 4, 5, 6, S2, S3, S4, 

S5, S6 
Probe Short Probe ID Probe location Genomic Band Type CFS 
RP11-357C16 C16 chr1:68,449,756-68,639,532 1p31.1 BAC FRA1C 
RP11-452B11 B11 chr1:68,711,269-68,891,160 1p31.1 BAC FRA1C 
RP11-482A14 A14 chr1:68,933,453-69,111,196 1p31.1 BAC FRA1C 
RP11-44E15 E15 chr1:69130083-69315886 1p31.1 BAC FRA1C 
RP11-624N7 N7 chr1:68,111,085-68,283,400 1p31.3 BAC FRA1C 
G248P86197B3 B3 chr1:68350693-68390943 1p31.3 Fosmid FRA1C 
G248P83504C1 C1 chr1:69563598-69605132 1p31.1 Fosmid FRA1C 
RP11-436I1 I1 chr2:136,061,231-136,243,657 2q22.1 BAC FRA2F 
RP11-236P10 P10 chr2:140,424,618-140,580,291 2q22.1 BAC FRA2F 
RP11-56K5 K5 chr2:144248998-144409403 2q22.3  BAC FRA2F 
G248P8183F5 F5 chr3:60989838-61032460 3p14.2 Fosmid FRA3B 
G248P89337E4 E4 chr3:59462385-59498598 3p14.2 Fosmid FRA3B 
RP11-27C2 C2 chr3:60,370,532-60,541,081 3p14.2 BAC FRA3B 
RP11-1053C2 C2 chr4:88,292,015-88,468,493 4q22.1  BAC FRA4F 
RP11-44A17 A17 chr4:90613586-90767458 4q22.1 BAC FRA4F 
RP11-351L22 L22 chr4:91,991,524-92,152,798 4q22.1  BAC FRA4F 
RP11-479E18 E18 chr4:94,041,818-94,200,058 4q22.2 - 4q22.3 BAC FRA4F 
RP11-915N9 N9 chr4:85,542,403-85,705,769 4q22.3 BAC FRA4F 
RP11-6L24 L24 chr4:96,170,141-96,329,507 4q22.3 BAC FRA4F 
RP11-946L12 L12 chr4:163,180,808-163,361,254 4q32.2 BAC Novel 
RP11-153D1 D1 chr4:164799551-164962649 4q32.3 BAC Novel 
RP11-126P21 P21 chr11:67186953-67348953 11q13.2 BAC Control 
RP11-795A13 A13 chr1:69385353-69559490 1q42.3 BAC Control 
RP11-412C14 C14 chr3:47618135-47778557 3p21.31 BAC Control 
 

Fosmids and BACs were obtained from BacPac resources, DNA co-ordinates are hg38 

 



0 1

%
 o

f a
ll 

m
et

ap
ha

se
s

FRA1C 

FRA3B 

Control 0.4 μM APH

G1: 56%
S: 18%

G2/M: 26%

G1: 21%
S: 29%

G2/M: 50%

G1: 55%
S: 23%

G2/M: 22%

G1: 33%
S: 30%

G2/M: 37%

R
P

E
1 

(C
ou

nt
s)

PI Intensity PI Intensity

E

0

80 0.1 µM (0.29)

0

80 0.2 µM (0.65) 

0

80 0.3 µM (0.49) 

0

80 0.4 µM (1.88) 

0

80 0.6 µM (1.55) 

B

2 3 4 5 6
Lesions per metaphase

H
C

T1
16

 (C
ou

nt
s)

0.2 µM APH 0.3 µM APH0.1 µM APH 0.4 µM APH 0.6 µM APHA

RPE1
n = 64 metaphases, 62 lesions

HCT116
n = 371 metaphases, 372 lesions

DC

FRA1C

Other

FRA3O

4q32.2

FRA7E

FRA2F

FRA4C

FRA2F

FRA3O

FRA7K

FRA1CFR
A3

B

Other

FR
A2

T

FRA4F

FRA2I

Supplementary Figure 1:  Aphidicolin induced fragility in HCT116 and RPE1 cell lines, Related 
to Figure 1 
A. Representative metaphases following treatment of HCT116 cells with different concentrations of 
aphidicolin (APH) for 24 hours. Lesions are indicated by red arrows. Right, metaphase showing mul-
tiple regions of incomplete axial compaction following treatment with 0.6 mM APH. Scale bar, 5 μm.
B. Proportions of HCT116 metaphase spreads showing different numbers of lesions following treat-
ment with 0.1, 0.2, 0.3, 0.4 or 0.6 μM APH for 24 hours. Average breaks per metaphase are given in 
brackets. A minimum of 52 metaphases were characterised per condition. 
C. Cell cycle profiles in the HCT116 and RPE1 cell lines in control conditions and following treatment 
with 0.4 μM APH for 24 hours, analysed via flow cytometry. Proportions of cells in the different stages 
of the cell cycle.
D. Pie charts showing proportion of lesions occurring at different CFS locations after APH treatment. 
Number of metaphases analysed are shown.
E. Representative images of lesion morphologies at two different CFSs, FRA1C (top) and FRA3B 
(bottom). Scale bar, 5 μm.
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Supplementary Figure 2: CFS FISH probe signals across cytogenetic lesions and cytogenet-
ically normal CFS regions, Related to Figure 2
A. Top, diagram showing FISH probes (red) spanning lesions at 4q32.2 (RPE1 cells), FRA3B 
(HCT116 cells) and FRA2F (Both cell lines). Bottom, probes were hybridised to metaphase spreads 
from cells treated with aphidicolin and counterstained with DAPI followed by quantification to fine 
map cytological lesions and distribution of molecular chromatin disruptions. Probe ID’s (see meth-
ods) are shown.
B. Representative images showing FISH signals at CFSs FRA1C, FRA2F, 4q32.2, FRA4F and FR-
A3B. Quantification of FISH signal and DAPI signal marked by white line. Scale bar, 2.5 μm.
C. Quantification of irregular FISH signals at the FRA1C (RPE1) and FRA4F (HCT116) CFS sites in 
the absence (top) or presence (bottom) of cytogenetic lesions.
D. Images showing irregular FISH signals at common fragile sites (FRA1C, 4q32.2, FRA4F, FRA3B) 
but not at control loci. Scale bar, 2.5 μm.
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Supplementary Figure 3: MIDAS and chromatin decondensation following replication stress, 
Related to Figure 3
A. Representative images showing mitotic DNA synthesis in HCT116 and RPE1 cell lines following 
24 h treatment with 0.4 μM APH. Inset, selected cytogenetic lesions with mitotic DNA synthesis. 
Right, intensity profiles of mitotic synthesis foci across the cytogenetic lesions. White lines indicate 
the regions selected for the intensity profile, produced in ImageJ. Scale bar, 2.5 μm.
B. Schematic of experiment to assess relationship between MIDAS and aberrant chromosome com-
paction. Cells were exposed to low concentration aphidicolin to induce replication stress and then 
high dose aphidicolin to inhibit DNA synthesis. Bottom left, representative metaphases showing 
MIDAS (EdU, green) in cells treated only with low dose aphidicolin and those treated with additional 
high dose aphidicolin to inhibit MIDAS. Right, quantification of metaphases showing chromosomal 
lesions in the presence or absence of a high dose APH pulse (n = 68 metaphases). Scale bar, 10μm.
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Supplementary Figure 4: Cell synchronisation and cell-cycle dependent signals following 
premature chromosome condensation, Related to Figure 4
A. Cell cycle analysis, using flow cytometry, at different time points after release from G1/S block, as 
described in Figure 4A. Samples were pulsed with EdU 30 min prior to harvesting to mark replicating 
cells. EdU intensity versus DNA content (left) and propidium iodide (PI) histograms of the cell popu-
lations (right) are shown for different time points. 
B. Frequencies of one-spot and two-spot signals at CFS locations and a control, non- fragile loca-
tion, across different cell cycle stages in prematurely compacted chromosomes, using calyculin.
C. Depiction of premature chromosome condensation (PCC) assay (see methods) in HCT116 cells. 
Cells treated with APH were labelled with EdU (6 h) and condensed using calyculin (1 h), harvested 
and hybridised to FISH probes for a control locus (11q13.2, probe P21) and CFSs (FRA4F, probe 
A17). Bottom left, representative chromosome images. Bottom right, quantification of irregular FISH 
probe signals at FRA4F (n = 207) and 11q13.2 control probe (n = 200); p-values for a χ2 test. Scale 
bars, 5 μm.
p values: ***p < 0.001.
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Supplementary Figure 5: SMC2 depletion at CFS loci on metaphase chromosomes, Related 
to Figure 5
A. Regions of interest encompassing regions depleted of SMC2 used for intensity measurements in 
Figure 5A. Right, frequency of cytogenetic lesions and lesion-free SMC2 depletion (last column) in 
the presence (n = 43 metaphases) or absence ( n = 46 metaphases) of aphidicolin in HCT116 cells. 
Far right, quantification of SMC2 occupancy at cytogenetic lesions in HCT116 cells (n = 101 lesions).
B. Representative images and quantification of SMC2 depletion at cytogenetically normal chromo-
somes in RPE1 cells after aphidicolin treatment. Scale bar, 5 μm.
C. Regions of interest (red line) used for intensity measurements in Figure 5B. 
D. Representative immuno-FISH image showing a FISH probe for the FRA1C or FRA4F locus over-
lap with regions of SMC2 depletion on metaphase chromosomes from RPE1 cells or HCT116 cells; 
right, intensity profiles across the region of interest indicated by white line. Scale bar, 2.5 μm.
E. Top, diagram depicting experimental procedure to analyse effect of ATM inhibition on chromo-
some structure. Middle left, representative images of cytogenetically normal chromosomes showing 
regions of SMC2 depletion following treatment with ATM inhibitor, and ATM inhibitor + aphidicolin. 
Scale bar, 2.5 μm. Middle right, frequency of cytogenetic lesions and lesion-free SMC2 depletion 
(last column)  following ATM inhibition (n > 30  metaphases / condition). Bottom, quantification of the 
number of cytological lesions (left) and MIDAS foci (right) in HCT116 cells following treatment with 
ATM inhibitor, aphidicolin and ATM inhibitor + aphidicolin ( n > 30 metaphases / condition). P-values 
are for a Student’s t-test.
F. Top, diagram depicting experimental procedure to analyse effect of ATR inhibition on chromosome 
structure. Bottom, representative images of chromosomes and fragmented metaphases in HCT116 
cells following treatment with ATR inhibitor and ATR inhibitor plus aphidicolin, stained for SMC2 (left) 
or DNA replication (right). Scale bar, 5 μm.
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Supplementary Figure 6: Condensin depletion affects mitotic DNA synthesis and mitotic 
chromosome folding, Related to Figure 6
A. Left, diagram depicting auxin-induced SMC2 degradation in HCT116-SMC2-AID cell line. Right, 
western blot showing SMC2 degradation after auxin treatment. 
B. Top, diagram depicting auxin-induced SMC2 degradation in HCT116-SMC2-AID cell line in the 
presence and absence of APH and EdU. Bottom left, Metaphase chromosome morphology and 
MIDAS labelling in the presence and absence of aphidicolin before and after auxin-induced SMC2 
degradation. Scale bars, 5 μm. Bottom right, quantification of MIDAS foci per metaphase after 
SMC2 degradation (auxin) and APH treatment. P-values are for a Student’s t-test.
C. Left, representative images showing FISH signals at the FRA4F fragile site and a control, non-frag-
ile location in the HCT116-SMC2-AID cell line before and after auxin-induced SMC2 degradation. 
Scale bar, 2.5 μm. Right, quantification of the frequency of abnormal FISH signals before and after 
SMC2 degradation (n > 50 chromosomes / condition). P-values are for a χ2 test.
D. Western blot showing depletion of CAP-H and CAP-D3 following 48 hours of siRNA treatment. 
E. Top, diagram depicting RNAi-induced condensin degradation in HCT116 cells in the presence and 
absence of APH and EdU. Middle, boxplot showing the frequency of MIDAS foci per metaphase in 
HCT116 cells following CAP-H and CAP-D3 depletion in the absence (green) or presence (blue) of 
aphidicolin (n > 20 metaphases / condition). P-values are for Student’s t-test. Bottom, representative 
images showing MIDAS in control and condensin depleted cells. Scale bars, 5 μm. 
F. Western blot showing depletion of CAP-H and CAP-H2 following 8 hours of auxin treatment in 
HCT116 and HCT116 degron cell lines. 
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