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Highlights 18 

 δ44Ca from limestones aged ~550–539 Ma that host the earliest skeletal animal 19 

fossils 20 

 Negative shift in δ44Ca that lasted at least 11–14 Myrs 21 

 Unlikely to record a transition towards more sediment-buffered carbonate 22 

diagenesis 23 



 May record enhanced continental weathering or evaporite deposition 24 

 May record a change in timing of dolomitisation 25 
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Abstract 30 

Calcium isotope ratios in ancient carbonate rocks can provide insight into the global 31 

marine calcium cycle as well as local conditions during carbonate mineral precipitation and 32 

diagenesis. We compare two extraction techniques for the separation of calcium from other 33 

ions before δ44Ca analysis, using an automated ion chromatograph and using manual 34 

gravity columns. The two techniques produce the same δ44Ca within error (2). We present 35 

31 δ44Ca analyses of carbonate rocks from the Nama Group, Namibia, which record a 36 

negative shift in δ44Ca of 0.35‰ between ~550 and ~547 Ma, from −1.25‰ to −1.60‰, 37 

followed by persistently low δ44Ca (−1.48 ± 0.06‰) between ~547 and 539 Ma. Very low 38 

δ44Ca (<−1.5‰) are commonly interpreted to represent the preservation of local aragonite 39 

that has recrystallized to calcite under sediment-buffered conditions (where the 40 

composition of the diagenetic carbonate product is determined mainly by the original 41 

sediments). The shift in δ44Ca across the Nama Group could therefore represent a change 42 

from fluid-buffered diagenesis (where the composition of the diagenetic carbonate mineral 43 

is determined mainly by the fluid) to sediment-buffered diagenesis. However, this 44 

interpretation is not consistent with either potential geochemical indicators of diagenesis 45 

(e.g., δ18O), or changes in large-scale fluid-flow as predicted from sequence stratigraphy. 46 



We consider alternative interpretations for generating changes in the δ44Ca of ancient 47 

carbonate rocks including enhanced continental weathering, increases in evaporite 48 

deposition, and changes in the style of dolomitisation. 49 

 50 

1. Introduction 51 

Calcium isotope ratios (the ratio of 44Ca/40Ca and reported versus a standard as 52 

δ44Ca) measured in ancient carbonate minerals and rocks such as limestone and dolomite, 53 

offer a potential tool to investigate the workings of the ancient marine calcium cycle as well 54 

as to explore carbonate mineral deposition and subsequent diagenesis (Blättler et al., 2012, 55 

2011; Bradbury and Turchyn, 2018; Higgins et al., 2018; Husson et al., 2015).  The calcium 56 

isotope ratio of seawater, δ44CaSW, is controlled by the balance of fluxes of calcium into and 57 

out of seawater, and the calcium isotopic composition of those fluxes.  The main source of 58 

calcium to seawater is riverine input, although hydrothermal fluids may account for ~17% 59 

of total calcium input to the ocean (Tipper et al., 2010). The main output flux is the 60 

deposition of carbonate-bearing sediments, but evaporite deposition and alteration of 61 

oceanic crust are also important sinks for calcium.  62 

Calcium isotopes preserved in carbonate rocks reflect both the δ44Ca of the seawater 63 

or fluid from which carbonate minerals precipitated, as well as the kinetic calcium isotope 64 

fractionation during precipitation (∆44Calocal), which is determined by the carbonate 65 

mineral precipitating (e.g., calcite, aragonite or dolomite) and its rate of precipitation 66 

(Blättler et al., 2012; Tang et al., 2008).  At steady state, the dominant control on the 67 

calcium isotope composition of seawater (δ44CaSW) is the average δ44Ca of global buried 68 

carbonate minerals (44Caglobal).  However, carbonate rocks are also the major archive used 69 



to reconstruct seawater δ44Ca in deep time.  Therefore, to interpret δ44CaSW from δ44Ca in 70 

carbonate rocks, a local calcium isotope fractionation factor must be assumed based on the 71 

inferred original (primary) and dominant mineralogy.  Although early δ44Ca data were 72 

commonly interpreted to reflect changes in the global calcium cycle, i.e., the relative 73 

sources and sinks of calcium to the ocean (Blättler et al., 2012, 2011; Hinojosa et al., 2012; 74 

Payne et al., 2010), more recently, δ44Ca data have been interpreted to record calcium 75 

isotope signatures acquired during diagenesis at the site of sediment lithification (Ahm et 76 

al., 2019, 2018; Higgins et al., 2018; Husson et al., 2015).   77 

The late Ediacaran was a time of dramatic environmental and ecological change, 78 

including oscillating redox conditions, extensive evaporite deposition, and the appearance 79 

of skeletal animals (Fike and Grotzinger, 2008; Tostevin et al., 2019; Wood, 2011; Wood et 80 

al., 2017b). We present δ44Ca data from the Nama Group, Namibia, that record a negative 81 

shift in δ44Ca of ~0.35‰ between ~550 and ~547 Ma, followed by persistently low δ44Ca 82 

(−1.48 ± 0.06‰) from ~547 to ~539 Ma. We combine these data with other major element 83 

and isotopic geochemical data from the same samples to evaluate several potential 84 

explanations for this δ44Ca shift, and discuss the application of calcium isotope systematics 85 

in deep time.  86 



2. Geological and geochemical context 87 

2.1 Sequence stratigraphy and diagenetic history of the Nama Group 88 

The Nama Group was deposited in two inter-connected sub-basins, the southern 89 

Witputs and the northern Zaris, separated by a zone of depositional thinning representing 90 

the “Osis Arch” paleo-bathymetric high (Germs, 1974).  Unrestricted connection to the 91 

open ocean has been suggested because of the preservation of δ13C excursions in time-92 

equivalent sections, and normal marine rare earth element signatures (Bowyer et al., 2017; 93 

Kaufman et al., 1991; Tostevin et al., 2016b; Wood et al., 2015). The Zaris Formation 94 

(Kuibis Subgroup) in the Zaris sub-basin was sampled at Zebra River Farm, and the Urusis 95 

Formation (Schwarzrand Subgroup) in the Witputs sub-basin was sampled at 96 

Swartkloofberg Farm and at Swartpunt Farm. The base of the Nama Group is diachronous, 97 

but has been estimated to have been deposited between 553 and 550 Ma (Ries et al., 2009; 98 

Saylor et al., 1998). An ash bed in the Hoogland Member yields a depositional age of 547.32 99 

± 0.65 Ma (Bowring et al., 2007; Grotzinger et al., 1995). Therefore, deposition of the 100 

Omkyk and Hoogland members of the Zaris Formation likely spans 3–6 Myrs.  Ash beds at 101 

Swartpunt Farm yield ages of 540.095 ± 0.099 Ma and 538.99 ± 0.21 Ma for the top of the 102 

Schwarzrand Subgroup (Linnemann et al., 2019).  Overall, the Nama Group therefore spans 103 

11–14 Myrs.  104 

The Nama Group hosts terminal Ediacaran skeletal fauna, Cloudina, Namacalathus 105 

and Namapoikia, as well as soft-bodied Ediacaran fossils and increasing trace fossil 106 

evidence for motility towards the top of the section (Germs, 1972; Grant, 1990; Grotzinger 107 

et al., 2000; Jensen et al., 2000; Wood et al., 2002).  At the deep inner-ramp locality, Zebra 108 

River, the Lower Omkyk Member is dominated by grainstones. In the transgressive systems 109 



tract of the Upper Omkyk Member, thrombolite-stromatolite reefs nucleate, forming 110 

laterally continuous biostrome layers (Grotzinger et al., 2000). Cloudina and Namacalathus 111 

can be found within thrombolite heads and lag beds within inter-reef shales. Towards the 112 

top of the Upper Omkyk Member the section shallows into grainstone-dominated facies 113 

with subordinate shale horizons, containing thinner, discontinuous biostrome microbial 114 

reef systems, and some large Namacalathus <35 mm (Penny et al., 2016). The Hoogland 115 

Member contains storm dominated laminites and heterolithics, shallowing towards 116 

grainstone-dominated facies.  117 

The Pinnacle Reefs at Swartkloofberg Farm were deposited in a mid-ramp setting 118 

within a transgressive systems tract, initiated on the flooded surface of the Huns Platform. 119 

After termination of reef growth, the reefs were enveloped by shales, and together these 120 

facies form the Feldschuhhorn Member.  The Pinnacle Reefs host communities of skeletal 121 

animals of varied sizes, including aggregations of Namacalathus up to 12 mm in diameter 122 

(Wood et al., 2015).  123 

Swartpunt Farm, which encompasses the Spitzkopf Member of the Schwarzrand 124 

Subgroup, transitions from low-energy outer-ramp setting at the base, towards an inner-125 

ramp environment, followed by a deepening to outer ramp conditions, and a transition 126 

towards a mid- to inner-ramp setting at the top of the section.  Thin-bedded calcisiltite beds 127 

at the base of Swartpunt host Namacalathus, large Cloudina, and a diversity of carbonate 128 

microbialites, and are interpreted to have been deposited in a low-energy deeper ramp 129 

setting (Narbonne et al., 1997; Saylor, 2003).  The limestone is overlain by thick beds of 130 

green mudstone and coarse sandstone, deposited in a deltaic environment, containing 131 

burrows and soft-bodied fossils including Swartpuntia and Pteridinium (Narbonne et al., 132 



1997).  Overlying this there is a 5–10 m interval of thinly bedded siltstone, sandstone and 133 

limestone with ripple cross-lamination, deposited above fair weather wave base in an 134 

inner-ramp setting. Overlying shales may represent deepening to an outer-ramp 135 

environment. These give way to limestones and dolomites with dm-scale thrombolites, 136 

deposited at or below storm wave base in a mid-ramp setting (Jensen and Runnegar, 2005). 137 

Towards the top of Swartpunt is a highstand system tract containing flaggy, laminated 138 

limestones with small (<5 mm) Cloudina riemkeae and thrombolites.  139 

The paragenetic sequence of carbonate rocks from the Nama Group has been 140 

described in detail from the Cloudina reefs at Driedoornvlagte Farm, coeval in part with the 141 

Zebra River section, identifying six successive cement generations (Wood et al., 2018).  142 

Cloudina are commonly preserved as neomorphosed calcite, with micro-dolomite 143 

inclusions, and in some cases are completely dolomitised.  Large, acicular cements form 144 

botryoids and occlude pore space. These commonly nucleate on skeletal fossils, or 145 

intergrow with geopetal sediment, and  are interpreted to represent an early marine 146 

precipitate of originally aragonitic mineralogy (Grant, 1990). This is followed by a thin, 147 

isopachous dolomite cement. This is post-dated by a cloudy, inclusion-rich low-Mg calcite 148 

cement, interpreted to have precipitated in pore fluids that were in open contact with 149 

seawater. Remaining pore space is occluded by a clear, length-slow, blocky low-Mg, calcite, 150 

typical of low-Mg pore waters, suggesting a burial origin. Early marine cements are 151 

commonly interpreted to be aragonitic, and later neomorphosed to calcite (Grant, 1990; 152 

Grotzinger and James, 2000; Wood et al., 2018).  153 

 154 

2.2 Geochemical background of the Nama Group samples 155 



The Nama Group was deposited coincident with the final recovery from the Shuram-156 

Wonoka anomaly, an enigmatic global δ13C excursion famed for reaching unusually low 157 

values (around −12‰). The Shuram-Wonoka anomaly has been variably interpreted to 158 

result from either: 1) the oxidation of a large pool or reduced carbon such as methane 159 

hydrates or dissolved organic carbon (Bjerrum and Canfield, 2011; Husson et al., 2015; 160 

Rothman et al., 2003), 2) a global increase in the burial of authigenic carbonate (Cui et al., 161 

2017; Schrag et al., 2013), or 3) globally synchronous changes in burial or meteoric 162 

diagenesis (Derry, 2010; Knauth and Kennedy, 2009). Some sections in the Nama Group 163 

capture the tail end of the Shuram excursion (e.g., at Brak and Grens; Wood et al., 2015), 164 

but the Nama Group at Zebra River captures the post-excursion return to positive δ13C. In 165 

the Schwarzrand Subgroup, δ13C remains stable around 1‰.  166 

Iron speciation and cerium anomaly measurements have previously been used in 167 

this section as proxies for local water column redox conditions (Tostevin et al., 2016b; 168 

Wood et al., 2015). These data indicate that Zebra River was predominantly well-169 

oxygenated, with temporary anoxic-ferruginous periods (Wood et al., 2015), which may 170 

reflect the development of sluggish circulation or upwelling of anoxic deeper waters 171 

associated with marine transgression (Bowyer et al., 2017).  Additionally, positive cerium 172 

anomalies suggest that some depositional intervals were oxygen-poor and manganous 173 

(Tostevin et al., 2016).  The Pinnacle Reefs experienced persistent well-oxygenated 174 

conditions (Tostevin et al., 2016b; Wood et al., 2015). Swartpunt was largely oxygenated, 175 

with anoxic ferruginous conditions restricted to two highstand carbonate horizons. 176 

Sediments containing independent evidence for deposition under an oxygenated water 177 



column were selected for this study, and all samples have low total organic carbon (TOC) of 178 

<0.2 wt.% (Wood et al., 2015).  179 

 δ238U data from carbonate rocks at Zebra River transition from modern-like 180 

seawater values (−0.4‰) in the Lower Omkyk Member, to very negative values in the 181 

Upper Omkyk and Hoogland Members (−0.81‰)  (Tostevin et al., 2019). This has been 182 

interpreted and modelled to represent a transition towards globally widespread anoxic 183 

bottom waters that covered at least a third of the global sea floor. Further, this δ238U 184 

transition appears to be recorded globally in sediments of the same age (Zhang et al., 185 

2018), supporting preservation of a primary global seawater δ238U signal. Existing sulfur 186 

isotope data from carbonate associated sulfate at Zebra River show a general increasing 187 

trend in δ34SCAS from the Omkyk to the Hoogland Members (Tostevin et al., 2017). This 188 

correlates with contemporaneous sections from other basins, suggesting a global change in 189 

the sulfur cycle that drove an increase in global marine δ34S (Cui et al., 2016b, 2016a; Fike 190 

and Grotzinger, 2008). This has been interpreted to reflect a change in weathering fluxes or 191 

sources, and/or an increase in the global pyrite burial flux.  192 



3. Methods 193 

Hand samples were collected at one to five meter intervals along with stratigraphic 194 

logs noting lithology and paleoecology. Weathered edges were removed and samples were 195 

sawed in half to reveal a fresh surface.  Powders from Zebra River for δ44Ca analysis were 196 

drilled with a dremel microdrill, avoiding visually recrystallised areas. Bulk-rock powders 197 

were analysed from the Pinnacle Reefs and Swartpunt sections.  198 

Major element concentrations (Sr, Ca, Mg and Mn) in the carbonate portion of the 199 

sample were determined using sequential leaching in 2% HNO3, and analysed via 200 

Inductively coupled plasma optical emission spectrometer (ICP-OES) at the Cross-Faculty 201 

Elemental Analysis Facility, University College London. The sequential leaching method 202 

involves pre-leaching 20% of the sample, followed by a 40% leach that is retained for 203 

analysis (method is described in full in Tostevin et al., 2016a). These major element data 204 

are available for Zebra River section as well as four other localities in the Nama Group (the 205 

Kuibis Subgroup at Brak, Omkyk and Zwartmodder, and the Schwarzrand Subgroup at 206 

Swartpunt; Wood et al., 2015).  Carbon isotopes have been previously reported in Wood et 207 

al., (2015). 208 

These data were used to inform sample selection for calcium isotope analysis. 209 

Samples with a wide range of Sr contents, including those that were anomalous compared 210 

with adjacent samples, were selected. Selected samples included a range of facies and 211 

textures, including microbialites, grainstones and laminites. Dolomitised or impure 212 

samples (low %CaCO3) were avoided. Calcium isotope (44Ca/40Ca) analysis was conducted 213 

at the University of Cambridge using a Thermo Scientific Triton Plus MC-Thermal 214 

Ionisation Mass Spectrometer. Sample aliquots containing six g of calcium were combined 215 



with a 42Ca-48Ca double–spike at a ratio of 10:1 (sample-to-spike) in acid-cleaned Teflon 216 

vials. The 48:42 ratio of the double–spike is 1:1, similar to the optimum ratio of 3:2 for a 217 

42Ca-48Ca double–spike (Rudge et al., 2009). Solid samples were dissolved in dilute ultra-218 

pure acetic acid for 1 h, before being converted to nitrates and then combined with the 219 

double spike. The samples were then dried and re-dissolved in 0.5% nitric acid and calcium 220 

was separated using either a Dionex ICS 5000+ HPIC coupled with a Dionex AS-AP fraction 221 

collector or a gravity column (Bio-Rad AG50W-X8) setup for method validation. 222 

After the separation of the calcium using either the Dionex ICS 5000+ HPIC or the 223 

gravity columns, 4 g of calcium was loaded on an outgassed 0.7 mm Rhenium filament 224 

with 0.5 l of 10% trace metal purity Phosphoric acid as an activator. The samples are run 225 

using the analytical method previously described in Bradbury and Turchyn (2018). The 226 

average external 2 standard deviation over nine months on the standard NIST915B was 227 

0.10‰ (n = 82). All δ44Ca discussed in the text are reported as ratios of 44Ca to 40Ca relative 228 

to modern seawater, but in Table 1 the data are also reported relative to other commonly 229 

used calcium standards (BSE and 915a). 230 

 231 

3.1 Method Validation 232 

Each sample was run for its calcium isotopic composition four times, using two 233 

extraction techniques; separating the calcium using an automated ion chromatograph and 234 

separating the calcium using manual gravity columns.  The samples run using the Thermo 235 

Scientific Dionex ICS 5000+ HPIC were run through a high-capacity carboxylate-236 

functionalised column (Dionex CS-16) using 30 mM methyl-sulfonic acid (MSA) at a flow 237 



rate of 1 ml/min. The conductivity of the samples was continuously measured during the 238 

separation, and a minimum peak slope of 0.003 S/s determined the sample collection 239 

during a set time window. The method is similar to the published work of Schmitt et al., 240 

(2009), and has been published in Bradbury et al., (2018) and Bradbury and Turchyn, 241 

(2018). 242 

These analyses were compared to samples that were separated through a 243 

traditional gravity column setup using Bio-Rad AG50W-X8 resin.  The gravity columns 244 

were created from cut down 5 ml pipettes with a reservoir size of 2 ml and with a 20 μm PE 245 

frit installed. They were filled to just below 1 ml with slurried AG50W-X8 resin. The 246 

columns were pre-cleaned using 2 ml of 4 M HCl, 6 M HNO3, 4 M HCl and water, before 247 

being preconditioned with 1.5 M HNO3. The columns had a flow rate of approximately 1 248 

ml/hour. The sample was loaded and then eluted with 1.5 M HNO3. The columns were 249 

calibrated by measuring the concentration of the ions eluting off the column using the 250 

Dionex ICS 5000+. The calibration was setup to collect 100% of the calcium and maximise 251 

the separation of calcium from magnesium and strontium, whilst at the same time 252 

minimising the time taken to complete the column chemistry.  Initially a series of twelve 253 

carbonate powders from the Nama Group were dissolved in 5% ultrapure acetic acid. An 254 

aliquot containing 12 μg of calcium was then spiked at a ratio of 10:1 (sample to spike) 255 

with the double spike and dried. The dried sample was re-dissolved in 1.5 M HNO3 and 256 

separated using the calibrated gravity columns. The 4 μg of the collected calcium was 257 

loaded per filament either singularly (n=6), in duplicate (n=6), or triplicate (n=12). The 258 

measured sample data is shown graphically in Figure 1, where the δ44Ca from the Dionex 259 

ICS 5000+ HPIC and the column separations are compared. 260 



 261 

 262 

Figure 1: Cross plots of the twelve samples run on the Dionex ICS 5000+ and gravity 263 

columns (n=12, R2=0.65, p-value = 0.0119). The dotted lines represent the long-term 2σ of 264 

the measurement of calcium isotopes. A t-test comparison of the slopes of the measured 265 

data and the 1:1 line shows no statistically significant difference.  266 

 267 

4. Results 268 

We report 31 new δ44Ca analyses from the Nama Group, which range from −1.60‰ 269 

to −1.07‰.  At Zebra River, δ44Ca progressively decreases from the base of the section 270 

through the Kuibis Subgroup from −1.25‰ to −1.60‰, an overall decrease of 0.35‰ 271 

(Figure 2).  There is one outlying data point, with a particularly high δ44Ca of −1.09‰ (at 272 

106 m). At the Pinnacle Reefs and Swartpunt, δ44Ca remains low through the Schwarzrand 273 

Subgroup, between −1.39‰ and – 1.59‰ (average = −1.48 ± 0.06). Two partially 274 
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dolomitised samples have a δ44Ca that is ~0.4‰ higher than the surrounding samples 275 

(−1.08‰ at 5 m and –1.07‰ at 10 m), and these have been excluded from consideration 276 

due to the known positive δ44Ca offset associated with dolomitisation (Fantle and DePaolo, 277 

2007; Turchyn and DePaolo, 2011). The samples are all laminite heterolithics, grainstones, 278 

microbialites, or recrystallized limestones, and changes in δ44Ca do not appear to correlate 279 

with changes in these lithologies (Figure 2). 280 

 281 

 282 



Figure 2: From left to right: Stratigraphic log, sequence stratigraphy, δ13C data, Sr content 283 

and δ44Ca for the Nama Group. Triangle symbols for δ13C data and Sr content highlight 284 

samples for which there is also δ44Ca data. The δ44Ca data are colour coded according to the 285 

facies of individual samples. The Kuibis Subgroup was sampled at Zebra River, the 286 

Feldschuhhorn Member (FS) was samples at the Pinnacle Reefs, and the Spitzkopf 287 

Formation was sampled at Swartpunt Farm. Ash bed dates from Hoogland Member and 288 

Spitzkopf Member are from Bowring et al., (2007) and Linnemann et al., (2019). Sequence 289 

stratigraphy is from Adams et al., (2005), Saylor (2003) and Saylor et al., (1998). The wavy 290 

line in the stratigraphic column does not indicate a substantial erosional unconformity, but 291 

an absence of samples from the intervening stratigraphy.  292 

 293 

Strontium content in the carbonate rocks is consistent throughout the Omkyk 294 

Member, with an average of 1000 ppm, but rises through the Hoogland Member reaching a 295 

peak of ~4000 ppm.  In the Schwarzrand Subgroup, the strontium content declines from a 296 

high of ~6000 ppm to ~2000 ppm close to the Ediacaran-Cambrian boundary.  This 297 

increase in strontium content is consistent across multiple sections of the Nama Group 298 

(Wood et al., 2015; Figure 3).  At Zebra River, scatter overprints the overall trend in Sr 299 

content, with some exceptionally high values in the middle of the section. δ44Ca correlates 300 

with Sr content (R2=0.27), δ34SCAS (R2=0.53) and δ18O (R2=0.40) measured on the same 301 

samples at the P<0.05 level, but with significant scatter around the trend (Figure 4b, 4f and 302 

4k).  In contrast, there is no significant correlation between δ44Ca and other geochemical 303 

data (P>0.05), including Mn content, δ13C, TOC and Mg/Ca (Figure 4a and 4c-e).  304 

 305 



 306 

Figure 3: Sr concentrations for four sections from the Kuibis Subgroup, and one section 307 

from the Schwarzrand Subgroup. Carbon isotopes from Wood et al., (2015).  Ash bed dates 308 

from Hoogland Member and Spitzkopf Member are from Bowring et al., (2007) and 309 

Linnemann et al., (2019). 310 

 311 

 312 



 313 

Figure 4: Cross plots of δ44Ca against other geochemical parameters measured on the same 314 

samples. Red circles are from the Kuibis Subgroup, and blue triangles are from the 315 

Schwarzrand Subgroup. P-values and R2 values for linear best fit lines are noted for the 316 

Kuibis Subgroup. Sr content is shown twice, once on a linear scale (F) and once on a log-317 

linear scale (G). 318 

 319 

Table 1: δ44Ca data for each sample relative to modern seawater (SW), 915a (1.94‰ lower 320 

than SW), and BSE (0.94‰ lower than SW), along with the standard deviation (1σ) for the 321 

δ44Ca data, and the strontium content.  322 

Locality Sample 
name 

Height 
(m) 

δ44Ca 
(SW) 

δ44Ca 
(915a) 

δ44Ca 
(BSE) 

1σ Sr 
content 
(ppm) 



Zebra 
River 

LO2 4 −1.25 0.69 −0.31 0.065 590 
LO4 18 −1.30 0.64 −0.36 0.072 1617 
LO6 28 −1.27 0.67 −0.33 0.000 1794 
LO7 35 −1.33 0.61 −0.39 0.026 674 
LO11 44 −1.35 0.59 −0.41 0.055 1396 

OS2-3 75 −1.43 0.51 −0.49 0.025 1014 
OS2-4 85 −1.27 0.67 −0.33 0.050 555 
ZR5 106 −1.09 0.85 −0.15 0.026 730 

ZR9 122 −1.39 0.55 −0.45 0.063 1714 

OS2-9 131 −1.36 0.58 −0.42 0.046 818 
OS2-10 139 −1.46 0.48 −0.52 0.000 2452 
ZR18 152 −1.29 0.65 −0.35 0.105 979 
ZR31 173 −1.47 0.47 −0.53 0.019 4489 
ZR38 207 −1.44 0.50 −0.50 0.078 2892 
UH2 222 −1.59 0.35 −0.65 0.000 998 
UH4 231 −1.51 0.43 −0.57 0.007 1744 
UH5 236 −1.48 0.46 −0.54 0.069 1981 
UH6 242 −1.50 0.44 −0.56 0.000 1772 

UH8 254 −1.55 0.39 −0.61 0.032 2622 
UH9 259 −1.60 0.34 −0.66 0.000 1668 
UH14  285 −1.56 0.38 −0.62 0.000  

Pinnacle 
Reefs 

PR7 5 −1.08 0.86 −0.14 0.013  

PR 10 −1.07 0.87 −0.13 0.009  
PR6 15 −1.39 0.55 −0.45 0.011  

Swartpunt SW2 30 −1.45 0.49 −0.51 0.019 5270 
SW6 73 −1.58 0.36 −0.64 0.014 4845 
SW9 100 −1.43 0.51 −0.49 0.010 3973 

SW12 133 −1.50 0.44 −0.56 0.011 2128 
SW13 143 −1.55 0.39 −0.61 0.011 1936 
SWP15 153 −1.45 0.49 −0.51 0.134 2138 

  323 



5. Discussion 324 

The decrease of 0.35‰ in the calcium isotopic composition of carbonate rocks 325 

recorded through the Kuibis Subgroup is substantial, and of a similar magnitude to the 326 

change in δ44Ca through the end-Ordovician mass extinction (0.5–0.6‰; Holmden et al., 327 

2012), Cretaceous anoxic events (0.2–0.4‰; Blättler et al., 2011), and the Permo–Triassic 328 

Boundary (0.3‰; Payne et al., 2010). Following the progressive transition towards lower 329 

δ44Ca across the Kuibis Subgroup, δ44Ca remains low (around −1.5‰) throughout the 330 

Schwarzrand Subgroup, up to the Ediacaran–Cambrian Boundary.   331 

A similar negative shift in δ44Ca is recorded in contemporaneous rocks from South 332 

China (Sawaki et al., 2013), although those data come from five samples within a mixed 333 

dolomite and limestone succession, making it difficult to discern mineralogical controls 334 

from trends in seawater calcium isotopic composition.  Pruss et al., (2018) report δ44Ca 335 

from bulk rock samples from the Omkyk Member of the Nama Group that overlap with the 336 

range of δ44Ca in this study (−1.07‰ to −1.59‰), but the δ44Ca data come from fossil 337 

samples and are not presented stratigraphically. δ44Ca data from the Wonoka Formation, 338 

deposited during the Shuram-Wonoka carbon isotope excursion, identify a prominent 339 

negative excursion, reaching from −0.8‰ to −1.9‰, before recovering to −0.8‰ (Husson 340 

et al., 2015). Dolomitised samples at the top of the Wonoka Formation may be 341 

contemporaneous with limestone samples at the base of the Nama Group, but the differing 342 

mineralogy makes it difficult to directly compare the δ44Ca values.  343 

Assuming the Nama Group has not experienced diagenetic alteration with fluid that 344 

has an exceptionally low δ44Ca (Gussone et al., 2005), then the very low δ44Ca recorded in 345 

the upper Kuibis and Schwarzrand subgroups can be interpreted to result from two 346 



possible endmember scenarios: 1) local carbonate deposition associated with a larger local 347 

calcium isotopic fractionation (∆44Calocal) of around −1.7‰, in an ocean with a similar 348 

δ44CaSW to today, or 2) local carbonate deposition associated with a smaller ∆44Calocal of 349 

around −1.25‰, in an ocean with δ44CaSW that is 0.4–0.5‰ lower than today.  350 

 351 

 5.1 Scenario one: Preservation of local aragonite δ44Ca 352 

In an ocean with a similar δ44Ca to today, preservation of very low δ44Ca (<−1.5‰) 353 

in carbonate rocks requires a large ∆44Calocal during carbonate mineral deposition (e.g., 354 

scenario 1). A local change from calcite towards aragonite deposition, or an increase in the 355 

precipitation rate of carbonate minerals, could drive changes in the Sr content and δ44Ca of 356 

carbonate rocks in the direction and magnitude recorded across the Kuibis Subgroup 357 

(Figure 5a; Farkaš et al., 2016; Tang et al., 2008). It is likely that the original sedimentary 358 

mineralogies in the Nama Group were dominantly aragonite, consistent with petrographic 359 

work that has identified a dominantly aragonitic primary mineralogy for many, but not all, 360 

components including large botryoidal cements and crystal fans (Grant, 1990; Grotzinger 361 

et al., 2005; Wood et al., 2018). 362 

 363 



 364 

Figure 5: Schematic showing three possible models to explain the shift towards lower 365 

δ44Ca across the Nama Group. Panel a) shows a change in fractionation during precipitation 366 

of primary minerals from seawater, resulting from either a change in mineralogy or 367 

precipitation rates, preserved in recrystallized calcite through sediment-buffered 368 

diagenesis. Panel b) shows a diagenetic interpretation, where the primary aragonite δ44Ca 369 

is the same, but differences in δ44Ca are introduced during recrystallisation to calcite under 370 

fluid- and sediment-buffered diagenesis (see section 5.1). Panel c) illustrates a change in 371 

seawater δ44Ca, which could be preserved in carbonate rocks during either fluid- or 372 

sediment-buffered diagenesis (see section 5.2).  373 

 374 



During recrystallisation of primary aragonite to calcite, the δ44Ca of the calcite is 375 

determined by the δ44Ca of the pore fluid from which it precipitates. Under conditions of 376 

high fluid flow, pore fluids can be buffered by seawater Ca (fluid-buffered conditions). In 377 

contrast, when pore fluids become isolated from seawater, the δ44Ca of the pore fluid can 378 

be buffered by the dissolution of the primary aragonite (sediment-buffered conditions) 379 

(Higgins et al., 2018). For primary aragonite δ44Ca to be preserved it is thought that 380 

recrystallisation of the primary aragonite to calcite must occur under sediment-buffered 381 

conditions, such that the buried calcite should retain its primary aragonite δ44Ca. If instead, 382 

recrystallisation occurs under fluid-buffered conditions, the buried calcite can acquire a 383 

new δ44Ca that reflects the smaller ∆44Calocal between newly precipitated calcite and the 384 

pore fluid (Ahm et al., 2018; Higgins et al., 2018) (Figure 5b).  385 

Sedimentological, geochemical and fluid inclusion data suggest that the majority of 386 

primary carbonate minerals precipitating globally were aragonitic in the terminal 387 

Ediacaran (Brennan et al., 2004; Cui et al., 2019; Grotzinger et al., 2005; Zhuravlev and 388 

Wood, 2008). If aragonite is the dominant carbonate precipitate from the oceans globally, 389 

and if the buried carbonate minerals retain a low δ44Ca during sediment-buffered 390 

recrystallisation, then more 40Ca overall is removed from the ocean, and the δ44Ca of the 391 

ocean should be higher (Blättler and Higgins, 2017).  This increase in δ44CaSW would mean 392 

that the δ44Ca in carbonate rocks would be higher on average, as despite the large calcium 393 

isotopic fractionation factor, they are precipitating from a fluid with a higher δ44Ca.  394 

Certainly the carbonate minerals would on the whole be higher than the canonical value of 395 

−1.5‰ used to signify local primary aragonite deposition in the geological record (Higgins 396 

et al., 2018; Husson et al., 2015). It is therefore difficult to explain the very low δ44Ca 397 



captured by some samples from the Nama Group as localized primary aragonite within a 398 

calcite-dominated ocean with the same δ44CaSW as today.  However, δ44CaSW is determined 399 

by the final δ44Ca of all buried carbonate, which may differ from the primary depositional 400 

δ44Ca, since primary depositional δ44Ca may be reset as aragonite recrystallises to calcite. 401 

To explain very low δ44Ca in ancient carbonate rocks requires local aragonite deposition 402 

and sediment-buffered δ44Ca preservation within oceans where either 1) globally, the 403 

majority of primary carbonate minerals are deposited as calcite, or 2) globally, the majority 404 

of carbonate minerals are deposited as aragonite, but recrystallised to calcite or dolomite 405 

under fluid-buffered conditions.   406 

 If we interpret the shift in the δ44Ca over the Nama Group as due entirely to local 407 

changes in the nature of recrystallization, i.e., in the style of diagenesis, then the shift to 408 

lower δ44Ca across the Nama Group might record a local change towards recrystallisation 409 

under increasingly sediment-buffered conditions (Husson et al., 2015). This could be 410 

driven by higher sediment production and accumulation rates, which would push 411 

recrystallisation and neomorphism deeper into the sediment pile where it is not in as 412 

frequent contact with seawater. Higher burial rates could reflect a higher carbonate 413 

saturation state, or an overall marine transgressive succession that created 414 

accommodation space to fill with sediment more quickly. Importantly, this interpretation 415 

of the shift in δ44Ca across the Nama Group would represent a local change in the preserved 416 

δ44Ca that does not reflect changes in the global ocean, but could provide insight into local 417 

depositional conditions and diagenesis in the Nama Group. 418 

One way to test whether the trend in δ44Ca reflects local changes in fluid- vs. 419 

sediment-buffered diagenesis is to compare δ44Ca with other geochemical proxies analysed 420 



in the same samples.  A transition from fluid-buffered to sediment-buffered diagenetic 421 

conditions should produce synchronous changes across multiple geochemical systems 422 

(Ahm et al., 2018; Higgins et al., 2018; Husson et al., 2015).  For example, in the sulfur 423 

isotope system, recrystallisation of carbonate minerals during early diagenesis under fluid-424 

buffered conditions may capture unaltered seawater δ34S, whereas recrystallisation in 425 

sediment-buffered conditions may capture an evolved pore fluid δ34S (Rennie and Turchyn, 426 

2014). In the Kuibis Subgroup, there is a weak but significant negative correlation between 427 

δ44Ca and δ34SCAS (P<0.05, R2=0.53; Figure 4k) that supports a change in the realm of 428 

diagenesis (sulfur isotope data from Tostevin et al., 2017). However, there is no significant 429 

correlation between δ44Ca and carbonate-associated-sulfate (CAS) content (p-value =0.41), 430 

which should also be sensitive to fluid- vs. sediment-buffered recrystallisation, since CAS 431 

abundance is typically higher in calcite (10,000s of ppm) than in aragonite (1000s of ppm) 432 

(Busenberg and Plummer, 1985). Under sediment-buffered conditions, a decrease in CAS 433 

abundance would be expected as the sulfate concentration in the fluid would be set by the 434 

primary aragonite, but this is not observed. 435 

We can also examine the relationship between δ44Ca and uranium isotope data from 436 

the Kuibis Subgroup at Zebra River. In modern carbonate sediments, pore water reduction 437 

of uranium during early diagenesis offsets δ238U in recrystallised carbonate minerals 438 

towards higher values (Chen et al., 2018). If recrystallisation takes place under deeper 439 

burial conditions, where the supply of uranium is limited, then the bulk carbonate 440 

sediment is more likely to retain a δ238U close to primary seawater. Changes in the style of 441 

diagenesis should hence produce a positive correlation between δ44Ca and δ238U. While in 442 

general, the higher δ44Ca and δ238U both occur in the Lower Omkyk Member, there is no 443 



significant correlation between δ44Ca and either δ238U (p-value = 0.43) or U/Ca ratios (p-444 

value = 0.17; Figure 4i and 4j) measured on the same samples in the Kuibis Subgroup. 445 

However, it is not clear whether this understanding of uranium isotope systematics, 446 

developed in modern marine sediments, can be applied to sediments from an ocean with 447 

widespread anoxia (Tostevin et al., 2019; Zhang et al., 2018).  448 

During fluid-buffered diagenesis, the Sr content of carbonate rocks should be 449 

reduced, reflecting the low abundance of Sr in calcite (1000 ppm).  In contrast, sediment-450 

buffered diagenesis can conserve the original high Sr content associated with primary 451 

aragonite precipitation (7000–9000 ppm) (Higgins et al., 2018). Changes in the primary 452 

mineralogy or style of diagenesis should therefore result in a negative correlation between 453 

δ44Ca and the Sr content of carbonate rocks (Lau et al., 2017).  Overall, there is a negative 454 

correlation between strontium content and δ44Ca in the Kuibis Subgroup at the P <0.05 455 

level that could support a diagenetic control, but with high scatter (R2=0.27 for a linear 456 

trend and R2=0.36 for a log-linear trend). This trend is weak despite efforts to target 457 

individual samples with a wide range of strontium contents, including those that are locally 458 

anomalous compared to surrounding samples (Figures 2 and 4f). Further, in the 459 

Schwarzrand Subgroup, Sr content in carbonate rocks declines, whereas δ44Ca remains low 460 

across the section. 461 

In addition, changes in the style of diagenesis can be recorded in oxygen isotope 462 

ratio, as δ18O in carbonates decreases during recrystallisation at deeper burial depths. 463 

Sediment-buffered recrystallisation could therefore result in lower δ18O and lower δ44Ca 464 

(Higgins et al., 2018). We find a weak correlation between δ44Ca and δ18O at the P <0.05 465 

level (R2=0.4), but this is in the opposite direction than would be expected if these trends 466 



were produced by changes in the style of diagenesis (Higgins et al., 2018; Husson et al., 467 

2015). Such a relationship may be possible if sediment-buffered recrystallisation occurs in 468 

the presence of meteoric groundwaters, which can extend at depth below marine 469 

continental shelves. However, meteoric cements have not been noted in analysed samples 470 

in the Nama Group (Wood et al., 2018). In addition, there is no apparent correlation 471 

between δ44Ca and δ13C or TOC, or with other proxies that are partially impacted by 472 

changes in diagenetic conditions, such as Mn content, Mn/Sr, total iron (FeT) or Mg/Ca 473 

ratios (Figure 4a,e,h). 474 

Times of high fluid flow driving fluid-buffered diagenesis could be expected to occur 475 

below sequence boundaries, but the δ44Ca trend across the Nama Group cross cuts 476 

transgressive systems tracts, high stands and sequence boundaries, similar to δ44Ca data in 477 

Triassic carbonate rocks (Lau et al., 2017) (Figure 2). This poses a further problem for the 478 

widespread interpretation of δ44Ca in the geological record to only reflect fluid- vs. 479 

sediment-buffered recrystallisation.  While local mineralogical and diagenetic controls 480 

provide a clear explanation for coupled geochemical trends recorded in modern carbonate 481 

sediments (Ahm et al., 2018; Higgins et al., 2018), as well as some ancient carbonate rocks 482 

(Ahm et al., 2019; Husson et al., 2015), a diagenetic framework for interpreting δ44Ca can 483 

only partially explain the geochemical trends across the Nama Group. We suggest that 484 

while fluid- vs. sediment-buffered diagenesis is one important way to introduce variability 485 

into δ44Ca measured in carbonate rocks, it may not be the only driver of change in the δ44Ca 486 

of ancient carbonate rocks. 487 

 488 

5.2 Scenario two: A change in seawater δ44Ca 489 



 An alternative suggestion is that the shift in δ44Ca seen across the Nama Group 490 

represents a change in the global Ca cycle around ~550 Ma that lasted 11–14 Myrs (e.g., 491 

scenario 2; Figure 5c). Assuming there is no systematic change in primary carbonate 492 

mineralogy, mineral precipitation rates or diagenetic conditions across the Nama Group, 493 

we explore other ways to produce a negative shift in the δ44Ca of carbonate rocks. The Late 494 

Ediacaran was a time of transformation, including new biological innovations, as well as 495 

profound changes in seawater chemistry, climate and style of sedimentation. The marine 496 

calcium cycle would likely have been sensitive to each of these changes.  We will consider 497 

several of these in turn. 498 

 499 

5.2.1 Evaporite deposition  500 

The removal of calcium from the ocean is divided between carbonate mineral burial, 501 

evaporite mineral burial and minor sinks such as alteration of oceanic crust, which can fix 502 

calcium into the altered phases. Over long timescales, carbonate minerals are the dominant 503 

sink for calcium, and have a δ44Ca similar to bulk silicate Earth (Blättler and Higgins, 2017). 504 

But during sporadic, geologically short-lived intervals of extensive evaporite deposition, 505 

the carbonate sink may form a smaller fraction of the total calcium sink. If enhanced 506 

evaporite deposition increases the proportion of calcium buried as CaSO4, which typically 507 

has a similar δ44Ca to seawater due to quantitative removal in evaporite basins (Blättler 508 

and Higgins, 2014), then the residual calcium isotope composition of seawater could 509 

decrease, through reduced removal of the 40Ca isotope relative to 44Ca. This shift in 510 

seawater δ44Ca would be reflected in the δ44Ca of carbonate minerals, and is consistent 511 

with the direction of the δ44Ca shift across the Nama Group (Figure 5c).  512 



Mass balance calculations suggest that an increase in the proportional evaporite 513 

burial flux (the burial of Ca in evaporites as a proportion of the total Ca burial flux; 514 

Fevap/Ftotal), can drive a decrease in seawater δ44Ca (Figure 6 and Table 2).  A 0.35‰ 515 

decrease in seawater δ44Ca requires Fevap/Ftotal to increase from 2.5% to 37%. If the total 516 

calcium burial flux remains fixed, at 1.4*1013 mols/year, then an Fevap/Ftotal of 37% equates 517 

to an evaporite burial flux of 5.2*1012 mols/year. Even extensive evaporite deposition may 518 

not generate sufficient calcium fluxes to account for the full magnitude of the δ44Ca shift 519 

(Hensley, 2006). However, when combined with other changes in the marine Ca cycle such 520 

as a change in the style of dolomitisation, a smaller increase in evaporite burial is needed to 521 

reconcile the change in δ44Ca across the Nama Group. 522 

Extensive evaporite deposition occurred in the late Ediacaran, evidenced by the 523 

well-dated sulfate evaporites in Oman and possibly contemporaneous deposits along the 524 

northern Gondwana margin in Pakistan, India, Iran and Australia (Claypool et al., 1980; 525 

Houghton, 1980; Solomon et al., 1971; Strauss et al., 2001). Radiometric dates and sulfur 526 

isotope chemostratigraphy place the deposition of the Kuibis Subgroup in the Nama Group 527 

contemporaneous with the A0 Member of the Ara Group, in Oman (Bowring et al., 2007; 528 

Fike and Grotzinger, 2008; Tostevin et al., 2017), which contains sulfate evaporite minerals, 529 

providing a direct link between the timing of the δ44Ca transition and evaporite deposition. 530 

Calcite pseudomorphs after gypsum have been reported from the Dengying Formation, 531 

South China, which is contemporaneous with the Nama Group (Cui et al., 2019; Duda et al., 532 

2016; Lu et al., 2013).  533 

 534 



 535 

Figure 6: Steady-state mass balance model for seawater δ44Ca as a function of the 536 

proportional evaporite burial flux (Fevap/Ftotal). Two sets of calculations are shown, using a 537 

∆44Ca for dolomitisation of either 0‰ (early dolomitisation; blue line) or –1.58‰ (late 538 

stage dolomitisation; red line).  539 

 540 

Table 2: Magnitude and δ44Ca of fluxes used in evaporite mass balance cycle model. 541 

The model assumes that the input fluxes are equal to the output fluxes (i.e., steady state). 542 

 Flux Magnitude δ44Ca (‰) 

Inputs Riverine 1.24*1013 –1.08 

Dolomitisation 1.5*1012 –1.58 (late-stage)  

0 (early)  

Outputs Limestone (1–Fevap) –1.3 (average) 

Evaporite Fevap (varied from 0 to -0.18 



100%) 

Alteration of oceanic 

crust 

1.5*1012 = seawater 

 543 

 544 

5.2.2 Enhanced continental weathering  545 

 Enhanced continental weathering could drive an increase in the delivery of calcium 546 

to seawater. If there is an imbalance between the riverine Ca flux, and the carbonate 547 

sedimentation flux, both the concentration and isotopic ratio of calcium in seawater can be 548 

perturbed.  For example, a 300% increase in the riverine Ca flux can produce a 0.2–0.4‰ 549 

negative calcium isotope excursion in seawater over 0.5–1 Myrs (Blättler et al., 2011), 550 

which is comparable in magnitude to the progressive 0.35‰ decline in δ44Ca across the 551 

Nama Group, although over the longer timescale of 11–14 million years. Given the 552 

residence time of calcium in seawater (1.1 Myrs in the modern ocean), it is difficult to 553 

sustain an isotopic perturbation over such long timescales, because carbonate precipitation 554 

rates would rise in response to higher marine calcium concentrations, driving seawater 555 

δ44Ca back towards higher values. 556 

Enhanced continental weathering is supported by the rise in Sr content across the 557 

Nama Group. Strontium contents in carbonates are partially controlled by the size of the 558 

seawater Sr reservoir, which is also sensitive to the mass balance between continental 559 

weathering and carbonate deposition (Steuber and Veizer, 2002). Although the Sr content 560 

of carbonate rocks is partially controlled by precipitation rate, mineralogy, and diagenesis, 561 

global variations in the Sr content of carbonate rocks across multiple sections implies 562 



secular variation in the size of the marine Sr reservoir. A rise in strontium content through 563 

the Kuibis Subgroup is recorded independently in four sections in this study, as well as in 564 

previous studies of the Nama Group (Ries et al., 2009), despite the different extraction 565 

method used. A similar rise in Sr content been reported globally in the contemporaneous 566 

carbonate rocks from the Dengying Formation, south China (Cui et al., 2016b) and the 567 

Bambui Formation, Brazil (Caetano-Filho et al., 2019). This supports a secular change in 568 

the size of the seawater Sr reservoir consistent with enhanced continental weathering. 569 

 570 

5.2.3 Changes in the style of dolomitisation 571 

 Over long timescales, the average carbonate depositional sink must be close to bulk 572 

silicate Earth, although within this bulk carbonate sink, dolomite tends towards higher 573 

δ44Ca and limestone towards lower δ44Ca (Blättler and Higgins, 2017). Therefore, any 574 

changes in the amount of dolomite, or the calcium isotopic fractionation associated with 575 

dolomitisation, could influence the δ44Ca of seawater, and hence the average δ44Ca of 576 

limestone deposition. A switch from early dolomitisation, where dolomite retains the low 577 

δ44Ca associated with primary aragonite or calcite, towards late-stage dolomitisation, 578 

where the δ44Ca is re-set and 40Ca is preferentially released into pore fluids, could result in 579 

a decrease in seawater δ44Ca of up to 0.17‰ (Table 2 and Figure 6).  580 

In Neogene environments, dolomite commonly has a higher δ44Ca than limestone 581 

(Blättler et al., 2015; Fantle and Higgins, 2014; Higgins et al., 2018). In contrast, such 582 

differences are not visible in compilations of carbonate rocks across the Precambrian (from 583 

3.0 – 0.7 Ga; Blättler and Higgins, 2017). Early marine cements from carbonate rocks on the 584 

Siberian Platform support a fundamental transition in the carbonate system in the Late 585 



Ediacaran, from “aragonite-dolomite” seas to “aragonite” seas (Wood et al., 2017b), 586 

possibly driven by a reduction in the seawater Mg/Ca ratio. It is possible that the late 587 

Ediacaran captures a transition in the style of dolomitisation, from early mimetic 588 

dolomitisation, with a similar δ44Ca to limestone, towards later stage “Phanerozoic style” 589 

dolomitisation with a higher δ44Ca (Blättler et al., 2015; Fantle and Higgins, 2014). This 590 

would drive a decrease in the average δ44Ca seawater, which would be reflected in the 591 

lower δ44Ca captured by marine limestones. 592 

 593 

5.2.4 Additional evidence for changes in Ediacaran seawater chemistry 594 

The negative shift in δ44Ca across the Nama Group may result from a combination of 595 

environmental factors.  For example, the rapid change in δ44Ca across the Kuibis Subgroup 596 

may reflect an imbalance in the calcium cycle during the onset of higher continental 597 

weathering rates, resulting in the growth of the marine calcium and sulfate reservoirs, and 598 

thus a reduction in the seawater Mg/Ca ratio.  The system could then have reached a new 599 

steady state in the Schwarzrand Subgroup; with higher weathering rates matched by 600 

increased carbonate and evaporite deposition, and changes in the style of dolomitisation. 601 

Evaporite deposition could further decrease marine Mg/Ca ratios, as the burial flux of Mg 602 

in evaporite deposits, as a proportion of the total Mg budget, is larger than the proportional 603 

burial flux of Ca. Increased physical and chemical weathering would impact multiple 604 

biogeochemical cycles, delivering Ca, Sr and SO42- ions, alkalinity, and nutrients to the 605 

oceans (Blättler et al., 2011).   606 

An increase in marine calcium concentrations across the Ediacaran–Cambrian 607 

boundary is supported by evidence for a peak in physical and chemical weathering of 608 



continental crust in long-term stratigraphic and geochemical records (Peters and Gaines, 609 

2012).  For example, very high 87Sr/86Sr (from 0.708 to 0.7087) are recorded in Late 610 

Ediacaran limestones from South China (Figure 7a), Mongolia (Figure 7b), Oman (Figure 611 

7c), Namibia, (Figure 7d) and Siberia (Figure 7e), interpreted to reflect enhanced 612 

continental weathering (Brasier et al., 1996; Burns et al., 1994; Cui et al., 2016a, 2015; 613 

Kaufman et al., 1993; Sawaki et al., 2013). Although there is some variability in the 614 

87Sr/86Sr ratio between sections, the high values are consistent with long term 615 

compilations that show 87Sr/86Sr reached a peak during the late Ediacaran (Halverson et 616 

al., 2007). An expansion of seafloor anoxia, recorded by uranium and sulfur isotopes, could 617 

be a response to elevated nutrient input (Figure 8) (Tostevin et al., 2019; Zhang et al., 618 

2018). Enhanced delivery of sulfate could also drive a rise in pyrite burial, as well as 619 

changes in riverine δ34S, and could be consistent with δ34SCAS and ∆33SCAS records from the 620 

Nama and Ara groups (Figure 8) (Fike and Grotzinger, 2008; Tostevin et al., 2017; Wu et al., 621 

2015). Thus many geochemical proxies have been suggested to reflect some change in 622 

terrestrial weathering over this interval. 623 

 624 



 625 

Figure 7: 87Sr/86Sr ratios for the last ca. 10 Myr of the terminal Ediacaran, compiled from 626 

the literature. 87Sr/86Sr from south China are from the Dengying formation (Sawaki et al., 627 

2010). 87Sr/86Sr from Mongolia were reported from the Tsagaan Oloom Formation (Brasier 628 

et al., 1996), and subsequent stratigraphic revisions place the data in the late Ediacaran 629 

Zuune Arts Member (Macdonald et al., 2009). Data from Oman are from the Buah and Ara 630 

Formations (Burns et al., 1994). Data from the Nama Group are from Kaufman et al., 631 

(1993). Data from the Khatyspyt Formation are from (Cui et al., 2016a). 632 
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 634 

Figure 8: From left to right: Stratigraphic log, sequence stratigraphy, carbon isotope data, 635 

Sr content, δ44Ca, δ34SCAS and δ238U for the Lower Nama Group at Zebra River Farm. Beds 636 

containing skeletal fossils are marked on the stratigraphic log. δ238U and δ34SCAS data are 637 

published in full in Tostevin et al., 2019 and 2017, respectively. Sequence stratigraphy is 638 

from Adams et al., (2005) 639 

 640 

Increased calcium concentrations, and an associated reduction in the seawater 641 

Mg/Ca ratio, would increase the carbonate saturation state and alter the stability of various 642 

carbonate precipitates. High carbonate saturation states are consistent with a dominance 643 

of carbonate lithologies, associated with exceptionally high accumulation rates (~65 644 

m/Myr in the Dengying Formation, and ~100 m/Myr in the Nama Group) (Cui et al., 645 

2016b), as well as densely-aggregating reefs with extensive synsedimentary cement, large 646 

meter-scale metazoans, and Suvorovella shells beds >1 km in length (Cai et al., 2011; 647 



Grotzinger et al., 2005; Penny et al., 2014; Wood et al., 2017a, 2002; Wood and Curtis, 648 

2015).  This may have been driven by increasing marine calcium concentrations, although 649 

the onset of bioturbation around ~560 Ma may also have contributed to increased 650 

carbonate saturation, by modifying pH gradients in the top centimetres of sediment and 651 

returning sediment alkalinity to bottom waters (Higgins et al., 2009). 652 

Despite a proposed increase in sulfate and calcium delivery to the oceans, seawater 653 

would likely have remained below critical supersaturation with respect to gypsum. 654 

Evaporite deposition is instead controlled by tectonic and climatic factors, such as the 655 

formation of semi-isolated basins during rifting. The assembly of Gondwana, between ~580 656 

and ~550 Ma, was associated with tectonic inversion and the weathering of Tonian age 657 

evaporite deposits (Shields et al., 2019). The end of this period may have marked a slow-658 

down in evaporite weathering, ushering in a new period of rifting and evaporite deposition. 659 

The rifting of the proposed supercontinent Pannotia may have occurred around this time, 660 

although the existence of this short-lived supercontinent is debated (Scotese, 2009). 661 

Together, geological, sedimentological and geochemical evidence supports higher rates of 662 

continental weathering, sustained over tens of millions of years, which delivered sulfate 663 

and calcium ions to Late Ediacaran oceans. 664 

 665 

5.3 Implications for early skeletal animals 666 

Calcareous hard parts appeared relatively abruptly in the terminal Ediacaran (~550 667 

Ma) in a range of immobile, shallow marine benthos of probable diverse affinity (Wood, 668 

2011). These early skeletal taxa are found exclusively in carbonate settings and likely 669 

formed biominerals via a pre-existing organic matrix. Together, these observations suggest 670 



that the earliest calcification occurred preferentially in CaCO3 saturated waters (Wood et 671 

al., 2017a). Biomineralisation is energetically costly (Knoll, 2003), and the impetus for its 672 

development in the terminal Ediacaran remains enigmatic.  673 

 If the shift in δ44Ca records enhanced continental weathering and delivery of 674 

calcium ions, the apparent coincidence in time with the first appearance of skeletal animals 675 

may be significant for three reasons.  Firstly, high carbonate saturation in shallow shelf 676 

environments could have facilitated the onset of passive calcification (Wood et al., 2017a). 677 

Secondly, under high seawater calcium concentrations, cellular transporters may struggle 678 

to regulate intracellular calcium levels, which can lead to calcium toxicity (Simkiss, 1977). 679 

In response, organisms may begin to precipitate carbonate minerals as a mechanism to 680 

effectively expel calcium from the cell. Thirdly, a reduction in the Mg/Ca ratio of the ocean 681 

would have thermodynamically favoured widespread aragonite precipitation over 682 

dolomite (Wood et al., 2017). No organism is known to co-opt dolomite as a biomineral, but 683 

most Ediacaran skeletal metazoans formed their shells from aragonite (Zhuravlev and 684 

Wood, 2008).  685 

While environmental changes may have contributed to the appearance of calcareous 686 

skeletons, by making options evolutionarily available that were previously inaccessible, the 687 

primary factor explaining the appearance of biomineralisation must be ecological (Vermeij, 688 

1989; Wood, 2011). Biomineralisation was preceded by the appearance of motility (~560 689 

Ma) and possible carnivory (~550 Ma), and the development of hard parts would have 690 

been beneficial for the protection of soft tissue (Knoll, 2003). However, it is possible that 691 

environmental changes made building aragonitic skeletons progressively more favourable 692 

after ~550 Ma. 693 



 694 

6. Conclusions 695 

We present new δ44Ca data for limestone rocks from the Nama Group, Namibia, that 696 

reveal a shift towards lower δ44Ca around ~550 Ma. One interpretation of this shift is a 697 

local change from fluid- to sediment-buffered diagenesis of primary aragonite deposited 698 

over this interval. However, this interpretation is difficult to reconcile with changes in 699 

other geochemical and sequence stratigraphic records from the Nama Group that change 700 

across independent timescales. If instead, δ44Ca records changes in the marine calcium 701 

cycle, the data could indicate enhanced weathering fluxes, matched by increased evaporite 702 

deposition and changes in the style of carbonate deposition. Enhanced weathering would 703 

also deliver more SO42−, alkalinity and nutrients to the oceans, and this is supported in the 704 

late Ediacaran by an array of stratigraphic, sedimentological and geochemical records. 705 

Increased marine calcium concentrations, and lower Mg/Ca ratios (<5) could have 706 

facilitated the appearance of aragonitic skeletal animals, which are documented from 707 

within the same successions.  708 
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