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Pipeline comparisons of convolutional neural networks for
structural connectomes: predicting sex across 3,152 participants

Hon Wah Yeung1, Saturnino Luz2, Simon R. Cox3,
Colin R. Buchanan3, Heather C. Whalley1 and Keith M. Smith2,4

Abstract—With several initiatives well underway towards
amassing large and high-quality population-based neuroimaging
datasets, deep learning is set to push the boundaries of what
is possible in classification and prediction in neuroimaging
studies. This includes those that derive increasingly popular
structural connectomes, which map out the connections (and
their relative strengths) between brain regions. Here, we test
different Convolutional Neural Network (CNN) models in a
benchmark sex prediction task in a large sample of N=3,152
structural connectomes acquired from the UK Biobank, and
compare results across different connectome processing choices.
The best results (76.5% test accuracy) were achieved using
Fractional Anisotropy (FA) weighted connectomes, without
sparsification, and with a simple weight normalisation through
division by the maximum FA value. We also confirm that for
structural connectomes, a Graph CNN approach, the recently
proposed BrainNetCNN, outperforms an image-based CNN.

I. INTRODUCTION

There is increasing interest in data science for developing
new machine learning methods, with deep learning being a
rapidly emerging field. With recent advances in neuroimag-
ing, scans with high resolution are now widely produced
in increasing quantities, providing ever greater potential for
machine learning to make strides in aiding classification of
brain disorders and diseases from medical images. It is thus
imperative to work towards the most robust and powerful
methodological pipelines for such classifications.

A Convolutional Neural Network (CNN) is a particular
class of deep neural network which employs a mathematical
operation called convolution. It consists of an input layer, an
output layer and several hidden layers in between [1]. This
kind of neural network is suitable for images, including brain
imaging data. Previous studies have performed CNN on T1-
Weighted MRI scans and achieved successful results for sex
and age prediction [2], [3]. Researchers are also now looking
at the possibilities of applying deep learning techniques to
brain imaging data in the context of mental health and
neurological research. For example, several research groups
have worked on classification of Alzheimer’s disease [4], [5].

Apart from imaging techniques that capture the morphom-
etry of the brain, the brain’s structural connectivity map,
the connectome, can also be extracted from diffusion MRI
(dMRI), with connections encoded in adjacency matrices.
It is believed that healthy people and those with mental
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illness do not only differ in brain morphometric measures but
also in brain connectivity patterns. Therefore, incorporating
connectivity measures should provide more information to
the learning algorithm and, thereby, provide better results for
classification. Conventional CNN works perfectly on 3D T1-
weighted MRI scans as it can capture the spatial locality of
the brain image. However, feeding in adjacency matrices into
the CNN could lead to misrepresentations of the structural
connectome. This is because the topological locality of a
graph is different from looking at the spatial locality, which
a conventional convolution layer is designed for, of the
adjacency matrix. To this end, Kawahara et al. [6] recently
proposed a deep neural network model called BrainNetCNN.
This network is composed of convolutional filters (edge-to-
edge, edge-to-node and node-to-graph convolutional filters)
that are able to capture the topological locality of structural
brain networks. These filters are derived from basic properties
of an adjacency matrix [6].

In this study, we explore two different deep neural network
constructions for the connectomes: i) The conventional Im-
ageCNN and ii) the BrainNetCNN proposed in [6], based on
their ability in the benchmark task of predicting sex. More
importantly, we explore the effect of several key consider-
ations of connectome definitions on performance including
i) weight definition: comparing Mean Diffusivity (MD) and
Fractional Anisotropy (FA); ii) sparsity and binarisation:
comparing the full weighted network against 5% density
weighted and binary networks; iii) weight normalisation:
comparing original weights against widespread normalisa-
tions. Moreover, this study used a dataset with 3152 par-
ticipants, which was significantly larger than that in [6] (115
infants), and therefore could better test the generalisability of
this novel method.

II. MATERIALS

The network data used in this study have been published
previously [7] and are outlined below.

A. Participants

Participants were recruited from the UK Biobank. A subset
of participants underwent brain MRI at the UKB imaging
centre in Cheadle, Manchester, UK. The initial release of
diffusion MRI (dMRI) data included 5,455 participants. In
total, 567 were excluded from the current study at the stage of
scanning, due to incompatible dMRI acquisition. By follow-
ing the dMRI quality control procedures as suggested in UKB
Brain Imaging Documentation, a further 1,314 participants
were removed prior to release.



B. MRI Acquisition

All imaging data were acquired using a single Siemens
Skyra 3T scanner. 3D T1-weighted volumes were acquired
using a MP RAGE sequence at 1×1×1 mm resolution with
208×256×256 field of view. The dMRI data were acquired
using a spin-echo EPI sequence (50 b = 1000s/mm2, 50
b = 2000s/mm2 and 10 b = 0s/mm2) resulting in 100
distinct diffusion-encoding directions, FOV = 104×104 mm,
imaging matrix = 52×52, 72 slices, slice thickness = 2 mm.
Water diffusion parameters were estimated for FA, which
measures the degree of anisotropic water molecule diffusion,
and MD, which measures the magnitude of diffusion. Details
of the MRI protocol and processing can be found in [8], [9].

C. Network Construction

Each T1-weighted image was segmented into 85 distinct
neuroanatomical Regions-Of-Interest (ROI) using volumetric
segmentation and cortical reconstruction (FreeSurfer v5.3.0),
34 cortical structures per hemisphere were identified using
the Desikan-Killany atlas [10]. Brain stem, accumbens area,
amygdala, caudate nucleus, hippocampus, pallidum, puta-
men, thalamus and ventral diencephalon were also extracted
with FreeSurfer. A cross-modal nonlinear registration method
was used to align ROIs from T1-weighted volume to diffu-
sion space (skull stripping [11], initial alignment by affine
transformation with 12 degrees of freedom (FLIRT; [12])
followed by a nonlinear deformation method (FNIRT; [13])).

Networks were constructed by identifying connections
between all ROI pairs. The endpoint of a streamline was
recorded as the first ROI encountered when tracking from
the seed location. Successful connections were recorded in
an 85 × 85 adjacency matrix. Two network weightings, FA
and MD, were computed. For each weighting, an adjacency
matrix was computed with element, aij , recording the mean
value of the diffusion parameter in voxels identified along
all interconnecting streamlines between nodes i and j. All
matrices were made symmetric since afferent and effer-
ent connections are indistinguishable for tractography. Self-
connections were removed, setting diagonal entries to zero.

In total, 3,152 participants (44.6–77.1 years of age, 1,495
male) remained after participants were excluded at quality
control or due to failure in processing. On average, 6.01
million streamlines were seeded per subject of which 1.49
million (24.9%) were found to successfully connect between
nodes following the tracking procedure and removal of self-
connections. The FA and MD networks were produced from
the same set of streamlines, where the range of values of
MD is 0 - 0.003 ×10−3mm2/s and for FA is 0 - 0.9.
Before any thresholding was introduced, the mean value
of network density (percentage of non-zero entries in a
adjacency matrix) across subjects was 68.4% (SD = 3.2).
Proportional-thresholding was used to keep only connections
present in at least 2/3 of subjects, which result in connection
density of ∼60% after thresholding. Both of the dMRI-based
weightings followed approximately normal distributions.

III. METHODS

In this analysis, two different CNN models were used: a
conventional ImageCNN and the newer BrainNetCNN. Fur-
ther density thresholding and binary graphs were also consid-
ered, four different ways of adjacency matrix transformations
were employed. This gives twelve different representations of
the original adjacency matrices for both FA and MD.

A. ImageCNN

The ImageCNN model in this study was composed of
some basic layers of CNN. More details of the layers can
be found in [1], with architecture in Figure 1a. The 85× 85
adjacency matrices were fed into a 3 × 3 2D convolution,
with zero padding, stride 2 and 16 filters, and then followed
by a ReLU layer, batch normalization layer as well as a
2× 2 Max Pooling Layer with stride 2. The layers from the
2D convolution to batch normalization layer was repeated
again, but with 32 filters instead. There were then the fully
connected layers with 256, 64 and 2 nodes respectively,
having a ReLU layer and a dropout layer with prob = 0.5
in between the fully connected layer. Finally, there was the
classification layer as well as the softmax layer.

B. BrainNetCNN

On top of the basic layers, some special layers were
designed for the BrainNetCNN [6]:

1) Edge-to-Edge (E2E) layer: This computed a weighted
sum of edge weights between shared nodes for each of
the edges. This worked like a convolution layer with a
cross-shaped filter, which is, the (i, j) entry output is
given by weighted sum of the i-th row and weighted
sum of the j-th column. This can be written as:

(Ak,n)ij =

Fk−1∑
f=1

Ak−1
i,: · w

k−1,f,n
r +Ak−1

:,j · w
k−1,f,n
c

where Ak,n is the filtered adjacency, Ai,: is the i-th row
of A and A:,j is the j-th column of A, and wk−1,f,n

r

and wk−1,f,n
c are the learnt row and column weights

for the n-th filter at the k−1-th layer,respectively. Fk−1

is the number of feature maps at the k − 1-th layer.
2) Edge-to-Node (E2N) layer: In the original paper, due

to inconsistencies arising from combining the row
and column 1D convolutions, they only took the row
1D convolution to represent the node responses. We
replicated this here.

3) Node-to-graph (N2G) layer: This was basically a fully
connected layer connected to an E2N layer.

Choosing a larger number of filters did not improve the
results so we chose to use 8 filters in E2E layer. The
Architecture of the BrainNetCNN is shown in Figure 1b.

C. Graph Pruning and Graph Adjacency transformation

The adjacency matrices have densities of ∼60%, which
some consider as over-connected and containing false con-
nections [14]. Therefore, we limit the density to 5% by



(a) ImageCNN Architecture (b) BrainNetCNN Architec-
ture

Fig. 1: Architectures of both neural network models, both were
connected to classification layer and softmax layer at the end.

retaining the strongest weighted connections. The binarized
version of the 5%-density graphs were also considered.

Different representations of the adjacency matrices may
also increase the effectiveness and efficiency of model train-
ing. Hence, three adjacency matrix transformations were
considered:

1) Symmetric Normalization (SymNorm):

Asym = D−1/2AD−1/2

2) Random Walk Normalization (RWNorm):

Arw = D−1A

3) Maximum Value Normalization (MaxNorm):

Amax =
A

max
1≤i,j≤85

Aij

where A is the adjacency matrix and D the degree matrix.
In total, we had three types of adjacency matrices (original,
5% density, binarized 5% density) together with four types of
transformations (original weights, SymNorm, RWNorm and
MaxNorm), which gave twelve different adjacency matrix
form for each of MD and FA weights.

D. Hyperparameters for the models

For both models we used stochastic gradient descent and
the same set of hyperparameters for training, with momentum
= 0.9, learning rate = 0.01, mini batch size = 128, L2-norm
regularization = 0.0005, validation frequency = 30. Training
was stopped when no better validation accuracy was found
in the next six subsequent validations.

E. Experimental set-up

Fifteen shuffle splits with 70% /15% /15% for train-
ing\validation\test were chosen and same set of splits were
used for the two different deep learning models on each
adjacency matrix form. The mean and standard deviation of
the accuracies for each part of the split were then recorded.

IV. RESULTS

For original weights, both models trained when FA ma-
trices were used but failed to train on the MD matrices,
as shown in Table I. Moreover, they also failed to train on
the 5% density graph of the original MD matrices, though
training was succesful for the binarized 5% density graph.

Weight Mean Diffusion Fractal Anisotropy
CNN Image BrainNet Image BrainNet
Validation 52.3(2.38) 55.5(6.74) 72.4(2.51) 74.8(3.00)
Training 52.0(5.08) 58.0(7.63) 76.4(6.00) 83.0(4.74)
Test 52.5(2.29) 55.8(5.89) 72.2(2.75) 75.3(2.46)

TABLE I: The performances (accuracy mean percentage ± stan-
dard deviation) on sex prediction for ImageCNN and BrainNetCNN
using original mean diffusion and fractional anistropy matrices.

The binarized 5% density graph on FA performed more
consistently over different adjacency transformations for both
models. Tables II and III show the results for ImageCNN
and BrainNetCNN, respectively. Less overfitting (i.e. more
consistency between training and test) was seen in the
BrainNetCNN.

Normalisation Original SymNorm RWNorm MaxNorm
Validation 71.0(2.01) 68.3(1.62) 68.8(1.56) 70.4(1.74)
Training 97.0(1.98) 98.0(1.72) 96.4(1.79) 97.6(2.10)
Test 71.3(2.12) 69.2(2.13) 69.2(2.23) 71.2(1.58)

TABLE II: Sex prediction performances (accuracy mean percent-
age ± standard deviation) with ImageCNN for different adjacency
transformations over the binarized 5% density graph of FA.

Normalisation Original SymNorm RWNorm MaxNorm
Validation 71.7(1.93) 68.7(2.27) 70.8(2.27) 72.2(1.89)
Training 86.6(2.53) 93.4(1.85) 85.3(3.50) 85.7(3.05)

Test 72.0(2.28) 68.7(2.02) 71.3(2.26) 71.9(1.65)

TABLE III: Sex prediction performances (accuracy mean per-
centage ± standard deviation) with BrainNetCNN for different
adjacency transformations over the binarized 5% density graph on
FA.

However, the best performance for both models was seen
with MaxNorm on original weighted FA matrices, as shown
in Table IV.

CNN Image BrainNet
Validation 73.3(3.87) 76.7(1.74)
Training 81.8(5.91) 84.2(3.06)

Test 73.6(2.86) 76.5(2.15)

TABLE IV: Performances (accuracy mean percentage ± standard
deviation) on sex prediction for ImageCNN and BrainNetCNN using
MaxNorm on original weighted FA matrices.

For each of the twelve transformations for the adja-
cencies of MD and FA described above, BrainNetCNN



(71.0%(4.37)) performed consistently better than the Im-
ageCNN (68.6%(4.83)) in terms of mean accuracies (though
differences were within 3%) and generally provided more
consistent results across the shuffle splits.

V. DISCUSSION

Our results show that BrainNetCNN outperforms Im-
ageCNN in sex prediction on structural connectomes. This
demonstrates that incorporating the non-local (in terms of
matrix position) connectivity information from the adjacency
matrix is more powerful than naively treating connectome
adjacency matrices as images in a regular CNN framework.

In terms of connectivity measures, FA measures provided
better and more consistent performances over all adjacency
transformations, in terms of test accuracies, for both Im-
ageCNN (70.2%(1.90)) and BrainNetCNN (72.3%(2.02))
than using the MD measures (ImageCNN: 67.0%(6.15),
BrainNetCNN: 70.0%(5.54)). This agrees with previous anal-
ysis of sex in UKB connectomes [15] and supports the view
that FA may be more appropriate as a connectivity measure
as it accounts for the directionality of the diffusion measured
across the tracts [16].

The best results are achieved on unthresholded, weighted
connectomes with normalisation by maximum weight. On
the other hand, the performances on binarized 5% density
adjacency matrices over the 4 different transformations are
more consistent than original weighted and 5% density
weighted connectomes. There is much debate over the density
required to perform robust connectome analysis. Some view
weak connections as spurious and to be excluded [14], others
view more connections as more information, allowing for
some degree of noise in the data [17]. This may explain
why the fully weighted connectomes show generally the
best performance while sparse binary representations have
greater consistency. Furthermore, while weights can cause
complications in network analysis [17] this does not appear
to extend to hypothesis-free classifications using GCNNs.

As far as the transformation of the adjacency matrices is
concerned, both models perform the best using MaxNorm
for FA measures. This indicates that linear transformations
preserve meaningful information in the weights which appear
to be obscured by non-linear transformations.

VI. CONCLUSION

In conclusion, the BrainNetCNN outperforms an Im-
ageCNN in sex classification. This possibly implies that
the BrainNetCNN is better at capturing important features
and properties of adjacency matrices. Suitable alterations
on the adjacency matrices may yield better results. Further
analysis is needed for investigating the effect of alterations on
adjacency matrices and optimal graph density, visualising the
activations of certain neural network layers and identifying
which regional connections have higher predictive power.
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