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Abstract

Integrated Nested Laplace Approximation provides accurate and efficient approxima-
tions for marginal distributions in latent Gaussian random field models. Computational
feasibility of the original Rue et al. (2009) methods relies on efficient approximation of
Laplace approximations for the marginal distributions of the coefficients of the latent field,
conditional on the data and hyperparameters. The computational efficiency of these ap-
proximations depends on the Gaussian field having a Markov structure. This note provides
equivalent efficiency without requiring the Markov property, which allows for straight-
forward use of latent Gaussian fields without a sparse structure, such as reduced rank
multi-dimensional smoothing splines. The method avoids the approximation for condi-
tional modes used in Rue et al. (2009), and uses a log determinant approximation based on
a simple quasi-Newton update. The latter has a desirable property not shared by the most
commonly used variant of the original method.

1 Introduction
Consider a regression model in which a response n-vector, y, depends on covariates, xj , via
latent Gaussian random fields. For example, xj might be spatial location, and y depends on a
Gaussian Markov random field defined over space, or on a thin plate spline or Gaussian process
model of spatial location. Or xj might be a univariate covariate and the response depends on a
cubic spline of xj or on a latent Gaussian auto-regressive process indexed by xj . Realizations of
these latent fields can be written in terms of basis expansions f(xj) =

∑
k βkbk(xj), where the

βk are coefficients and the bk(xj) known functions. The prior for the random field is a Gaussian
density on the coefficients, with hyper-parameters, θ. Spline based generalized additive models
and Gaussian process models are familiar examples. Inference with such models can be based
on empirical Bayes methods, discussed in Wood (2017), on stochastic simulation, exemplified
by Umlauf et al. (2015), or on integrated nested Laplace approximation, also known as INLA
(Rue et al., 2009; Sørbye and Rue, 2011; Martins et al., 2013; Rue et al., 2017). The latter of-
fers a particularly efficient approach to full Bayesian inference, but the published methods rely
heavily on sparse bases and sparse prior precision matrices. Stochastic simulation methods also
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require sparsity to achieve computational efficiency. As discussed in Wood (2017) and else-
where, in many circumstances the latent field priors imply quite strong smoothness, making a
reduced rank dense basis expansion highly attractive computationally. This note therefore pro-
poses a simple alternative to the key efficiency promoting approximations in Rue et al. (2009),
which does not require sparsity, and possesses a quite attractive theoretical property. The re-
sult is an efficient method for fully Bayesian inference with the full range of smooth regression
models discussed, for example, in Wood (2017), that can still be used in the sparse setting.

INLA obtains the marginal distributions of the elements of the p-vector of model coeffi-
cients, β, and hyper parameter vector, θ, from

π(βi | y) =

∫
π(βi | θ,y)π(θ | y)dθ and π(θi | y) =

∫
π(θ | y)dθ−i (1)

where a subscript ‘−i’ denotes a vector without its ith element. Laplace approximations are
used for the distributions in the integrands, and the integrals are evaluated numerically, either
over a relatively coarse θ grid, or using the approach described in section 6.5 of Rue et al.
(2009) based on central composite designs computed by the algorithm in Sanchez and Sanchez
(2005). In practice, the integration might also be skipped and θ simply set to its posterior mode.

A first order Laplace approximation is used for the posterior of θ

π̃(θ | y) ∝ π(β̂,y,θ)

πG(β̂ | y,θ)

where β̂ is the maximizer of π(β,y,θ) and πG(β | θ,y) = N(β̂,Σ) where Σ = H−1 and H
is the Hessian of − log π(β,y,θ) with respect to β at β̂. Since πG is evaluated at its mode the
approximation is simply π(θ | y) ∝ π(β̂,y,θ)/|H|1/2. Usually H depends on θ, albeit slowly.

The key step in INLA, computationally and conceptually, is the approximation

π̃(βi | θ,y) ∝ π(β̃,y,θ)

πGG(β̃−i | βi,y,θ)
, (2)

where β̃ maximizes π(β,y,θ) given the constraint β̃i = βi, and πGG is a Gaussian approxima-
tion to the density of β−i | βi,y,θ. We can of course approximate π(βi | θ,y) directly from
πG(β | θ,y), but this involves evaluating a Gaussian approximation well away from its mode,
where it will often be inaccurate. In contrast, (2) only requires the evaluation of a Gaussian
approximation at its mode, and is therefore more accurate. Furthermore, at worst, a relative
error in πGG at its mode translates into an equivalent relative error in approximation (2), which
should be compared with the behaviour of the marginal based on πG, where the error simply
grows as we move into the tails. Finally, the approximate π(βi | θ,y) is always re-normalized
in practice, which eliminates any component of the approximation error due to inaccuracies in
πGG at its mode which are βi-independent. These are the key insights underpinning Rue et al.
(2009).

If we base πGG directly on the mode and Hessian of log π(β−i | βi,y,θ) then (2) is exactly
the Laplace approximation to

∫
π(β,y,θ)dβ−i, immediately providing access to formal results

on approximation accuracy as discussed in Shun and McCullagh (1995) and Rue et al. (2009).
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Unfortunately direct evaluation of the required Hessian is computationally prohibitive when it
has to be performed for each βi. Much cheaper is to base πGG on the conditional density implied
by πG, in which case the Hessian is constant and

β̃−i = β̂−i + Σ−i,iΣ
−1
i,i (βi − β̂i), (3)

leading to the approximation π(βi | θ,y) ∝ π(β̃,y,θ), which is demonstrably a substantial
improvement on directly using the marginal from πG. Rue et al. (2009) use (3), but achieve
slightly better approximation performance by also approximating the dependence on βi of the
Hessian of log π(β−i | βi,y,θ). They offer two alternatives. The first exploits the heuristic that
only elements of β−i showing sufficiently high correlation to βi according to πG need be con-
sidered when approximating how the Hessian varies with βi: this leads to efficient computation
for Markov models, but appears difficult to exploit in the non-Markov case. The second, recom-
mended, approach replaces the log determinant of the required Hessian with a first order Taylor
approximation about β̂. The required log determinant derivative is computationally costly for
non-Markov models.

The proposal here is to employ modified approximations that do not increase the leading
order cost in the sparse Markov case, but are also efficient in the dense non-Markov case. To use
INLA at all we have to compute β̂ using Newton’s method, which in turn requires the Hessian H
and its Cholesky factorization RTR = H. The Hessian with respect to β−i at β̂ is H−i,−i, and
its Cholesky factor can be computed directly from R atO(p2) cost in the dense case. The update
starts from R•,−i and zeroes the elements on its sub-diagonal by applying Givens rotations from
the left, as detailed in the appendix. Routine choldrop in R package mgcv (Wood, 2017) will
do this. If R is a sparse matrix, routine cholmod_updown from the suitesparse library
(Davis, 2006) will achieve the same. The proposed method modification then has two parts.

1. Use the numerically exact β̃−i in place of (3). Several steps of Newton’s method,
with fixed Hessian H−i,−i, can be used to find β̃−i, starting from (3). Each New-
ton step requires gradient evaluation, at O(np) cost in the dense case, and less in
the sparse case, plus two triangular solves using the Cholesky factor of H−i,−i, at
O(p2) cost in the dense case, and the cost of the sparse triangular solves otherwise.
Newton iteration convergence is slowed, but still guaranteed, with a fixed Hessian
(see Wood, 2015, §5.1.1, for example).

2. Approximate the required Hessian of log π(β−i | βi,y,θ) with respect to β−i by
an appropriate BFGS update of H−i,−i (see Nocedal and Wright, 2006, §5.6.1 for
example). With correct structuring of the update, the computational cost is that of
gradient evaluation and triangular solves involving the Cholesky factor of H−i,−i.
It is shown below that this update has the desirable property of giving a determinant
bounded between that of H−i,−i and the true target Hessian determinant. This prop-
erty is not shared by the first order Taylor approximation of the log determinant.

Part 1 is simply removing an approximation, and is therefore an accuracy improvement on Rue
et al. (2009). Part 2 will likely be less accurate than a first order Taylor expansion of the log
determinant when βi is very close to β̂i but, by virtue of Theorem 1 below, will always become
more accurate at some point as βi moves away from β̂i, unless the log determinant is really
linear in βi.
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2 The method
Here is the complete algorithm for computing a single marginal density approximation π̃(βi |
θ,y). Let D2j denote the 2j × 2j diagonal matrix with leading diagonal −1, 1,−1, 1 . . ., and
u0 be a zero column matrix. Let β̃(βi) denote the posterior mode given βi at a fixed value, and
let ∆i

j denote ∆j with an extra zero inserted at element i.

1. Compute the Cholesky factor of H̃0 = H−i,−i by update of the Cholesky factor of H.
2. For each βi in a grid of evaluation points repeat steps 3–7.
3. Use Newton’s method with fixed Hessian H̃0 to find β̃−i(βi), starting from (3).
4. Compute a set of J steps {∆j}.
5. For j = 0, . . . , J − 1

Compute h = H̃0∆j + ujD2ju
T
j ∆j and g = ∇β log π{β̃(βi) + ∆i

j,y,θ}.
Compute the matrix uj+1 =

{
h(∆T

j h)−1/2,g−i(∆
T
j g−i)

−1/2,uj
}

.
6. Compute the determinant approximation |H̃1| = |H̃0||I2J + uT

J H̃−10 uJD2J |.
7. Compute π̃(βi | θ,y) = π(β̃,y,θ)/|H̃1|1/2.
8. Re-normalize π̃(βi | θ,y).

In the work reported here J = 1 and ∆0/h = β̂−i − β̃−i(βi) for some small h. Step 5
implements the BFGS update given explicitly in Theorem 1, below. Theorem 1 is also the
reason that the update is based on a small step from β̃−i(βi), rather than the whole step from
β̂−i(βi) to β̃−i(βi). Step 6 uses results from section 18.1 of Harville (1997). An alternative
to steps 5 and 6 would be to directly update the Cholesky factor of H̃0 according to the BFGS
update, however this would lose sparsity in the Markov case, while the given update works
equally well in the sparse or dense cases. In practice all computations are with log determinants
and densities, and any computation involving H̃−10 is accomplished via two triangular solves
with the Cholesky factor of H̃0. Further computational savings are available by computing
log π̃(βi | θ,y) only on a relatively coarse grid of βi values and using spline interpolation for
evaluation and normalization. In the section 5 motorcycle example 16 βi values were used, but
further efficiency can be obtained by following Rue et al. (2009) and assuming a skew normal
or skew t posterior, the parameters of which can then be obtained using far fewer evaluations.

At step 6, |H̃0| is constant for a given i, which, given step 8, means that it does not actually
have to be computed. This opens the possibility of avoiding the computation of the Cholesky
factor of H0, and using an alternative computation of terms of the form H−10 x, where x is a
vector. Specifically, if Σ = H−1 then from basic properties of multivariate Gaussian densities
(H−i,−i)

−1x = (Σ−i,−i − Σ−i,iΣ
−1
i,i Σi,−i)x. Hence letting x0

i denote x with an extra zero
inserted at position i, ei denote the ith column of the identity matrix, d = (H−1ei)−i and
δ = (H−1ei)i, we obtain (H−i,−i)

−1x = (H−1x0
i )−i − ddTx/δ. This doubles the number

of triangular solves required to compute each (H−i,−i)
−1x term in both the Newton update and

determinant correction, but enables the use of sparse matrix libraries lacking a suitable Cholesky
update routine.

When using sparse model representations the βi are usually directly interpretable as the
quantities of interest, but in the reduced rank dense case this may not be true, and other linear
combinations of coefficients may be of more interest. For example, the coefficients of a spline
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smoother might be less interesting than the values of the evaluated spline at some values of
its covariate. This is readily handled by defining an invertible linear transformation from β to
transformed parameters of interest β′ = Aβ. If there are fewer than p identifiable parameters
of interest it is always possible to augment them in order to create an invertible A. Then the
transformation can be applied to H, its inverse and β̂, and the algorithm applied for β′. To
evaluate π(β̃,y,θ) and its gradient simply requires the inverse transform from β′ to β and
linear transformation of the gradient vectors.

3 Properties of the determinant update
The following theorem guarantees that in the small update step limit the determinant of the
updated Hessian is bounded between the determinant of the Hessian at β̂ and the determinant
of the true Hessian. This is not a property of all such low rank updates. For example, the
symmetric-rank-1 update does not have this property, despite converging more rapidly to the
true Hessian than BFGS, and even within the Broyden class of updates, only those ‘between’
the BFGS and Davidon-Fletcher-Powell updates have the property. The linear log determinant
approximation used in the simplified Laplace approximation of Rue et al. (2009, §3.2.3) does
not share this property.

Theorem 1. Let H̃0 and H̃ be respectively the initial Hessian and true Hessian with respect
to β−i at β̃(βi), and assume that log π(β,y,λ) is regular with bounded third derivative. Let
H̃1 denote the BFGS update of H̃0 based on a step h∆ from β̃ where ‖∆‖ = 1. Then |H̃1| ∈
[|H̃0|+O(h), |H̃|+O(h)].

Proof. The update is in the subspace of β−i, and the gradient vector of log π with respect to
β−i is zero at β̃. Defining f(β−i) = log π(β,y,λ) where βi is fixed on the right hand side, the
BFGS update is

H̃1 = H̃0 +
H̃0∆∆TH̃0

∆TH̃0∆
+
∇f(β̃−i + h∆)∇f(β̃−i + h∆)T

h∆T∇f(β̃−i + h∆)
.

Now∇f(β̃−i + h∆) = ∇2f(β̃−i)∆h+O(h2), so H̃1 = H̃2 +O(h) where

H̃2 = H̃0 +
H̃0∆∆TH̃0

∆TH̃0∆
+

(∇2f(β̃−i)∆)(∇2f(β̃−i)∆)T

∆T∇2f(β̃−i)∆
.

Recalling that ∇2f(β̃−i) = H̃, this last is the BFGS update for the quadratic function f(β̃−i +
∆) = f(β̃−i) + ∆TH̃∆/2. In consequence we can apply Theorem 8.3 of Nocedal and Wright
(2006), which directly implies that |H̃−12 ||H̃| ∈ [1, |H̃0||H̃|]. Hence |H̃2| ∈ [|H̃0|, |H̃|] and
|H̃1| ∈ [|H̃0|+O(h), |H̃|+O(h)].

4 Hyper-parameters
The hyper-parameters, θ, are often of less direct interest than β, but when their marginal distri-
butions are also required, the dense low-rank approach offers a computationally cheap alterna-
tive to the direct integration in (1) or the integration free approximation of Martins et al. (2013).
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Figure 1: Example simulation for the first model considered in section 5, based on the first
example from Rue et al. (2009). Open circles are data, yi while the line joins the underlying fi.

If the posterior modes, θ̂, are estimated by Laplace approximate marginal likelihood maximiza-
tion, as described in Wood et al. (2016) and Wood (2017), then we automatically have access
to a Gaussian approximation for the posterior distribution of θ based on θ̂ and the Hessian of
the log marginal likelihood plus any log prior on θ. This in turn provides a Gaussian approx-
imation for π(θ−i | θi). The approximations are most accurate with a little care in the choice
of parameterization: for example if σ2 is a variance component then a log σ parameterization is
usually better than using σ directly. Re-using the ideas employed for π̃(βi | θ,y) we then have
the approximation

π̃(θi | y) ∝ π(β∗,θ∗,y)

πG(β∗ | θ∗,y)πG(θ−i | θi)
where β∗ and θ∗maximize π(β,θ,y) given a fixed value of θi. In fact π(β∗,θ∗,y)/πG(β∗ | θ∗)
is simply the maximized Laplace approximate marginal likelihood, so π̃(θi | y) can be readily
evaluated given the method for Laplace approximate marginal likelihood maximization already
used, provided only that this admits fixing of θi while optimizing θ−i. Again it is straightforward
to normalize π̃(θi | y).

5 Examples
As an illustrative comparison, the first example from Rue et al. (2009) was repeated to compare
the full and simplified approximations proposed there to the modified method proposed here,
and to the simple Gaussian approximation, πG. The model from section 5.1 of Rue et al. is
yi − fi ∼ t3 where f1 − µ ∼ N(0, 1), fi − µ ∼ N{φ(fi−1 − µ), σ2} if i = 2, . . . , 50, φ = 0.85,
σ = 1 and µ ∼ N(0, 1). 1000 replicate data sets were simulated from the model, of which
figure 1 shows one example. For each fi, for each replicate, each approximation was compared
to the results of Gibbs sampling using the JAGS package (Plummer, 2003, 2014). The Gibbs
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Figure 2: Superimposed boxplots showing the distribution of mismatch between four alternative
approximations to each π(fi | y) and the truth, as represented by a long Gibbs sampling run,
for the example illustrated in Figure1. For each of 1000 replicates, mismatch is measured by a
logχ2 statistic, so lower values indicate a better approximation. See section 5 for more detail.
The horizontal axis gives the index i of each node, fi, of the model. The light grey boxplots,
with suppressed whiskers and tending to have larger logχ2 values, are for the simple Gaussian
approximation, πG(fi | y). The notched box plots, with dashed whiskers and intermediate
logχ2 values, are for the simplified Laplace approximation recommended by Rue et al. (2009).
The narrow black outlined boxplots are for the more expensive approximation from Rue et al.
The wide boxplots with grey infill, ‘behind’ the thin black boxplots, are for the simple method
proposed in section 2. The section 2 method and the expensive Rue et al. approximation show
similar behaviour, substantially better than the alternatives.

sampling runs were of length 100000, thinned to 10000 to be approximately uncorrelated. For
each fi the simulated values were put in 50 equal width bins and a χ2 statistic was computed
for testing whether the simulations were generated by the marginal distribution as computed by
each approximation. R code and JAGS code for the simulations is provided in the supplemen-
tary material. Figure 2 summarizes the results, giving boxplots for the log χ2 statistics for each
method by node, fi. Outlier plotting has been suppressed for plotting clarity. The outliers show
no obvious differences between the methods. For comparison, the log of the mean χ2 statistics
for each method are: 4.51, new method; 4.80, Rue et al. expensive approximation; 5.31, Rue et
al. simplified Laplace; 21.38, Gaussian. Simply using the correct mode and a constant Hessian
gives a log mean χ2 of 4.89. The log expected χ2 statistic for the true distribution would be
3.91. The same ordering applies for means of the log χ2 statistic, and for the median, except
that for the median the advantage of the new method over the more expensive INLA approx-
imation is reversed, 4.26 to 4.22. All the INLA based approximations are much better than
the simple Gaussian approximation. The method proposed here is competitive with the more
expensive approximation proposed in Rue et al. (2009) and in this case is markedly better than
the simplified version, although it should be noted that the log determinant derivative is zero for
the simplified method, for this model.

As a second illustration consider the much overworked motorcycle crash test data from
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Figure 3: Credible intervals for the motorcycle crash data. The left panel shows the data as grey
circles and the credible intervals for the mean. The 2.5%, 10%, 50%, 90% and 97.5% quantiles
computed using the INLA method proposed here are shown as black dotted, dashed, solid,
dashed and dotted curves, respectively. The mean and 95% credible limits from the simple
Gaussian approximation are shown in grey. The right panel shows the same for the smooth
function modelling the log standard deviation of the data.

Silverman (1985), in which the acceleration of the heads of crash test dummies was measured
against time in simulated motorcycle accidents. A possible model for these data is

ai ∼ N{f1(ti), e2f2(ti)}

where f1 and f2 are smooth functions allowing the mean and variance of acceleration, ai, to
vary smoothly with time, ti. f1 was represented using a rank 20 adaptive spline and f2 a rank
10 thin plate regression spline (Wood, 2017). f1 had 5 smoothing parameters, and f2 had one.
Wood et al. (2016) provide efficient empirical Bayesian methods for such models, but rely on
the simple Gaussian approximation, πG, for the posterior distribution of the model coefficients.
However, given the Wood et al. (2016) methods, the INLA method proposed here is easily
applied.

Figure 3 compares credible intervals generated using the INLA variant method proposed
here and the simple Gaussian approximation given directly by the methods in Wood et al.
(2016). The INLA intervals were computed for spline function values at evenly spaced times,
using the linear transform method discussed in section 2: these values were then spline interpo-
lated. The first integral in (1) was performed using the central composite design strategy from
Rue et al. (2009, §6.5), with the outer design points placed on a contour of equal probability
according to the Gaussian approximation to π(θ | y), automatically available when using the
Wood et al. (2016) methods. The Gaussian and INLA intervals show quite marked differences
for the log standard deviation, especially at the interval ends, and there are some differences
even for the mean acceleration.
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6 Discussion
The key to efficiency of INLA is the approximation of π(βi | θ,y), and the method for this pro-
posed here has the advantages of simplicity; applicability in the case of dense and sparse model
representations; the theoretically re-assuring property given by Theorem 1; competitive statis-
tical performance with the more expensive approximation from Rue et al. (2009) and improved
performance relative to the simplified Laplace approximation usually employed in practice. On
the other hand it could be argued that Theorem 1 merely provides the minimum for a reasonable
approximation, offering only the loosest of bounds on the approximation error for the determi-
nant. A counter-argument is that the simplified Laplace approximation usually employed in
INLA computations does not even satisfy these loose bounds, generally being more accurate in
the centre of the distribution and less accurate in the tails: but improving tail behaviour is one of
the main motivations for taking a fully Bayesian approach. In any case the section 2 method can
always be improved by increasing J from 1 and choosing several update step. One possibility
is to take a number of orthogonal steps forming a reduced rank basis for the space of relevant
coefficients identified by the more expensive approximation in Rue et al. (2009).

The method proposed here is available in R package mgcv from version 1.8-27

Acknowledgement
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several other useful comments that improved the paper.

Appendix: Cholesky updating
The Cholesky factor of H−k,−k can be obtained from the Cholesky factorization RTR = H,
by starting from the factorization RT

•,−kR•,−k = H−k,−k, and noting that if Q is any appropri-
ately dimensioned orthogonal matrix then RT

•,−kQ
TQR•,−k = H−k,−k. Hence choosing Q so

that QR•,−k is upper triangular, and discarding its final row, we have the Cholesky factor of
H−k,−k. An appropriate Q can be constructed using Givens rotations (see Golub and Van Loan,
2013, §5.1.8), resulting in the following algorithm, where R•,−k is referred to as R to simplify
notation, and loops with a negative range are skipped:

On input R is the p× p− 1 result of dropping column k of an upper triangular matrix.

For i = k, . . . , p− 1
Set α = (R2

i,i +R2
i+1,i)

1/2, c = Ri,i/α and s = Ri+1,i/α
Set Ri,i = α and Ri+1,i = 0.
For j = i+ 1, . . . , p− 1

r = Ri,j .
Ri,j = cr + sRi+1,j .
Ri+1,j = −sr + cRi+1,j .

Drop the final row of R.
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On exit R is the required p × p upper triangular Cholesky factor. This simple statement of
the algorithm is efficient for row major storage, but for column major storage, as used in R, a
column oriented version optimizes memory access, requiring storage of vectors of the c and s
coefficients at each i for re-use with each column j.
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