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Abstract 
 

The high internal gain of single photon avalanche diodes (SPADs) operating in Geiger mode allows the 

quantum limit of detection to be approached. This offers a significantly improved sensitivity for optical 

communication over existing photodiodes. A fully integrated CMOS SPAD array receiver (RX) is presented 

which achieves 500Mb/s with pulse amplitude modulation in a visible light communication (VLC) link within 

15.2dB of the quantum limit. However, the SPAD dead time induces around 5.7dB of transient distortion 

which restricts error performance and data rate. We propose a model describing a discrete photon counting 

system which exhibits this nonlinear behaviour and compare it to practical measurements with the RX. A 

unipolar intensity modulated optical signal is considered, as opposed to bipolar electric fields in conventional 

radio frequency wireless systems. Intermodulation between the DC and harmonic components of the data-

carrying waveform is investigated, and the resulting degradation of signal-to-noise-and-distortion ratio and 

bit error rate is evaluated. The model is developed as a tool for understanding distortion to ultimately allow 

rectification through RX architecture, modulation scheme, coding and equalisation techniques. 

 

Introduction 
 

Integrated CMOS VLC receivers have recently been developed to enable miniaturised and low-cost links for 

light fidelity (LiFi) networks, underwater wireless optical communications (UWOC) and plastic optical fibre 

(POF) communications [1]. Sensitivity of these devices is constrained by electrical noise related to the 

employment of photodiodes (PDs) or linear avalanche photodiodes (APDs) and their amplification circuits [1, 

2]. Fast APD RXs have improved sensitivities of –38dBm at 280Mb/s (850 nm) [2], –31.8dBm at 1Gb/s (675nm) 

[3] and –34.6dBm at 1Gb/s (675nm) [4] but remain two orders of magnitude above the standard quantum limit 

determined by photon shot noise [5]. This limit defines the minimum number of photon detections required to 

ensure a given bit error ratio (BER). The extremely high gain of SPADs in Geiger mode eliminates additive 

thermal noise in the RX chain since no transimpedance amplifier (TIA) is needed. This allows quantum 

sensitivity limits to be approached. A SPAD RX for fibre optic applications achieved 200Mb/s at 6.5×10–3 BER 

within 24dB of the quantum limit [6]. In this paper, we demonstrate a fully integrated 130nm CMOS SPAD RX 

extending this data rate by 2.5× to 500Mb/s with four-level pulse amplitude modulation (4-PAM) at 2×10–3, 

whilst improving sensitivity to –46.1dBm, reducing the margin to the quantum limit to only 15.2dB [7]. 
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100Mb/s on-off keying (OOK) is also reported with this RX at –55.2dBm sensitivity, corresponding to an 

average of 7.5 detected photons per bit, 13.4dB from the quantum limit [8]. These results meet the 3.5×10–3 BER 

threshold required for forward error correction (FEC) to achieve an output BER of 10–9 using concatenated 

Bose-Chaudhuri-Hocquenghem (BCH) inner and outer codes with 6.69% overhead [9]. 

 

Effective detection rate is dependent on the dead time caused by quenching and recharging a SPAD after it 

detects a photon. During this time (3.5ns reported in [6], 12ns [7], 10.6ns [10] and 5ns [11]), the SPAD is unable 

to respond to subsequent incident photons. Hence, it is unlikely that more than one photon detection will 

occur in a symbol period at rates higher than 100Mb/s, where PD/APD RXs readily operate. Therefore, a single 

detector is unable to recover signals above this range with reliable BER – so multiple SPADs are required. Fig. 

1 shows a representative block diagram of a photon counting RX with this principle compared to a typical PD 

RX. This presents design challenges to combine, count and sample the outputs of the SPADs with minimal 

losses and circuit area. [11] accomplishes this with an analogue silicon photomultiplier (aSiPM) of 60 SPAD 

currents combined via a node connected to a load resistor. Our RX architecture is digital and permits 

massively parallel (4096) photon event summation to be achieved at a high fill-factor (43%) and sample rate 

(800MHz). The RX operates in a practical, background insensitive VLC link at 1m in 1klx ambient conditions 

using a 450nm laser diode (LD). The large array provides temporal redundancy to ease the dead time 

constraint by ensuring active SPADs are always available in a symbol period. This enables reception of 

symbols with durations (2.5ns at 400Mb/s OOK, 4ns at 500Mb/s 4-PAM) shorter than the individual SPAD 

dead time of 12ns. Detector redundancy therefore obviates the requirement on current RX implementations 

that the dead time be matched to the symbol period to achieve the maximum data rate [6, 10, 11]. 200Mb/s is 

attained in [6] with only 4 SPADs and a short 3.5ns dead time, but at the expense of relying on all SPADs to 

fire every bit period and compromised sensitivity due to crosstalk between the detectors (3% mean, 1.5V to 

3.5V excess bias), dark counts (1.46-13.9kHz) and high afterpulsing probabilities up to 56%. These spurious 

afterpulse avalanches are caused by the delayed release of trapped carriers around a similar timescale to the 

dead time [12]. Afterpulsing becomes more significant at shorter dead times and causes inter symbol 

interference (ISI). Instead, our SPAD array has an optimal 1.3V excess bias above 13.9V breakdown, 6kHz 

median dark count rate and an afterpulsing probability of around 1%, albeit with a longer mean dead time of 

12ns. In reality, the dead time is not uniform and may vary depending on voltage and temperature, therefore, 

it is beneficial to reduce the influence of dead time on data rate and error performance. 

 

Another advantage of our large array is that complex modulation schemes such as PAM or orthogonal 

frequency division multiplexing (OFDM) can be applied for high spectral efficiency and multipath mitigation. 

Furthermore, the SPAD RX is direct-to-digital so no analogue-to-digital converter (ADC) is required. We 

apply adaptive modulation DC biased optical OFDM (DCO-OFDM) with 512 subcarriers and bit loading to 

attain 350Mb/s and 3.7b/s/Hz mean spectral efficiency at 2×10–3 BER. RX signal-to-noise ratio (SNR) (18dB peak 

near DC) is sufficient to convey 32-QAM (quadrature amplitude modulation) and 16-QAM with the lower 

frequency subcarriers, down to 4-QAM at subcarrier index 416. We attain 5.6b/s/Hz efficiency at a reduced 

rate of 200Mb/s. 

 

With 230pJ/b at best performance, we prove the highest power efficiency of SPAD RXs published to-date [6, 

10, 11]. Although the RX energy per bit is not lower than PD/APD RXs (ranging from 86pJ/b in [1] to 129pJ/b 

[3]), these do not include an ADC function, which is inherently realised by this SPAD RX architecture. Our 

value of 230pJ/b could readily be reduced by over an order of magnitude by adopting advanced CMOS nodes. 

Our sensitivities for 400Mb/s OOK, 350Mb/s DCO-OFDM and 500Mb/s 4-PAM all outperform that of PD, APD 

and SPAD RXs [1-4, 6, 10, 11] and our maximum bit rate is improved by a factor of 2.5 compared to [6] whilst 

maintaining 3.5×10–3 BER suitable for FEC with minimal bit redundancy [9]. The device reaches a sensitivity 

within 15.2dB of the quantum limit set by the Poisson statistics of photon arrivals [5]. This gap includes a 

1.5dB power penalty due to the finite extinction ratio of the LD transmitter (TX) and an 8dB loss from the 
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SPAD photon detection probability (37%) and fill factor (43%). The former is not an RX issue and can be 

practically eliminated with the use of an external modulator at the source [6]. The latter can be readily reduced 

with an optimised SPAD technology [13, 14] and structure techniques such as 3D stacking [15]. However, the 

remaining 5.7dB penalty is unaccounted for and attributed to the dead time inducing transient distortion and 

ISI. This causes a signal-to-noise-and-distortion ratio (SNDR) limitation which prevents data rate from being 

further improved by increasing the optical power of the signal. SPAD intrinsic parasitics evaluated in [16] are 

not as significant in our RX and too complex with a large array. With OFDM at low frequencies, where there is 

less signal attenuation, distortion is observed as effective SNR is more impaired from the total power. The 

dead time pile-up nonlinearity of the SPADs at high signal levels leads us to conclude that practical use of this 

device is to be in assistance (rather than replacement) of existing APD or PD RXs for LiFi, UWOC and POF 

applications; with potential to extend range or maintain connectivity in extreme conditions such as dark or 

diffuse environments. 

 

The aim of this study is to advance understanding of the performance limits of a SPAD RX, to ultimately allow 

Gb/s data rates to be reached whilst enhancing sensitivity. This paper introduces a SPAD model to mobile 

VLC systems which are subject to random blockages and rapidly changing SNR conditions with the aim to 

ensure connectivity when line-of-sight links are interrupted. A detailed analysis of the main characteristics of 

a SPAD-based RX is presented. Theoretical equations are developed to gain understanding of the effect of 

dead time. A single SPAD is considered at first and then expanded to a 64 × 64 array with the objective to 

accurately predict SNDR. Analytical modelling and simulations are compared to experimental measurements 

with our integrated device to evaluate the performance of a SPAD RX in a VLC link. 

 

Methods 
 

RX Implementation 
 

We report a 2.8mm by 2.6mm SPAD RX integrated in 130nm CMOS imaging technology which incorporates 

64 × 64 receiver elements at 21µm pitch [7]. Each element contains a single p-well/deep-n-well SPAD biased at 

15.2V (1.3V excess bias 𝑉𝑒) with a mean dead time of 12ns, a median dark count rate of 6kHz at room 

temperature and a photon detection probability (PDP) of 37% at 450nm. The 1.34 × 1.34mm active area is 

chosen for ease of alignment to POF or VLC optics but can be adjusted electronically by disabling areas of 

detector elements. Fig. 2 shows a schematic of the chip architecture. A receiver element comprises of a SPAD 

interfaced to a NMOS passive quench, enable SRAM and toggle-flop. The toggling output encodes photon 

events on both rising and falling edges. 32 elements are combined with an XOR tree into an asynchronous 

double data rate (DDR) sequence at up to 900MHz (1.8Gphotons/s) limited only by wiring parasitics (not 

SPAD dead time). 

 

The array divides into two sets of 64-row XOR trees feeding digital readout chains positioned on the flanks of 

the active area. Fig. 3 shows the row parallel interface circuit, consisting of three 8b ripple counters, sampling 

and converting the asynchronous DDR row signal into a synchronous binary count without dead time. The 

three counters operate in a round robin fashion, so that in every clock cycle one counter is reset, one is being 

read out and one is counting. A local state machine cycles continuously through the counters. The 128 sets of 

row counters operate in parallel and their outputs are added through a pipelined 7-stage adder tree to give an 

overall, 16b synchronous sum of SPAD events. The entire digital readout operates from a sample clock 

generated by an on-chip PLL with programmable frequency up to 800MHz and distributed through clock 

trees to the pipelined adder. This digital readout replaces the TIA, analogue signal conditioning and ADC 

chain of conventional PD/APD-based receivers and will scale favourably to advanced nanometre process 
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nodes. It also lends itself to the integration of the DSP required for complex modulation schemes. After digital 

gain control and formatting, the summation is conveyed off-chip using two D-PHY transmission blocks, each 

dual lane, with line rates of 400Mb/s, for a total off-chip bandwidth of 1.6Gb/s. Fig. 4 is an annotated 

micrograph of the manufactured chip. In addition to the D-PHY blocks, an 8b 400MHz bandwidth current-

steering digital-to-analogue converter (DAC) generates an analogue output compatible with existing ADC-

based RX paths for testability. The total RX power consumption is 115mW, consisting of 15mW of SPAD 

power and 100mW of DSP. 

 

We generate sinusoids and OOK and 4-PAM waveforms from a pseudorandom binary sequence (PRBS) via a 

Mersenne Twister with a pattern length of 219937–1 and non-return-to-zero (NRZ) line coding. These are 

transmitted with an Agilent 81180A Arbitrary Waveform Generator (AWG) driving an LD (Thorlabs PL450B, 

450nm). A 450nm optical bandpass filter (10nm full width half maximum (FWHM)) and two neutral density 

filters (31% and 10% transmission) are placed above the array to attenuate ambient light and LD power. After 

frame synchronization, decoding of the received waveform is performed offline. The RX confirms photon 

counting reception at up to 500Mb/s from 1cm to 1m. Fig. 4 shows a block diagram of the setup. Experiments 

are conducted with the source directly in front of the RX to minimise reflections via the channel. We operate 

the device below the maximum rate of the XOR tress to avoid readout saturation. The array offers redundancy 

where detector elements are continually firing and recovering in steady state conditions. This enables the RX 

to attain high dynamic range and Poisson SNR up to 23dB per sample in theory. RX sensitivity from 100Mb/s 

OOK to 500Mb/s 4-PAM is compared to other visible light RXs in Fig. 5 and a constant distortion of around 

5.7dB is observed. This penalty cannot be explained with current SPAD models, so a novel method of 

describing nonlinearity is required. 

 

Intensity Response Theorem 
 

We first consider a conventional circuit model and then apply a similar principle to an optical system. 

Amplifiers experience gain compression where the gain decreases for increasing amplitude since eventually 

the output signal reaches a limit due to supply voltage, for example [17]. This results in a nonlinear 

input/output relationship. A SPAD has a similar transfer relationship with greater deviation from linearity as 

the incident photon rate increases (Fig. 6) due to an undesirable dead time caused by resetting the SPAD after 

it detects a photon. During this time interval (in the order of 10-14ns in [7]) the SPAD is unable to respond to 

impinging photons. A nonlinear system with input 𝑥 and output 𝑦 can be represented with a power series [18] 

 

 

where 𝑎1 is the linear, small signal gain (unity in this case). We intend to describe the large signal curve of a 

SPAD (Fig. 6) with dead time 𝜏 by this polynomial. The objective is to use this to predict the distortion 

induced on a modulated input signal. Background noise from dark counts and ambient light is omitted at this 

point to concentrate on the effect of dead time. Photon shot noise is included in the model since it cannot be 

eliminated from a practical system. For a passive quench (PQ) SPAD, any photon arriving during the dead 

time of a previous detection causes 𝜏 to be extended. A PQ SPAD output event rate is modelled in [19] as a 

paralyzable detector [20, 21]: 

 

 

This model assumes a constant (DC) mean incident photon rate 𝐴. 𝜏 governs effective count rate and the 

saturation level is scaled by the array size. An expression for the DC gain 𝐺𝑃𝑄 as the input to output ratio is: 

 

 

𝑦(𝑥, 𝑡) = 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 

𝑦𝑃𝑄 = 𝐴𝑒−𝐴𝜏 

𝐺𝑃𝑄 =
𝐴𝑒−𝐴𝜏

𝐴
= 𝑒−𝐴𝜏 = 𝑒−𝑛 

(2) 

(3) 

(1) 
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𝐺𝑃𝑄 can be reduced to 𝑒−𝑛 where 𝐴 =
𝑛

𝜏
 is a normalisation based on multiples of the maximum input event rate 

1

𝜏
. As the value of factor 𝑛 increases, the SPAD becomes more nonlinear. Count rate maxima occur at the dead 

time cut-off point 
1

𝜏
 marked in Fig. 6. As a means of quantifying gain compression, the input level where 𝐺𝑃𝑄 

has dropped by 1dB is found: 𝐺𝑃𝑄 = 𝑒−𝑛 = −1dB when 𝑛 = 0.2303. Furthermore, the output drops by 4.34dB 

when 𝑛 = 1 and attenuation continues to grow exponentially as 𝑛 increases, with –43.4dB a decade higher at 

𝑛 = 10. DC gain is plotted in Fig. 6 and is identical for any number of SPADs in terms of incident rate per 

element. Before considering a modulated signal, which is mathematically involved, a single tone sinusoidal 

input signal with frequency 𝜔1 is applied, 

 
 

𝐴 is the amplitude rate proportional to the incident optical power. The incident photon rate now varies in time 

for this input. From Eqns. (1) and (4), up to the third term, the output expansion produces 

 

 

 

 

 

Unwanted higher harmonics (second 2𝜔1 and third 3𝜔1) are also generated in (5) and the second order 

nonlinearity causes a DC shift of 
𝑎2𝐴2

2
. Harmonic distortion is due to self-mixing of the signal. It can be 

suppressed by low pass filtering the higher order harmonics. The third order generates both third order 

harmonic distortion and a fundamental component which distorts the linear term. The gain of the system is 

then deduced: 

 

 

If 
𝑎3

𝑎1
< 0, the gain compresses with increasing amplitude and since 𝑎1 = 1, 𝑎3 must be negative. The –1dB 

compression point can be determined: 

 

 

If two tones are applied to the system, 

 

 

where 𝐵 is half of 𝐴, such that the peak-to-peak amplitude of the waveform (2𝐵 = 𝐴) is equal to the rate in (2): 

 

 

 

 

where cos(𝑘𝜔1,2𝑡) = cos(𝑘𝜔1𝑡) + cos(𝑘𝜔2𝑡) and 𝑘 = 1, 2 𝑜𝑟 3. Intermodulation terms arise at 𝜔1 ± 𝜔2, 2𝜔1 ±

𝜔2  and 2𝜔2 ± 𝜔1. This is caused by the two signals cross-mixing. When 𝐵 is sufficiently small, the higher 

order nonlinear terms are negligible, and the gain remains at approximately 𝑎1. As 𝐵 increases, the 

fundamentals increase proportionally, whereas the third order intermodulation (IM3) products increase in 

proportion to 𝐵3. Eqn. (9) is modified by considering an intensity modulated/direct detection (IM/DD) optical 

signal which is unipolar (as there is no negative light), in contrary to bipolar radio frequency (RF) with electric 

fields. A unipolar tone with a DC bias is equivalent to setting 𝜔2 = 0 in (8): 

 

 

DC bias 𝐵𝐷𝐶 is later set to be different to signal amplitude to investigate the effect of a TX with finite extinction 

ratio (ER). Therefore, 

𝑥 = 𝐴cos(𝜔1𝑡) 

𝑦 = 𝑎1𝐴cos(𝜔1𝑡) + 𝑎2𝐴2cos2(𝜔1𝑡) + 𝑎3𝐴3 cos3(𝜔1𝑡)

  

=
𝑎2𝐴2

2
+ (𝑎1𝐴 +

3𝑎3𝐴3

4
) cos(𝜔1𝑡) +

𝑎2𝐴2

2
cos(2𝜔1𝑡) +

𝑎3𝐴3

4
cos(3𝜔1𝑡)  

𝑦 = 𝑎2𝐵2 + (𝑎1𝐵 +
9𝑎3𝐵3

4
) cos(𝜔1,2𝑡) + 𝑎2𝐵2cos((𝜔1 ± 𝜔2)𝑡) +

3𝑎3𝐵3

4
cos((2𝜔1 ± 𝜔2)𝑡) +

3𝑎3𝐵3

4
cos((2𝜔2 ± 𝜔1)𝑡) +

𝑎2𝐵2

2
cos(2𝜔1,2𝑡) +

𝑎3𝐵3

4
cos(3𝜔1,2𝑡)  

10log10 (1 +
3𝑎3𝐴2

4𝑎1

) = −1dB 

𝑥 = 𝐵cos(𝜔1𝑡) + 𝐵cos(𝜔2𝑡) 

𝑥 = 𝐵cos(𝜔1𝑡) + 𝐵𝐷𝐶 

𝐺 =
𝑦𝜔1

𝑥
=

(𝑎1𝐴+
3𝑎3𝐴3

4
)

𝐴
= 𝑎1 +

3𝑎3𝐴2

4
= 𝑎1 (1 +

3𝑎3𝐴2

4𝑎1
)  

(4) 

(5) 

(6) 

(7) 

(9) 

(10) 

(8) 
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It is seen that intermodulation between the DC and signal components occurs and the higher order terms in 

(9) fold down to DC and the fundamental, adding distortion. Now, distorted DC and fundamental gains are 

obtained: 

 

 

 

 

 

Gain is no longer dependant on just 𝑎3, as in (6), but 𝑎2 as well. This means greater distortion occurs than for 

just a constant rate. Computing the second and third order coefficients which delineate both the DC and 

fundamental distortion, 

 

 

 

 

 

 

Substituting, 

 

 

These values hold for –1dB compression and are generalised by expressing in terms of 𝑛, 

 

 

Unlike the conventional polar case (6), 𝑎2 is now negative and causing compression and 𝑎3 is positive. The 

second and third harmonic distortion 𝐻𝐷2 and 𝐻𝐷3 can also be estimated: 

 

 

 

 

 

 

 

Substituting the coefficients (13) into the system polynomial (1), 

 

 

With this general equation, the response can be determined for any input 𝑥, such as a sinusoid or data 

carrying OOK signal. 

 

Detection Statistics 
 

In this section, the model is developed to specify the detection statistics of a SPAD RX. As introduced above, 

distortion causes a reduction of the received SNDR which cannot be understood with prior constant rate 

models [18]. Consider a baseband signal 𝑤(𝑡) given by 

 

 

𝑦 = 𝑎1𝐵 +
3𝑎2𝐵2

2
+

5𝑎3𝐵3

2
+ (𝑎1𝐵 + 2𝑎2𝐵2 +

15𝑎3𝐵3

4
) cos(𝜔1𝑡) + (

𝑎2𝐵2

2
+

3𝑎3𝐵3

2
) cos(2𝜔1𝑡) +

𝑎3𝐵3

4
cos(3𝜔1𝑡)  (11) 

𝐺𝐷𝐶 =
𝑦𝐷𝐶

𝑥𝐷𝐶
=

(𝑎1𝐵 +
3𝑎2𝐵2

2 +
5𝑎3𝐵3

2 )

𝐵
= 1 +

3𝑎2𝐵

2
+

5𝑎3𝐵2

2
 

𝐺1 =
𝑦1

𝑥1
=

(𝑎1𝐵 + 2𝑎2𝐵2 +
15𝑎3𝐵3

4
)

𝐵
= 1 + 2𝑎2𝐵 +

15𝑎3𝐵2

4
 

10log10 (1 +
3𝑎2𝐵

2
+

5𝑎3𝐵2

2
) = −1dB 

𝑎3 =
(2 (10−

1
10) − 2 − 3𝑎2𝐵)

5𝐵2
 

10log10 (1 + 2𝑎2𝐵 +
15𝑎3𝐵2

4
) = −1dB 

𝑎2 =

((10−
1

10) − 1 −
15𝑎3𝐵2

4
)

2𝐵
 

 
⇒  𝑎3 =

0.1645

𝐵2
 𝑎2 = −

0.4113

𝐵
 

𝐻𝐷2 =
ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑎1𝐵
=

(
𝑎2𝐵2

2 +
3𝑎3𝐵3

2
)

𝑎1𝐵
=

𝑎2𝐵

2
+

3𝑎3𝐵2

2
= 0.0411 = 0.1786𝑛 

𝐻𝐷3 =
(

𝑎3𝐵3

4
)

𝑎1𝐵
=

𝑎3𝐵2

4
= 0.0411 = 0.1786𝑛 

𝑎3 =
0.1645

𝐵2
=

0.7143𝑛

𝐵2
 𝑎2 = −

0.4113

𝐵
= −

1.7859𝑛

𝐵
 

𝑦 = 𝑥 −
1.7859𝑛

𝐵
𝑥2 +

0.7143𝑛

𝐵2
𝑥3 

𝑤(𝑡) = ∑ 𝑎(𝑝)𝑠(𝑡 − 𝑝𝑇)

𝑝

 

(12) 

(14) 

(16) 

(15) 

(13) 
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where 𝑎(𝑝) is the information symbol sequence, 𝑝 denotes symbol index, 𝑠(𝑡) is the pulse shape and 𝑇 is 

symbol period. 𝑎(𝑝) is a stream of randomly generated bits in Matlab. 𝑠(𝑡) sets the duty cycle and rectangular 

NRZ signalling is considered, where the pulse amplitude is held constant throughout the symbol period: 

𝑠(𝑡) = 1 for 0 ≤ 𝑡 ≤ 𝑇 and 𝑠(𝑡) = 0 otherwise. 𝑇 is equal to the bit period since a binary alphabet is used (0 and 

1 mapping). With sufficient SNR, higher-order modulation could be realised with 𝑀-PAM to increase net bit 

rate and spectral efficiency, where 𝑀 is alphabet size. The signal is transmitted via the means of an LD. 

Alternatively, a light emitting diode (LED) could be used. Assuming an ideal channel, let the peak-to-peak 

amplitude be 𝐴, such that the received signal 𝑥 is 

 

 

This can be separated into a DC component 𝐵𝐷𝐶 and an AC swing of 𝐵. A TX with finite ER means symbol rate 

affects the AC swing. In contrast to a tone which corresponds to an impulse in the frequency domain, the NRZ 

spectrum contains many frequencies enveloped with a sinc function. This makes it difficult mathematically to 

expand polynomial (15) with input (17), so analysis is shifted to the frequency domain to investigate baseband 

gain and distortion. We develop a simulator to describe a SPAD RX with this instance and find a solution to 

the equation from the spectrum rather than the time domain. Considering Parseval's identity, which states 

that the energy of a signal 𝑥(𝑡) is conserved in temporal and spectral space [22]: 

 

 

where 𝑋(𝑓) is the Fourier transform of 𝑥(𝑡), the output response can be determined this way. Photon noise is 

introduced to the model, but standard Poisson statistics cannot be assumed because the output count 

distribution is distorted. In the absence of dead time, ideal photon detections follow a Poisson process and the 

probability of counting 𝑘 photons during a symbol interval (0, 𝑇) is given by [23]: 

 

 

where 𝜆 is the instantaneous mean photon rate, hence 𝜆𝑇 is the average number of incident photons in 𝑇. 𝜆 is 

related to received optical power 𝑃𝑟 by [24]: 

 

 

where 𝑃𝐷𝐸 is the SPAD photon detection efficiency; ℎ is Planck’s constant and ν is the frequency of the light. 

In the presence of dead time, however, distortion causes the counts to deviate from a Poisson distribution [25]. 

It is assumed that an event is counted from each SPAD pulse. Therefore, the total number of events in 

counting interval (0, 𝑇) is obtained by the number of pulse transitions and cannot exceed 𝑘𝑚𝑎𝑥 = ⌊
𝑇

𝜏
⌋ + 1, 

where ⌊𝑧⌋ denotes the largest integer that is smaller than 𝑧. The probability mass function (PMF) of a PQ SPAD 

during (0, 𝑇) is expressed as [26]: 

 

 

 

for 𝑘 < 𝑘𝑚𝑎𝑥 and 𝑝𝐾(𝑘) = 0 for 𝑘 ≥ 𝑘𝑚𝑎𝑥. 𝑖 is an integer index. 𝑃𝐷𝐸 is defined as the product of PDP and fill 

factor 𝐶𝐹𝐹 and is treated as a constant 8dB loss (at 450nm, 𝑉𝑒 = 1.3V and 𝐶𝐹𝐹 = 43%) in this model. It can be 

seen that the bandwidth of the RX is also affected by 𝜏, so performance is susceptible to both the intensity and 

frequency of the modulated signal. An array is employed to increase capacity and improve SNR and the 

output is given by the superposition of the detector elements. (21) is applied for each SPAD and expanded to a 

64 × 64 array of independent variables combined into a single process. The aggregate count distribution of the 

array is approximated by a Gaussian distribution [27] 

 

 

𝑝0(𝑘) =
(𝜆𝑇)𝑘𝑒−𝜆𝑇

𝑘!
 

𝜆 =
𝑃𝑟𝑃𝐷𝐸

ℎ𝜈
 

𝑥 = 𝐴𝑤(𝑡) 

𝑝𝐾(𝑘) = ∑ (−1)𝑖−𝑘 (
𝑖

𝑘
)

𝜆𝑖(𝑇 − 𝑖𝜏)𝑖𝑒−𝑖𝜆𝜏

𝑖!

𝑘𝑚𝑎𝑥−1

𝑖=𝑘

 

𝑝𝑋(𝑥)~𝒩(𝜇𝑋 , 𝜎𝑋
2) 

(17) 

(19) 

(20) 

(21) 

(22) 

∫ |𝑥(𝑡)|2𝑑𝑡
∞

−∞

= ∫ |𝑋(𝑓)|2𝑑𝑓
∞

−∞

 (18) 
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where 𝜇𝑋 and 𝜎𝑋
2 are the mean and variance of the aggregate distribution. Numerical methods are developed 

to determine the achievable BER for OOK modulation. Although 𝜏 remains the main limiting factor on RX 

performance, noise causes BER to increase further. Dominant noise sources are background events from dark 

counts, afterpulsing, ambient light and ER. ER becomes the principle noise factor at high symbol rates and 

appears as a DC offset. Furthermore, feedforward ISI arises when 𝜏 ≥ 𝑇, since previous counts from a logical 

‘1’ may disperse in time into a subsequent ‘0’ and therefore add to the ‘0’ distribution. These overflow events 

are almost unnoticeable in the ‘1’ distribution, especially if the mean is large, so ISI is most prevalent for 1→0 

symbol transitions. Let 𝜆𝑠 and 𝜆𝑛 be the mean rates from signal and background noise respectively. The 

average rates per element are 
𝜆𝑠

𝑁𝑆𝑃𝐴𝐷
 and 

𝜆𝑛

𝑁𝑆𝑃𝐴𝐷
, where 𝑁𝑆𝑃𝐴𝐷 is the number of SPADs in the array. When a ‘0’ bit 

is transmitted, the average number of counts per symbol is 𝜇0 = 𝜆𝑛𝑇, and when a ‘1’ is transmitted, the 

average is 𝜇1 = (𝜆𝑠 + 𝜆𝑛)𝑇, where 𝜆𝑠𝑇 is mean signal counts per symbol. We obtain 𝑝0(𝑥) and 𝑝1(𝑥), 

probabilities that 𝑥 photons are detected in the counting interval 𝑇, when ‘0’ or ‘1’ are sent: 

 

 

with variances 𝜎0
2 and 𝜎1

2. Decoding is implemented by comparing the received counts to a threshold 𝑥𝑇  [27], 

 

 

An error occurs if 𝑥 ≤ 𝑥𝑇  when a ‘1’ bit is sent and, vice versa, if 𝑥 > 𝑥𝑇  when a ‘0’ is sent. Probability of error 

is equal to BER for OOK and, assuming equiprobable symbols, is 

 

 

where 𝑄(𝑥) =
1

√2𝜋
∫ 𝑒−

𝛼2

2
∞

𝑥
𝑑𝛼 is the 𝑄-function. Independent statistics are assumed for each transmitted bit and 

it is assumed that the array elements are identical. 

 

SPAD Simulator 
 

We develop a simulation model, first presented in [28], to estimate the behaviour of a SPAD RX and compare 

this to the mathematical framework above. Matlab is used to simulate the stochastic events that occur in the 

photon counting system. With statistical analysis (21), it is shown that the counting process does not follow a 

Poisson distribution. As in (10), a noiseless sinusoidal input signal is generated with an instantaneous optical 

power at each sample. For a selected time window, the instantaneous mean photon rate is distributed in time 

with a Poisson process. Our simulator generates a stream of photons, represented by a discrete sequence of 

ones and zeros corresponding to photons or no photons in a given time step. This is the input to an 

algorithmic block which describes the statistical detection process of a PQ SPAD. The physical parameters of 

the SPAD including dead time, PDP and 𝑉𝑒  are coded in this block. Each photon event is simulated 

individually, and the output is expressed as a digital vector where every rising and falling edge represents a 

detected photon. This is the output of a SPAD paired with a buffer which can be seen as a 1b ADC. The block 

is initialised in a rest state at zero. Fig. 7 displays a block diagram of the simulation method. The output of the 

algorithmic block is the time domain response and vectors are run for each SPAD in the array and combined 

with an 800MHz counter implemented in Matlab to recover the modulated signal. Sampling rate is much 

higher than 𝜏, so it can be assumed that counting losses arising from finite sampling rates are negligible. The 

signal is then analysed in the frequency domain by taking a fast Fourier transform (FFT) and distortion 

metrics are obtained. The RX output is directly compared to its input waveform with respect to count rate and 

frequency and SNDR is calculated from the signal, noise and harmonic power [29]. 

 

Results 
 

𝑝0(𝑥)~𝒩(𝜇0, 𝜎0
2) 

𝑥𝑇 =
𝜇1𝜎0 + 𝜇0𝜎1

𝜎1 + 𝜎0

 

𝐵𝐸𝑅 ≅ 𝑄 (
𝜇1 − 𝜇0

𝜎1 + 𝜎0

) = 𝑄(√𝑆𝑁𝐷𝑅) 

(23) 

(24) 

(25) 

𝑝1(𝑥)~𝒩(𝜇1, 𝜎1
2) 
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Output Response 
 

Using the simulator, the response of a PQ SPAD RX is estimated. Fig. 7 shows input and output spectra for a 

unipolar 1MHz cosine input signal at 10% and 100% of the maximum peak-to-peak event rate 𝐴 = 8.33×107 s–1. 

Gain is determined from the difference between the input and output tones. 7dB output SNDR is computed 

from the output signal power and noise floor at 10% intensity, whilst arrival SNR = 9dB. A second harmonic 

(2MHz) appears at maximum input intensity and DC (–3dB) and signal gains (–5dB) are found from 

subtracting the corresponding magnitudes. At this intensity, SNDR = 4.7dB, arrival SNR = 19dB. Fig. 8 shows 

the output derived from Eqn. (15) together with simulated DC and signal gains found for different values of 𝑛. 

These estimates are plotted against the standard paralyzable model in Fig. 8. The corresponding gain is 

computed from the quotient of the output response calculated in (15) and the input. It is concluded that higher 

distortion occurs with a unipolar waveform than for a constant incident level, which results in SNDR 

degradation. Near matching between unipolar theory and simulation indicates a reasonably accurate 

numerical estimate. Simulation accuracy diverges for extremely low event rates due to random noise 

generation; however, moderate precision is observed around the intensity range (1% to 100% of capacity) the 

RX would nominally operate in for VLC. Earlier inflection occurs at approximately 𝑛 = 0.32 in theory and 

simulation rather than 𝑛 = 1 as in the DC model. 

 

BER Performance 
 

The photocount distribution of a SPAD as described in (21) is simulated and plotted in Fig. 9 with mean 

incident rate 𝐴 = 𝜆 = 8.33×106 s–1, a decade below the maximum of 8.33×107 s–1. Symbol rate 𝑅 is increased 

from 1MBd (𝑇 =
1

𝑅
= 1µs) to 10MBd (𝑇 = 100ns). 𝐴𝑇 = 8.33 photons/symbol for a logical ‘1’ bit at 1MBd, which 

ensures integer photon arrivals within a symbol period in the simulation – although SNR is insufficient for 

3.5×10–3 BER reception. The average number of events per symbol is inversely proportional to 𝑅. Poisson 

distribution at 1MBd also plotted (blue) for an ideal RX without dead time. It can be confirmed that the PMF 

expression (21) simplifies to a Poisson form with mean 𝜆𝑇 when 𝜏 is set to zero. At 1MBd, the ‘1’ level mean is 

7 counts/symbol, which is slightly lower than the arrival mean, and this translates to –0.757dB average loss. 

This continues with means of 3 counts/symbol, 1 count/symbol and 0.8 counts/symbol at 2MBd, 5MBd and 

10MBd respectively. Thus, loss is approximately unchanged and there is minor nonlinearity at this incident 

power. In addition, variance diverges to 2 counts/symbol, 0.9 counts/symbol and 0.5 counts/symbol at 2MBd, 

5MBd and 10MBd respectively, whereas arrival variance is 8.33 (√8.33 standard deviation). As 𝑅 increases, the 

distribution distorts and tends towards a unit Dirac impulse at 0 counts. Hence, the PMF approaches a point 

where the SPAD is persistently in a recovery state and no following photons are detected. Similar analysis is 

carried out at maximum intensity 𝐴 = 8.33×107 s–1. At 1MBd, the ‘1’ level mean is 31 counts/symbol, –4.29dB 

distortion loss from 𝐴𝑇 = 83.3 photons/symbol arrival mean. The distribution deviates from Poisson form by –

4.29dB, –4.16dB, –3.77dB and –3.19dB with respect to the corresponding photons/symbol at each 𝑅. 

SNDR=8dB at 4Mb/s (25), so it is deduced that this is the maximum OOK bit rate of a single SPAD with these 

parameters to sustain BER for FEC. Fig. 10 shows simulated PMF distributions of a 64 × 64 array with 𝜏 = 

12ns, 𝐴 = 𝜆 = 8.33×106 s–1, 𝐶𝐹𝐹 = 0.43 and 𝑅 = 100MBd to 400MBd (100Mb/s to 400Mb/s NRZ). 400MBd is 

chosen because it is the highest baud rate demonstrated by the SPAD RX in practice. Since the number of 

array elements is large, the output count distribution approaches a Gaussian form (23), as according to the 

Central Limit Theorem [27]. SNDR is calculated from Eqn. (25) with 5.78 ER (1.5dB penalty) added to the 

model. PMFs shown (Fig. 10 right) with the same parameters, but at maximum intensity 𝐴 = 8.33×107 s–1. 

100MBd and above results in complete saturation of the array, with a certainty of zero counts per given 

symbol period, without any chance of a SPAD having time to recover to detect the next symbol. At these rates, 
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the output process is approximated by a Bernoulli distribution, as explained in [30], since 𝑇 is shorter than the 

𝜏 of each SPAD. 

 

We compare our mathematical framework and simulations to measurements obtained from laboratory 

experiments with our RX. At 400Mb/s OOK, 3×10–3 BER is reached at –49.9dBm with no equalization. The RX 

histogram is overlaid with estimated distributions in Fig. 10. The lowest peak is the ‘0’ PMF, with mean 4 

detected photons/bit due to ISI and ER. The ‘1’ distribution has an average of 23.1 counts/bit and so the RX is 

operating at around 10% of its peak capacity of 230Gphotons/s. At 100%, the output is saturated as projected 

with the model. ER = 5.78 from the quotient of ‘1’ and ‘0’ means, which corresponds to 1.5dB penalty. We 

sweep the intensity of the optical signal and measure the output count rate of a single detector element (Fig. 

11). For each run, SNDR per symbol is found from the received counts and noise standard deviation. 

Measurements confirm increased distortion of the signal compared to a constant rate for the standard model 

with Poisson statistics (blue curve). Maximum SNDR = 6.8dB at 𝑛 = 0.3375. The sweep is repeated with all 

SPADs in the array enabled (Fig. 12 top). Predicted BER from Eqn. (25) is plotted along with BER 

measurements and lines of best fit in Fig. 12 with incident optical power (measured with a power meter) 

proportional to 𝑛. As shown, the model and measurements have closely matching curves, so we attain an 

accurate prediction of performance. It can be seen that BER degradation occurs earlier (at –45dBm) than the 

paralyzable model (upper transfer curve) would indicate because of transient dead time distortion of the 

signal. This reduces SNDR to approximately 12dB a decade below the maximum incident rate, despite Poisson 

SNR = 18dB at this level (6dB penalty). SNDR values from numerical estimates, simulations and RX 

measurements are summarised in Table 1. Maximum expected SNR = 23dB at 𝑛 = 1, assuming Poisson 

statistics and no data-carrying signal. Peak (Pk) effective SNDR is 9.6dB lower than this, at 13.4dB (when 𝑛 =

0.21), which defines the BER inflection point. Therefore, 9.6dB of distortion occurs on the received OOK 

signal. –49.9dBm sensitivity at 400MBd could potentially be reduced to –55.9dBm if the 6dB penalty due to 

nonlinear distortion is mitigated. This would allow a higher symbol rate or modulation depth to improve 

overall bit rate. A similar penalty occurs with 4-PAM, albeit at a higher average power. 

 

Conclusion 
 

The 130nm CMOS SPAD RX demonstrates 500Mb/s and a 15.2dB margin to the quantum limit in a VLC link. 

Although the device attains the best SPAD RX performance published to date, this is accomplished with a 

large array of detectors, providing redundancy to ease the dead time constraint. Dead time remains as a 6dB 

limitation and performance is highly sensitive to changing signal intensity conditions, so a model is 

established to aid understanding and predict the resulting distortion. Nonlinearity at high intensities infers 

that a practical use of this device is to supplement, rather than replace, existing PD/APD RXs. SNDR and BER 

is estimated and close matching with measurements validates the effectiveness of the simulation algorithm 

and our analytical model. Techniques such as predistortion at the TX [31] could be implemented to mitigate 

this distortion, with the metrics determined from our model used for calibration. Alternatively, a digital 

equivalent of automatic gain control could be employed at the RX to reduce the output level when the input 

signal intensity is too high. BER could potentially be reduced by optimising and automatically adjusting the 

decision threshold for OOK and PAM depending on received count statistics. 
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Figure 1: Block diagram of a conventional PD RX (top) and a photon counting RX with summed SPAD array 

(bottom). 

 
Figure 2: Simplified chip block diagram. 
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Figure 3: Asynchronous interface between (right) SPAD XOR tree and pipelined added tree. Inset: interface 

timing diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Annotated chip micrograph and measurement setup. 
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Figure 5: Comparison of PD, APD and SPAD visible light RX devices. 

 
Figure 6: Transfer curves of a single PQ SPAD and a 64 × 64 array (left). Corresponding gain (right). Inset: gain 

as a function of multiples 𝑛 of 
1

𝜏
. –1dB compression point (highlighted) at 𝑛 = 0.2303 for a DC arrival rate. 

 

 

 

 

 
Figure 7: Simulation methodology. Input and output spectra for a unipolar 1MHz cosine input at 10% and 

100% of maximum intensity (top right). 
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Figure 8: Comparison between the paralyzable SPAD model (with DC rate 𝐴 equal to the peak-to-peak 

amplitude of the unipolar waveform), analytical prediction and simulation results. 

 

 
Figure 9: Simulated photocount distributions of a SPAD for 𝜏 = 12ns, fixed mean 𝐴 = 8.33×106 s–1 (a decade 

below the maximum incident rate) on the left and 𝐴 = 8.33×107 s–1 on the right. 𝑅 = 1MBd to 10MBd. 1MBd 

Poisson distribution without dead time (blue) for reference. 
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Figure 10: Simulated and measured PMF count distributions of a 64 × 64 array for 𝜏 = 12ns, 𝐴 = 8.33×106 s–1 

(left) and maximum 𝐴 = 8.33×107 s–1 (right) at 𝑅 = 100MBd to 400MBd. 

 
Figure 11: SNDR response at 1Mb/s OOK with a single SPAD. Input waveform amplitude set by 𝑛. Peak 

SNDR = 6.8dB at 𝑛 = 0.3375. 
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Figure 12: 64 × 64 array SNDR at 400Mb/s OOK against 𝑛 (top). Theorized and measured BER with TX ER for 

400Mb/s OOK and 500Mb/s 4-PAM (𝑅 = 400MBd and 250MBd respectively) with received power (bottom). 

 

All in dB 10% SNDR SNDR Pk Array 10% SNDR Array SNDR Pk 

Theory 4.5 6.5 9 12 

Simulation 4.7 5.4 9 12.7 

Measured 4 6.8 12 13.4 

Table 1: Comparison of estimated and measured SNDR for one SPAD and a 64 × 64 array at low and high 

intensities. 
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