

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Calcium isotopes as a record of the marine calcium cycle versus carbonate diagenesis during the late Ediacaran

Citation for published version:

Tostevin, R, Bradbury, HJ, Sheids, GA, Wood, R, Bowyer, F, Penny, A & Turchyn, AV 2019, 'Calcium isotopes as a record of the marine calcium cycle versus carbonate diagenesis during the late Ediacaran', *Chemical Geology*, vol. 529. https://doi.org/10.1016/j.chemgeo.2019.119319

Digital Object Identifier (DOI):

10.1016/j.chemgeo.2019.119319

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Chemical Geology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	Calcium isotopes as a record of the marine calcium cycle versus carbonate diagenesis
2	during the late Ediacaran
3	Rosalie Tostevin ^{1*} , Harold J. Bradbury ² , Graham A. Shields ³ , Rachel A. Wood ⁴ , Fred Bowyer ⁴ ,
4	Amelia M. Penny ^{4,5} , Alexandra V. Turchyn ²
5	
6	¹ Department of Geological Sciences, University of Cape Town, University Avenue South,
7	Cape Town, South Africa, 7701
8	² Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2
9	3EQ, UK
10	³ Department of Earth Sciences, University College London, Gower Street, London, WC1E
11	6BT, UK
12	⁴ School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE,
13	UK
14	⁵ Finnish Museum of Natural History, University of Helsinki, P. O. Box 44 (Jyrängöntie 2),
15	00014 Helsinki, Finland
16	*Rosalie.tostevin@uct.ac.za
17	
18	Highlights
19	• δ^{44} Ca from limestones aged ~550–539 Ma that host the earliest skeletal animal
20	fossils
21	• Negative shift in $\delta^{44}\text{Ca}$ that lasted at least 11–14 Myrs
22	Unlikely to record a transition towards more sediment-buffered carbonate

23 diagenesis

24	May record enhanced continental weathering or evaporite deposition
25	• May record a change in timing of dolomitisation
26	
27	Keywords: Calcium isotopes; carbonate rocks; marine calcium cycle; analytical methods;
28	Ediacaran; biomineralisation
29	
30	Abstract
31	Calcium isotope ratios in ancient carbonate rocks can provide insight into the global
32	marine calcium cycle as well as local conditions during carbonate mineral precipitation and
33	diagenesis. We compare two extraction techniques for the separation of calcium from other
34	ions before $\delta^{44}\text{Ca}$ analysis, using an automated ion chromatograph and using manual
35	gravity columns. The two techniques produce the same $\delta^{44}\text{Ca}$ within error (2 σ). We present
36	31 $\delta^{44}\mbox{Ca}$ analyses of carbonate rocks from the Nama Group, Namibia, which record a
37	negative shift in $\delta^{44}\text{Ca}$ of 0.35‰ between ~550 and ~547 Ma, from –1.25‰ to –1.60‰,
38	followed by persistently low $\delta^{44}\text{Ca}$ (–1.48 ± 0.06‰) between ~547 and 539 Ma. Very low
39	δ^{44} Ca (<–1.5‰) are commonly interpreted to represent the preservation of local aragonite
40	that has recrystallized to calcite under sediment-buffered conditions (where the
41	composition of the diagenetic carbonate product is determined mainly by the original
42	sediments). The shift in $\delta^{44}\text{Ca}$ across the Nama Group could therefore represent a change
43	from fluid-buffered diagenesis (where the composition of the diagenetic carbonate mineral
44	is determined mainly by the fluid) to sediment-buffered diagenesis. However, this
45	interpretation is not consistent with either potential geochemical indicators of diagenesis
46	(e.g., δ^{18} O), or changes in large-scale fluid-flow as predicted from sequence stratigraphy.

We consider alternative interpretations for generating changes in the δ⁴⁴Ca of ancient
carbonate rocks including enhanced continental weathering, increases in evaporite
deposition, and changes in the style of dolomitisation.

50

51 1. Introduction

52 Calcium isotope ratios (the ratio of ⁴⁴Ca/⁴⁰Ca and reported versus a standard as 53 δ^{44} Ca) measured in ancient carbonate minerals and rocks such as limestone and dolomite, 54 offer a potential tool to investigate the workings of the ancient marine calcium cycle as well 55 as to explore carbonate mineral deposition and subsequent diagenesis (Blättler et al., 2012, 56 2011; Bradbury and Turchyn, 2018; Higgins et al., 2018; Husson et al., 2015). The calcium 57 isotope ratio of seawater, δ^{44} Casw, is controlled by the balance of fluxes of calcium into and 58 out of seawater, and the calcium isotopic composition of those fluxes. The main source of 59 calcium to seawater is riverine input, although hydrothermal fluids may account for $\sim 17\%$ 60 of total calcium input to the ocean (Tipper et al., 2010). The main output flux is the deposition of carbonate-bearing sediments, but evaporite deposition and alteration of 61 62 oceanic crust are also important sinks for calcium. 63 Calcium isotopes preserved in carbonate rocks reflect both the δ^{44} Ca of the seawater or fluid from which carbonate minerals precipitated, as well as the kinetic calcium isotope 64 fractionation during precipitation (Δ^{44} Ca_{local}), which is determined by the carbonate 65 66 mineral precipitating (e.g., calcite, aragonite or dolomite) and its rate of precipitation

67 (Blättler et al., 2012; Tang et al., 2008). At steady state, the dominant control on the

- $\label{eq:calcium} calcium isotope composition of seawater (\delta^{44}Casw) is the average \,\delta^{44}Ca \, of \, global \, buried$
- carbonate minerals (δ^{44} Caglobal). However, carbonate rocks are also the major archive used

70	to reconstruct seawater δ^{44} Ca in deep time. Therefore, to interpret δ^{44} Ca _{sw} from δ^{44} Ca in
71	carbonate rocks, a <i>local</i> calcium isotope fractionation factor must be assumed based on the
72	inferred original (primary) and dominant mineralogy. Although early $\delta^{44}\text{Ca}$ data were
73	commonly interpreted to reflect changes in the global calcium cycle, i.e., the relative
74	sources and sinks of calcium to the ocean (Blättler et al., 2012, 2011; Hinojosa et al., 2012;
75	Payne et al., 2010), more recently, δ^{44} Ca data have been interpreted to record calcium
76	isotope signatures acquired during diagenesis at the site of sediment lithification (Ahm et
77	al., 2019, 2018; Higgins et al., 2018; Husson et al., 2015).
78	The late Ediacaran was a time of dramatic environmental and ecological change,
79	including oscillating redox conditions, extensive evaporite deposition, and the appearance
80	of skeletal animals (Fike and Grotzinger, 2008; Tostevin et al., 2019; Wood, 2011; Wood et
81	al., 2017b). We present $\delta^{44}\text{Ca}$ data from the Nama Group, Namibia, that record a negative
82	shift in $\delta^{44}\text{Ca}$ of ${\sim}0.35\%$ between ${\sim}550$ and ${\sim}547$ Ma, followed by persistently low $\delta^{44}\text{Ca}$
83	(-1.48 \pm 0.06‰) from ~547 to ~539 Ma. We combine these data with other major element
84	and isotopic geochemical data from the same samples to evaluate several potential
85	explanations for this $\delta^{44}\text{Ca}$ shift, and discuss the application of calcium isotope systematics
86	in deep time.

2. Geological and geochemical context 87

108

109

88	2.1 Sequence stratigraphy and diagenetic history of the Nama Group
89	The Nama Group was deposited in two inter-connected sub-basins, the southern
90	Witputs and the northern Zaris, separated by a zone of depositional thinning representing
91	the "Osis Arch" paleo-bathymetric high (Germs, 1974). Unrestricted connection to the
92	open ocean has been suggested because of the preservation of $\delta^{13}\text{C} \text{excursions}$ in time-
93	equivalent sections, and normal marine rare earth element signatures (Bowyer et al., 2017;
94	Kaufman et al., 1991; Tostevin et al., 2016b; Wood et al., 2015). The Zaris Formation
95	(Kuibis Subgroup) in the Zaris sub-basin was sampled at Zebra River Farm, and the Urusis
96	Formation (Schwarzrand Subgroup) in the Witputs sub-basin was sampled at
97	Swartkloofberg Farm and at Swartpunt Farm. The base of the Nama Group is diachronous,
98	but has been estimated to have been deposited between 553 and 550 Ma (Ries et al., 2009;
99	Saylor et al., 1998). An ash bed in the Hoogland Member yields a depositional age of 547.32
100	± 0.65 Ma (Bowring et al., 2007; Grotzinger et al., 1995). Therefore, deposition of the
101	Omkyk and Hoogland members of the Zaris Formation likely spans 3–6 Myrs. Ash beds at
102	Swartpunt Farm yield ages of 540.095 \pm 0.099 Ma and 538.99 \pm 0.21 Ma for the top of the
103	Schwarzrand Subgroup (Linnemann et al., 2019). Overall, the Nama Group therefore spans
104	11–14 Myrs.
105	The Nama Group hosts terminal Ediacaran skeletal fauna, Cloudina, Namacalathus
106	and Namapoikia, as well as soft-bodied Ediacaran fossils and increasing trace fossil
107	evidence for motility towards the top of the section (Germs, 1972; Grant, 1990; Grotzinger
108	et al., 2000; Jensen et al., 2000; Wood et al., 2002). At the deep inner-ramp locality, Zebra

River, the Lower Omkyk Member is dominated by grainstones. In the transgressive systems

110	tract of the Upper Omkyk Member, thrombolite-stromatolite reefs nucleate, forming
111	laterally continuous biostrome layers (Grotzinger et al., 2000). Cloudina and Namacalathus
112	can be found within thrombolite heads and lag beds within inter-reef shales. Towards the
113	top of the Upper Omkyk Member the section shallows into grainstone-dominated facies
114	with subordinate shale horizons, containing thinner, discontinuous biostrome microbial
115	reef systems, and some large <i>Namacalathus</i> <35 mm (Penny et al., 2016). The Hoogland
116	Member contains storm dominated laminites and heterolithics, shallowing towards
117	grainstone-dominated facies.

The Pinnacle Reefs at Swartkloofberg Farm were deposited in a mid-ramp setting within a transgressive systems tract, initiated on the flooded surface of the Huns Platform. After termination of reef growth, the reefs were enveloped by shales, and together these facies form the Feldschuhhorn Member. The Pinnacle Reefs host communities of skeletal animals of varied sizes, including aggregations of *Namacalathus* up to 12 mm in diameter (Wood et al., 2015).

124 Swartpunt Farm, which encompasses the Spitzkopf Member of the Schwarzrand 125 Subgroup, transitions from low-energy outer-ramp setting at the base, towards an inner-126 ramp environment, followed by a deepening to outer ramp conditions, and a transition towards a mid- to inner-ramp setting at the top of the section. Thin-bedded calcisiltite beds 127 128 at the base of Swartpunt host Namacalathus, large Cloudina, and a diversity of carbonate 129 microbialites, and are interpreted to have been deposited in a low-energy deeper ramp setting (Narbonne et al., 1997; Saylor, 2003). The limestone is overlain by thick beds of 130 131 green mudstone and coarse sandstone, deposited in a deltaic environment, containing 132 burrows and soft-bodied fossils including Swartpuntia and Pteridinium (Narbonne et al.,

133	1997). Overlying this there is a 5–10 m interval of thinly bedded siltstone, sandstone and
134	limestone with ripple cross-lamination, deposited above fair weather wave base in an
135	inner-ramp setting. Overlying shales may represent deepening to an outer-ramp
136	environment. These give way to limestones and dolomites with dm-scale thrombolites,
137	deposited at or below storm wave base in a mid-ramp setting (Jensen and Runnegar, 2005).
138	Towards the top of Swartpunt is a highstand system tract containing flaggy, laminated
139	limestones with small (<5 mm) <i>Cloudina riemkeae</i> and thrombolites.
140	The paragenetic sequence of carbonate rocks from the Nama Group has been
141	described in detail from the <i>Cloudina</i> reefs at Driedoornvlagte Farm, coeval in part with the
142	Zebra River section, identifying six successive cement generations (Wood et al., 2018).
143	Cloudina are commonly preserved as neomorphosed calcite, with micro-dolomite
144	inclusions, and in some cases are completely dolomitised. Large, acicular cements form
145	botryoids and occlude pore space. These commonly nucleate on skeletal fossils, or
146	intergrow with geopetal sediment, and are interpreted to represent an early marine
147	precipitate of originally aragonitic mineralogy (Grant, 1990). This is followed by a thin,
148	isopachous dolomite cement. This is post-dated by a cloudy, inclusion-rich low-Mg calcite
149	cement, interpreted to have precipitated in pore fluids that were in open contact with
150	seawater. Remaining pore space is occluded by a clear, length-slow, blocky low-Mg, calcite,
151	typical of low-Mg pore waters, suggesting a burial origin. Early marine cements are
152	commonly interpreted to be aragonitic, and later neomorphosed to calcite (Grant, 1990;
153	Grotzinger and James, 2000; Wood et al., 2018).
154	

155 2.2 Geochemical background of the Nama Group samples

156	The Nama Group was deposited coincident with the final recovery from the Shuram-
157	Wonoka anomaly, an enigmatic global $\delta^{13}\text{C}$ excursion famed for reaching unusually low
158	values (around -12%). The Shuram-Wonoka anomaly has been variably interpreted to
159	result from either: 1) the oxidation of a large pool or reduced carbon such as methane
160	hydrates or dissolved organic carbon (Bjerrum and Canfield, 2011; Husson et al., 2015;
161	Rothman et al., 2003), 2) a global increase in the burial of authigenic carbonate (Cui et al.,
162	2017; Schrag et al., 2013), or 3) globally synchronous changes in burial or meteoric
163	diagenesis (Derry, 2010; Knauth and Kennedy, 2009). Some sections in the Nama Group
164	capture the tail end of the Shuram excursion (e.g., at Brak and Grens; Wood et al., 2015),
165	but the Nama Group at Zebra River captures the post-excursion return to positive $\delta^{13}\mbox{C}.$ In
166	the Schwarzrand Subgroup, $\delta^{13}C$ remains stable around $1\%_0.$
167	Iron speciation and cerium anomaly measurements have previously been used in
168	this section as proxies for local water column redox conditions (Tostevin et al., 2016b;
169	Wood et al., 2015). These data indicate that Zebra River was predominantly well-
170	oxygenated, with temporary anoxic-ferruginous periods (Wood et al., 2015), which may
171	reflect the development of sluggish circulation or upwelling of anoxic deeper waters
172	associated with marine transgression (Bowyer et al., 2017). Additionally, positive cerium
173	anomalies suggest that some depositional intervals were oxygen-poor and manganous
174	(Tostevin et al., 2016). The Pinnacle Reefs experienced persistent well-oxygenated
175	conditions (Tostevin et al., 2016b; Wood et al., 2015). Swartpunt was largely oxygenated,
176	with anoxic ferruginous conditions restricted to two highstand carbonate horizons.

177 Sediments containing independent evidence for deposition under an oxygenated water

178	column were selected for this study, and all samples have low total organic carbon (TOC) of

179 <0.2 wt.% (Wood et al., 2015).

180	δ^{238} U data from carbonate rocks at Zebra River transition from modern-like
181	seawater values (– 0.4%) in the Lower Omkyk Member, to very negative values in the
182	Upper Omkyk and Hoogland Members (-0.81%) (Tostevin et al., 2019). This has been
183	interpreted and modelled to represent a transition towards globally widespread anoxic
184	bottom waters that covered at least a third of the global sea floor. Further, this $\delta^{238} U$
185	transition appears to be recorded globally in sediments of the same age (Zhang et al.,
186	2018), supporting preservation of a primary global seawater $\delta^{238}\text{U}$ signal. Existing sulfur
187	isotope data from carbonate associated sulfate at Zebra River show a general increasing
188	trend in $\delta^{34}S_{CAS}$ from the Omkyk to the Hoogland Members (Tostevin et al., 2017). This
189	correlates with contemporaneous sections from other basins, suggesting a global change in
190	the sulfur cycle that drove an increase in global marine δ^{34} S (Cui et al., 2016b, 2016a; Fike
191	and Grotzinger, 2008). This has been interpreted to reflect a change in weathering fluxes or
192	sources, and/or an increase in the global pyrite burial flux.

3. Methods

194	Hand samples were collected at one to five meter intervals along with stratigraphic
195	logs noting lithology and paleoecology. Weathered edges were removed and samples were
196	sawed in half to reveal a fresh surface. Powders from Zebra River for $\delta^{44}\text{Ca}$ analysis were
197	drilled with a dremel microdrill, avoiding visually recrystallised areas. Bulk-rock powders
198	were analysed from the Pinnacle Reefs and Swartpunt sections.
199	Major element concentrations (Sr, Ca, Mg and Mn) in the carbonate portion of the
200	sample were determined using sequential leaching in 2% HNO ₃ , and analysed via
201	Inductively coupled plasma optical emission spectrometer (ICP-OES) at the Cross-Faculty
202	Elemental Analysis Facility, University College London. The sequential leaching method
203	involves pre-leaching 20% of the sample, followed by a 40% leach that is retained for
204	analysis (method is described in full in Tostevin et al., 2016a). These major element data
205	are available for Zebra River section as well as four other localities in the Nama Group (the
206	Kuibis Subgroup at Brak, Omkyk and Zwartmodder, and the Schwarzrand Subgroup at
207	Swartpunt; Wood et al., 2015). Carbon isotopes have been previously reported in Wood et
208	al., (2015).
209	These data were used to inform sample selection for calcium isotope analysis.
210	Samples with a wide range of Sr contents, including those that were anomalous compared
211	with adjacent samples, were selected. Selected samples included a range of facies and
212	textures, including microbialites, grainstones and laminites. Dolomitised or impure
213	samples (low %CaCO ₃) were avoided. Calcium isotope (⁴⁴ Ca/ ⁴⁰ Ca) analysis was conducted
214	at the University of Cambridge using a Thermo Scientific Triton Plus MC-Thermal
215	Ionisation Mass Spectrometer. Sample aliquots containing six μg of calcium were combined

216	with a ⁴² Ca- ⁴⁸ Ca double–spike at a ratio of 10:1 (sample-to-spike) in acid-cleaned Teflon
217	vials. The 48:42 ratio of the double–spike is 1:1, similar to the optimum ratio of 3:2 for a
218	⁴² Ca- ⁴⁸ Ca double–spike (Rudge et al., 2009). Solid samples were dissolved in dilute ultra-
219	pure acetic acid for 1 h, before being converted to nitrates and then combined with the
220	double spike. The samples were then dried and re-dissolved in 0.5% nitric acid and calcium
221	was separated using either a Dionex ICS 5000 $^+$ HPIC coupled with a Dionex AS-AP fraction
222	collector or a gravity column (Bio-Rad AG50W-X8) setup for method validation.
223	After the separation of the calcium using either the Dionex ICS 5000 $^+$ HPIC or the
224	gravity columns, 4 μg of calcium was loaded on an outgassed 0.7 mm Rhenium filament
225	with 0.5 μl of 10% trace metal purity Phosphoric acid as an activator. The samples are run
226	using the analytical method previously described in Bradbury and Turchyn (2018). The
227	average external 2σ standard deviation over nine months on the standard NIST915B was
228	0.10‰ (n = 82). All δ^{44} Ca discussed in the text are reported as ratios of 44 Ca to 40 Ca relative
229	to modern seawater, but in Table 1 the data are also reported relative to other commonly
230	used calcium standards (BSE and 915a).

232 3.1 Method Validation

Each sample was run for its calcium isotopic composition four times, using two extraction techniques; separating the calcium using an automated ion chromatograph and separating the calcium using manual gravity columns. The samples run using the Thermo Scientific Dionex ICS 5000⁺ HPIC were run through a high-capacity carboxylatefunctionalised column (Dionex CS-16) using 30 mM methyl-sulfonic acid (MSA) at a flow rate of 1 ml/min. The conductivity of the samples was continuously measured during the
separation, and a minimum peak slope of 0.003 µS/s determined the sample collection
during a set time window. The method is similar to the published work of Schmitt et al.,
(2009), and has been published in Bradbury et al., (2018) and Bradbury and Turchyn,
(2018).

243 These analyses were compared to samples that were separated through a 244 traditional gravity column setup using Bio-Rad AG50W-X8 resin. The gravity columns 245 were created from cut down 5 ml pipettes with a reservoir size of 2 ml and with a 20 μ m PE frit installed. They were filled to just below 1 ml with slurried AG50W-X8 resin. The 246 columns were pre-cleaned using 2 ml of 4 M HCl, 6 M HNO₃, 4 M HCl and water, before 247 being preconditioned with 1.5 M HNO₃. The columns had a flow rate of approximately 1 248 249 ml/hour. The sample was loaded and then eluted with 1.5 M HNO₃. The columns were 250 calibrated by measuring the concentration of the ions eluting off the column using the Dionex ICS 5000⁺. The calibration was setup to collect 100% of the calcium and maximise 251 252 the separation of calcium from magnesium and strontium, whilst at the same time 253 minimising the time taken to complete the column chemistry. Initially a series of twelve 254 carbonate powders from the Nama Group were dissolved in 5% ultrapure acetic acid. An 255 aliquot containing 12 μ g of calcium was then spiked at a ratio of 10:1 (sample to spike) 256 with the double spike and dried. The dried sample was re-dissolved in 1.5 M HNO₃ and 257 separated using the calibrated gravity columns. The 4 μ g of the collected calcium was 258 loaded per filament either singularly (n=6), in duplicate (n=6), or triplicate (n=12). The measured sample data is shown graphically in Figure 1, where the δ^{44} Ca from the Dionex 259 260 ICS 5000⁺ HPIC and the column separations are compared.

262

Figure 1: Cross plots of the twelve samples run on the Dionex ICS 5000^+ and gravity columns (n=12, R²=0.65, p-value = 0.0119). The dotted lines represent the long-term 2σ of the measurement of calcium isotopes. A t-test comparison of the slopes of the measured

data and the 1:1 line shows no statistically significant difference.

266 267

268 4. Results

We report 31 new δ^{44} Ca analyses from the Nama Group, which range from -1.60%to -1.07%. At Zebra River, δ^{44} Ca progressively decreases from the base of the section through the Kuibis Subgroup from -1.25% to -1.60%, an overall decrease of 0.35%(Figure 2). There is one outlying data point, with a particularly high δ^{44} Ca of -1.09% (at 106 m). At the Pinnacle Reefs and Swartpunt, δ^{44} Ca remains low through the Schwarzrand Subgroup, between -1.39% and -1.59% (average = -1.48 ± 0.06). Two partially

275 dolomitised samples have a δ^{44} Ca that is ~0.4‰ higher than the surrounding samples 276 (-1.08‰ at 5 m and -1.07‰ at 10 m), and these have been excluded from consideration due to the known positive δ^{44} Ca offset associated with dolomitisation (Fantle and DePaolo, 277 278 2007; Turchyn and DePaolo, 2011). The samples are all laminite heterolithics, grainstones, 279 microbialites, or recrystallized limestones, and changes in δ^{44} Ca do not appear to correlate 280 with changes in these lithologies (Figure 2).

281

283	Figure 2: From left to right: Stratigraphic log, sequence stratigraphy, δ^{13} C data, Sr content
284	and $\delta^{44}\text{Ca}$ for the Nama Group. Triangle symbols for $\delta^{13}\text{C}$ data and Sr content highlight
285	samples for which there is also $\delta^{44}\text{Ca}$ data. The $\delta^{44}\text{Ca}$ data are colour coded according to the
286	facies of individual samples. The Kuibis Subgroup was sampled at Zebra River, the
287	Feldschuhhorn Member (FS) was samples at the Pinnacle Reefs, and the Spitzkopf
288	Formation was sampled at Swartpunt Farm. Ash bed dates from Hoogland Member and
289	Spitzkopf Member are from Bowring et al., (2007) and Linnemann et al., (2019). Sequence
290	stratigraphy is from Adams et al., (2005), Saylor (2003) and Saylor et al., (1998). The wavy
291	line in the stratigraphic column does not indicate a substantial erosional unconformity, but
292	an absence of samples from the intervening stratigraphy.

Strontium content in the carbonate rocks is consistent throughout the Omkyk 294 Member, with an average of 1000 ppm, but rises through the Hoogland Member reaching a 295 peak of ~4000 ppm. In the Schwarzrand Subgroup, the strontium content declines from a 296 297 high of ~6000 ppm to ~2000 ppm close to the Ediacaran-Cambrian boundary. This 298 increase in strontium content is consistent across multiple sections of the Nama Group (Wood et al., 2015; Figure 3). At Zebra River, scatter overprints the overall trend in Sr 299 300 content, with some exceptionally high values in the middle of the section. δ^{44} Ca correlates with Sr content (R²=0.27), δ^{34} S_{CAS} (R²=0.53) and δ^{18} O (R²=0.40) measured on the same 301 302 samples at the P<0.05 level, but with significant scatter around the trend (Figure 4b, 4f and 303 4k). In contrast, there is no significant correlation between δ^{44} Ca and other geochemical 304 data (P>0.05), including Mn content, δ^{13} C, TOC and Mg/Ca (Figure 4a and 4c-e).

308 from the Schwarzrand Subgroup. Carbon isotopes from Wood et al., (2015). Ash bed dates

```
309 from Hoogland Member and Spitzkopf Member are from Bowring et al., (2007) and
```

```
310 Linnemann et al., (2019).
```

311

313

Figure 4: Cross plots of δ⁴⁴Ca against other geochemical parameters measured on the same
samples. Red circles are from the Kuibis Subgroup, and blue triangles are from the
Schwarzrand Subgroup. P-values and R² values for linear best fit lines are noted for the
Kuibis Subgroup. Sr content is shown twice, once on a linear scale (F) and once on a loglinear scale (G).

Table 1: δ^{44} Ca data for each sample relative to modern seawater (SW), 915a (1.94%) lower

321 than SW), and BSE (0.94% lower than SW), along with the standard deviation (1σ) for the

322 δ^{44} Ca data, and the strontium content.

Locality	Sample	Height	δ ⁴⁴ Ca	δ ⁴⁴ Ca	δ ⁴⁴ Ca	1σ	Sr
	name	(m)	(SW)	(915a)	(BSE)		content
							(ppm)

Zebra	LO2	4	-1.25	0.69	-0.31	0.065	590
River	LO4	18	-1.30	0.64	-0.36	0.072	1617
	LO6	28	-1.27	0.67	-0.33	0.000	1794
	L07	35	-1.33	0.61	-0.39	0.026	674
	LO11	44	-1.35	0.59	-0.41	0.055	1396
	OS2-3	75	-1.43	0.51	-0.49	0.025	1014
	OS2-4	85	-1.27	0.67	-0.33	0.050	555
	ZR5	106	-1.09	0.85	-0.15	0.026	730
	ZR9	122	-1.39	0.55	-0.45	0.063	1714
	OS2-9	131	-1.36	0.58	-0.42	0.046	818
	OS2-10	139	-1.46	0.48	-0.52	0.000	2452
	ZR18	152	-1.29	0.65	-0.35	0.105	979
	ZR31	173	-1.47	0.47	-0.53	0.019	4489
	ZR38	207	-1.44	0.50	-0.50	0.078	2892
	UH2	222	-1.59	0.35	-0.65	0.000	998
	UH4	231	-1.51	0.43	-0.57	0.007	1744
	UH5	236	-1.48	0.46	-0.54	0.069	1981
	UH6	242	-1.50	0.44	-0.56	0.000	1772
	UH8	254	-1.55	0.39	-0.61	0.032	2622
	UH9	259	-1.60	0.34	-0.66	0.000	1668
	UH14	285	-1.56	0.38	-0.62	0.000	
Pinnacle	PR7	5	-1.08	0.86	-0.14	0.013	
Reefs	PR	10	-1.07	0.87	-0.13	0.009	
	PR6	15	-1.39	0.55	-0.45	0.011	
Swartpunt	SW2	30	-1.45	0.49	-0.51	0.019	5270
	SW6	73	-1.58	0.36	-0.64	0.014	4845
	SW9	100	-1.43	0.51	-0.49	0.010	3973
	SW12	133	-1.50	0.44	-0.56	0.011	2128
	SW13	143	-1.55	0.39	-0.61	0.011	1936
	SWP15	153	-1.45	0.49	-0.51	0.134	2138

324 5. Discussion

325 The decrease of 0.35‰ in the calcium isotopic composition of carbonate rocks 326 recorded through the Kuibis Subgroup is substantial, and of a similar magnitude to the 327 change in δ^{44} Ca through the end-Ordovician mass extinction (0.5–0.6‰; Holmden et al., 328 2012), Cretaceous anoxic events (0.2-0.4‰; Blättler et al., 2011), and the Permo-Triassic 329 Boundary (0.3‰; Payne et al., 2010). Following the progressive transition towards lower 330 δ^{44} Ca across the Kuibis Subgroup, δ^{44} Ca remains low (around -1.5‰) throughout the Schwarzrand Subgroup, up to the Ediacaran–Cambrian Boundary. 331 332 A similar negative shift in δ^{44} Ca is recorded in contemporaneous rocks from South 333 China (Sawaki et al., 2013), although those data come from five samples within a mixed dolomite and limestone succession, making it difficult to discern mineralogical controls 334 335 from trends in seawater calcium isotopic composition. Pruss et al., (2018) report δ^{44} Ca 336 from bulk rock samples from the Omkyk Member of the Nama Group that overlap with the range of δ^{44} Ca in this study (-1.07‰ to -1.59‰), but the δ^{44} Ca data come from fossil 337 samples and are not presented stratigraphically. δ^{44} Ca data from the Wonoka Formation, 338 339 deposited during the Shuram-Wonoka carbon isotope excursion, identify a prominent negative excursion, reaching from -0.8% to -1.9%, before recovering to -0.8% (Husson 340 et al., 2015). Dolomitised samples at the top of the Wonoka Formation may be 341 contemporaneous with limestone samples at the base of the Nama Group, but the differing 342 mineralogy makes it difficult to directly compare the δ^{44} Ca values. 343 344 Assuming the Nama Group has not experienced diagenetic alteration with fluid that has an exceptionally low δ^{44} Ca (Gussone et al., 2005), then the very low δ^{44} Ca recorded in 345 346 the upper Kuibis and Schwarzrand subgroups can be interpreted to result from two

347	possible endmember scenarios: 1) local carbonate deposition associated with a larger local
348	calcium isotopic fractionation ($\Delta^{44}Ca_{local}$) of around –1.7‰, in an ocean with a similar
349	$\delta^{44}\text{Casw}$ to today, or 2) local carbonate deposition associated with a smaller $\Delta^{44}\text{Ca}_{\text{local}}$ of
350	around –1.25‰, in an ocean with $\delta^{44}\text{Casw}$ that is 0.4–0.5‰ lower than today.
351	
352	5.1 Scenario one: Preservation of local aragonite δ^{44} Ca
352 353	5.1 Scenario one: Preservation of local aragonite δ^{44} Ca In an ocean with a similar δ^{44} Ca to today, preservation of very low δ^{44} Ca (<-1.5‰)
352 353 354	5.1 Scenario one: Preservation of local aragonite δ^{44} Ca In an ocean with a similar δ^{44} Ca to today, preservation of very low δ^{44} Ca (<-1.5‰) in carbonate rocks requires a large Δ^{44} Ca _{local} during carbonate mineral deposition (e.g.,
352 353 354 355	 5.1 Scenario one: Preservation of local aragonite δ⁴⁴Ca In an ocean with a similar δ⁴⁴Ca to today, preservation of very low δ⁴⁴Ca (<-1.5‰) in carbonate rocks requires a large Δ⁴⁴Ca_{local} during carbonate mineral deposition (e.g., scenario 1). A local change from calcite towards aragonite deposition, or an increase in the

356 precipitation rate of carbonate minerals, could drive changes in the Sr content and δ^{44} Ca of

357 carbonate rocks in the direction and magnitude recorded across the Kuibis Subgroup

358 (Figure 5a; Farkaš et al., 2016; Tang et al., 2008). It is likely that the original sedimentary

359 mineralogies in the Nama Group were dominantly aragonite, consistent with petrographic

360 work that has identified a dominantly aragonitic primary mineralogy for many, but not all,

361 components including large botryoidal cements and crystal fans (Grant, 1990; Grotzinger

362 et al., 2005; Wood et al., 2018).

375	During recrystallisation of primary aragonite to calcite, the $\delta^{44}\text{Ca}$ of the calcite is
376	determined by the $\delta^{44}\text{Ca}$ of the pore fluid from which it precipitates. Under conditions of
377	high fluid flow, pore fluids can be buffered by seawater Ca (fluid-buffered conditions). In
378	contrast, when pore fluids become isolated from seawater, the $\delta^{44}\text{Ca}$ of the pore fluid can
379	be buffered by the dissolution of the primary aragonite (sediment-buffered conditions)
380	(Higgins et al., 2018). For primary aragonite δ^{44} Ca to be preserved it is thought that
381	recrystallisation of the primary aragonite to calcite must occur under sediment-buffered
382	conditions, such that the buried calcite should retain its primary aragonite $\delta^{44}\mbox{Ca.}$ If instead,
383	recrystallisation occurs under fluid-buffered conditions, the buried calcite can acquire a
384	new $\delta^{44}\text{Ca}$ that reflects the smaller $\Delta^{44}\text{Ca}_{\text{local}}$ between newly precipitated calcite and the
385	pore fluid (Ahm et al., 2018; Higgins et al., 2018) (Figure 5b).
386	Sedimentological, geochemical and fluid inclusion data suggest that the majority of
387	primary carbonate minerals precipitating globally were aragonitic in the terminal
388	Ediacaran (Brennan et al., 2004; Cui et al., 2019; Grotzinger et al., 2005; Zhuravlev and
389	Wood, 2008). If aragonite is the dominant carbonate precipitate from the oceans globally,
390	and if the buried carbonate minerals retain a low $\delta^{44}\text{Ca}$ during sediment-buffered
391	recrystallisation, then more ^{40}Ca overall is removed from the ocean, and the $\delta^{44}\text{Ca}$ of the
392	ocean should be higher (Blättler and Higgins, 2017). This increase in $\delta^{44}\mbox{Casw}$ would mean
393	that the $\delta^{44}\mbox{Ca}$ in carbonate rocks would be higher on average, as despite the large calcium
394	isotopic fractionation factor, they are precipitating from a fluid with a higher δ^{44} Ca.
395	Certainly the carbonate minerals would on the whole be higher than the canonical value of
396	-1.5% used to signify local primary aragonite deposition in the geological record (Higgins
397	et al., 2018; Husson et al., 2015). It is therefore difficult to explain the very low δ^{44} Ca

398 captured by some samples from the Nama Group as localized primary aragonite within a 399 calcite-dominated ocean with the same δ^{44} Ca_{SW} as today. However, δ^{44} Ca_{SW} is determined 400 by the final δ^{44} Ca of all buried carbonate, which may differ from the primary depositional $\delta^{44}\text{Ca}$, since primary depositional $\delta^{44}\text{Ca}$ may be reset as aragonite recrystallises to calcite. 401 402 To explain very low δ^{44} Ca in ancient carbonate rocks requires *local* aragonite deposition and sediment-buffered δ^{44} Ca preservation within oceans where either 1) globally, the 403 404 majority of primary carbonate minerals are deposited as calcite, or 2) *globally*, the majority 405 of carbonate minerals are deposited as aragonite, but recrystallised to calcite or dolomite under fluid-buffered conditions. 406 407 If we interpret the shift in the δ^{44} Ca over the Nama Group as due entirely to local 408 changes in the nature of recrystallization, i.e., in the style of diagenesis, then the shift to 409 lower δ^{44} Ca across the Nama Group might record a local change towards recrystallisation 410 under increasingly sediment-buffered conditions (Husson et al., 2015). This could be 411 driven by higher sediment production and accumulation rates, which would push 412 recrystallisation and neomorphism deeper into the sediment pile where it is not in as 413 frequent contact with seawater. Higher burial rates could reflect a higher carbonate saturation state, or an overall marine transgressive succession that created 414

415 accommodation space to fill with sediment more quickly. Importantly, this interpretation

416 of the shift in δ^{44} Ca across the Nama Group would represent a local change in the preserved

417 δ^{44} Ca that does not reflect changes in the global ocean, but could provide insight into local

418 depositional conditions and diagenesis in the Nama Group.

419 One way to test whether the trend in δ^{44} Ca reflects local changes in fluid- vs.

420 sediment-buffered diagenesis is to compare δ^{44} Ca with other geochemical proxies analysed

421	in the same samples. A transition from fluid-buffered to sediment-buffered diagenetic
422	conditions should produce synchronous changes across multiple geochemical systems
423	(Ahm et al., 2018; Higgins et al., 2018; Husson et al., 2015). For example, in the sulfur
424	isotope system, recrystallisation of carbonate minerals during early diagenesis under fluid-
425	buffered conditions may capture unaltered seawater $\delta^{34}\text{S}$, whereas recrystallisation in
426	sediment-buffered conditions may capture an evolved pore fluid $\delta^{34}S$ (Rennie and Turchyn,
427	2014). In the Kuibis Subgroup, there is a weak but significant negative correlation between
428	$\delta^{44}\text{Ca}$ and $\delta^{34}\text{S}_{\text{CAS}}$ (P<0.05, R²=0.53; Figure 4k) that supports a change in the realm of
429	diagenesis (sulfur isotope data from Tostevin et al., 2017). However, there is no significant
430	correlation between δ^{44} Ca and carbonate-associated-sulfate (CAS) content (p-value =0.41),
431	which should also be sensitive to fluid- vs. sediment-buffered recrystallisation, since CAS
432	abundance is typically higher in calcite (10,000s of ppm) than in aragonite (1000s of ppm)
433	(Busenberg and Plummer, 1985). Under sediment-buffered conditions, a decrease in CAS
434	abundance would be expected as the sulfate concentration in the fluid would be set by the
435	primary aragonite, but this is not observed.
436	We can also examine the relationship between $\delta^{44}\mbox{Ca}$ and uranium isotope data from
437	the Kuibis Subgroup at Zebra River. In modern carbonate sediments, pore water reduction
438	of uranium during early diagenesis offsets $\delta^{238}\text{U}$ in recrystallised carbonate minerals
439	towards higher values (Chen et al., 2018). If recrystallisation takes place under deeper
440	burial conditions, where the supply of uranium is limited, then the bulk carbonate
441	sediment is more likely to retain a $\delta^{238}\text{U}$ close to primary seawater. Changes in the style of
442	diagenesis should hence produce a positive correlation between $\delta^{44}\text{Ca}$ and $\delta^{238}\text{U}.$ While in
443	general, the higher δ^{44} Ca and δ^{238} U both occur in the Lower Omkyk Member, there is no

444	significant correlation between δ^{44} Ca and either δ^{238} U (p-value = 0.43) or U/Ca ratios (p-
445	value = 0.17; Figure 4i and 4j) measured on the same samples in the Kuibis Subgroup.
446	However, it is not clear whether this understanding of uranium isotope systematics,
447	developed in modern marine sediments, can be applied to sediments from an ocean with
448	widespread anoxia (Tostevin et al., 2019; Zhang et al., 2018).
449	During fluid-buffered diagenesis, the Sr content of carbonate rocks should be
450	reduced, reflecting the low abundance of Sr in calcite (1000 ppm). In contrast, sediment-
451	buffered diagenesis can conserve the original high Sr content associated with primary
452	aragonite precipitation (7000–9000 ppm) (Higgins et al., 2018). Changes in the primary
453	mineralogy or style of diagenesis should therefore result in a negative correlation between
454	$\delta^{44}\text{Ca}$ and the Sr content of carbonate rocks (Lau et al., 2017). Overall, there is a negative
455	correlation between strontium content and $\delta^{44}\text{Ca}$ in the Kuibis Subgroup at the P <0.05
456	level that could support a diagenetic control, but with high scatter (R^2 =0.27 for a linear
457	trend and R ² =0.36 for a log-linear trend). This trend is weak despite efforts to target
458	individual samples with a wide range of strontium contents, including those that are locally
459	anomalous compared to surrounding samples (Figures 2 and 4f). Further, in the
460	Schwarzrand Subgroup, Sr content in carbonate rocks declines, whereas $\delta^{44}\text{Ca}$ remains low
461	across the section.
462	In addition, changes in the style of diagenesis can be recorded in oxygen isotope
463	ratio, as δ^{18} O in carbonates decreases during recrystallisation at deeper burial depths.
464	Sediment-buffered recrystallisation could therefore result in lower $\delta^{18}O$ and lower $\delta^{44}Ca$
465	(Higgins et al., 2018). We find a weak correlation between $\delta^{44}\text{Ca}$ and $\delta^{18}\text{O}$ at the P <0.05
466	level (R ² =0.4), but this is in the opposite direction than would be expected if these trends

....

467	were produced by changes in the style of diagenesis (Higgins et al., 2018; Husson et al.,
468	2015). Such a relationship may be possible if sediment-buffered recrystallisation occurs in
469	the presence of meteoric groundwaters, which can extend at depth below marine
470	continental shelves. However, meteoric cements have not been noted in analysed samples
471	in the Nama Group (Wood et al., 2018). In addition, there is no apparent correlation
472	between $\delta^{44}\text{Ca}$ and $\delta^{13}\text{C}$ or TOC, or with other proxies that are partially impacted by
473	changes in diagenetic conditions, such as Mn content, Mn/Sr, total iron (Fe $_{ m T}$) or Mg/Ca
474	ratios (Figure 4a,e,h).
475	Times of high fluid flow driving fluid-buffered diagenesis could be expected to occur
476	below sequence boundaries, but the $\delta^{44}\text{Ca}$ trend across the Nama Group cross cuts
477	transgressive systems tracts, high stands and sequence boundaries, similar to $\delta^{44}\text{Ca}$ data in
478	Triassic carbonate rocks (Lau et al., 2017) (Figure 2). This poses a further problem for the
479	widespread interpretation of $\delta^{44}\text{Ca}$ in the geological record to only reflect fluid- vs.
480	sediment-buffered recrystallisation. While local mineralogical and diagenetic controls
481	provide a clear explanation for coupled geochemical trends recorded in modern carbonate
482	sediments (Ahm et al., 2018; Higgins et al., 2018), as well as some ancient carbonate rocks
483	(Ahm et al., 2019; Husson et al., 2015), a diagenetic framework for interpreting $\delta^{44}\text{Ca}$ can
484	only partially explain the geochemical trends across the Nama Group. We suggest that
485	while fluid- vs. sediment-buffered diagenesis is one important way to introduce variability
486	into $\delta^{44}\text{Ca}$ measured in carbonate rocks, it may not be the only driver of change in the $\delta^{44}\text{Ca}$
487	of ancient carbonate rocks.
488	

489 5.2 Scenario two: A change in seawater δ^{44} Ca

490	An alternative suggestion is that the shift in δ^{44} Ca seen across the Nama Group
491	represents a change in the global Ca cycle around \sim 550 Ma that lasted 11–14 Myrs (e.g.,
492	scenario 2; Figure 5c). Assuming there is no systematic change in primary carbonate
493	mineralogy, mineral precipitation rates or diagenetic conditions across the Nama Group,
494	we explore other ways to produce a negative shift in the $\delta^{44}\text{Ca}$ of carbonate rocks. The Late
495	Ediacaran was a time of transformation, including new biological innovations, as well as
496	profound changes in seawater chemistry, climate and style of sedimentation. The marine
497	calcium cycle would likely have been sensitive to each of these changes. We will consider
498	several of these in turn.
499	
500	5.2.1 Evaporite deposition
501	The removal of calcium from the ocean is divided between carbonate mineral burial,
502	evaporite mineral burial and minor sinks such as alteration of oceanic crust, which can fix
503	calcium into the altered phases. Over long timescales, carbonate minerals are the dominant
504	sink for calcium, and have a $\delta^{44}\text{Ca}$ similar to bulk silicate Earth (Blättler and Higgins, 2017).
505	But during sporadic, geologically short-lived intervals of extensive evaporite deposition,
506	the carbonate sink may form a smaller fraction of the total calcium sink. If enhanced
507	evaporite deposition increases the proportion of calcium buried as CaSO4, which typically
508	has a similar $\delta^{44}\text{Ca}$ to seawater due to quantitative removal in evaporite basins (Blättler
509	and Higgins, 2014), then the residual calcium isotope composition of seawater could
510	decrease, through reduced removal of the 40 Ca isotope relative to 44 Ca. This shift in
511	seawater $\delta^{44}\text{Ca}$ would be reflected in the $\delta^{44}\text{Ca}$ of carbonate minerals, and is consistent
512	with the direction of the δ^{44} Ca shift across the Nama Group (Figure 5c).

513	Mass balance calculations suggest that an increase in the proportional evaporite
514	burial flux (the burial of Ca in evaporites as a proportion of the total Ca burial flux;
515	$F_{evap}/F_{total})$, can drive a decrease in seawater $\delta^{44}Ca$ (Figure 6 and Table 2). A 0.35‰
516	decrease in seawater $\delta^{44}\text{Ca}$ requires F_{evap}/F_{total} to increase from 2.5% to 37%. If the total
517	calcium burial flux remains fixed, at $1.4^{\ast}10^{13}$ mols/year, then an F_{evap}/F_{total} of 37% equates
518	to an evaporite burial flux of 5.2*10 ¹² mols/year. Even extensive evaporite deposition may
519	not generate sufficient calcium fluxes to account for the full magnitude of the $\delta^{44}\text{Ca}$ shift
520	(Hensley, 2006). However, when combined with other changes in the marine Ca cycle such
521	as a change in the style of dolomitisation, a smaller increase in evaporite burial is needed to
522	reconcile the change in $\delta^{44}\text{Ca}$ across the Nama Group.
523	Extensive evaporite deposition occurred in the late Ediacaran, evidenced by the
524	well-dated sulfate evaporites in Oman and possibly contemporaneous deposits along the
525	northern Gondwana margin in Pakistan, India, Iran and Australia (Claypool et al., 1980;
526	Houghton, 1980; Solomon et al., 1971; Strauss et al., 2001). Radiometric dates and sulfur
527	isotope chemostratigraphy place the deposition of the Kuibis Subgroup in the Nama Group
528	contemporaneous with the A0 Member of the Ara Group, in Oman (Bowring et al., 2007;
529	Fike and Grotzinger, 2008; Tostevin et al., 2017), which contains sulfate evaporite minerals,
530	providing a direct link between the timing of the $\delta^{44}\mbox{Ca}$ transition and evaporite deposition.
531	Calcite pseudomorphs after gypsum have been reported from the Dengying Formation,
532	South China, which is contemporaneous with the Nama Group (Cui et al., 2019; Duda et al.,
533	2016; Lu et al., 2013).
534	

- **Figure 6:** Steady-state mass balance model for seawater δ^{44} Ca as a function of the
- 537 proportional evaporite burial flux (F_{evap}/F_{total}). Two sets of calculations are shown, using a
- 538 Δ^{44} Ca for dolomitisation of either 0‰ (early dolomitisation; blue line) or -1.58‰ (late
- 539 stage dolomitisation; red line).
- 540
- 541 **Table 2:** Magnitude and δ^{44} Ca of fluxes used in evaporite mass balance cycle model.
- 542 The model assumes that the input fluxes are equal to the output fluxes (i.e., steady state).

	Flux	Magnitude	δ ⁴⁴ Ca (‰)
Inputs	Riverine	1.24*10 ¹³	-1.08
	Dolomitisation	1.5*10 ¹²	–1.58 (late-stage)
			0 (early)
Outputs	Limestone	(1-F _{evap})	–1.3 (average)
	Evaporite	F _{evap} (varied from 0 to	-0.18

	100%)	
Alteration of oceanic	1.5*10 ¹²	= seawater
crust		

544

545 5.2.2 Enhanced continental weathering

546 Enhanced continental weathering could drive an increase in the delivery of calcium 547 to seawater. If there is an imbalance between the riverine Ca flux, and the carbonate 548 sedimentation flux, both the concentration and isotopic ratio of calcium in seawater can be 549 perturbed. For example, a 300% increase in the riverine Ca flux can produce a 0.2–0.4‰ negative calcium isotope excursion in seawater over 0.5–1 Myrs (Blättler et al., 2011), 550 551 which is comparable in magnitude to the progressive 0.35% decline in δ^{44} Ca across the Nama Group, although over the longer timescale of 11-14 million years. Given the 552 553 residence time of calcium in seawater (1.1 Myrs in the modern ocean), it is difficult to 554 sustain an isotopic perturbation over such long timescales, because carbonate precipitation 555 rates would rise in response to higher marine calcium concentrations, driving seawater 556 δ^{44} Ca back towards higher values. 557 Enhanced continental weathering is supported by the rise in Sr content across the 558 Nama Group. Strontium contents in carbonates are partially controlled by the size of the 559 seawater Sr reservoir, which is also sensitive to the mass balance between continental 560 weathering and carbonate deposition (Steuber and Veizer, 2002). Although the Sr content

of carbonate rocks is partially controlled by precipitation rate, mineralogy, and diagenesis,

562 global variations in the Sr content of carbonate rocks across multiple sections implies

563	secular variation in the size of the marine Sr reservoir. A rise in strontium content through
564	the Kuibis Subgroup is recorded independently in four sections in this study, as well as in
565	previous studies of the Nama Group (Ries et al., 2009), despite the different extraction
566	method used. A similar rise in Sr content been reported globally in the contemporaneous
567	carbonate rocks from the Dengying Formation, south China (Cui et al., 2016b) and the
568	Bambui Formation, Brazil (Caetano-Filho et al., 2019). This supports a secular change in
569	the size of the seawater Sr reservoir consistent with enhanced continental weathering.
570	
571	5.2.3 Changes in the style of dolomitisation
572	Over long timescales, the average carbonate depositional sink must be close to bulk
573	silicate Earth, although within this bulk carbonate sink, dolomite tends towards higher
574	$\delta^{44}\text{Ca}$ and limestone towards lower $\delta^{44}\text{Ca}$ (Blättler and Higgins, 2017). Therefore, any
575	changes in the amount of dolomite, or the calcium isotopic fractionation associated with
576	dolomitisation, could influence the $\delta^{44}\text{Ca}$ of seawater, and hence the average $\delta^{44}\text{Ca}$ of
577	limestone deposition. A switch from early dolomitisation, where dolomite retains the low
578	$\delta^{44}\text{Ca}$ associated with primary aragonite or calcite, towards late-stage dolomitisation,
579	where the $\delta^{44}\text{Ca}$ is re-set and ^{40}Ca is preferentially released into pore fluids, could result in
580	a decrease in seawater $\delta^{44}\text{Ca}$ of up to 0.17‰ (Table 2 and Figure 6).
581	In Neogene environments, dolomite commonly has a higher $\delta^{44}\mbox{Ca}$ than limestone
582	(Blättler et al., 2015; Fantle and Higgins, 2014; Higgins et al., 2018). In contrast, such
583	differences are not visible in compilations of carbonate rocks across the Precambrian (from
584	3.0 – 0.7 Ga; Blättler and Higgins, 2017). Early marine cements from carbonate rocks on the
585	Siberian Platform support a fundamental transition in the carbonate system in the Late

586	Ediacaran, from "aragonite-dolomite" seas to "aragonite" seas (Wood et al., 2017b),
587	possibly driven by a reduction in the seawater Mg/Ca ratio. It is possible that the late
588	Ediacaran captures a transition in the style of dolomitisation, from early mimetic
589	dolomitisation, with a similar $\delta^{44}\text{Ca}$ to limestone, towards later stage "Phanerozoic style"
590	dolomitisation with a higher $\delta^{44}\text{Ca}$ (Blättler et al., 2015; Fantle and Higgins, 2014). This
591	would drive a decrease in the average $\delta^{44}\mbox{Ca}$ seawater, which would be reflected in the
592	lower $\delta^{44}\text{Ca}$ captured by marine limestones.
593	
594	5.2.4 Additional evidence for changes in Ediacaran seawater chemistry
595	The negative shift in $\delta^{44}\text{Ca}$ across the Nama Group may result from a combination of
596	environmental factors. For example, the rapid change in $\delta^{44}\text{Ca}$ across the Kuibis Subgroup
597	may reflect an imbalance in the calcium cycle during the onset of higher continental
598	weathering rates, resulting in the growth of the marine calcium and sulfate reservoirs, and
599	thus a reduction in the seawater Mg/Ca ratio. The system could then have reached a new
600	steady state in the Schwarzrand Subgroup; with higher weathering rates matched by
601	increased carbonate and evaporite deposition, and changes in the style of dolomitisation.
602	Evaporite deposition could further decrease marine Mg/Ca ratios, as the burial flux of Mg
603	in evaporite deposits, as a proportion of the total Mg budget, is larger than the proportional
604	burial flux of Ca. Increased physical and chemical weathering would impact multiple
605	biogeochemical cycles, delivering Ca, Sr and $\mathrm{SO}_{4^{2\text{-}}}$ ions, alkalinity, and nutrients to the
606	oceans (Blättler et al., 2011).
607	An increase in marine calcium concentrations across the Ediacaran–Cambrian

608 boundary is supported by evidence for a peak in physical and chemical weathering of

- 609 continental crust in long-term stratigraphic and geochemical records (Peters and Gaines,
- 610 2012). For example, very high ⁸⁷Sr/⁸⁶Sr (from 0.708 to 0.7087) are recorded in Late
- 611 Ediacaran limestones from South China (Figure 7a), Mongolia (Figure 7b), Oman (Figure
- 612 7c), Namibia, (Figure 7d) and Siberia (Figure 7e), interpreted to reflect enhanced
- continental weathering (Brasier et al., 1996; Burns et al., 1994; Cui et al., 2016a, 2015;
- 614 Kaufman et al., 1993; Sawaki et al., 2013). Although there is some variability in the
- 615 ⁸⁷Sr/⁸⁶Sr ratio between sections, the high values are consistent with long term
- 616 compilations that show ⁸⁷Sr/⁸⁶Sr reached a peak during the late Ediacaran (Halverson et
- 617 al., 2007). An expansion of seafloor anoxia, recorded by uranium and sulfur isotopes, could
- be a response to elevated nutrient input (Figure 8) (Tostevin et al., 2019; Zhang et al.,
- 619 2018). Enhanced delivery of sulfate could also drive a rise in pyrite burial, as well as
- 620 changes in riverine δ^{34} S, and could be consistent with δ^{34} Scas and Δ^{33} Scas records from the
- 621 Nama and Ara groups (Figure 8) (Fike and Grotzinger, 2008; Tostevin et al., 2017; Wu et al.,
- 622 2015). Thus many geochemical proxies have been suggested to reflect some change in
- 623 terrestrial weathering over this interval.
- 624

Commented [RT1]: Petach, works with Emmy smith. Zuune arts formation

Remove Mongolia No fossils

630 Zuune Arts Member (Macdonald et al., 2009). Data from Oman are from the Buah and Ara

631 Formations (Burns et al., 1994). Data from the Nama Group are from Kaufman et al.,

632 (1993). Data from the Khatyspyt Formation are from (Cui et al., 2016a).

Figure 8: From left to right: Stratigraphic log, sequence stratigraphy, carbon isotope data, Sr content, δ^{44} Ca, δ^{34} ScAs and δ^{238} U for the Lower Nama Group at Zebra River Farm. Beds containing skeletal fossils are marked on the stratigraphic log. δ^{238} U and δ^{34} ScAs data are published in full in Tostevin et al., 2019 and 2017, respectively. Sequence stratigraphy is from Adams et al., (2005)

```
Increased calcium concentrations, and an associated reduction in the seawater
Mg/Ca ratio, would increase the carbonate saturation state and alter the stability of various
carbonate precipitates. High carbonate saturation states are consistent with a dominance
of carbonate lithologies, associated with exceptionally high accumulation rates (~65
m/Myr in the Dengying Formation, and ~100 m/Myr in the Nama Group) (Cui et al.,
2016b), as well as densely-aggregating reefs with extensive synsedimentary cement, large
meter-scale metazoans, and Suvorovella shells beds >1 km in length (Cai et al., 2011;
```

648	Grotzinger et al., 2005; Penny et al., 2014; Wood et al., 2017a, 2002; Wood and Curtis,
649	2015). This may have been driven by increasing marine calcium concentrations, although
650	the onset of bioturbation around ${\sim}560$ Ma may also have contributed to increased
651	carbonate saturation, by modifying pH gradients in the top centimetres of sediment and
652	returning sediment alkalinity to bottom waters (Higgins et al., 2009).
653	Despite a proposed increase in sulfate and calcium delivery to the oceans, seawater
654	would likely have remained below critical supersaturation with respect to gypsum.
655	Evaporite deposition is instead controlled by tectonic and climatic factors, such as the
656	formation of semi-isolated basins during rifting. The assembly of Gondwana, between ~580
657	and ${\sim}550$ Ma, was associated with tectonic inversion and the weathering of Tonian age
658	evaporite deposits (Shields et al., 2019). The end of this period may have marked a slow-
659	down in evaporite weathering, ushering in a new period of rifting and evaporite deposition.
660	The rifting of the proposed supercontinent Pannotia may have occurred around this time,
661	although the existence of this short-lived supercontinent is debated (Scotese, 2009).
662	Together, geological, sedimentological and geochemical evidence supports higher rates of
663	continental weathering, sustained over tens of millions of years, which delivered sulfate
664	and calcium ions to Late Ediacaran oceans.
665	
666	5.3 Implications for early skeletal animals

.

667 Calcareous hard parts appeared relatively abruptly in the terminal Ediacaran (~550
668 Ma) in a range of immobile, shallow marine benthos of probable diverse affinity (Wood,
669 2011). These early skeletal taxa are found exclusively in carbonate settings and likely
670 formed biominerals via a pre-existing organic matrix. Together, these observations suggest

671	that the earliest calcification occurred preferentially in $CaCO_3$ saturated waters (Wood et
672	al., 2017a). Biomineralisation is energetically costly (Knoll, 2003), and the impetus for its
673	development in the terminal Ediacaran remains enigmatic.
674	If the shift in $\delta^{44}\text{Ca}$ records enhanced continental weathering and delivery of
675	calcium ions, the apparent coincidence in time with the first appearance of skeletal animals
676	may be significant for three reasons. Firstly, high carbonate saturation in shallow shelf
677	environments could have facilitated the onset of passive calcification (Wood et al., 2017a).
678	Secondly, under high seawater calcium concentrations, cellular transporters may struggle
679	to regulate intracellular calcium levels, which can lead to calcium toxicity (Simkiss, 1977).
680	In response, organisms may begin to precipitate carbonate minerals as a mechanism to
681	effectively expel calcium from the cell. Thirdly, a reduction in the Mg/Ca ratio of the ocean
682	would have thermodynamically favoured widespread aragonite precipitation over
683	dolomite (Wood et al., 2017). No organism is known to co-opt dolomite as a biomineral, but
684	most Ediacaran skeletal metazoans formed their shells from aragonite (Zhuravlev and
685	Wood, 2008).
686	While environmental changes may have contributed to the appearance of calcareous
687	skeletons, by making options evolutionarily available that were previously inaccessible, the
688	primary factor explaining the appearance of biomineralisation must be ecological (Vermeij,
689	1989; Wood, 2011). Biomineralisation was preceded by the appearance of motility (\sim 560
690	Ma) and possible carnivory (\sim 550 Ma), and the development of hard parts would have
691	been beneficial for the protection of soft tissue (Knoll, 2003). However, it is possible that
692	environmental changes made building aragonitic skeletons progressively more favourable
693	after ~550 Ma.

695 6. Conclusions

696	We present new $\delta^{44}\text{Ca}$ data for limestone rocks from the Nama Group, Namibia, that
697	reveal a shift towards lower $\delta^{44}\text{Ca}$ around ${\sim}550$ Ma. One interpretation of this shift is a
698	local change from fluid- to sediment-buffered diagenesis of primary aragonite deposited
699	over this interval. However, this interpretation is difficult to reconcile with changes in
700	other geochemical and sequence stratigraphic records from the Nama Group that change
701	across independent timescales. If instead, $\delta^{44}\text{Ca}$ records changes in the marine calcium
702	cycle, the data could indicate enhanced weathering fluxes, matched by increased evaporite
703	deposition and changes in the style of carbonate deposition. Enhanced weathering would
704	also deliver more SO ₄ ²⁻ , alkalinity and nutrients to the oceans, and this is supported in the
705	late Ediacaran by an array of stratigraphic, sedimentological and geochemical records.
706	Increased marine calcium concentrations, and lower Mg/Ca ratios (<5) could have
707	facilitated the appearance of aragonitic skeletal animals, which are documented from
708	within the same successions.
709	
710	Acknowledgements
711	RT, GAS and RAW acknowledge financial support from NERC's Life and the Planet project
712	(NE/1005978/1). We are grateful to L. and G. Fourie for access to Zebra River farm, and L.
713	G' Evereet for access to Swartpunt Farm. We thank Helke Mocke from the Namibian

714 Geological Survey, and Gerd Winterleitner assisted with field work.

715

716 **References**

- Adams, E.W., Grotzinger, J.P., Watters, W.A., Schroder, S., McCormick, D.S., Al-Siyabi, H.A.,
 2005. Digital characterization of thrombolite-stromatolite reef distribution in a
 carbonate ramp system (terminal Proterozoic, Nama Group, Namibia). AAPG Bull. 89,
 1293–1318. https://doi.org/10.1306/06160505005
 Ahm, A.-S.C., Bjerrum, C.J., Blättler, C.L., Swart, P.K., Higgins, J.A., 2018. Quantifying early
 marine diagenesis in shallow-water carbonate sediments. Geochim. Cosmochim. Acta,
- Chemistry of oceans past and present: A Special Issue in tribute to Harry Elderfield 236,
 140–159. https://doi.org/10.1016/j.gca.2018.02.042
- Ahm, A.-S.C., Maloof, A.C., Macdonald, F.A., Hoffman, P.F., Bjerrum, C.J., Bold, U., Rose, C.V.,
 Strauss, J.V., Higgins, J.A., 2019. An early diagenetic deglacial origin for basal Ediacaran
 "cap dolostones." Earth Planet. Sci. Lett. 506, 292–307.
- 728 https://doi.org/10.1016/j.epsl.2018.10.046
- 729
 Bjerrum, C.J., Canfield, D.E., 2011. Towards a quantitative understanding of the late

 730
 Neoproterozoic carbon cycle. Proc. Natl. Acad. Sci. 108, 5542–5547.

 721
 Neoproterozoic carbon cycle. Proc. Natl. Acad. Sci. 108, 5542–5547.
- 731 https://doi.org/10.1073/pnas.1101755108
 732 Blättler, C.L., Henderson, G.M., Jenkvns, H.C., 2012, Explaining th
- Blättler, C.L., Henderson, G.M., Jenkyns, H.C., 2012. Explaining the Phanerozoic Ca isotope
 history of seawater. Geology 40, 843–846. https://doi.org/10.1130/G33191.1
- Blättler, C.L., Higgins, J.A., 2017. Testing Urey's carbonate–silicate cycle using the calcium
 isotopic composition of sedimentary carbonates. Earth Planet. Sci. Lett. 479, 241–251.
 https://doi.org/10.1016/j.epsl.2017.09.033
- Blättler, C.L., Higgins, J.A., 2014. Calcium isotopes in evaporites record variations in Phanerozoic
 seawater SO4 and Ca. Geology G35721–1.
- Blättler, C.L., Jenkyns, H.C., Reynard, L.M., Henderson, G.M., 2011. Significant increases in
 global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes.
 Earth Planet. Sci. Lett. 309, 77–88. https://doi.org/10.1016/j.epsl.2011.06.029
- Blättler, C.L., Miller, N.R., Higgins, J.A., 2015. Mg and Ca isotope signatures of authigenic
 dolomite in siliceous deep-sea sediments. Earth Planet. Sci. Lett. 419, 32–42.
 https://doi.org/10.1016/j.epsl.2015.03.006
- Bowring, S.A., Grotzinger, J.P., Condon, D.J., Ramezani, J., Newall, M.J., Allen, P.A., 2007.
 Geochronologic constraints on the chronostratigraphic framework of the
 Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci. 307, 1097–1145.
- https://doi.org/10.2475/10.2007.01
 Bowyer, F., Wood, R.A., Poulton, S.W., 2017. Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective. Geobiology 15, 516–551.
- 751 https://doi.org/10.1111/gbi.12232
- Bradbury, H.J., Torfstein, A., Wong, K., Turchyn, A.V., 2018. The Calcium Isotope Systematics of
 the Late Quaternary Dead Sea Basin Lakes. Geochem. Geophys. Geosystems 19, 4260–
 4273. https://doi.org/10.1029/2018GC007898
- Bradbury, H.J., Turchyn, A.V., 2018. Calcium isotope fractionation in sedimentary pore fluids
 from ODP Leg 175: Resolving carbonate recrystallization. Geochim. Cosmochim. Acta,
- 757 Chemistry of oceans past and present: A Special Issue in tribute to Harry Elderfield 236,
 758 121–139. https://doi.org/10.1016/j.gca.2018.01.040
- 759 Brasier, M.D., Shields, G., Kuleshov, V.N., Zhegallo, E.A., 1996. Integrated Chemo- and
- 760 Biostratigraphic Calibration of Early Animal Evolution: Neoproterozoic–Early Cambrian

761	of Southwest Mongolia. Geol. Mag. 133, 445–485.
762	Represent S.T. Louiserstein, T.K. Harita, J. 2004. Securitar chamistry and the advant of
763	Brennan, S. L., Lowenstein, T.K., Horita, J., 2004. Seawater chemistry and the advent of
764 765	Burns, S.J., Haudenschild, U., Matter, A., 1994. The strontium isotopic composition of
766	carbonates from the late Precambrian (\sim 560-540 Ma) Huqf Group of Oman. Chem.
767	Geol. 111, 269–282. https://doi.org/10.1016/0009-2541(94)90094-9
768	Busenberg, E., Plummer, L.N., 1985. Kinetic and thermodynamic factors controlling the
769	distribution of SO 32- and Na + in calcites and selected aragonites. Geochim.
770	Cosmochim. Acta 49, 713–725. https://doi.org/10.1016/0016-7037(85)90166-8
771	Caetano-Filho, S., Paula-Santos, G.M., Guacaneme, C., Babinski, M., Bedoya-Rueda, C., Peloso,
772	M., Amorim, K., Afonso, J., Kuchenbecker, M., Reis, H.L.S., Trindade, R.I.F., 2019.
773	Sequence stratigraphy and chemostratigraphy of an Ediacaran-Cambrian foreland-
774	related carbonate ramp (Bambuí Group, Brazil). Precambrian Res. 331, 105365.
775	https://doi.org/10.1016/j.precamres.2019.105365
776	Cai, Y., Schiffbauer, J.D., Hua, H., Xiao, S., 2011. Morphology and paleoecology of the late
777	Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of
778	southern Shaanxi Province, South China. Precambrian Res. 191, 46–57.
779	https://doi.org/10.1016/j.precamres.2011.09.002
780	Chen, X., Romaniello, S.J., Herrmann, A.D., Hardisty, D., Gill, B.C., Anbar, A.D., 2018. Diagenetic
781	effects on uranium isotope fractionation in carbonate sediments from the Bahamas.
782	Geochim. Cosmochim. Acta 237, 294–311. https://doi.org/10.1016/j.gca.2018.06.026
783	Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1980. The age curves of sulfur and
784	oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28, 199–
785	260. https://doi.org/10.1016/0009-2541(80)90047-9
786	Cui, H., Grazhdankin, D.V., Xiao, S., Peek, S., Rogov, V.I., Bykova, N.V., Sievers, N.E., Liu, XM.,
787	Kaufman, A.J., 2016a. Redox-dependent distribution of early macro-organisms: Evidence
788	from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia. Palaeogeogr.
789	Palaeoclimatol. Palaeoecol. 461, 122–139.
790	https://doi.org/10.1016/j.palaeo.2016.08.015
791	Cui, H., Kaufman, A.J., Xiao, S., Peek, S., Cao, H., Min, X., Cai, Y., Siegel, Z., Liu, XM., Peng, Y.,
792	Schiffbauer, J.D., Martin, A.J., 2016b. Environmental context for the terminal Ediacaran
793	biomineralization of animals. Geobiology. https://doi.org/10.1111/gbi.12178
794	Cui, H., Kaufman, A.J., Xiao, S., Zhou, C., Liu, XM., 2017. Was the Ediacaran Shuram Excursion a
795	globally synchronized early diagenetic event? Insights from methane-derived authigenic
796	carbonates in the uppermost Doushantuo Formation, South China. Chem. Geol. 450,
797	59–80. https://doi.org/10.1016/j.chemgeo.2016.12.010
798	Cui, H., Kautman, A.J., Xiao, S., Zhu, M., Zhou, C., Liu, XM., 2015. Redox architecture of an
799	Ediacaran ocean margin: Integrated chemostratigraphic (δ 13C– δ 34S–87Sr/86Sr–Ce/Ce*)
800	correlation of the Doushantuo Formation, South China. Chem. Geol. 405, 48–62.
801	https://doi.org/10.1016/j.chemgeo.2015.04.009

802 Cui, H., Xiao, S., Cai, Y., Peek, S., Plummer, R.E., Kaufman, A.J., 2019. Sedimentology and 803 chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan 804 section, South China. Geol. Mag. 1–25. https://doi.org/10.1017/S0016756819000293 Derry, L.A., 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope 805 806 anomaly. Earth Planet. Sci. Lett. 294, 152-162. 807 Duda, J.-P., Zhu, M., Reitner, J., 2016. Depositional dynamics of a bituminous carbonate facies in 808 a tectonically induced intra-platform basin: the Shibantan Member (Dengying 809 Formation, Ediacaran Period). Carbonates Evaporites 31, 87–99. https://doi.org/10.1007/s13146-015-0243-8 810 811 Fantle, M.S., DePaolo, D.J., 2007. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2+(aq)-calcite equilibrium fractionation factor and calcite 812 813 recrystallization rates in Pleistocene sediments. Geochim. Cosmochim. Acta 71, 2524-814 2546. https://doi.org/10.1016/j.gca.2007.03.006 815 Fantle, M.S., Higgins, J., 2014. The effects of diagenesis and dolomitization on Ca and Mg 816 isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca 817 and Mg. Geochim. Cosmochim. Acta 142, 458–481. 818 https://doi.org/10.1016/j.gca.2014.07.025 819 Farkaš, J., Frýda, J., Holmden, C., 2016. Calcium isotope constraints on the marine carbon cycle 820 and CaCO3 deposition during the late Silurian (Ludfordian) positive δ 13C excursion. 821 Earth Planet. Sci. Lett. 451, 31–40. https://doi.org/10.1016/j.epsl.2016.06.038 822 Fike, D.A., Grotzinger, J.P., 2008. A paired sulfate–pyrite δ34S approach to understanding the 823 evolution of the Ediacaran-Cambrian sulfur cycle. Geochim. Cosmochim. Acta 72, 2636-824 2648. https://doi.org/10.1016/j.gca.2008.03.021 825 Germs, G.J.B., 1974. The Nama Group in South West Africa and Its Relationship to the Pan-826 African Geosyncline. J. Geol. 82, 301-317. 827 Germs, G.J.B., 1972. New shelly fossils from Nama Group, South West Africa. Am. J. Sci. 272, 828 752-761. https://doi.org/10.2475/ajs.272.8.752 829 Grant, S.W., 1990. Shell structure and distribution of Cloudina, a potential index fossil for the 830 terminal Proterozoic. Am. J. Sci. 290-A, 261-294. 831 Grotzinger, J.P., Adams, E.W., Schroder, S., 2005. Microbial-metazoan reefs of the terminal 832 Proterozoic Nama Group (c. 550–543 Ma), Namibia. Geol. Mag. 142, 499–517. 833 Grotzinger, J.P., Bowring, S.A., Saylor, B.Z., Kaufman, A.J., 1995. Biostratigraphic and 834 Geochronologic Constraints on Early Animal Evolution. Science 270, 598–604. 835 Grotzinger, J.P., James, N.P., 2000. Carbonate sedimentation and diagenesis in the evolving 836 Precambrian world. SEPM. 837 Grotzinger, J.P., Watters, W.A., Knoll, A.H., 2000. Calcified metazoans in thrombolite-838 stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26, 839 334-359. 840 Gussone, N., Bohm, F., Eisenhauer, A., Dietzel, M., Heuser, A., Teichert, B., Reitner, J., 841 Worheide, G., Dullo, W.-C., 2005. Calcium isotope fractionation in calcite and aragonite. 842 Geochim. Cosmochim. Acta 69, 4485–4494. 843 Halverson, G.P., Dudás, F.Ö., Maloof, A.C., Bowring, S.A., 2007. Evolution of the 87Sr/86Sr 844 composition of Neoproterozoic seawater. Palaeogeogr. Palaeoclimatol. Palaeoecol.,

845 Neoproterozoic to Paleozoic Ocean Chemistry 256, 103–129. 846 https://doi.org/10.1016/j.palaeo.2007.02.028 847 Hensley, T.M., 2006. Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications to Late Miocene Mediterranean Brine Chemistry and Late Cenozoic Calcium 848 849 Cycling in the Oceans. 850 Higgins, J.A., Blättler, C.L., Lundstrom, E.A., Santiago-Ramos, D.P., Akhtar, A.A., Crüger Ahm, A.-851 S., Bialik, O., Holmden, C., Bradbury, H., Murray, S.T., Swart, P.K., 2018. Mineralogy, 852 early marine diagenesis, and the chemistry of shallow-water carbonate sediments. 853 Geochim. Cosmochim. Acta 220, 512–534. https://doi.org/10.1016/j.gca.2017.09.046 854 Higgins, J.A., Fischer, W.W., Schrag, D.P., 2009. Oxygenation of the ocean and sediments: 855 Consequences for the seafloor carbonate factory. Earth Planet. Sci. Lett. 284, 25–33. 856 https://doi.org/10.1016/j.epsl.2009.03.039 857 Hinojosa, J.L., Brown, S.T., Chen, J., DePaolo, D.J., Paytan, A., Shen, S., Payne, J.L., 2012. 858 Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. 859 Geology 40, 743–746. https://doi.org/10.1130/G33048.1 860 Holmden, C., Panchuk, K., Finney, S.C., 2012. Tightly coupled records of Ca and C isotope 861 changes during the Hirnantian glaciation event in an epeiric sea setting. Geochim. 862 Cosmochim. Acta 98, 94–106. https://doi.org/10.1016/j.gca.2012.09.017 863 Houghton, M.L., 1980. Geochemistry of the Proterozoic Hormuz Evaporites, Southern Iran. 864 University of Oregon. 865 Husson, J.M., Higgins, J.A., Maloof, A.C., Schoene, B., 2015. Ca and Mg isotope constraints on 866 the origin of Earth's deepest C excursion. Geochim. Cosmochim. Acta 160, 243–266. 867 https://doi.org/10.1016/j.gca.2015.03.012 868 Jensen, S., Runnegar, B.N., 2005. A complex trace fossil from the Spitskop Member (terminal 869 Ediacaran-? Lower Cambrian) of southern Namibia. Geol. Mag. 142, 561–569. 870 Jensen, S., Saylor, B.Z., Gehling, J.G., Germs, G.J.B., 2000. Complex trace fossils from the 871 terminal Proterozoic of Namibia. Geology 28, 143–146. 872 Kaufman, A.J., Hayes, J., Knoll, A.H., Germs, G.J., 1991. Isotopic compositions of carbonates and 873 organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation 874 and the effects of diagenesis and metamorphism. Precambrian Res. 49, 301-327. 875 Kaufman, A.J., Jacobsen, S.B., Knoll, A.H., 1993. The Vendian record of Sr and C isotopic 876 variations in seawater: Implications for tectonics and paleoclimate. Earth Planet. Sci. 877 Lett. 120, 409-430. https://doi.org/10.1016/0012-821X(93)90254-7 878 Knauth, L.P., Kennedy, M.J., 2009. The late Precambrian greening of the Earth. Nature 460, 879 728-732. 880 Knoll, A.H., 2003. Biomineralization and Evolutionary History. Rev. Mineral. Geochem. 54, 329-881 356. https://doi.org/10.2113/0540329 882 Lau, K.V., Maher, K., Brown, S.T., Jost, A.B., Altiner, D., DePaolo, D.J., Eisenhauer, A., Kelley, 883 B.M., Lehrmann, D.J., Paytan, A., Yu, M., Silva-Tamayo, J.C., Payne, J.L., 2017. The 884 influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium 885 isotope variations in Lower-Middle Triassic carbonate rocks. Chem. Geol. 471, 13–37. 886 https://doi.org/10.1016/j.chemgeo.2017.09.006 887 Linnemann, U., Ovtcharova, M., Schaltegger, U., Gärtner, A., Hautmann, M., Geyer, G., Vickers-

888 Rich, P., Rich, T., Plessen, B., Hofmann, M., Zieger, J., Krause, R., Kriesfeld, L., Smith, J.,

- 2019. New high-resolution age data from the Ediacaran–Cambrian boundary indicate
 rapid, ecologically driven onset of the Cambrian explosion. Terra Nova 31, 49–58.
 https://doi.org/10.1111/ter.12368
- Lu, M., Zhu, M., Zhang, J., Shields-Zhou, G., Li, G., Zhao, F., Zhao, X., Zhao, M., 2013. The
 DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad
 stratigraphic occurrence and non-diagenetic origin. Precambrian Res., Biogeochemical
 changes across the Ediacaran-Cambrian transition in South China 225, 86–109.
 https://doi.org/10.1016/j.precamres.2011.10.018
- Macdonald, F.A., Jones, D.S., Schrag, D.P., 2009. Stratigraphic and tectonic implications of a
 newly discovered glacial diamictite–cap carbonate couplet in southwestern Mongolia.
 Geology 37, 123–126. https://doi.org/10.1130/G24797A.1
- Narbonne, G.M., Saylor, B.Z., Grotzinger, J.P., 1997. The youngest Ediacaran fossils from
 southern Africa. J. Paleontol. 953–967.
- Payne, J.L., Turchyn, A.V., Paytan, A., DePaolo, D.J., Lehrmann, D.J., Yu, M., Wei, J., 2010.
 Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl. Acad. Sci.
 107, 8543–8548. https://doi.org/10.1073/pnas.0914065107
- Penny, A., Wood, R., Curtis, A., Bowyer, F., Tostevin, R., Hoffman, K.-H., 2014. Ediacaran
 metazoan reefs from the Nama Group, Namibia. Science 344, 1504–1506.
- Penny, A.M., Wood, R.A., Zhuravlev, A.Yu., Curtis, A., Bowyer, F., Tostevin, R., 2016.
 Intraspecific variation in an Ediacaran skeletal metazoan: Namacalathus from the Nama
 Group, Namibia. Geobiology. https://doi.org/10.1111/gbi.12205
- Peters, S.E., Gaines, R.R., 2012. Formation of the 'Great Unconformity' as a trigger for the
 Cambrian explosion. Nature 484, 363.
- Pruss, S.B., Blättler, C.L., Macdonald, F.A., Higgins, J.A., 2018. Calcium isotope evidence that the
 earliest metazoan biomineralizers formed aragonite shells. Geology 46, 763–766.
 https://doi.org/10.1130/G45275.1
- Rennie, V.C.F., Turchyn, A.V., 2014. The preservation of and in carbonate-associated sulfate
 during marine diagenesis: A 25 Myr test case using marine sediments. Earth Planet. Sci.
 Lett. 395, 13–23. https://doi.org/10.1016/j.epsl.2014.03.025
- 918 Ries, J.B., Fike, D.A., Pratt, L.M., Lyons, T.W., Grotzinger, J.P., 2009. Superheavy pyrite (δ34Spyr
 919 > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence
 920 of low seawater sulfate at the dawn of animal life. Geology 37, 743–746.
 921 https://doi.org/10.1130/G25775A.1
- Rothman, D.H., Hayes, J.M., Summons, R.E., 2003. Dynamics of the Neoproterozoic carbon
 cycle. Proc. Natl. Acad. Sci. 100, 8124–8129. https://doi.org/10.1073/pnas.0832439100
- 924
 Rudge, J.F., Reynolds, B.C., Bourdon, B., 2009. The double spike toolbox. Chem. Geol. 265, 420–

 925
 431. https://doi.org/10.1016/j.chemgeo.2009.05.010
- Sawaki, Y., Ohno, T., Tahata, M., Komiya, T., Hirata, T., Maruyama, S., Windley, B.F., Han, J., Shu,
 D., Li, Y., 2010. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo
 Formation in the Three Gorges area, South China. Precambrian Res. 176, 46–64.
 https://doi.org/10.1016/j.precamres.2009.10.006
- Sawaki, Y., Tahata, M., Ohno, T., Komiya, T., Hirata, T., Maruyama, S., Han, J., Shu, D., 2013. The
 anomalous Ca cycle in the Ediacaran ocean: Evidence from Ca isotopes preserved in

- 932 carbonates in the Three Gorges area, South China. Gondwana Res. 933 https://doi.org/10.1016/j.gr.2013.03.008 934 Saylor, B.Z., 2003. Sequence Stratigraphy and Carbonate-Siliciclastic Mixing in a Terminal 935 Proterozoic Foreland Basin, Urusis Formation, Nama Group, Namibia. J. Sediment. Res. 936 73, 264–279. https://doi.org/10.1306/082602730264 937 Saylor, B.Z., Kaufman, A.J., Grotzinger, J.P., Urban, F., 1998. A Composite Reference Section for 938 Terminal Proterozoic Strata of Southern Namibia. SEPM J. Sediment. Res. 68. 939 https://doi.org/10.1306/D426893C-2B26-11D7-8648000102C1865D Schmitt, A.-D., Gangloff, S., Cobert, F., Lemarchand, D., Stille, P., Chabaux, F., 2009. High 940 941 performance automated ion chromatography separation for Ca isotope measurements 942 in geological and biological samples. J. Anal. At. Spectrom. 24, 1089–1097. 943 https://doi.org/10.1039/B903303C 944 Schrag, D.P., Higgins, J.A., Macdonald, F.A., Johnston, D.T., 2013. Authigenic carbonate and the 945 history of the global carbon cycle. Science 339, 540–543. 946 Scotese, C.R., 2009. Late Proterozoic plate tectonics and palaeogeography: a tale of two 947 supercontinents, Rodinia and Pannotia. Geol. Soc. Lond. Spec. Publ. 326, 67–83. 948 https://doi.org/10.1144/SP326.4 949 Shields, G.A., Mills, B.J.W., Zhu, M., Raub, T.D., Daines, S.J., Lenton, T.M., 2019. Unique 950 Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution 951 and pyrite burial. Nat. Geosci. https://doi.org/10.1038/s41561-019-0434-3 952 Simkiss, K., 1977. Biomineralization and detoxification. Calcif. Tissue Res. 24, 199–200. 953 https://doi.org/10.1007/BF02223316 Solomon, M., Rafter, T.A., Dunham, K.C., 1971. Sulphur and oxygen isotope studies in the 954 955 northern Pennines in relation to ore diagenesis. Trans. Inst. Min. Metall. 259–275. 956 Steuber, T., Veizer, J., 2002. Phanerozoic record of plate tectonic control of seawater chemistry 957 and carbonate sedimentation. Geology 30, 1123–1126. https://doi.org/10.1130/0091-958 7613(2002)030<1123:PROPTC>2.0.CO;2 959 Strauss, H., Banerjee, D.M., Kumar, V., 2001. The sulfur isotopic composition of Neoproterozoic 960 to early Cambrian seawater-evidence from the cyclic Hanseran evaporites, NW India. 961 Chem. Geol. 175, 17-28. 962 Tang, J., Dietzel, M., Böhm, F., Köhler, S.J., Eisenhauer, A., 2008. Sr2+/Ca2+ and 44Ca/40Ca 963 fractionation during inorganic calcite formation: II. Ca isotopes. Geochim. Cosmochim. 964 Acta 72, 3733–3745. https://doi.org/10.1016/j.gca.2008.05.033 965 Tipper, E.T., Gaillardet, J., Galy, A., Louvat, P., Bickle, M.J., Capmas, F., 2010. Calcium isotope 966 ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic 967 calcium fluxes. Glob. Biogeochem. Cycles 24. https://doi.org/10.1029/2009GB003574 968 Tostevin, R., Clarkson, M.O., Gangl, S., Shields, G.A., Wood, R.A., Bowyer, F., Penny, A.M., 969 Stirling, C.H., 2019. Uranium isotope evidence for an expansion of anoxia in terminal 970 Ediacaran oceans. Earth Planet. Sci. Lett. 506, 104–112. 971 https://doi.org/10.1016/j.epsl.2018.10.045 972 Tostevin, R., He, T., Turchyn, A.V., Wood, R.A., Penny, A.M., Bowyer, F., Antler, G., Shields, G.A.,
- 2017. Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate.
- 974 Precambrian Res. 290, 113–125. https://doi.org/10.1016/j.precamres.2017.01.004

975 Tostevin, R., Shields, G.A., Tarbuck, G.M., He, T., Clarkson, M.O., Wood, R.A., 2016a. Effective 976 use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. 977 Chem. Geol. 438, 146-162. https://doi.org/10.1016/j.chemgeo.2016.06.027 978 Tostevin, R., Wood, R.A., Shields, G.A., Poulton, S.W., Guilbaud, R., Bowyer, F., Penny, A.M., He, 979 T., Curtis, A., Hoffmann, K.H., Clarkson, M.O., 2016b. Low-oxygen waters limited habitable space for early animals. Nat. Commun. 7. 980 981 https://doi.org/10.1038/ncomms12818 Turchyn, A.V., DePaolo, D.J., 2011. Calcium isotope evidence for suppression of carbonate 982 983 dissolution in carbonate-bearing organic-rich sediments. Geochim. Cosmochim. Acta 75, 984 7081-7098. https://doi.org/10.1016/j.gca.2011.09.014 985 Vermeij, G.J., 1989. The Origin of Skeletons. PALAIOS 4, 585–589. 986 https://doi.org/10.2307/3514748 987 Wood, R., Bowyer, F., Penny, A., Poulton, S.W., 2018. Did anoxia terminate Ediacaran benthic 988 communities? Evidence from early diagenesis. Precambrian Res. 313, 134–147. 989 https://doi.org/10.1016/j.precamres.2018.05.011 990 Wood, R.A., 2011. Paleoecology of the earliest skeletal metazoan communities: Implications for 991 early biomineralization. Earth-Sci. Rev. 106, 184–190. 992 https://doi.org/10.1016/j.earscirev.2011.01.011 993 Wood, R.A., Curtis, A., 2015. Extensive metazoan reefs from the Ediacaran Nama Group, 994 Namibia: the rise of benthic suspension feeding. Geobiology 13, 112–122. 995 https://doi.org/10.1111/gbi.12122 996 Wood, R.A., Grotzinger, J.P., Dickson, J.A.D., 2002. Proterozoic Modular Biomineralized 997 Metazoan from the Nama Group, Namibia. Science 296, 2383–2386. 998 https://doi.org/10.1126/science.1071599 999 Wood, R.A., Ivantsov, A.Y., Zhuravlev, A.Y., 2017a. First macrobiota biomineralization was 1000 environmentally triggered. Proc R Soc B 284, 20170059. 1001 https://doi.org/10.1098/rspb.2017.0059 Wood, R.A., Poulton, S.W., Prave, A.R., Hoffmann, K.-H., Clarkson, M.O., Guilbaud, R., Lyne, 1002 1003 J.W., Tostevin, R., Bowyer, F., Penny, A.M., Curtis, A., Kasemann, S.A., 2015. Dynamic 1004 redox conditions control late Ediacaran ecosystems in the Nama Group, Namibia. 1005 Precambrian Res. 261, 252–271. Wood, R.A., Zhuravlev, A.Y., Sukhov, S.S., Zhu, M., Zhao, F., 2017b. Demise of Ediacaran 1006 1007 dolomitic seas marks widespread biomineralization on the Siberian Platform. Geology 1008 45, 27-30. https://doi.org/10.1130/G38367.1 1009 Wu, N., Farquhar, J., Fike, D.A., 2015. Ediacaran sulfur cycle: Insights from sulfur isotope 1010 measurements (Δ 33S and δ 34S) on paired sulfate-pyrite in the Huqf Supergroup of 1011 Oman. Geochim. Cosmochim. Acta 164, 352-364. 1012 Zhang, F., Xiao, S., Kendall, B., Romaniello, S.J., Cui, H., Meyer, M., Gilleaudeau, G.J., Kaufman, 1013 A.J., Anbar, A.D., 2018. Extensive marine anoxia during the terminal Ediacaran Period. 1014 Sci. Adv. 4, eaan8983. https://doi.org/10.1126/sciadv.aan8983 1015 Zhuravlev, A.Yu., Wood, R.A., 2008. Eve of biomineralization: Controls on skeletal mineralogy. 1016 Geology 36, 923-926. https://doi.org/10.1130/G25094A.1 1017