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Comments to the revision of our manuscript entitled "Wind variability over the northern Indian 

Ocean during the past 4 million years – insights from coarse aeolian dust (IODP Exp. 359, Site 

U1467, Maldives)" (PALAEO_2019_244). 

We thank the reviewers for their thorough and constructive reviews. All changes to the manuscript in 

reply to the reviewer’s comments (set in italic) are described in the following (blue text below) and 

are marked in red in the revised form of the manuscript. Line numbers refer to the original version of 

the manuscript. All comments have been numbered consecutively to improve clarity. 

In revising the manuscript, we found that many of the reviewer’s comments were on the radiogenic 

isotope data and the methods involved in their determination. We follow most of the comments and 

agree that the isotope data set presented is small and that results remain ambiguous regarding the 

provenance of dust deposited in the Maldives area and would require a much more in‐deep 

discussion. However, these data were never intended to stand in the focus of this manuscript which 

is on the grain‐size distribution of dust in the medium to coarse silt range. Based on this, and on 

discrepancies on their interpretation, one author (Liviu Giosan) suggested removing these data (and 

himself as their author) from the manuscript and to postpone their interpretation to a future report 

focused on dust provenance, once more data have been measured (already underway). As a result, 

the manuscript has been adjusted in parts and Liviu Giosan has been removed from the author list. 

 

Reviewer 1 

1.  In describing the modern setting for atmospheric circulation and dust delivery to the region, 

please make sure to include key citations such as Prospero et al 2002 

(doi.org/10.1029/2000RG000095) on the modern eolian sources and transport mechanisms across 

the region. 

Thank you for pointing us to this paper. We have included the reference in the introduction 

as well as the discussion, as suggested. 

2.  Other important papers you should consider including in the introduction as well as while 

discussing your data include: 

a) Aeolian delivery to Ulleung Basin, Korea (Japan Sea), during development of the East Asian 

Monsoon through the last 12 Ma. https://doi.org/10.1017/S001675681900013X 

b) Monsoon‐driven Saharan dust variability over the past 240,000 years. DOI: 

10.1126/sciadv.aav1887 

We have studied both papers and have decided to incorporate them as suggested. a) 

presents a study from the Japan Sea, where dust flux is controlled by different mechanisms 

than in the northern Indian Ocean. Nevertheless, the larger scale atmospheric framework is 

influenced by similar mechanism which makes this paper interesting also for our case. b) 

however, focusses on Saharan dust and investigates the cyclic variability of dust entrainment 

and the reliability of former studies. This study found that – in contrast to our findings – dust 

flux is rather controlled by higher frequency changes in insolation (precession and obliquity) 

than the glacial‐interglacial variability of global climate. We have incorporated this (very new) 
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paper in our manuscript for completeness but prefer not to change our interpretation with 

this regard. 

3.  A question that comes to mind is, what is the (or is there any) influence from latitudinal 

migration of the Jet in alternating the source and transport mechanism of dust delivery? The Shamal’s 

are a component of the larger atmospheric circulation that also includes the Afro‐Asian (winter and 

summer) monsoon systems, and the Jet is part of the system. Would this be worthy of mentioning in 

the introduction, or does this part of the system primarily impacts the Japan Sea and Western Pacific 

deposits? 

This is indeed an interesting question. However, without having high‐resolution provenance 

data, it seems impossible to assess the influence of changes in the larger, hemisphere‐scale 

circulation patterns onto dust supply. At this stage, this seems to be beyond our very limited 

dataset. We therefore would prefer not to expand the introduction with this regard 

4.  I also think it would serve the manuscript better to expand the introduction to include a more 

comprehensive reference to the state‐of‐the‐art knowledge of modern, millennial and orbital changes 

in the sources and input of dust to northern Indian Ocean and the Arabian Sea. Frank’s pioneering 

work and others from the 80s and 90s are mentioned in the intro and referred to later but I think this 

dataset will be more appreciated if its contribution is expressed in the context of the literature upfront 

in the introduction, with consideration for both modern and glacial/interglacial timescales. 

In principal, we agree that a broader and more in‐depth view on previous work on the cyclic 

variability of dust transport would improve the introduction. However, our dataset lacks the 

temporal resolution to provide a detailed study on high‐frequency cyclicities. With a 

temporal sample interval of 5.3 ka (median) changes on millennial time scales are not visible 

and even the precessional (19 and 23 ka) band is at the very limit, as in some parts the 

temporal resolution is lower (compare L218‐222). Furthermore, as you already mentioned 

(comment 8), there is some uncertainty in the age model due to the approach we have used 

for tuning. Due to this, we decided to mention but not to emphasize the analysis of cycles 

and periodicities. This, however, is still in our mind and a higher resolution data set might 

bear this potential in the future. Summarizing, we would prefer not to expand the 

introduction with regard to cyclic changes in the dust cycle. 

5.  The methods section for Sr‐Nd isotope analysis should be more explicit with regard to the 

details of the chemistry used, especially considering the presence of coral fragments? Citing Bayon’s 

method should be accompanied by more details of the approach used in the lab with more on what 

measures were taken to minimize contamination from coral/in situ carbonate fragments of all sizes 

with the potential to skew the Sr isotope signature of the lithogenic fraction. 

The Sr‐Nd data has been removed from the manuscript and will be presented in a separate 

manuscript, once more data are available; see above. 

6.  Please provide the 2sigma/95%ci uncertainties on all isotope measurements and eNd values. 

How was the external precision “estimated” at such ppm levels? Traditionally, the analytical precision 

of each isotope measurement is presented. In the absence of a large dataset that can hint to potential 

trends or clusters, interpreting data points in the Sr‐Nd isotope space that have overlapping analytical 

uncertainties and/or fall within the external reproducibility of the analysis calls for additional caution. 
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With the uncertainties demonstrated, one can then begin to discuss if the Sr isotopes show a 

relatively narrower range compared with Nd isotopes, and whether this represents the eolian/source 

signature. I don’t see evidence that the Sr isotope data is skewed by the seawater signature but more 

information would provide reassurance. 

The Sr‐Nd data has been removed from the manuscript and will be presented in a separate 

manuscript, once more data are available; see above. 

7.  Beyond the analytical aspect, I think the relatively small Sr‐Nd dataset presented here should 

be discussed with emphasis as being preliminary data, and less as conclusively pointing to the 

provenance of dust to the Maldives for this incredibly long record, which shows great potential for a 

high‐resolution investigation. For example, the contribution of the mighty Indus to the fine lithogenic 

fractions cannot be entirely discounted in my opinion with the current data, even though prior studies 

have shown lateral vs. vertical sedimentation rates calculated using different methods generally 

agree on eolian deposition dominating in the eastern Arabian Sea region. In any case, I would remain 

focused in this manuscript on the implications of the particle size analysis, intrigued by the (limited) 

geochemical isotope data. 

As stated above, based on this comment and others, we have decided to remove the Sr‐Nd 

data from the manuscript and to focus on the grain‐size record. We agree that the isotope 

data are promising and intend presenting these data in a separate manuscript, once more 

data are available (see above). 

8.  Please also include an estimate of the uncertainty associated with the age model established 

from correlating the bulk grain‐size data of Site U1467 with the sea‐level data, especially since 

apparently a subjective approach was employed for this task? 

Pattern fitting of curves is always subjective to a certain degree, providing quantitative error 

ranges is therefore misleading in our opinion. Nevertheless, given that the sedimentation 

rates are expected to be strongly driven by the sea‐level controlled input of fines in the bulk 

sediment, this aspect in our opinion has also absolutely to be taken into account when 

refining the depth to age correlation. We therefore believe that our approach is valid. 

9.  Measuring particle sizes in sediments is inherently challenging. While I understand an 

established method was used, it would be reassuring if the authors elaborate on their level of 

confidence that in the process of preparing the samples, the particle data measurements remained 

representative of the originally deposited samples. How did the authors address the potential 

disintegration of aggregate particles prior to the analysis, considering the main arguments of the 

manuscript hinge on bulk grain size data? 

Prior to grain‐size measurement, all samples were dispersed in water using ultrasonic and 

0.05% Na4P2O7 x 10 H2O (tetra‐sodium diphosphate decahydrate) as dispersing agent (see 

L166f). For the terrigenous fraction, this and the intensive chemical treatment in the course 

of carbonate and opal dissolution, ensures that all particle aggregates were disintegrated 

prior to measurement (with the exception of early cemented particles, see L204‐208). This 

has also been checked by means of binocular microscope (L163ff). For bulk grain‐size data, by 

contrast, we cannot completely exclude that a very few aggregate particles survived until 
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measurement. However, in our opinion, this is very unlikely to have influenced our dataset as 

only the portion of bulk mud (< 63 µm) is used for this study. 

 

Reviewer 2 

10.  a) (…)I am wondering how you define the grain‐size "classes" you are working with. Why do 

you not use the full grain size spectrum but only bulk%mud? How the grain size distributions are look 

like? When you talk about coarsening or fining of the record, the first thing I would look at is the 

mean grain size, which is not shown. Any reason for that? b) You talk about coarse and even giant 

dust particles, which are a lot bigger than 63 µm, so why the restriction to below 63µm? 

First of all, we have to clarify that there are grain‐size data for both, carbonate dominated 

bulk samples and the terrigenous residue. a) The parameter bulk%mud, you refer to, is a 

measure applied to the bulk samples. This, in our opinion, makes sense as usually in 

carbonates, the size fraction < 63 µm is dominated by the periplatform ooze, whereas larger 

particles mainly comprise pteropod shells and pelagic foraminifers. With this regard, the 

bulk%mud can be used to trace sea‐level variability, as this has been demonstrated by 

several studies (compare e.g. Boardmann et al., 1986, Droxler et al., 1990; Glaser and 

Droxler, 1993; Paul et al., 2012; see L278ff). The use of the full grain‐size spectrum makes no 

sense as we talk about organic particles which comprise organisms affected by 

environmental parameters (neither restricted to nor necessarily affected by sea level) and 

consequently covering a large size range. Much more important (as stated before) is the 

relation of shallow‐water‐ vs. pelagic derived organisms– and with this regard, the 

percentage of particles < 63 µm (bulk%mud) appears to us as a much better measure than 

the mean grain size. b) To our knowledge, there exists no fixed definition for the term 

“coarse” dust. As stated in L234f, we therefore use this term for Aeolian derived particles in 

the size range (8‐63 µm; i.e. medium to coarse silt). Regarding the term “giant”, you’re right 

as this term is commonly used for particles exceeding 63 µm. However, we have not used 

this term in relation to the data presented in this manuscript but one time with reference to 

literature where such particles have been described (L404). 

11.  My advice is to use an end member model calculate the full range of particles you have in the 

record. This would give a lot of information and could give answers to several questions which are left 

open in the current version. Further, if you have, as stated in the Introduction, different wind systems 

and different source areas you maybe see already a difference in the down core evolution of the 

single end members. Plus you can calculate log ratios and reconstruct changes in wind speed etc. 

We completely agree that an end‐member modeling approach could be promising with 

regard to grain‐size data presented here. This, however, would require comprehensive 

additional data analyses and more data (and new samples); both beyond the scope of this 

manuscript. Given this and given that minor revision is requested, we would prefer to leave 

this for future investigations and for a new manuscript. 

12. (L52‐74)  It would be very useful to show all these information in an extra figure. 
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We have redrawn part of Fig. 1 and the mentioned information has now been included (see 

also reply to comment 21). An extra figure would contain too much elements which have 

been already shown in Fig. 1 (map, currents etc.) – this would make no sense in our opinion. 

13. (L204‐208)  Could be moved to methods section. 

We have moved this paragraph to the grain‐size part of the methods section. 

14. (L226‐229)  Could you include the mean to figure 3? 

Yes, of course. We have now added the mean of the complete grain‐size spectrum to Fig. 3 as 

suggested and to the text where appropriate. However, we still think that the mean is much 

less meaningful if compared to the d90. This is mainly, because of the predominance of the 

grain‐size fraction < 8 µm, which masks changes in the medium to coarse silt range (compare 

reply to comment 22). 

15. (L231)  How does the distribution look like? Are there several modes existing? I am actually 

wondering why you are not performing an end member model. The inoculation of the TF90 value etc 

on an already sieved fraction can easily be incorrect. 

Yes, there are several modes. However, they are restricted to the fraction < 8 µm which is 

not in the focus of this manuscript. In the medium to coarse silt range there is no distinct 

“coarse” mode. We do not completely agree to the argument that the d90 could be 

misleading if calculated on a sieved fraction. This statement is right if we talk of absolute 

values. But here, where only few to none siliciclastic particles exist in the fraction > 63 µm 

(which is dominated by carbonate), there will be little difference if compared to the d90 of 

the full range grain‐size spectrum. Furthermore, trends are much more important for this 

study than absolute values. (for reply to “end‐member model” see comment 11) 

16. (L234‐236)  Do you actually see that in the grain size data, or how were the boundaries decided? 

For the reasons for limiting the investigated grain‐size spectrum to 8‐63 µm, please see reply 

to comment 22. 

17. (L237)  No data from U1466? 

Available samples from U1466 cover the age range 5‐16 Ma, which is beyond the main scope 

of this paper. Beside this, these samples are affected by early cementation which made them 

not suitable for grain‐size analysis. We therefore decided not to analyze the grain‐size 

distribution but only to include the Sr‐Nd data for covering a longer time range with regard to 

the dust provenance. 

18. (L278‐279)  ...which is very hard, especially when, as you stated in the Introduction, are different 

source areas and different transport ways involved. You need to isolate the different source areas or 

transport ways in your record to be able to validate changes within them. 

This comment again focuses on the bulk grain‐size data. Please see reply to comment 10b for 

our explanation on the origin of carbonate bulk sediments. 
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19. (L323‐344)  The difference between fluvial vs. aeolian input and between different sources might 

be reflected in the grain‐size data as well ‐‐> end‐member modeling. 

Yes, this is potentially valid and there are studies that use end‐member models to distinguish 

between the fluvial and the aeolian component. However, we are not convinced that this 

approach can be applied to our study area, where fluvial derived material and fine dust falls 

into comparable grain size ranges… As stated in the reply to point 11 (see above), we agree 

that end‐member modeling is a promising technique and we are curious on the application of 

this approach to our data, however, this is beyond the scope of this manuscript and must be 

addressed in a separate study at a later stage. 

20. (L419‐420)  Why is the fine dust excluded? Could they not be an important piece to the puzzle? 

It is the intention of this study to investigate the (often not considered) medium to coarse 

dust fraction. Of course, fine dust is an important agent of terrigenous input to the study 

area (we also mentioned this is the text). However, with regard to the fine dust grain‐size 

range, it is very difficult to distinguish between fluvial and aeolian transported material based 

on the grain size only (even with end‐member modeling). Fine dust contains (and will be 

mixed with) clay minerals, which are also included in the fluvial derived terrigenous 

component. This makes it hard to provide solid interpretations with regard to aeolian 

transport. Furthermore, including the size range of fine dust (< 8 µm) in the grain‐size 

analyses would mask any changes in the medium to coarse dust range as the grain‐size 

spectrum is dominated by clay and fine silt particles. 

21. (Fig. 1)  An overview about the broader setting including the different dust source areas and 

the described wind systems would be helpful. 

We agree to this and have redrawn Fig. 1 accordingly. (see also reply to comment 12) 

22. (Fig. 3)  Delete the sampling dots, this will make the figure less busy. Why don’t you use the 

mean grain size? How is the 8‐63 µm explained? 

Dots: We agree that deleting the dots would make the figure less busy. However, in our 

opinion, deleting the dots would also remove important information from the figure, e.g. 

answering the question whether a peak is related to only one sample (outlier?) or supported 

by several measurements. We therefore intentionally included the dots and prefer to keep 

them. Mean grain size: You are right; the mean is very often used to describe changes in a 

grain‐size distribution. However, in our understanding, changes in the mean of a grain‐size 

distribution are not always related to a real coarsening (or fining) of the complete spectrum – 

this is only the case if there are no changes in sorting. Regarding the focus of this manuscript, 

we believe that the d90 is a much more appropriate parameter to trace coarsening and fining 

of a sample as it is less affected by changes in sorting and provides more reliable information 

on the size of the largest grains. 8‐63 µm: As explained in the manuscript (L365ff), excluding 

the clay and fine silt fraction from the grain‐size data was necessary to visualize the subtle 

changes in the medium to coarse silt range which otherwise would have been masked by the 

majority of grains in the clay to fine silt range. The upper limit (63 µm) has been chosen due 

to the fact that all samples have been sieved using a 63 µm sieve prior to preparation to 
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remove the larger carbonate particles (see L158ff). The lower limit (8 µm) is per definition 

the border between fine and medium silt. 

 

Sebastian Lindhorst 
August 2019 
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12 Abstract

13

14 The lithogenic fraction of carbonate drift sediments from IODP Exp. 359 Site U1467 

15 (Maldives) provides a unique record of atmospheric dust transport over the northern Indian 

16 Ocean during the past 4 Myr. Grain-size data provide proxies for dust flux (controlled by 

17 source area aridity) as well as wind transport capacity (wind speed). Entrainment and long-

18 range transport of dust in the medium to coarse silt size range is linked to the strength of the 

19 Arabian Shamal winds and the occurrence of convective storms which prolong dust transport. 

20 Dust flux and the size of dust particles increased between 4.0 and 3.3 Ma, corresponding to 

21 the closure of the Indonesian seaway and the intensification of the South Asian Monsoon. 

22 There is no clear trend in dust flux between 3.3 and 1.6 Ma, whereas wind transport capacity 

23 decreased. Between 1.6 Ma and the Recent, dust flux increased and shows higher variability, 

24 especially during the last 500 kyr. Transport capacity increased between 1.2 and 0.5 Ma and 

25 slightly decreased since then. Frequency analysis shows that dust transport varies on orbital 

26 timescales, with eccentricity control being the most prominent (400 kyr throughout the record, 

27 100 kyr between 2.0 and 1.3 Ma, and since 1.0 Ma). Higher frequency cycles (obliquity and 

28 precession) are more pronounced in wind transport capacity than in the amount of dust. This 

29 indicates that the amount of coarse dust in sediments from the Maldives as a far-field site is 

30 more prone to changes in transport mechanisms than to changes in dust source-area aridity.

31
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34

35 1. Introduction

36

37 Knowledge of the past wind regime over the northern Indian Ocean, so far, comes from 

38 the source-proximal Arabian Sea dust records, the isotopic composition of planktonic 

39 foraminifera, or is based on data from upwelling areas, where increased productivity is linked 

40 to intensified surface winds (Sirocko and Sarnthein, 1989; Kroon et al., 1991; Clemens, 1998; 

41 Gupta et al., 2003; 2015). Records of the long-term evolution of the wind field over the 

42 northern Indian Ocean are scarce. This study aims to fill this gap by investigating the 

43 terrigenous residue of carbonate-drift sediments, which provide an excellent archive of 

44 aeolian dust, including the coarse dust fraction, and are unaffected by size sorting effects of 

45 oceanic bottom currents (Lindhorst et al., 2019).

46 Main sources of mineral dust supplied to the western Arabian Sea are the Nubian Desert, 

47 the Arabian Peninsula, and desert areas in Iran, Pakistan and Afghanistan as well as in North 

48 West India (Middleton, 1986a; Clemens, 1998; Prospero et al., 2002; Léon and Legrand, 

49 2003; Fig. 1). There is an inter-annual latitudinal shift of dust entrainment with low latitudinal 

50 sources being active in the winter and higher latitudinal sources becoming more active in late 

51 spring and summer (Prospero et al., 2002). Entrainment of dust in Africa and areas located in 

52 the inner Arabian Peninsula is largest in spring and summer, whereas in autumn, dust 

53 emission is more restricted to the coastal parts of Oman and Somalia (Glennie et al., 2002; 

54 Léon and Legrand, 2003). Dust export from the Thar Desert and other areas along the border 

55 of Pakistan and India is greatest in summer and autumn (Middleton, 1986a).

56 Main drivers for dust entrainment in the Arabian Peninsula are the southwest-winds of the 

57 summer monsoon and dust-loaded Shamal winds from north-westerly direction (Glennie et 

58 al., 2002; Fig. 1). Shamal winds develop along the pressure gradient between the low-pressure 

59 monsoon system over India and the high-pressure system over the eastern Mediterranean and 

60 are further enhanced by orographic effects along the Persian Gulf (Middleton, 1986b). These 

61 winds can override the moist near-surface winds of the southwest monsoon and transport 

62 large quantities of dust towards the eastern Arabian Sea, where it is scavenged by summer 

63 monsoonal precipitation and wet-deposited (Ackerman and Cox, 1989; Sirocko and Sarnthein, 
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64 1989; Yu et al., 2015; Ramaswamy et al., 2017). This process of mid-tropospheric transport 

65 also results in a prolonged transport of dust towards the Bay of Bengal and the equatorial 

66 Indian Ocean (Ramaswamy et al., 2017; Clemens, 1998). Shamal winds occur in summer as 

67 well is in winter, but dust activity is mainly related to the summer Shamal (Yu et al., 2015). 

68 Dust transport over the northern Indian Ocean is also prone to the occurrence of tropical 

69 cyclones, which can alter the trajectories of dust particles, but can also foster dust entrainment 

70 during seasons otherwise characterized by low wind speeds (Ramaswamy, 2014).

71 In the western Arabian Sea the flux of lithogenic particles is 1.5 to 6 times higher during 

72 the southwest (summer-) monsoon (June to September) than during the northeast (winter-) 

73 monsoon (December to February), with this gradient being more pronounced in the eastern 

74 Arabian Sea (Nair et al., 1989). However, these data did not allow distinguishing aeolian and 

75 riverine input and may contain a significant portion of suspended matter supplied by the large 

76 rivers draining into the eastern Arabian Sea as this is indicted by radiogenic isotope 

77 composition of the sediment that show that the majority of Indus River sediment is deposited 

78 in the northern Arabian Sea (Kessarkar et al., 2003).

79 In this study, a four million year record of aeolian dust transport over the northern Indian 

80 Ocean obtained from the terrigenous fraction of carbonate-dominated drift sediments of the 

81 Maldives archipelago is presented. Carbonate drifts were deposited in the Maldives Inner Sea, 

82 a perched basin, largely isolated from riverine input of coarse material (Kolla et al., 1981; 

83 Bunzel et al., 2017; Betzler et al., 2018; Kunkelova et al., 2018).

84

85 2. Study site

86

87 The Maldives archipelago is an isolated tropical carbonate platform located southwest of 

88 India in the northeastern Indian Ocean (Fig. 1). The Maldives carbonate succession 

89 accumulated since the Eocene (Aubert and Droxler, 1992; Purdy and Bertram, 1993). 

90 Nowadays, the platform is composed of a double row of atolls that enclose a sedimentary 

91 basin, the Maldives Inner Sea, which has served as a natural sediment trap of current 

92 controlled deposits since the Middle Miocene (Betzler et al., 2017, 2018). Water depths in the 

93 Inner Sea are between 300 and 600 m and marine passages, up to several hundreds of metres 

94 deep, connect the Inner Sea with the open Indian Ocean, where water depths reach more than 

95 2000 m in the immediate vicinity of the carbonate platform. Due to the bathymetric gradient, 
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96 the Maldives Inner Sea represents an isolated perched basin, elevated with regard to the 

97 surrounding ocean floor. In consequence, terrigenous input in the Maldives sedimentary 

98 record is largely restricted to aeolian transported dust, with a minor component of fluvial 

99 derived material delivered by currents from the Arabian Sea and the Bay of Bengal (Kolla et 

100 al., 1981). Sedimentation in the Inner Sea is locally controlled by contour currents that 

101 accumulate large carbonate drift bodies composed of periplatform ooze around atolls and 

102 drowned banks (Betzler et al., 2009, 2013a, 2013b; Lüdmann et al., 2013).

103 Since around 12.9 Ma, climate and oceanographic setting of the Maldives are controlled 

104 by the bi-directional, seasonally reversing South Asian Monsoon system (Wyrtki, 1973; 

105 Tomczak and Godfrey, 2003; Betzler et al., 2016). Winds from the southwest prevail during 

106 the Northern Hemisphere summer (April to November), whereas northeasterly winds 

107 predominate during the winter (November to April). Atmospheric circulation over the 

108 Arabian Sea is stronger during the summer monsoon than during the winter monsoon; roughly 

109 by a factor of three (Clemens, 1998). Annual precipitation is around 900 mm yr-1; with 

110 highest amounts in the summer months (July to September).

111 The direction of surface ocean currents in the northern Indian Ocean seasonally reverses 

112 with the wind system, and are westward-directed in winter and eastward in summer (Shankar 

113 et al., 2002). Part of this current system are surface currents that flow along the Indian coast: 

114 from the Bay of Bengal to the south-eastern Arabian Sea during winter (West India Coastal 

115 Current, WICC; Fig. 1) and vice versa during summer (Shetye, 1998; Shankar et al., 2002; 

116 Kurian and Vinayachandran, 2007). 

117 The Maldives are located close to the world’s largest sources of dust: North Africa and the 

118 Arabian Peninsula providing 58 and 12 wt% of the global dust emissions, respectively 

119 (Tanaka and Chiba, 2006). The main input of aeolian dust into the Arabian Sea and towards 

120 the northern Indian Ocean is linked to the prevailing southwest winds during the summer 

121 monsoon and subordinated north-westerly Shamal winds (Clemens, 1998; Ackerman and 

122 Cox, 1989; Nair et al., 1989; Prospero et al., 2002; Yu et al., 2015; Ramaswamy et al., 2017; 

123 Banerjee et al., 2019). These winds entrain dust from the arid areas in northeast Africa and the 

124 Arabian Peninsula, which is subsequently scavenged by monsoonal rains into the ocean. By 

125 contrast, satellite based measurements on the aerosol optical thickness show that the modern 

126 dust plume of the winter monsoon clearly reaches the Maldives (Kunkelova et al., 2018). 

127 Measurements at the Maldives Climate Observatory at Hanimaadhoo Atoll in the northern 

128 Maldives and numerical models of the seasonality of aerosol loadings in south Asia underline 
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129 this seasonality in the composition and provenance of aerosols: highest concentrations of 

130 (coarse) mineral dust from April to September, whereas fine dust including sulphate and black 

131 carbon of anthropogenic origin reach peak concentrations from November to January with the 

132 portion of coarse minerogenic dust being by far lower than during the rest of the year (Eck et 

133 al., 2001; Chowdhury et al., 2001; Stone et al., 2007; Adhikary et al., 2007; Das et al., 2011).

134

135 IODP (Integrated Ocean Drilling Program) site U1467 (4°51.0274′N, 73°17.0223′E, water 

136 depth 487.4 m) was drilled during Expedition 359 in October 2015. Site U1467 recovered a 

137 630 m thick sequence of pelagic carbonate drift deposits from the eastern Inner Sea of the 

138 Maldives and provides a well-preserved, continuous record of lithogenic input into the south-

139 eastern Arabian Sea (Betzler et al., 2017; Kunkoleva et al., 2018).

140

141 3. Methods

142

143 Sampling of IODP Exp. 359 Site U1467 cores was done in April and May 2016 under the 

144 sample request 29856IODP. Sampling followed the shipboard splice information (splice-359-

145 U1467-BCD-20160114; IODP LIMS Database: http://iodp.tamu.edu/database/) and 

146 comprised samples of 10 cm³ each. All depth readings in this work refer to the depth scale 

147 CCSF-359-U1467-ABCD-20160114) and are given in metres of composite depth (mcd).

148

149 3.1 Grain-size analysis and statistics

150 Samples for bulk grain size were wet sieved (2000 µm) prior to measurement to remove 

151 very coarse particles like coral detritus and large pteropod shells. Samples for the 

152 determination of the terrigenous grain-size spectrum were wet sieved using a 63 µm sieve to 

153 remove the larger carbonate particles. Chemical treatment followed the workflow described 

154 by McCave et al. (1995): the bulk fraction < 63 µm was heated in H2O2 to oxidize the organic 

155 portion, and subsequently treated with 1M Ca3COOH (acetic acid) to dissolve the carbonate. 

156 Biogenic opal was removed with 2M NaHCO3 (sodium bicarbonate). Samples of the 

157 terrigenous residue were visually inspected by means of a binocular microscope to ensure 

158 complete dissolution of carbonate and biogenic silica as well as complete disintegration of 

159 aggregates. Prior to grain-size measurement, all samples were dispersed in water using 
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160 ultrasonic and 0.05% Na4P2O7 x 10 H2O (tetra-sodium diphosphate decahydrate) as dispersing 

161 agent. Measurements were done using a Sympatec Helos KFMagic laser particle-size analyser 

162 and measuring ranges of 0.5/18-3500 µm for bulk grain size and 0.25-87.5 µm for the non-

163 carbonate residual, respectively. To ensure accuracy of measurements and absence of a long-

164 term instrumental drift, an in-house grain-size standard was measured daily prior to the series 

165 of measurements (standard deviation was <0.1 µm for the measuring range 0.25-87.5 µm and 

166 <3.3 µm for 0.5/18-3500 µm, respectively).

167 Grain-size statistics are based on the graphical method (Folk and Ward, 1957) and were 

168 calculated using Gradistat (Blott and Pye, 2001). Values for percentages are rounded to the 

169 nearest integer. Correlation coefficients are based on the Spearman rank correlation, as this 

170 method supports nonlinear correlations.

171 Below 174.34 mcd (metres core depth) deposits at IODP Exp. Site U1467 show chert 

172 concretions. These aggregates could not be disintegrated by means of chemical treatment and 

173 as a consequence caused an apparent coarsening of the grain-size spectrum. All grain-size 

174 data from below 174.10 mcd (corresponding to a depositional age of 4.0 Ma) are therefore 

175 excluded from further interpretation.

176

177 3.2 Age model

178 The initial age framework for Site U1467 samples is based on biostratigraphic (calcareous 

179 nannofossils and planktonic foraminifera) and magnetostratigraphic data as provided by 

180 Betzler et al. (2017). The early Pliocene part of the biostratigraphic age model (from 3.1 Ma) 

181 is in good agreement with magnetic stratigraphic data from the same site (Lanci et al., this 

182 volume). The long-term averaged sedimentation rate is 3.4 cm kyr-1 for the last 4 Myr (Betzler 

183 et al., 2017). This does not take into account that periplatform carbonates show variable 

184 sedimentation rates reflecting the flooding or emersion of the banks and atolls surrounding the 

185 Inner Sea and consequently the export of shallow-water material from these areas. This effect 

186 is especially pronounced with the inception of the high amplitude sea-level variations for the 

187 past 0.75 Myr after the Mid-Pleistocene Transition (MPT). To overcome this shortcoming, we 

188 correlate the bulk grain-size data of Site U1467 with the sea-level data of Miller et al. (2005) 

189 and the global oxygen isotope stack LR04 (Lisiecki and Raymo, 2004): finer grained 

190 periplatform ooze forms during sea-level highstand when the platforms export large amount 

191 of carbonate (Boardmann et al., 1986, Glaser and Droxler, 1993). For the Maldives, the 

192 validity of this assumption has been shown by Paul et al. (2012) and Bunzel et al. (2017). 
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193 Correlation was done by manual correlation of minima in bulk grain size and sea-level lows. 

194 Subsequently, local highs in sea level were linked with corresponding fine peaks in bulk grain 

195 size.

196 Correlations and all time-depth conversions were done using Analyseries 2.0.8 (Paillard et 

197 al., 1996). Wavelet spectra were calculated with PAST (Hammer et al., 2001), same for 

198 insolation data, where the algorithms of Laskar et al. (2004) and the data of Huybers and 

199 Eisenman, (2006) have been used. Sample size for wavelet spectra is 0.007 Myr.

200

201 4. Results

202

203 4.1 Age model

204 The final age model for Site U1467 samples accounts for the carbonate-productivity 

205 controlled variability of the sedimentation rate on orbital time scales. Sedimentation rates for 

206 Site U1467 are 1.0 to 26.5 cm kyr-1, with a median of 3.8 cm kyr-1 (Fig. 2). In general, 

207 sedimentation rates are higher and less variable in the older part of the record, compared to 

208 the youngest part: sedimentation rates of 1.6 to 9.3 cm kyr-1 (median 5.9 cm kyr-1) between 

209 4.0 to 3.0 Ma contrast with rates of 1.0 to 26.5 cm kyr-1 (median 4.7 cm kyr-1) between 1.0 Ma 

210 and the Recent.

211

212 4.2 Grain-size distribution

213 Sample recovery and using our age model resulted in time-variable sample intervals of 

214 0.0009-0.039 Myr (median 0.0053 Myr) and 0.0009-0.0778 Myr (median 0.0055 Myr) for 

215 bulk grain size and terrigenous residue, respectively. Each sample (thickness c. 1.5 cm) 

216 represents the integrated sedimentation over a period of 290 yrs (range 57 to 1,500 yrs), on 

217 average.

218 The portion of mud-size particles (< 63 µm; Bulk%Mud) varies between 28 and 100 % of 

219 the bulk fraction with a median of 77 % (Fig. 3). The highest mud contents (> 95 %) are in the 

220 oldest part of the record (4.0-3.6 Ma) and around 2.0 Ma; lowest mud contents occur between 

221 2.4-2.1 and around 1.0 Ma. There is an overall coarsening of the bulk fraction starting at 4.0 

222 Ma until reaching the absolute minimum in Bulk%Mud around 2.3 Ma, which is followed by a 

223 rapid fining until 2.0 Ma. Bulk%Mud stays around 80 % until 1.05 Ma, where an abrupt 
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224 coarsening starts. Subsequently, and until the Recent, there is an overall fining, superimposed 

225 by pronounced higher frequency changes with amplitudes of 20 % and greater.

226 The grain size of the terrigenous fraction is characterized by the 90th percentile of the 

227 grain-size spectrum < 63 µm (TFd90) and the percentage of particles in the grain-size range 8 

228 to 63 µm (TF%8-63). TFd90 serves as a measure for the coarsest particles in this size range and, 

229 with respect to dust, provides information on wind transport capacity (i.e. wind speed). In 

230 addition, TF%8-63 is regarded as a proxy for the total amount of dust in the medium to coarse 

231 silt range (here referred to as coarse dust). The mean grain size of the terrigenous fraction <63 

232 µm is provided for comparison (Fig. 3).

233 At Site U1467, TF%8-63 ranges from 28 to 68 %, with a median of 48 %. Lowest 

234 percentages are present prior to 3.6 Ma and highest values occur around 3.3 Ma and in the 

235 youngest part of the record, i.e. the past 0.6 Myr. There is an overall coarsening of the 

236 terrigenous fraction throughout the record, and with respect to long-term trends, different 

237 periods can be distinguished: A coarsening from 4.0 to 3.3 Ma is followed by a rapid decrease 

238 of the amount of coarse dust until 3.1 Ma. Between 3.1 and 2.4 Ma, there is no clear trend. 

239 Subsequently, until 1.8 Ma, TF%8-63 increases, before it reaches a minimum around 1.6 Ma. 

240 Afterwards, there is a coarsening until 0.6 Ma. The youngest period, 0.6 Ma to the Recent is 

241 characterized by a high variability of the amount of coarse particles.

242 The mean grain size of the terrigenous fraction <63 µm (TFMean <63) varies between 2.7 

243 and 8 µm (median 3.8 µm); the size of the coarsest particles in the terrigenous fraction (TFd90) 

244 ranges from 9.4 to 21.4 µm (median 13.4 µm). TFd90 is finest prior to 3.8 Ma and coarsest 

245 around 3.3 Ma. With regard to long-term trends, three intervals can be distinguished: first, a 

246 coarsening until 3.3 Ma, followed by, second, an overall fining until 1.6 Ma, and subsequently 

247 a coarsening of TFd90 until today.

248 Visually, the curves of TF%8-63 and TFd90 appear to have a similar shape. The 

249 mathematical correlation of both curves, however, is only 0.6 (p < 0.0001) and long-term 

250 trends are slightly different. TF%8-63 and TFd90 both show a coarsening from 4.0 to 3.3 Ma. 

251 Subsequently, the size of the coarsest particles slightly decreases until 1.2 Ma, whereas their 

252 percentage remains stable until 1.6 Ma. The overall coarsening in the younger part of the 

253 record starts around 1.6 Ma if TF%8-63 is considered, and later, at 1.2 Ma, if the absolute size 

254 of the largest particles (TFd90) is taken as a measure.

255 The wavelet spectra of both, TF%8-63 and TFd90, show the presence of cyclic variability on 

256 orbital timescales (Fig. 4). Frequencies in the precessional (23 kyr) and the obliquity (41 kyr) 
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257 band are more pronounced in the size of the coarsest particles (TFd90), than in the percentage 

258 of coarse particles (TF%8-63). The short eccentricity cycle (100 kyr) is present in both grain-

259 size parameters after 2.0 Ma, but weakens between 1.6 and 1.0 Ma (TF%8-63) and 1.3 and 1.0 

260 Ma (TFd90), respectively. The influence of the short eccentricity cycle is also weak in the older 

261 part of the record. The long eccentricity cycle with a frequency of around 400 kyr is present in 

262 both datasets, but weak prior to 2.0 Ma in the TF%8-63 record, whereas it persists throughout 

263 the record in the TFd90 data.

264

265 5. Discussion

266

267 5.1 Bulk sediment grain size

268 Site U1467 has been cored in carbonate drifts consisting of periplatform ooze formed 

269 through off-bank transport of carbonate particles from the shallow water carbonate factories 

270 and pelagic carbonate- and silica production. We interpret the bulk grain-size data to reflect 

271 varying input from these sources. In general, a fining of carbonate drift sediments is expected 

272 during sea-level highstands, when export of mud-size particles from shallow-water banks and 

273 atolls is at its maximum (Boardmann et al., 1986, Droxler et al., 1990; Glaser and Droxler, 

274 1993; Paul et al., 2012). Coarsening, by contrast, occurs when sea level is low and banks and 

275 atolls emerge. In addition to this higher frequency variability interpreted to be triggered by 

276 sea-level, there are long-term trends in the bulk grain size from Site U1467 that do not 

277 correlate with published sea-level records (Fig. 3). The origin of these changes in bulk grain 

278 size has to remain speculative until a detailed analysis of the components is available. Such 

279 data would not only allow quantifying shallow-water and pelagic origin of carbonate particles, 

280 but also detecting changes in the water masses that bath the carbonate platform.

281

282 5.2 Glacial-interglacial variability and provenance of coarse dust

283 Studies on the dust records of the Arabian Sea and elsewhere have shown that lithogenic 

284 grain size is a reliable measure for wind transport capacity (i.e. wind speed), whereas the 

285 amount of dust, as indicated by lithogenic mass accumulation rates and the percentage of the 

286 lithogenic component, is controlled by source area aridity rather than transport energy (Prell 

287 and van Campo, 1986; Tsoar and Pye, 1987; Clemens and Prell, 1990; Clemens et al., 1991).
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288 This study focuses on aeolian transported dust in the medium to coarse silt range (coarse 

289 dust). The grain-size distribution of the terrigenous residue is characterized by i) the size of 

290 the 90th percentile of the size range 8-63 µm (TFd90) as a measure for the largest particles, and 

291 ii) the percentage of particles in the size range 8-63 µm (TF%8-63) in relation to the total 

292 amount of terrigenous particles < 63 µm. The clay and fine silt fraction (< 8 µm) has been 

293 excluded to avoid bias due to the presence of the clay and fine dust particles which potentially 

294 would mask subtle changes in the medium to coarse silt fraction (Lindhorst et al., 2019). This 

295 dominance of the fine particles is illustrated by the comparable little variability in the mean 

296 grain size of the particle spectrum < 63 µm (Fig. 3).

297 The variability of the lithogenic component of Maldivian carbonate drift sediments, as 

298 recorded by element ratios derived by means of x-ray fluorescence (XRF) core scanning, has 

299 been previously linked to precipitation changes in the dust source areas which are controlled 

300 by the monsoonal system (Bunzel et al., 2017; Kunkelova et al., 2018). During glacial 

301 periods, reduced precipitation and the intensification of the winter monsoon winds (from the 

302 NE) causes increased mechanical weathering in the source areas and leads to higher dust flux 

303 rates. Interglacial periods, by contrast, are characterized by more humid conditions due to a 

304 stronger summer monsoon (winds from the SW), which results in higher continental discharge 

305 rates, the intensification of chemical weathering, and increased input of fluvial material into 

306 the ocean, whereas aeolian dust flux is expected to be reduced. Same is valid for the western 

307 Arabian Sea, where dust flux as indicated by mass accumulation rates positively correlates 

308 with global ice volume and as such is increased during glacial times (Clemens and Prell, 

309 1990). Dust particle size, a measure for transport capacity, by contrast, varies on shorter time 

310 scales and appears to be decoupled from dust flux (Clemens and Prell, 1990). Such a 

311 decoupling of dust flux and transport capacity has also been observed in trans-Atlantic dust 

312 transport, where it is interpreted to reflect the variability of different transport mechanisms 

313 responsible for fine and coarse dust transport, respectively (Lindhorst et al., 2019).

314 Comparison of the Arabian Sea dust records and the XRF-based data from the Maldives, 

315 with the grain-size data of the coarse dust fraction of Site U1467 presented in this study 

316 reveals a different picture. During glacial periods, the total amount of dust, as traced by the 

317 percentage of particles falling into the 8-63 µm size range, decreases and particles are finer 

318 (smaller TFd90) compared to samples from interglacial times (Fig. 3). This pattern, however, is 

319 persistent only during the middle and late Pleistocene, from about 0.9 Ma until the Recent, 

320 whereas there is no such clear relation in older parts of the record.
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321 There are different possibilities to explain the observed negative correlation on glacial to 

322 interglacial time scales between the coarse dust data from Site U1467 and published dust 

323 records from the Arabian Sea. First, dust transport paths, controlled by the wind regime over 

324 the northern Indian Ocean are different during glacial times in reaction to altered northern 

325 hemisphere temperature gradients and precipitation patterns. This would potentially allow less 

326 dust to reach the Maldives. Second, the transport mechanisms responsible for the transport of 

327 coarse dust could be weaker during glacials. Beside dust entrainment, such mechanisms must 

328 ensure the continuous re-suspension of larger particles to avoid gravitational settling and to 

329 prolong transport distances. Coarse dust transport over the Arabian Sea has been shown to be 

330 linked with the strength of north-westerly Shamal winds (Sirocko and Sarnthein, 1989; 

331 Clemens, 1998; Ackerman and Cox, 1989; Nair et al., 1989; Glennie et al., 2002; 

332 Ramaswamy et al., 2017; Banerjee et al., 2019). In the Atlantic, the transport of coarse and 

333 giant African dust particles as far as the Caribbean Sea has been proposed to be linked to the 

334 occurrence of convective storm systems, which ensure deep atmospheric convection of dust 

335 particles and ensures prolonged transport (Prospero et al., 1970; Betzer et al. 1988; van der 

336 Does et al., 2018; Lindhorst et al., 2019). Similar mechanisms are imaginable for the transport 

337 of coarse dust to the Maldives, roughly 3000 km away from the potential dust sources in 

338 northeast Africa and the Arabian Peninsula. Less frequent occurrence of convective storms 

339 during glacial times, potentially as the result of lower sea-surface temperatures, would result 

340 in the observed fining of the coarse dust from Site U1467.

341 The negative correlation of the geochemical dust records from the Maldives (Bunzel et al., 

342 2017; Kunkelova et al., 2018) and the coarse dust record as presented in this study is seen to 

343 result from different particle-size ranges: Element ratios were measured by XRF scanning of 

344 complete cores and as such are expected to be dominated by the mud fraction of the 

345 sediments, especially clay minerals and fine dust particles. Grain-size data of the terrigenous 

346 residue as presented in this study, by contrast, only incorporate particles in the size range 8 to 

347 63 µm and does not take into account finer dust particles. Fine dust particles are nowadays 

348 enriched in north-easterly winter monsoonal winds (Eck et al., 2001; Chowdhury et al., 2001; 

349 Stone et al., 2007; Adhikary et al., 2007; Das et al., 2011). In addition, the West India Coastal 

350 Current (WICC), transports large water- and suspended sediment masses from the Bay of 

351 Bengal into the south-eastern Arabian Sea during the winter monsoon (Shetye, 1998; Shankar 

352 et al., 2002; Kurian and Vinayachandran, 2007; Fig. 1). Bulk terrigenous records, dominated 

353 by particles in the clay and fine silt range, are therefore prone to changes in the winter 

354 monsoon. Coarse dust particles, by contrast, are predominantly deposited during the summer 
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355 monsoon and periods of north-westerly Shamal winds (Clemens, 1998; Ramaswamy et al., 

356 2017; Banerjee et al., 2019). These particles are therefore expected to originate most likely 

357 from dust source areas towards the west and northwest, namely northeast Africa and the 

358 Arabian Peninsula.

359 To summarize, grain-size data of the terrigenous medium to coarse silt fraction (8-63 µm) 

360 of Site U1467 sediments are interpreted to reflect i) the amount of transported coarse dust as 

361 controlled by source area aridity and/or transport paths; and ii) the dust transport capacity as 

362 controlled by the transport mechanisms, i.e. wind intensity of the Shamal wind system and/or 

363 occurrence of convective storm systems. Based on the data available, a particle-size 

364 dependent source is proposed for the terrigenous material deposited in the Maldives carbonate 

365 drifts. Particles in the clay and fine silt range derive from rivers draining into the Bay of 

366 Bengal, from where they are transported westward by the WICC during the winter monsoon. 

367 By contrast, coarse dust particles likely originate from dust sources in northeast Africa and the 

368 Arabian Peninsula. For these particles, a mid-tropospheric transport is proposed, initiated by 

369 the north-westerly winds of the Shamal wind system which override the south-westerly winds 

370 of the summer monsoon (Clemens, 1998; Ackerman and Cox, 1989; Nair et al., 1989; 

371 Ramaswamy et al., 2017; Banerjee et al., 2019). As such, the grain-size data from IODP Site 

372 U1467 are seen to record the variability in coarse-dust transport during the summer monsoon, 

373 whereas geochemical records from the same site reflect the variability of fine particle input by 

374 winter monsoonal winds and riverine input from the Bay of Bengal.

375 The proposed particle-size dependence of dust provenance has also implications for the 

376 study of dust source areas based on radiogenic isotopes, like e.g. strontium and neodymium 

377 isotope ratios, which are established proxies for terrigenous sediment provenance, including 

378 marine sediments from the Indian Ocean (Goldstein and Jacobsen, 1987; Colin et al., 1999; 

379 Jung et al., 2004; Ahmad et al., 2005; Goswami et al., 2012; Sharifi et al., 2018). Strontium 

380 and neodymium isotope ratios address the provenance of bulk terrigenous material. In the fine 

381 fraction the isotopic signal is due to the host minerals of Sr and Nd (zircon, monazite/allanite, 

382 clay minerals, titanite and biotite), which are in the clay- to silt-sized fraction of the sediment 

383 (Innocent et al., 2000; Meyer et al., 2011). Aeolian sediment provenances based on bulk-

384 terrigenous isotope ratios therefore has to be treated with caution as fine and coarse dust do 

385 not necessarily originate from the same sources nor follow the same transport paths.

386

387 5.3 Four million years of dust transport over the northern Indian Ocean
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388 Grain-size data from the terrigenous residue of Site U1467 sediments provide a four 

389 million year record of coarse dust transport over the northern Indian Ocean, a key area for the 

390 understanding of long-term changes in the South Asian wind systems. 

391 The amount of coarse dust that reached the Maldives Inner Sea increased on the long-term 

392 since 4 Myr ago (TF%8-63; Fig. 3). The strongest increase occurred between 4.0 to 3.3 Ma. 

393 Dust transport capacity, as mirrored by the size of the largest dust particles (TFd90), increased 

394 at the beginning of the record, between 4.0 to 3.3 Ma, as such paralleling the increase in the 

395 amount of coarse dust. In addition, the coarsest particles of the record, indicating highest 

396 transport intensities during the last 4 Myr, are found around 3.3 Ma.

397 Both, the increase in dust flux as well as of transport capacity are synchronous with the 

398 closure of the Indonesian seaway (4 to 3 Ma) and the resulting long-term cooling of ocean 

399 surface waters in the Indian Ocean (Rodgers et al., 2000; Cane and Molnar, 2001). The 

400 resulting reorganization in ocean- and atmospheric circulation is assumed to be the trigger of 

401 the late Pliocene aridification in northeast Africa and other circum-North Indian Ocean dust 

402 source areas, as well as occurred synchronous to the intensification of the South Asian 

403 Monsoon (Cane and Molnar, 2001; Zhang et al., 2009; Sun et al., 2010; Anderson et al., 

404 2019). Both processes could have increased dust flux to the Maldives on the long-term.

405 From 3.3 to around 3.1 Ma grain-size data show a rapid decrease in dust flux and transport 

406 capacity. This event occurs simultaneously to the mid-Pliocene warm period; a time 

407 characterized by sea-surface temperatures 2.7 to 4 °C higher than today (mPWP; 3.3-3.0 Ma; 

408 Haywood et al., 2016). Higher sea-surface temperatures are likely to have increased 

409 precipitation in the dust source regions (Goddard and Graham, 1999; Rodgers et al., 2000), 

410 resulting in less dust export. However, the coarsening of TFd90 between 3.1 and 3.0 Ma and 

411 the elevated values for dust flux at the same time, indicate that dust transport over the 

412 northern Indian Ocean was not uniformly reduced during the mPWP.

413 Between 3.0 and 1.6 Ma, dust transport capacity is variable but decreases over the long-

414 term. Dust flux at the same time shows no clear trend, but a temporary increase between 2.2 

415 and 1.8 Ma. The global climate past 3.0 Ma is characterized by northern hemisphere cooling 

416 and the onset of extended glaciations (starting around 2.7 Ma, Shackleton et al., 1984; Haug et 

417 al., 1999). More locally, in the Indian Ocean dust source regions, the long-term aridification, 

418 which started around 4.0 Ma, intensified as indicated by numerous records from east Africa, 

419 where former forest and grassland areas diminished during this period (deMenocal, 1995, 

420 2004, 2005; Cane and Molnar, 2001; Sun et al., 2010; Nie, 2017). With regard to coarse dust, 
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421 these changes in vegetation would corroborate the observed overall increase in dust flux 

422 during the last 2.4 Myr. By contrast, Arabian Sea and northern Indian Ocean wind systems, as 

423 mirrored by dust transport capacity, show no clear trend during this time. This underlines the 

424 role of source area aridity for dust flux, and as such points to a decoupling of dust flux rate 

425 from the size of transported dust particles, as described from dust records elsewhere (Clemens 

426 and Prell, 1990; Lindhorst et al., 2019).

427 During the last 1.6 Myr there is an increase in dust flux again, whereas transport capacity 

428 remained at a low level until the onset of the mid-Pleistocene transition (MPT; 1.25-0.75 Ma; 

429 Clark et al., 2006). During the MPT, there is no clear trend in both dust records from Site 

430 U1467. However, with the onset of the pronounced Pleistocene glacial-interglacial variability, 

431 past 0.9 Ma, the amplitude of changes in both, dust flux and dust transport capacity, increased 

432 paired with elevated dust flux rates and a coarsening of the dust grain-size spectrum. In the 

433 late Quaternary, since around 500 ka, peak dust-flux rates are higher than during any other 

434 time in the last 4 Myr.

435

436 5.4 Cyclic variability of dust transport

437 The visual inspection of the terrigenous grain-size data implies periodic changes of dust 

438 flux rate and dust transport capacity (Fig. 3). This is supported by wavelet spectra, which 

439 show a cyclic variability of TF%8-63 and TFd90 on orbital timescales (Fig. 4).

440 Higher frequency orbital-driven cycles in the precessional (23 kyr) and the obliquity (41 

441 kyr) band are more pronounced in the variability of the particle size (TFd90), than in the 

442 percentage of coarse particles (TF%8-63), indicating that the dust transport mechanisms (wind 

443 systems) are more prone to higher frequency orbital-driven climatic changes than the total 

444 dust flux, which is controlled by long-term changes of source-area precipitation. This 

445 interpretation stands in line with previous studies, which showed the prevalence of 

446 precessional and obliquity controlled variability in summer insolation on the strength of the 

447 South Asian Monsoon system, whereas dust flux rates are dominated by the longer periodicity 

448 of glacial-interglacial climate changes, suggesting a link to high-latitude climate variability 

449 (deMenocal, 1995; Clemens et al., 1996; Clemens, 1998; Sun et al., 2010; Bunzel et al., 2017; 

450 Nie, 2017). This, however, stands in contrast to a very recent study, which suggests that dust 

451 flux from the Sahara rather follows a precessional variability than changes on glacial-

452 interglacial timescales (Skonieczny et al., 2019).
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453 Low-frequency orbital-driven cyclicities in the Site U1467 dust records encompass the 

454 two eccentricity cycles with wavelengths of 100 and c. 400 kyr. The short eccentricity cycle is 

455 present in both grain-size records past 2.0 Ma, whereas it remains speculative beforehand. 

456 The influence of the short eccentricity weakens between 1.6 and 1.0 Ma (dust flux) and 1.3 

457 and 1.0 Ma (transport capacity), respectively. The long eccentricity cycle seems to influence 

458 both, dust flux rate and transport capacity. However its influence on the dust flux rate is weak 

459 prior to 2.0 Ma, whereas it persists throughout the record if only transport capacity is 

460 considered.

461

462 6. Conclusions

463

464 Carbonate drift sediments at IODP Site U1467 from the Maldives Inner Sea provide an 

465 archive of coarse dust transport over the northern Indian Ocean during the last 4 million years. 

466 Based on grain-size data of the terrigenous residue, variability in dust flux and wind transport 

467 capacity has been reconstructed. Dust flux and wind transport capacity increased between 4.0 

468 and 3.3 Ma, as such paralleling the closure of the Indonesian seaway and the resulting 

469 reorganization of the wind- and precipitation regime of the western Indian Ocean. In this 

470 context, the increase in grain size is interpreted to indicate an intensification of transport 

471 capacity, i.e. higher wind speeds in the north-westerly Shamal winds and/or more frequent 

472 convective storms, whereas the increase in dust flux points to more arid conditions in the dust 

473 source areas, primarily in northeast Africa and the Arabian Peninsula. Subsequently, there is 

474 variability but no clear trend in dust flux between 3.3 and 1.6 Ma, whereas transport capacity 

475 decreased during this period. Between 1.6 and the Recent, dust flux increased and shows 

476 higher variability, especially since 500 ka. Transport capacity reached a low around 1.2 Ma 

477 and increased until 500 ka. Since then, transport capacity slightly decreased.

478 Frequency analysis shows that coarse dust transport varies on orbital timescales, with the 

479 eccentricity control being the most prominent. Higher frequencies, as the result of changes in 

480 obliquity and precession, are more pronounced in the record of wind transport capacity than in 

481 the amount of coarse dust. This indicates that the transport of coarse dust to the Maldives as a 

482 far field site is more prone to changes in mechanisms (i.e. intensity of the Shamal winds, 

483 occurrence of convective storm systems, direction of transport) than to environmental changes 

484 in the dust source areas (precipitation rates, vegetation coverage).
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756 Figure Captions

757

758 Fig. 1: A, B) Location of the study site in the Indian Ocean; WICC: West India Coastal 

759 Current during northern hemisphere winter months (after Shetye, 1998); C) Multibeam 
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760 bathymetry of the Maldives’ Inner Sea surrounding the IODP expedition 359 drilling site 

761 U1467. Red dot marks position of IODP site U1467.

762

763 Fig. 2: A) Age-depth plot for site U1467 splice section. Depths are given in metres of core 

764 depth (mcd) with reference to the CCSF-359-U1467-ABCD-20160114 depth scale. Green 

765 dots and named biostratigraphic events refer to the biostratigraphy as reported by Betzler et al. 

766 (2017). Please note that depths of biostratigraphic tie points are midpoints depths, recalculated 

767 to mcd. Grey dots are age tie points derived from correlating bulk grain-size data of U1467 

768 (this work) against long-term sea-level data (Miller et al., 2005). See methods section for 

769 details.

770

771 Fig. 3: A) Summer insolation for 65°N and sea-level data of Miller et al. (2005); B) Results 

772 of grain-size analyses of the bulk and the terrigenous sediment fraction of site U1467 

773 sediments: Percentage of bulk mud (Bulk%mud); percentage of terrigenous particles in the size 

774 range 8-63 µm (TF%8-63); size of largest terrigenous particles (TFd90); mean grain size of the 

775 terrigenous fraction <63 µm (TFMean <63). Main global climate events are indicated for 

776 orientation: Middle Pleistocene Transition (MPT; 1.25-0.75 Ma; Clark et al., 2006); mid 

777 Pliocene warm period (mPWP; 3.3-3.0 Ma; Haywood et al., 2016); onset of extensive 

778 northern Hemisphere glaciation (since 2.7 Ma; Shackleton et al., 1984; Haug et al., 1999); 

779 closure of Indonesian seaway (4.0-3.0 Ma; Cane and Molnar, 2001).

780

781 Fig. 4: Wavelet spectra for the terrigenous fraction of site U1476 samples for A) percentage 

782 of terrigenous particles falling into the 8-63 µm size range (TF%8-63); and B) size of the 

783 coarsest particles (TFd90).



Highlights of “Wind variability over the northern Indian Ocean during the past 4 million years – 
insights from coarse aeolian dust (IODP Exp. 359, Site U1467, Maldives)”:

 A 4 Myr record of coarse aeolian dust transport over the Indian Ocean is presented
 Shamal winds are responsible for long-range coarse dust transport
 Data show particle-size dependence of provenance of terrigenous material
 Variability of dust transport shows eccentricity control (400 kyr and 100 kyr)
 Transport of coarse dust is rather prone to wind speed than to source area aridity
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12 Abstract

13

14 The lithogenic fraction of carbonate drift sediments from IODP Exp. 359 Site U1467 

15 (Maldives) provides a unique record of atmospheric dust transport over the northern Indian 

16 Ocean during the past 4 Myr. Grain-size data provide proxies for dust flux (controlled by 

17 source area aridity) as well as wind transport capacity (wind speed). Entrainment and long-

18 range transport of dust in the medium to coarse silt size range is linked to the strength of the 

19 Arabian Shamal winds and the occurrence of convective storms which prolong dust transport. 

20 Dust flux and the size of dust particles increased between 4.0 and 3.3 Ma, corresponding to 

21 the closure of the Indonesian seaway and the intensification of the South Asian Monsoon. 

22 There is no clear trend in dust flux between 3.3 and 1.6 Ma, whereas wind transport capacity 

23 decreased. Between 1.6 Ma and the Recent, dust flux increased and shows higher variability, 

24 especially during the last 500 kyr. Transport capacity increased between 1.2 and 0.5 Ma and 

25 slightly decreased since then. Frequency analysis shows that dust transport varies on orbital 

26 timescales, with eccentricity control being the most prominent (400 kyr throughout the record, 

27 100 kyr between 2.0 and 1.3 Ma, and since 1.0 Ma). Higher frequency cycles (obliquity and 

28 precession) are more pronounced in wind transport capacity than in the amount of dust. This 

29 indicates that the amount of coarse dust in sediments from the Maldives as a far-field site is 

30 more prone to changes in transport mechanisms than to changes in dust source-area aridity.

31
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32 Keywords: climate archive, dust, grain size, carbonate drift, South Asian Monsoon, Shamal 

33 wind

34

35 1. Introduction

36

37 Knowledge of the past wind regime over the northern Indian Ocean, so far, comes from 

38 the source-proximal Arabian Sea dust records, the isotopic composition of planktonic 

39 foraminifera, or is based on data from upwelling areas, where increased productivity is linked 

40 to intensified surface winds (Sirocko and Sarnthein, 1989; Kroon et al., 1991; Clemens, 1998; 

41 Gupta et al., 2003; 2015). Records of the long-term evolution of the wind field over the 

42 northern Indian Ocean are scarce. This study aims to fill this gap by investigating the 

43 terrigenous residue of carbonate-drift sediments, which provide an excellent archive of 

44 aeolian dust, including the coarse dust fraction, and are unaffected by size sorting effects of 

45 oceanic bottom currents (Lindhorst et al., 2019).

46 Main sources of mineral dust supplied to the western Arabian Sea are the Nubian Desert, 

47 the Arabian Peninsula, and desert areas in Iran, Pakistan and Afghanistan as well as in North 

48 West India (Middleton, 1986a; Clemens, 1998; Prospero et al., 2002; Léon and Legrand, 

49 2003; Fig. 1). There is an inter-annual latitudinal shift of dust entrainment with low latitudinal 

50 sources being active in the winter and higher latitudinal sources becoming more active in late 

51 spring and summer (Prospero et al., 2002). Entrainment of dust in Africa and areas located in 

52 the inner Arabian Peninsula is largest in spring and summer, whereas in autumn, dust 

53 emission is more restricted to the coastal parts of Oman and Somalia (Glennie et al., 2002; 

54 Léon and Legrand, 2003). Dust export from the Thar Desert and other areas along the border 

55 of Pakistan and India is greatest in summer and autumn (Middleton, 1986a).

56 Main drivers for dust entrainment in the Arabian Peninsula are the southwest-winds of the 

57 summer monsoon and dust-loaded Shamal winds from north-westerly direction (Glennie et 

58 al., 2002; Fig. 1). Shamal winds develop along the pressure gradient between the low-pressure 

59 monsoon system over India and the high-pressure system over the eastern Mediterranean and 

60 are further enhanced by orographic effects along the Persian Gulf (Middleton, 1986b). These 

61 winds can override the moist near-surface winds of the southwest monsoon and transport 

62 large quantities of dust towards the eastern Arabian Sea, where it is scavenged by summer 

63 monsoonal precipitation and wet-deposited (Ackerman and Cox, 1989; Sirocko and Sarnthein, 
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64 1989; Yu et al., 2015; Ramaswamy et al., 2017). This process of mid-tropospheric transport 

65 also results in a prolonged transport of dust towards the Bay of Bengal and the equatorial 

66 Indian Ocean (Ramaswamy et al., 2017; Clemens, 1998). Shamal winds occur in summer as 

67 well is in winter, but dust activity is mainly related to the summer Shamal (Yu et al., 2015). 

68 Dust transport over the northern Indian Ocean is also prone to the occurrence of tropical 

69 cyclones, which can alter the trajectories of dust particles, but can also foster dust entrainment 

70 during seasons otherwise characterized by low wind speeds (Ramaswamy, 2014).

71 In the western Arabian Sea the flux of lithogenic particles is 1.5 to 6 times higher during 

72 the southwest (summer-) monsoon (June to September) than during the northeast (winter-) 

73 monsoon (December to February), with this gradient being more pronounced in the eastern 

74 Arabian Sea (Nair et al., 1989). However, these data did not allow distinguishing aeolian and 

75 riverine input and may contain a significant portion of suspended matter supplied by the large 

76 rivers draining into the eastern Arabian Sea as this is indicted by radiogenic isotope 

77 composition of the sediment that show that the majority of Indus River sediment is deposited 

78 in the northern Arabian Sea (Kessarkar et al., 2003).

79 In this study, a four million year record of aeolian dust transport over the northern Indian 

80 Ocean obtained from the terrigenous fraction of carbonate-dominated drift sediments of the 

81 Maldives archipelago is presented. Carbonate drifts were deposited in the Maldives Inner Sea, 

82 a perched basin, largely isolated from riverine input of coarse material (Kolla et al., 1981; 

83 Bunzel et al., 2017; Betzler et al., 2018; Kunkelova et al., 2018).

84

85 2. Study site

86

87 The Maldives archipelago is an isolated tropical carbonate platform located southwest of 

88 India in the northeastern Indian Ocean (Fig. 1). The Maldives carbonate succession 

89 accumulated since the Eocene (Aubert and Droxler, 1992; Purdy and Bertram, 1993). 

90 Nowadays, the platform is composed of a double row of atolls that enclose a sedimentary 

91 basin, the Maldives Inner Sea, which has served as a natural sediment trap of current 

92 controlled deposits since the Middle Miocene (Betzler et al., 2017, 2018). Water depths in the 

93 Inner Sea are between 300 and 600 m and marine passages, up to several hundreds of metres 

94 deep, connect the Inner Sea with the open Indian Ocean, where water depths reach more than 

95 2000 m in the immediate vicinity of the carbonate platform. Due to the bathymetric gradient, 
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96 the Maldives Inner Sea represents an isolated perched basin, elevated with regard to the 

97 surrounding ocean floor. In consequence, terrigenous input in the Maldives sedimentary 

98 record is largely restricted to aeolian transported dust, with a minor component of fluvial 

99 derived material delivered by currents from the Arabian Sea and the Bay of Bengal (Kolla et 

100 al., 1981). Sedimentation in the Inner Sea is locally controlled by contour currents that 

101 accumulate large carbonate drift bodies composed of periplatform ooze around atolls and 

102 drowned banks (Betzler et al., 2009, 2013a, 2013b; Lüdmann et al., 2013).

103 Since around 12.9 Ma, climate and oceanographic setting of the Maldives are controlled 

104 by the bi-directional, seasonally reversing South Asian Monsoon system (Wyrtki, 1973; 

105 Tomczak and Godfrey, 2003; Betzler et al., 2016). Winds from the southwest prevail during 

106 the Northern Hemisphere summer (April to November), whereas northeasterly winds 

107 predominate during the winter (November to April). Atmospheric circulation over the 

108 Arabian Sea is stronger during the summer monsoon than during the winter monsoon; roughly 

109 by a factor of three (Clemens, 1998). Annual precipitation is around 900 mm yr-1; with 

110 highest amounts in the summer months (July to September).

111 The direction of surface ocean currents in the northern Indian Ocean seasonally reverses 

112 with the wind system, and are westward-directed in winter and eastward in summer (Shankar 

113 et al., 2002). Part of this current system are surface currents that flow along the Indian coast: 

114 from the Bay of Bengal to the south-eastern Arabian Sea during winter (West India Coastal 

115 Current, WICC; Fig. 1) and vice versa during summer (Shetye, 1998; Shankar et al., 2002; 

116 Kurian and Vinayachandran, 2007). 

117 The Maldives are located close to the world’s largest sources of dust: North Africa and the 

118 Arabian Peninsula providing 58 and 12 wt% of the global dust emissions, respectively 

119 (Tanaka and Chiba, 2006). The main input of aeolian dust into the Arabian Sea and towards 

120 the northern Indian Ocean is linked to the prevailing southwest winds during the summer 

121 monsoon and subordinated north-westerly Shamal winds (Clemens, 1998; Ackerman and 

122 Cox, 1989; Nair et al., 1989; Prospero et al., 2002; Yu et al., 2015; Ramaswamy et al., 2017; 

123 Banerjee et al., 2019). These winds entrain dust from the arid areas in northeast Africa and the 

124 Arabian Peninsula, which is subsequently scavenged by monsoonal rains into the ocean. By 

125 contrast, satellite based measurements on the aerosol optical thickness show that the modern 

126 dust plume of the winter monsoon clearly reaches the Maldives (Kunkelova et al., 2018). 

127 Measurements at the Maldives Climate Observatory at Hanimaadhoo Atoll in the northern 

128 Maldives and numerical models of the seasonality of aerosol loadings in south Asia underline 
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129 this seasonality in the composition and provenance of aerosols: highest concentrations of 

130 (coarse) mineral dust from April to September, whereas fine dust including sulphate and black 

131 carbon of anthropogenic origin reach peak concentrations from November to January with the 

132 portion of coarse minerogenic dust being by far lower than during the rest of the year (Eck et 

133 al., 2001; Chowdhury et al., 2001; Stone et al., 2007; Adhikary et al., 2007; Das et al., 2011).

134

135 IODP (Integrated Ocean Drilling Program) site U1467 (4°51.0274′N, 73°17.0223′E, water 

136 depth 487.4 m) was drilled during Expedition 359 in October 2015. Site U1467 recovered a 

137 630 m thick sequence of pelagic carbonate drift deposits from the eastern Inner Sea of the 

138 Maldives and provides a well-preserved, continuous record of lithogenic input into the south-

139 eastern Arabian Sea (Betzler et al., 2017; Kunkoleva et al., 2018).

140

141 3. Methods

142

143 Sampling of IODP Exp. 359 Site U1467 cores was done in April and May 2016 under the 

144 sample request 29856IODP. Sampling followed the shipboard splice information (splice-359-

145 U1467-BCD-20160114; IODP LIMS Database: http://iodp.tamu.edu/database/) and 

146 comprised samples of 10 cm³ each. All depth readings in this work refer to the depth scale 

147 CCSF-359-U1467-ABCD-20160114) and are given in metres of composite depth (mcd).

148

149 3.1 Grain-size analysis and statistics

150 Samples for bulk grain size were wet sieved (2000 µm) prior to measurement to remove 

151 very coarse particles like coral detritus and large pteropod shells. Samples for the 

152 determination of the terrigenous grain-size spectrum were wet sieved using a 63 µm sieve to 

153 remove the larger carbonate particles. Chemical treatment followed the workflow described 

154 by McCave et al. (1995): the bulk fraction < 63 µm was heated in H2O2 to oxidize the organic 

155 portion, and subsequently treated with 1M Ca3COOH (acetic acid) to dissolve the carbonate. 

156 Biogenic opal was removed with 2M NaHCO3 (sodium bicarbonate). Samples of the 

157 terrigenous residue were visually inspected by means of a binocular microscope to ensure 

158 complete dissolution of carbonate and biogenic silica as well as complete disintegration of 

159 aggregates. Prior to grain-size measurement, all samples were dispersed in water using 
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160 ultrasonic and 0.05% Na4P2O7 x 10 H2O (tetra-sodium diphosphate decahydrate) as dispersing 

161 agent. Measurements were done using a Sympatec Helos KFMagic laser particle-size analyser 

162 and measuring ranges of 0.5/18-3500 µm for bulk grain size and 0.25-87.5 µm for the non-

163 carbonate residual, respectively. To ensure accuracy of measurements and absence of a long-

164 term instrumental drift, an in-house grain-size standard was measured daily prior to the series 

165 of measurements (standard deviation was <0.1 µm for the measuring range 0.25-87.5 µm and 

166 <3.3 µm for 0.5/18-3500 µm, respectively).

167 Grain-size statistics are based on the graphical method (Folk and Ward, 1957) and were 

168 calculated using Gradistat (Blott and Pye, 2001). Values for percentages are rounded to the 

169 nearest integer. Correlation coefficients are based on the Spearman rank correlation, as this 

170 method supports nonlinear correlations.

171 Below 174.34 mcd (metres core depth) deposits at IODP Exp. Site U1467 show chert 

172 concretions. These aggregates could not be disintegrated by means of chemical treatment and 

173 as a consequence caused an apparent coarsening of the grain-size spectrum. All grain-size 

174 data from below 174.10 mcd (corresponding to a depositional age of 4.0 Ma) are therefore 

175 excluded from further interpretation.

176

177 3.2 Age model

178 The initial age framework for Site U1467 samples is based on biostratigraphic (calcareous 

179 nannofossils and planktonic foraminifera) and magnetostratigraphic data as provided by 

180 Betzler et al. (2017). The early Pliocene part of the biostratigraphic age model (from 3.1 Ma) 

181 is in good agreement with magnetic stratigraphic data from the same site (Lanci et al., this 

182 volume). The long-term averaged sedimentation rate is 3.4 cm kyr-1 for the last 4 Myr (Betzler 

183 et al., 2017). This does not take into account that periplatform carbonates show variable 

184 sedimentation rates reflecting the flooding or emersion of the banks and atolls surrounding the 

185 Inner Sea and consequently the export of shallow-water material from these areas. This effect 

186 is especially pronounced with the inception of the high amplitude sea-level variations for the 

187 past 0.75 Myr after the Mid-Pleistocene Transition (MPT). To overcome this shortcoming, we 

188 correlate the bulk grain-size data of Site U1467 with the sea-level data of Miller et al. (2005) 

189 and the global oxygen isotope stack LR04 (Lisiecki and Raymo, 2004): finer grained 

190 periplatform ooze forms during sea-level highstand when the platforms export large amount 

191 of carbonate (Boardmann et al., 1986, Glaser and Droxler, 1993). For the Maldives, the 

192 validity of this assumption has been shown by Paul et al. (2012) and Bunzel et al. (2017). 
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193 Correlation was done by manual correlation of minima in bulk grain size and sea-level lows. 

194 Subsequently, local highs in sea level were linked with corresponding fine peaks in bulk grain 

195 size.

196 Correlations and all time-depth conversions were done using Analyseries 2.0.8 (Paillard et 

197 al., 1996). Wavelet spectra were calculated with PAST (Hammer et al., 2001), same for 

198 insolation data, where the algorithms of Laskar et al. (2004) and the data of Huybers and 

199 Eisenman, (2006) have been used. Sample size for wavelet spectra is 0.007 Myr.

200

201 4. Results

202

203 4.1 Age model

204 The final age model for Site U1467 samples accounts for the carbonate-productivity 

205 controlled variability of the sedimentation rate on orbital time scales. Sedimentation rates for 

206 Site U1467 are 1.0 to 26.5 cm kyr-1, with a median of 3.8 cm kyr-1 (Fig. 2). In general, 

207 sedimentation rates are higher and less variable in the older part of the record, compared to 

208 the youngest part: sedimentation rates of 1.6 to 9.3 cm kyr-1 (median 5.9 cm kyr-1) between 

209 4.0 to 3.0 Ma contrast with rates of 1.0 to 26.5 cm kyr-1 (median 4.7 cm kyr-1) between 1.0 Ma 

210 and the Recent.

211

212 4.2 Grain-size distribution

213 Sample recovery and using our age model resulted in time-variable sample intervals of 

214 0.0009-0.039 Myr (median 0.0053 Myr) and 0.0009-0.0778 Myr (median 0.0055 Myr) for 

215 bulk grain size and terrigenous residue, respectively. Each sample (thickness c. 1.5 cm) 

216 represents the integrated sedimentation over a period of 290 yrs (range 57 to 1,500 yrs), on 

217 average.

218 The portion of mud-size particles (< 63 µm; Bulk%Mud) varies between 28 and 100 % of 

219 the bulk fraction with a median of 77 % (Fig. 3). The highest mud contents (> 95 %) are in the 

220 oldest part of the record (4.0-3.6 Ma) and around 2.0 Ma; lowest mud contents occur between 

221 2.4-2.1 and around 1.0 Ma. There is an overall coarsening of the bulk fraction starting at 4.0 

222 Ma until reaching the absolute minimum in Bulk%Mud around 2.3 Ma, which is followed by a 

223 rapid fining until 2.0 Ma. Bulk%Mud stays around 80 % until 1.05 Ma, where an abrupt 
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224 coarsening starts. Subsequently, and until the Recent, there is an overall fining, superimposed 

225 by pronounced higher frequency changes with amplitudes of 20 % and greater.

226 The grain size of the terrigenous fraction is characterized by the 90th percentile of the 

227 grain-size spectrum < 63 µm (TFd90) and the percentage of particles in the grain-size range 8 

228 to 63 µm (TF%8-63). TFd90 serves as a measure for the coarsest particles in this size range and, 

229 with respect to dust, provides information on wind transport capacity (i.e. wind speed). In 

230 addition, TF%8-63 is regarded as a proxy for the total amount of dust in the medium to coarse 

231 silt range (here referred to as coarse dust). The mean grain size of the terrigenous fraction <63 

232 µm is provided for comparison (Fig. 3).

233 At Site U1467, TF%8-63 ranges from 28 to 68 %, with a median of 48 %. Lowest 

234 percentages are present prior to 3.6 Ma and highest values occur around 3.3 Ma and in the 

235 youngest part of the record, i.e. the past 0.6 Myr. There is an overall coarsening of the 

236 terrigenous fraction throughout the record, and with respect to long-term trends, different 

237 periods can be distinguished: A coarsening from 4.0 to 3.3 Ma is followed by a rapid decrease 

238 of the amount of coarse dust until 3.1 Ma. Between 3.1 and 2.4 Ma, there is no clear trend. 

239 Subsequently, until 1.8 Ma, TF%8-63 increases, before it reaches a minimum around 1.6 Ma. 

240 Afterwards, there is a coarsening until 0.6 Ma. The youngest period, 0.6 Ma to the Recent is 

241 characterized by a high variability of the amount of coarse particles.

242 The mean grain size of the terrigenous fraction <63 µm (TFMean <63) varies between 2.7 

243 and 8 µm (median 3.8 µm); the size of the coarsest particles in the terrigenous fraction (TFd90) 

244 ranges from 9.4 to 21.4 µm (median 13.4 µm). TFd90 is finest prior to 3.8 Ma and coarsest 

245 around 3.3 Ma. With regard to long-term trends, three intervals can be distinguished: first, a 

246 coarsening until 3.3 Ma, followed by, second, an overall fining until 1.6 Ma, and subsequently 

247 a coarsening of TFd90 until today.

248 Visually, the curves of TF%8-63 and TFd90 appear to have a similar shape. The 

249 mathematical correlation of both curves, however, is only 0.6 (p < 0.0001) and long-term 

250 trends are slightly different. TF%8-63 and TFd90 both show a coarsening from 4.0 to 3.3 Ma. 

251 Subsequently, the size of the coarsest particles slightly decreases until 1.2 Ma, whereas their 

252 percentage remains stable until 1.6 Ma. The overall coarsening in the younger part of the 

253 record starts around 1.6 Ma if TF%8-63 is considered, and later, at 1.2 Ma, if the absolute size 

254 of the largest particles (TFd90) is taken as a measure.

255 The wavelet spectra of both, TF%8-63 and TFd90, show the presence of cyclic variability on 

256 orbital timescales (Fig. 4). Frequencies in the precessional (23 kyr) and the obliquity (41 kyr) 
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257 band are more pronounced in the size of the coarsest particles (TFd90), than in the percentage 

258 of coarse particles (TF%8-63). The short eccentricity cycle (100 kyr) is present in both grain-

259 size parameters after 2.0 Ma, but weakens between 1.6 and 1.0 Ma (TF%8-63) and 1.3 and 1.0 

260 Ma (TFd90), respectively. The influence of the short eccentricity cycle is also weak in the older 

261 part of the record. The long eccentricity cycle with a frequency of around 400 kyr is present in 

262 both datasets, but weak prior to 2.0 Ma in the TF%8-63 record, whereas it persists throughout 

263 the record in the TFd90 data.

264

265 5. Discussion

266

267 5.1 Bulk sediment grain size

268 Site U1467 has been cored in carbonate drifts consisting of periplatform ooze formed 

269 through off-bank transport of carbonate particles from the shallow water carbonate factories 

270 and pelagic carbonate- and silica production. We interpret the bulk grain-size data to reflect 

271 varying input from these sources. In general, a fining of carbonate drift sediments is expected 

272 during sea-level highstands, when export of mud-size particles from shallow-water banks and 

273 atolls is at its maximum (Boardmann et al., 1986, Droxler et al., 1990; Glaser and Droxler, 

274 1993; Paul et al., 2012). Coarsening, by contrast, occurs when sea level is low and banks and 

275 atolls emerge. In addition to this higher frequency variability interpreted to be triggered by 

276 sea-level, there are long-term trends in the bulk grain size from Site U1467 that do not 

277 correlate with published sea-level records (Fig. 3). The origin of these changes in bulk grain 

278 size has to remain speculative until a detailed analysis of the components is available. Such 

279 data would not only allow quantifying shallow-water and pelagic origin of carbonate particles, 

280 but also detecting changes in the water masses that bath the carbonate platform.

281

282 5.2 Glacial-interglacial variability and provenance of coarse dust

283 Studies on the dust records of the Arabian Sea and elsewhere have shown that lithogenic 

284 grain size is a reliable measure for wind transport capacity (i.e. wind speed), whereas the 

285 amount of dust, as indicated by lithogenic mass accumulation rates and the percentage of the 

286 lithogenic component, is controlled by source area aridity rather than transport energy (Prell 

287 and van Campo, 1986; Tsoar and Pye, 1987; Clemens and Prell, 1990; Clemens et al., 1991).
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288 This study focuses on aeolian transported dust in the medium to coarse silt range (coarse 

289 dust). The grain-size distribution of the terrigenous residue is characterized by i) the size of 

290 the 90th percentile of the size range 8-63 µm (TFd90) as a measure for the largest particles, and 

291 ii) the percentage of particles in the size range 8-63 µm (TF%8-63) in relation to the total 

292 amount of terrigenous particles < 63 µm. The clay and fine silt fraction (< 8 µm) has been 

293 excluded to avoid bias due to the presence of the clay and fine dust particles which potentially 

294 would mask subtle changes in the medium to coarse silt fraction (Lindhorst et al., 2019). This 

295 dominance of the fine particles is illustrated by the comparable little variability in the mean 

296 grain size of the particle spectrum < 63 µm (Fig. 3).

297 The variability of the lithogenic component of Maldivian carbonate drift sediments, as 

298 recorded by element ratios derived by means of x-ray fluorescence (XRF) core scanning, has 

299 been previously linked to precipitation changes in the dust source areas which are controlled 

300 by the monsoonal system (Bunzel et al., 2017; Kunkelova et al., 2018). During glacial 

301 periods, reduced precipitation and the intensification of the winter monsoon winds (from the 

302 NE) causes increased mechanical weathering in the source areas and leads to higher dust flux 

303 rates. Interglacial periods, by contrast, are characterized by more humid conditions due to a 

304 stronger summer monsoon (winds from the SW), which results in higher continental discharge 

305 rates, the intensification of chemical weathering, and increased input of fluvial material into 

306 the ocean, whereas aeolian dust flux is expected to be reduced. Same is valid for the western 

307 Arabian Sea, where dust flux as indicated by mass accumulation rates positively correlates 

308 with global ice volume and as such is increased during glacial times (Clemens and Prell, 

309 1990). Dust particle size, a measure for transport capacity, by contrast, varies on shorter time 

310 scales and appears to be decoupled from dust flux (Clemens and Prell, 1990). Such a 

311 decoupling of dust flux and transport capacity has also been observed in trans-Atlantic dust 

312 transport, where it is interpreted to reflect the variability of different transport mechanisms 

313 responsible for fine and coarse dust transport, respectively (Lindhorst et al., 2019).

314 Comparison of the Arabian Sea dust records and the XRF-based data from the Maldives, 

315 with the grain-size data of the coarse dust fraction of Site U1467 presented in this study 

316 reveals a different picture. During glacial periods, the total amount of dust, as traced by the 

317 percentage of particles falling into the 8-63 µm size range, decreases and particles are finer 

318 (smaller TFd90) compared to samples from interglacial times (Fig. 3). This pattern, however, is 

319 persistent only during the middle and late Pleistocene, from about 0.9 Ma until the Recent, 

320 whereas there is no such clear relation in older parts of the record.
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321 There are different possibilities to explain the observed negative correlation on glacial to 

322 interglacial time scales between the coarse dust data from Site U1467 and published dust 

323 records from the Arabian Sea. First, dust transport paths, controlled by the wind regime over 

324 the northern Indian Ocean are different during glacial times in reaction to altered northern 

325 hemisphere temperature gradients and precipitation patterns. This would potentially allow less 

326 dust to reach the Maldives. Second, the transport mechanisms responsible for the transport of 

327 coarse dust could be weaker during glacials. Beside dust entrainment, such mechanisms must 

328 ensure the continuous re-suspension of larger particles to avoid gravitational settling and to 

329 prolong transport distances. Coarse dust transport over the Arabian Sea has been shown to be 

330 linked with the strength of north-westerly Shamal winds (Sirocko and Sarnthein, 1989; 

331 Clemens, 1998; Ackerman and Cox, 1989; Nair et al., 1989; Glennie et al., 2002; 

332 Ramaswamy et al., 2017; Banerjee et al., 2019). In the Atlantic, the transport of coarse and 

333 giant African dust particles as far as the Caribbean Sea has been proposed to be linked to the 

334 occurrence of convective storm systems, which ensure deep atmospheric convection of dust 

335 particles and ensures prolonged transport (Prospero et al., 1970; Betzer et al. 1988; van der 

336 Does et al., 2018; Lindhorst et al., 2019). Similar mechanisms are imaginable for the transport 

337 of coarse dust to the Maldives, roughly 3000 km away from the potential dust sources in 

338 northeast Africa and the Arabian Peninsula. Less frequent occurrence of convective storms 

339 during glacial times, potentially as the result of lower sea-surface temperatures, would result 

340 in the observed fining of the coarse dust from Site U1467.

341 The negative correlation of the geochemical dust records from the Maldives (Bunzel et al., 

342 2017; Kunkelova et al., 2018) and the coarse dust record as presented in this study is seen to 

343 result from different particle-size ranges: Element ratios were measured by XRF scanning of 

344 complete cores and as such are expected to be dominated by the mud fraction of the 

345 sediments, especially clay minerals and fine dust particles. Grain-size data of the terrigenous 

346 residue as presented in this study, by contrast, only incorporate particles in the size range 8 to 

347 63 µm and does not take into account finer dust particles. Fine dust particles are nowadays 

348 enriched in north-easterly winter monsoonal winds (Eck et al., 2001; Chowdhury et al., 2001; 

349 Stone et al., 2007; Adhikary et al., 2007; Das et al., 2011). In addition, the West India Coastal 

350 Current (WICC), transports large water- and suspended sediment masses from the Bay of 

351 Bengal into the south-eastern Arabian Sea during the winter monsoon (Shetye, 1998; Shankar 

352 et al., 2002; Kurian and Vinayachandran, 2007; Fig. 1). Bulk terrigenous records, dominated 

353 by particles in the clay and fine silt range, are therefore prone to changes in the winter 

354 monsoon. Coarse dust particles, by contrast, are predominantly deposited during the summer 
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355 monsoon and periods of north-westerly Shamal winds (Clemens, 1998; Ramaswamy et al., 

356 2017; Banerjee et al., 2019). These particles are therefore expected to originate most likely 

357 from dust source areas towards the west and northwest, namely northeast Africa and the 

358 Arabian Peninsula.

359 To summarize, grain-size data of the terrigenous medium to coarse silt fraction (8-63 µm) 

360 of Site U1467 sediments are interpreted to reflect i) the amount of transported coarse dust as 

361 controlled by source area aridity and/or transport paths; and ii) the dust transport capacity as 

362 controlled by the transport mechanisms, i.e. wind intensity of the Shamal wind system and/or 

363 occurrence of convective storm systems. Based on the data available, a particle-size 

364 dependent source is proposed for the terrigenous material deposited in the Maldives carbonate 

365 drifts. Particles in the clay and fine silt range derive from rivers draining into the Bay of 

366 Bengal, from where they are transported westward by the WICC during the winter monsoon. 

367 By contrast, coarse dust particles likely originate from dust sources in northeast Africa and the 

368 Arabian Peninsula. For these particles, a mid-tropospheric transport is proposed, initiated by 

369 the north-westerly winds of the Shamal wind system which override the south-westerly winds 

370 of the summer monsoon (Clemens, 1998; Ackerman and Cox, 1989; Nair et al., 1989; 

371 Ramaswamy et al., 2017; Banerjee et al., 2019). As such, the grain-size data from IODP Site 

372 U1467 are seen to record the variability in coarse-dust transport during the summer monsoon, 

373 whereas geochemical records from the same site reflect the variability of fine particle input by 

374 winter monsoonal winds and riverine input from the Bay of Bengal.

375 The proposed particle-size dependence of dust provenance has also implications for the 

376 study of dust source areas based on radiogenic isotopes, like e.g. strontium and neodymium 

377 isotope ratios, which are established proxies for terrigenous sediment provenance, including 

378 marine sediments from the Indian Ocean (Goldstein and Jacobsen, 1987; Colin et al., 1999; 

379 Jung et al., 2004; Ahmad et al., 2005; Goswami et al., 2012; Sharifi et al., 2018). Strontium 

380 and neodymium isotope ratios address the provenance of bulk terrigenous material. In the fine 

381 fraction the isotopic signal is due to the host minerals of Sr and Nd (zircon, monazite/allanite, 

382 clay minerals, titanite and biotite), which are in the clay- to silt-sized fraction of the sediment 

383 (Innocent et al., 2000; Meyer et al., 2011). Aeolian sediment provenances based on bulk-

384 terrigenous isotope ratios therefore has to be treated with caution as fine and coarse dust do 

385 not necessarily originate from the same sources nor follow the same transport paths.

386

387 5.3 Four million years of dust transport over the northern Indian Ocean
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388 Grain-size data from the terrigenous residue of Site U1467 sediments provide a four 

389 million year record of coarse dust transport over the northern Indian Ocean, a key area for the 

390 understanding of long-term changes in the South Asian wind systems. 

391 The amount of coarse dust that reached the Maldives Inner Sea increased on the long-term 

392 since 4 Myr ago (TF%8-63; Fig. 3). The strongest increase occurred between 4.0 to 3.3 Ma. 

393 Dust transport capacity, as mirrored by the size of the largest dust particles (TFd90), increased 

394 at the beginning of the record, between 4.0 to 3.3 Ma, as such paralleling the increase in the 

395 amount of coarse dust. In addition, the coarsest particles of the record, indicating highest 

396 transport intensities during the last 4 Myr, are found around 3.3 Ma.

397 Both, the increase in dust flux as well as of transport capacity are synchronous with the 

398 closure of the Indonesian seaway (4 to 3 Ma) and the resulting long-term cooling of ocean 

399 surface waters in the Indian Ocean (Rodgers et al., 2000; Cane and Molnar, 2001). The 

400 resulting reorganization in ocean- and atmospheric circulation is assumed to be the trigger of 

401 the late Pliocene aridification in northeast Africa and other circum-North Indian Ocean dust 

402 source areas, as well as occurred synchronous to the intensification of the South Asian 

403 Monsoon (Cane and Molnar, 2001; Zhang et al., 2009; Sun et al., 2010; Anderson et al., 

404 2019). Both processes could have increased dust flux to the Maldives on the long-term.

405 From 3.3 to around 3.1 Ma grain-size data show a rapid decrease in dust flux and transport 

406 capacity. This event occurs simultaneously to the mid-Pliocene warm period; a time 

407 characterized by sea-surface temperatures 2.7 to 4 °C higher than today (mPWP; 3.3-3.0 Ma; 

408 Haywood et al., 2016). Higher sea-surface temperatures are likely to have increased 

409 precipitation in the dust source regions (Goddard and Graham, 1999; Rodgers et al., 2000), 

410 resulting in less dust export. However, the coarsening of TFd90 between 3.1 and 3.0 Ma and 

411 the elevated values for dust flux at the same time, indicate that dust transport over the 

412 northern Indian Ocean was not uniformly reduced during the mPWP.

413 Between 3.0 and 1.6 Ma, dust transport capacity is variable but decreases over the long-

414 term. Dust flux at the same time shows no clear trend, but a temporary increase between 2.2 

415 and 1.8 Ma. The global climate past 3.0 Ma is characterized by northern hemisphere cooling 

416 and the onset of extended glaciations (starting around 2.7 Ma, Shackleton et al., 1984; Haug et 

417 al., 1999). More locally, in the Indian Ocean dust source regions, the long-term aridification, 

418 which started around 4.0 Ma, intensified as indicated by numerous records from east Africa, 

419 where former forest and grassland areas diminished during this period (deMenocal, 1995, 

420 2004, 2005; Cane and Molnar, 2001; Sun et al., 2010; Nie, 2017). With regard to coarse dust, 
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421 these changes in vegetation would corroborate the observed overall increase in dust flux 

422 during the last 2.4 Myr. By contrast, Arabian Sea and northern Indian Ocean wind systems, as 

423 mirrored by dust transport capacity, show no clear trend during this time. This underlines the 

424 role of source area aridity for dust flux, and as such points to a decoupling of dust flux rate 

425 from the size of transported dust particles, as described from dust records elsewhere (Clemens 

426 and Prell, 1990; Lindhorst et al., 2019).

427 During the last 1.6 Myr there is an increase in dust flux again, whereas transport capacity 

428 remained at a low level until the onset of the mid-Pleistocene transition (MPT; 1.25-0.75 Ma; 

429 Clark et al., 2006). During the MPT, there is no clear trend in both dust records from Site 

430 U1467. However, with the onset of the pronounced Pleistocene glacial-interglacial variability, 

431 past 0.9 Ma, the amplitude of changes in both, dust flux and dust transport capacity, increased 

432 paired with elevated dust flux rates and a coarsening of the dust grain-size spectrum. In the 

433 late Quaternary, since around 500 ka, peak dust-flux rates are higher than during any other 

434 time in the last 4 Myr.

435

436 5.4 Cyclic variability of dust transport

437 The visual inspection of the terrigenous grain-size data implies periodic changes of dust 

438 flux rate and dust transport capacity (Fig. 3). This is supported by wavelet spectra, which 

439 show a cyclic variability of TF%8-63 and TFd90 on orbital timescales (Fig. 4).

440 Higher frequency orbital-driven cycles in the precessional (23 kyr) and the obliquity (41 

441 kyr) band are more pronounced in the variability of the particle size (TFd90), than in the 

442 percentage of coarse particles (TF%8-63), indicating that the dust transport mechanisms (wind 

443 systems) are more prone to higher frequency orbital-driven climatic changes than the total 

444 dust flux, which is controlled by long-term changes of source-area precipitation. This 

445 interpretation stands in line with previous studies, which showed the prevalence of 

446 precessional and obliquity controlled variability in summer insolation on the strength of the 

447 South Asian Monsoon system, whereas dust flux rates are dominated by the longer periodicity 

448 of glacial-interglacial climate changes, suggesting a link to high-latitude climate variability 

449 (deMenocal, 1995; Clemens et al., 1996; Clemens, 1998; Sun et al., 2010; Bunzel et al., 2017; 

450 Nie, 2017). This, however, stands in contrast to a very recent study, which suggests that dust 

451 flux from the Sahara rather follows a precessional variability than changes on glacial-

452 interglacial timescales (Skonieczny et al., 2019).
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453 Low-frequency orbital-driven cyclicities in the Site U1467 dust records encompass the 

454 two eccentricity cycles with wavelengths of 100 and c. 400 kyr. The short eccentricity cycle is 

455 present in both grain-size records past 2.0 Ma, whereas it remains speculative beforehand. 

456 The influence of the short eccentricity weakens between 1.6 and 1.0 Ma (dust flux) and 1.3 

457 and 1.0 Ma (transport capacity), respectively. The long eccentricity cycle seems to influence 

458 both, dust flux rate and transport capacity. However its influence on the dust flux rate is weak 

459 prior to 2.0 Ma, whereas it persists throughout the record if only transport capacity is 

460 considered.

461

462 6. Conclusions

463

464 Carbonate drift sediments at IODP Site U1467 from the Maldives Inner Sea provide an 

465 archive of coarse dust transport over the northern Indian Ocean during the last 4 million years. 

466 Based on grain-size data of the terrigenous residue, variability in dust flux and wind transport 

467 capacity has been reconstructed. Dust flux and wind transport capacity increased between 4.0 

468 and 3.3 Ma, as such paralleling the closure of the Indonesian seaway and the resulting 

469 reorganization of the wind- and precipitation regime of the western Indian Ocean. In this 

470 context, the increase in grain size is interpreted to indicate an intensification of transport 

471 capacity, i.e. higher wind speeds in the north-westerly Shamal winds and/or more frequent 

472 convective storms, whereas the increase in dust flux points to more arid conditions in the dust 

473 source areas, primarily in northeast Africa and the Arabian Peninsula. Subsequently, there is 

474 variability but no clear trend in dust flux between 3.3 and 1.6 Ma, whereas transport capacity 

475 decreased during this period. Between 1.6 and the Recent, dust flux increased and shows 

476 higher variability, especially since 500 ka. Transport capacity reached a low around 1.2 Ma 

477 and increased until 500 ka. Since then, transport capacity slightly decreased.

478 Frequency analysis shows that coarse dust transport varies on orbital timescales, with the 

479 eccentricity control being the most prominent. Higher frequencies, as the result of changes in 

480 obliquity and precession, are more pronounced in the record of wind transport capacity than in 

481 the amount of coarse dust. This indicates that the transport of coarse dust to the Maldives as a 

482 far field site is more prone to changes in mechanisms (i.e. intensity of the Shamal winds, 

483 occurrence of convective storm systems, direction of transport) than to environmental changes 

484 in the dust source areas (precipitation rates, vegetation coverage).
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756 Figure Captions

757

758 Fig. 1: A, B) Location of the study site in the Indian Ocean; WICC: West India Coastal 

759 Current during northern hemisphere winter months (after Shetye, 1998); C) Multibeam 
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760 bathymetry of the Maldives’ Inner Sea surrounding the IODP expedition 359 drilling site 

761 U1467. Red dot marks position of IODP site U1467.

762

763 Fig. 2: A) Age-depth plot for site U1467 splice section. Depths are given in metres of core 

764 depth (mcd) with reference to the CCSF-359-U1467-ABCD-20160114 depth scale. Green 

765 dots and named biostratigraphic events refer to the biostratigraphy as reported by Betzler et al. 

766 (2017). Please note that depths of biostratigraphic tie points are midpoints depths, recalculated 

767 to mcd. Grey dots are age tie points derived from correlating bulk grain-size data of U1467 

768 (this work) against long-term sea-level data (Miller et al., 2005). See methods section for 

769 details.

770

771 Fig. 3: A) Summer insolation for 65°N and sea-level data of Miller et al. (2005); B) Results 

772 of grain-size analyses of the bulk and the terrigenous sediment fraction of site U1467 

773 sediments: Percentage of bulk mud (Bulk%mud); percentage of terrigenous particles in the size 

774 range 8-63 µm (TF%8-63); size of largest terrigenous particles (TFd90); mean grain size of the 

775 terrigenous fraction <63 µm (TFMean <63). Main global climate events are indicated for 

776 orientation: Middle Pleistocene Transition (MPT; 1.25-0.75 Ma; Clark et al., 2006); mid 

777 Pliocene warm period (mPWP; 3.3-3.0 Ma; Haywood et al., 2016); onset of extensive 

778 northern Hemisphere glaciation (since 2.7 Ma; Shackleton et al., 1984; Haug et al., 1999); 

779 closure of Indonesian seaway (4.0-3.0 Ma; Cane and Molnar, 2001).

780

781 Fig. 4: Wavelet spectra for the terrigenous fraction of site U1476 samples for A) percentage 

782 of terrigenous particles falling into the 8-63 µm size range (TF%8-63); and B) size of the 

783 coarsest particles (TFd90).










