
Fundamental results for learning deterministic extended
finite state machines from queries

Florentin Ipatea, Marian Gheorgheb and Raluca Lefticarub

aDepartment of Computer Science, Faculty of Mathematics and Computer Science and
ICUB, University of Bucharest Str. Academiei 14, sector 1, 010014, Bucharest, Romania;

Email: florentin.ipate@ifsoft.ro
bDepartment of Computer Science, Faculty of Engineering and Informatics, University of

Bradford, Bradford BD7 1DP, United Kingdom;
Email: {m.gheorghe, r.lefticaru}@bradford.ac.uk

Abstract

Regular language inference, initiated by Angluin, has many developments, in-
cluding applications in software engineering and testing. However, the capability
of finite automata to model the system data is quite limited and, in many cases,
extended finite state machine formalisms, that combine the system control with
data structures, are used instead. The application of Angluin-style inference
algorithms to extended state machines would involve constructing a minimal
deterministic extended finite state machine consistent with a deterministic 3-
valued deterministic finite automaton. In addition to the usual, accepting and
rejecting, states of finite automaton, a 3-valued deterministic finite automaton
may have “don’t care” states; the sequences of inputs that reach such states
may be considered as accepted or rejected, as is convenient. The aforemen-
tioned construction reduces to finding a minimal deterministic finite automaton
consistent with a 3-valued deterministic finite automaton, that preserves the
deterministic nature of the extended model that also handles the data structure
associated with it. This paper investigates fundamental properties of extended
finite state machines in relation to Angluin’s language inference problem and
provides an inference algorithm for such models.

Keywords: 3DFA, finite automata, learning from queries, extended finite
state machines, X-machines

1. Introduction

Finite automata are widely investigated formalisms [1] with well-known ap-
plications in programming languages specification and implementation [2], sys-
tem design, with a plethora of methods and techniques utilised in their formal
analysis, verification [3] and testing [4]. In many circumstances, such models
are not produced or maintained during system development and the only way

Preprint submitted to Theoretical Computer Science September 9, 2020

of generating them is through inference, by examining the external behavior of
the implementation.

Regular language inference was initiated by Angluin [5], who also introduces
a learning algorithm, called L∗. A number of variants of the L∗ algorithm have
been introduced and investigated: domain-specific optimizations [6], a modified
algorithm whose complexity depends on the representation of the deterministic
finite automaton rather than on the size of the alphabet [7] and, more recently,
a learning algorithm for cover automata [8]. Existing publications outline the
importance of this research in software engineering applications [9], including
industrial automation systems and testing [10].

While finite automata can successfully model the control aspects of a sys-
tem, their capability to model the system data is quite limited. On the other
hand, extended finite state machine (EFSM, for short) formalisms, that combine
the system control with data structures, exist and can be used to alleviate this
limitation. This model is successfully used in model based testing of interactive
systems [11]. A survey on the use of EFSM model for test case generation can
be found in [12]. In order to apply the automata based techniques to a system
modelled by an EFSM, a finite automaton has to be abstracted from the actual
EFSM, which may prove, technically, a problematic transformation. In particu-
lar, as shown in section 4, the application of Angluin-style inference algorithms
to EFSM would involve constructing a minimal deterministic EFSM consistent
with a 3-valued deterministic finite automaton (3DFA, for short). In addition
to the usual, accepting and rejecting, states of finite automaton, a 3DFA may
have “don’t care” states; the sequences of inputs that reach such states may
be considered as accepted or rejected, as is convenient. The aforementioned
construction reduces to finding a minimal DFA consistent with a 3DFA, that
preserves the deterministic nature of the extended model. The problem is non-
trivial since the extended model contains, in addition to states and transition
between states, a memory structure and rules for updating the memory associ-
ated with transitions. This is addressed in this paper.

The type of EFSM used here is the stream X-machine (SXM, for short).
The SXM model has been investigated for both theoretical aspects as well as its
potential to be applied in model based testing [13]. SXM also has benefitted from
a set of robust test generation methods [14, 15, 16, 17, 18, 19, 20]; model based
testing is an important means used to improve dependability of critical systems
[21]. SXMs are used as underlying formal models in agent-based systems and
the simulation framework called FLAME, that has many important applications,
ranging from biology [22, 23] to macroeconomy [24].

The SXM model is also linked with membrane computing. Several classes
of P systems [25] have been studied in connection with the SXM model [26]
showing the potential of transferring methods from one domain to the other
[27, 28].

The remainder of the paper is structured as follows. Sections 2 and 3 present
background information. Section 4 introduces the stream X-machine model and
clarifies the motivation of the paper (the application of Angluin-style inference
algorithms to stream X-machines). The following three sections, that constitute

2

the novel contribution of the paper, provide results and algorithms for construct-
ing a minimal deterministic stream X-machine consistent with a deterministic
3DFA. Conclusions are drawn and future work is outlined in section 8.

2. Preliminaries

Basic notations and concepts used in the paper are introduced below. Given
a finite set A, called alphabet, A∗ is the set of all finite sequences of symbols
over A with ε being the empty sequence. For a, b two sequences from A∗, their
concatenation is denoted by ab. If a sequence a ∈ A∗, is such that a = bc, with
b, c ∈ A∗, then b is called a prefix of a and c is a suffix of a. For U ⊆ A∗, the
complement of U , denoted U, is given by U = A∗ \ U .

Deterministic finite automata and related concepts and results to be later
investigated in the paper are now briefly introduced.

M = (A,Q, h, q0, F) is called deterministic finite automaton (DFA, for short),
where A,Q,F , with F ⊆ Q, are finite sets called input alphabet, set of states,
and set of final states, respectively; h is the next-state function, h : Q×A −→ Q,
and q0 ∈ Q is the initial state.

The function h is usually extended to sequences over A, h′ : Q×A∗ −→ Q,
where h′(q, ε) = q, q ∈ Q, and h′(q, sa) = h(h′(q, s), a), with q a state in Q, s
a sequence over A and a a symbol in A. For simplicity, h will be used in both
cases.

For q ∈ Q, we define the set LqM = {s ∈ A∗ | h(q, s) ∈ F}. When q = q0, Lq0M
is called the language accepted by M , simply denoted by LM . A state q from
Q is called reachable if there is a sequence s from A∗ such that h(q0, s) = q. A
DFA M is called reachable if all its states are reachable. A DFA M is called
reduced if any two distinct states q1 and q2 have the property Lq1M 6= Lq2M . A
DFA M is called minimal if any DFA accepting LM has the number of states
greater than or equal to those of M.

3. Background - learning regular languages from queries

In the set-up of Angluin’s L∗ algorithm, a learner will infer an unknown
regular language U ⊆ A∗ over a known alphabet A by asking questions to a
teacher and an oracle. There are two kinds of questions:

• Membership queries - the learner checks with the teacher whether certain
input sequences belong to U and the results of the queries are kept in an
observation table. Periodically, based on the observation table, a DFA is
built.

• Equivalence queries - the learner asks the oracle whether the constructed
DFA accepts U . The oracle answers “yes” when M is the correct DFA.
Otherwise, it provides a sequence t (called counterexample), which is in
one of U or LM , but not in both. The observation table is then modified
based on the counterexample t.

3

Eventually, a minimal DFA for U is produced.
The set of input sequences in the observation table is given by (S ∪ SA)W ,

where S is a non-empty, finite, prefix-closed set of sequences, A is the above
mentioned alphabet, and W is a non-empty, finite, suffix-closed set of sequences.
The observation table is represented as a mapping O : (S ∪ SA)W −→ {0, 1}
such that O(u) = 1 when u ∈ U and O(u) = 0 for u /∈ U .

The table can be also represented as a two-dimensional array having rows
labelled by elements of S ∪ SA and columns labelled by elements of W . In
this case, the value of the array corresponding to row labelled by elements of
s ∈ S ∪ SA and column labelled by elements of w ∈W is O(sw). The row with
values 0 or 1, and labelled s, s ∈ S ∪ SA, is denoted by row(s). Initially in the
observation table, we have S = W = {ε}.

The algorithm uses the concepts of consistent and closed observation table.
An observation table is consistent when for any s1, s2 ∈ S such that row(s1) =
row(s2), then row(s1a) = row(s2a), for any symbol a in A. An observation
table is closed when for any sequence s in SA, there exists a sequence t in S
such that row(s) = row(t).

For a consistent and closed observation table, the algorithm constructs the
corresponding DFA,M(S,W,O) = (A,Q, h, q0, F), whereQ = {row(s) | s ∈ S};
h(row(s), a) = row(sa), s ∈ S, a ∈ A; q0 = row(ε); F = {row(s) | s ∈ S,O(s) =
1}.

The algorithm extends the observation table whenever one of the following
three situations occurs: the table is not consistent, the table is not closed or
the table is both consistent and closed but the resulting automaton M(S,W,O)
does not accept U (in which case a counterexample is produced). Each time the
observation table is extended as a result of an incorrect consistency or closedness
check, the number of distinct rows increases. The reader is referred to [5] for
the full description of the L∗ algorithm and further details.

A more general case, in which not all the answers provided by the teacher are
relevant for the automaton to be learned, has also been studied [29, 30, 31, 32].
In addition to “yes” and “no” the teacher can also respond by “don’t care” to
membership queries. More formally, let U1, U2 ⊆ A∗ be two disjoint regular
languages. A deterministic finite automaton M is said to separate U1 and U2 if
the language LM accepted by M contains U1 and is disjoint from U2, i.e. U1 ⊆
LM and LM∩U2 = ∅ (U1 ⊆ LM ⊆ U2). M is called a minimal separating DFA of
U1 and U2 if M has the minimum number of states among all DFAs separating
U1 and U2. The most computationally efficient approach for this scenario is
the LSep algorithm [29], that uses the concept of 3-valued deterministic finite
automaton.

Definition 3.1. A 3-valued deterministic finite automaton (or 3DFA) is a tu-
ple C = (A,Q, h, q0, Acc,Rej,Dont), where A,Q, q0, h are the components of a
deterministic finite automaton and the state set Q is partitioned into three sets:
Acc, Rej and Dont, denoting accepting states, rejecting states and don’t care
states, respectively.

4

A sequence s ∈ A∗ is accepted by C if h(q0, s) ∈ Acc, is rejected by C if
h(q0, s) ∈ Rej and is a don’t care sequence if h(q0, s) ∈ Dont. Let us consider
the following DFAs, C+ = (A,Q, h, q0, Acc ∪Dont), with the don’t care states
becoming accepting states, and C− = (A,Q, h, q0, Acc), with the don’t care
states being rejecting states. LC− corresponds to the set of accepted sequences
in C and LC+ represents the set of rejected sequences in C.

Definition 3.2. A DFA M with the same input alphabet as the 3DFA C is
consistent with C if M accepts all the sequences accepted by C and rejects all
the sequences rejected by M , i.e. LC− ⊆ LM ⊆ LC+ .

A minimal DFA consistent with a 3DFA C is a DFA consistent with C and
having a minimum number of states.

Given two disjoint regular languages, U1 and U2, the LSep algorithm finds
a minimal separating DFA of U1 and U2 by first inferring a 3DFA C from the
samples collected from U1 and U2. C is constructed by accepting all sequences
in U1 and rejecting all sequences in U2, whereas the remaining sequences will
take C to don’t care states.

Similarly to the L∗ algorithm, in the LSep algorithm a learner asks two types
of questions to a teacher and an oracle:

• Membership queries, answered to by the teacher. Unlike in the case of the
L∗ algorithm, there are three possible answers to a membership query:
“true”, if the input sequence is in U1, “false”, if the input sequence is in
U2 and “don’t care”, otherwise.

• Containment queries, answered to by the oracle. There are four types
of containment queries: (1) U1 ⊆ LM , (2) LM ⊆ U1, (3) U2 ⊆ LM , (4)
LM ⊆ U2, where M is the conjecture DFA. The oracle will answer “yes”
if M satisfies the containment query, or else supply a counterexample.

The LSep algorithm involves the following steps [29]:

• Candidate generation. In this step a 3DFA candidate is generated from
membership queries by extending the table in L∗ to allow entries with
don’t care results. In this case, the function O will take three values:
O(u) = 1 if u ∈ U1, O(u) = 0 if u ∈ U2 and O(u) = −1 otherwise (−1 is
used for don’t care). Similarly to the L∗ algorithm, with a closed and con-
sistent table, the algorithm will produce a candidate 3DFA, C(S,W,O),
which will be checked for completeness (second step of the algorithm) and
soundness (fourth step of the algorithm). If the completeness or sound-
ness checks fail, the algorithm will extend the observation table by using
the received counterexample and will eventually produce a new candidate
3DFA.

• Completeness checking. In this step, the algorithm checks if LC(S,W,O)− ⊆
U1 and U2 ⊆ LC(S,W,O)+ . If either of these queries fails, a counterexam-
ple is produced and sent to candidate generation to refine the conjecture

5

3DFA. Several iteration steps involving candidate generation and com-
pleteness checks may be needed before a candidate 3DFA that satisfies
the two conditions above is produced. As the LSep algorithm reduces
the problem of finding a minimal separating DFA of U1 and U2 to find-
ing a minimal DFA consistent with C(S,W,O), this step ensures that all
separating DFAs of U1 and U2 are considered.

• Finding a minimal consistent DFA. The next step of the algorithm con-
sists of finding a minimal DFA M(S,W,O) consistent with C(S,W,O).
The LSep algorithm reduces this problem to the minimization problem of
incompletely specified finite state machines and invokes the algorithm in
[33] for this purpose.

• Soundness checking. The fourth step of the algorithm checks whether
M(S,W,O) is a separating DFA of U1 and U2 by using the containment
queries U1 ⊆ LM(S,W,O) and LM(S,W,O) ⊆ U2. If both checks succeed then
M(S,W,O) is the minimal separating DFA of U1 and U2; otherwise, a
counterexample is produced and sent to the candidate generator to refine
the 3DFA and start a new iteration.

The algorithm is polynomial in the number of membership queries and the
length of the longest counterexample. However, finding a minimal DFA consis-
tent with a 3DFA is computationally expensive and so a heuristic that finds a
“reduced” (but not necessarily minimal) DFA consistent with a 3DFA is also
proposed. For further details the reader is referred to [29].

4. Motivation - learning stream X-machines from queries

A stream X-machine consists of a finite automaton, representing the con-
trol component, and a data store, called memory. Like a finite state machine,
a stream X-machine processes input sequences producing output sequences.
However, the transition labels do not indicate abstract symbols, like in a fi-
nite automaton, but processing functions. Each processing function, a partially
or completely defined function representing an elementary operation, reads an
input and, depending on the current memory value, produces an output and
updates the memory value.

Definition 4.1. A stream X-Machine (abbreviated as SXM) is a tuple Z =
(Σ,Γ, Q,Mem,Φ, h, q0,m0), where:

• Σ is a finite set called input alphabet;

• Γ is a finite set called output alphabet;

• Q is the finite set of states;

• Mem is a set called memory;

6

• Φ is a finite set of distinct processing functions; a processing function is
a non-empty (possibly partial) function of type Mem× Σ −→ Γ×Mem;

• h is the (possibly partial) next-state function, h : Q× Φ −→ Q;

• q0 ∈ Q is the initial state;

• m0 ∈Mem is the initial memory value.

Intuitively, a SXM Z can be regarded as a deterministic finite automaton
with transition labels indicating functions from the set Φ. The automaton
MZ = (Φ, Q, h, q0, Q), where Φ is the alphabet of function labels, is called the
associated deterministic finite automaton (abbreviated as associated DFA) of Z.

The set Φ is called the type of Z. When a SXM Z is used as a model of
a software system, each processing function of Φ specifies components used in
the software system, such as basic operations, more complex components or
even sub-systems. The memory normally represents the variable values used by
the computer program. Often, Mem is defined as a set of tuples, where each
component indicates either a global variable or a parameter that may be passed
between the elements of Φ [13].

Note 4.1. Mem may be potentially infinite, but in practice it is always finite
and this is the assumption we make in this paper, i.e. Mem is finite.

Note that, as defined above, MZ does not have explicit rejecting states, but
the next-state function h may be a partial function, so the rejected sequences of
processing functions are those that cannot be traced out from the initial state
q0. For consistency with the definition of a DFA from section 2, we introduce
a rejecting state rej /∈ Q that “collects” all the undefined transitions and so
the associated DFA MZ will be the tuple MZ = (Φ, Q ∪ {rej}, h, q0, Q), with h
completely-defined. As with any automaton, the function h may be extended
to sequences from Φ∗ and one can define LqMZ

= {p ∈ Φ∗ | h(q, p) ∈ Q}.
Also, similarly to finite automata, when q = q0, this will be called the language
accepted by MZ and denoted by LMZ

. This includes all the paths from q0.
A sequence p of processing functions induces a (partial) function ‖p‖ that

describes the relationship between a (memory value, input sequence) pair and
an (output sequence, memory value) pair produced by the application, in turn,
of the processing functions in the sequence p. More formally, given p ∈ Φ∗,
‖p‖ : Mem × Σ∗ −→ Γ∗ ×Mem is defined by: ‖ε‖(m, ε) = (ε,m), m ∈ Mem;
for p ∈ Φ∗ and φ ∈ Φ, ‖pφ‖(m, sσ) = (gγ,m′), for m,m′ ∈ Mem, s ∈ Σ∗, g ∈
Γ∗, σ ∈ Σ, γ ∈ Γ such that there exists m′′ ∈ Mem with ‖p‖(m, s) = (g,m′′)
and φ(m′′, σ) = (γ,m′).

A machine computation takes all accepted sequences of processing functions
associated with transitions starting from the initial state and then applies it to
the initial memory value. This gives rise to the relation (function) computed
by Z, denoted fZ , that links input sequences processed by the sequences of
processing functions to the output sequences produced. More formally, fZ :

7

Σ∗ ←→ Γ∗ contains all pairs (s, g), s ∈ Σ∗, g ∈ Γ∗, with the property that there
exist p ∈ Φ∗ and m ∈Mem such that h(q0, p) ∈ Q and ‖p‖(m0, s) = (g,m).

A deterministic SXM (abbreviated DSXM) is a SXM with at most one pos-
sible accepted transition for any triplet (state, memory, input). More formally,
a deterministic SXM Z has the property that for every φ1, φ2 ∈ Φ, and q ∈ Q,
if h(q, φ1) ∈ Q and h(q, φ2) ∈ Q then either φ1 = φ2 or dom φ1 ∩ dom φ2 = ∅.
When Z is deterministic, its associated DFA MZ is called Φ-deterministic. A
DSXM will compute a (partial) function fZ . In this paper we only consider
deterministic stream X-machines.

Naturally, not all sequences of processing functions of a DSXM can be as-
sociated to input sequences. For a memory value m, a sequence of processing
functions triggered from m by an input sequence is called realizable in m or
simply realizable when m = m0 [18]. The set of realizable sequences in m is
denoted by RΦ(m) and when m = m0 the notation is RΦ. More formally, the
set RΦ(m) ⊆ Φ∗ consists of all sequences p = φ1 . . . φn ∈ Φ∗, n ≥ 0, for which
there exists s ∈ Σ∗ such that (m, s) ∈ dom ‖p‖.

Note 4.2. The realizable sequences of functions φ ∈ Φ that appear in RΦ can
be described by a finite automaton having as states memory values from Mem,
as this is finite (see Note 4.1), and transitions labelled by functions φ. Indeed,
whenever φ is applied for an input σ ∈ Σ and a memory m ∈ Mem, yielding
and output γ ∈ Γ and a new memory value m′ ∈Mem, i.e. φ(m,σ) = (γ,m′),
one can define a transition from m to m′ labelled φ. Hence, RΦ is a regular
language.

The stream X-machine model has been successfully used as a basis for test
generation and a number of such methods exist. These methods identify certain
design constraints for the specification, referred to as design for test conditions,
that facilitate the testing process. Naturally, different DSXM based testing
methods may ask for different design for test conditions, of different strength,
but all methods require, quite naturally, the tester to be able to determine the
sequence of processing functions applied in the implementation under test to a
given input sequence by examining the output sequence produced. This require-
ment, imposed on the DSXM specification, is called output-distinguishability.

Definition 4.2. Φ is said to be output-distinguishable if for all φ1, φ2 ∈ Φ,
whenever there exist m,m1,m2 ∈ Mem, σ ∈ Σ, γ ∈ Γ such that φ1(m,σ) =
(γ,m1) and φ2(m,σ) = (γ,m2), we have φ1 = φ2.

Let us briefly examine how the previously presented methods for learning
regular languages can be applied to stream X-machines. More specifically, sup-
pose a learner is trying to learn the minimal DSXM of an unknown DSXM
Z with known type output-distinguishable Φ and initial memory value m0 by
asking queries to a teacher and an oracle.

Analogously to the L∗ algorithm, two kinds of queries can be used:

• Value queries - the learner is asking the teacher the value of the function
fZ for a given input sequence s. On the basis of the results produced by
the teacher, periodically, a DSXM Z ′ will be constructed.

8

• Equivalence queries - the learner is asking the oracle whether the con-
structed DSXM Z ′ is correct, i.e. it computes fZ . The answer of the
oracle is “yes” when the constructed DSXM Z ′ is correct, otherwise a
counterexample t, such that fZ(t) 6= fZ′(t), is supplied.

Analogously to the learning algorithms for DFA presented above, the DSXM
learning algorithm relies on an observation table, associated with a function O
mapping finite sequences of processing functions to some distinct values; it will
transpire that at most three values are needed. The table will be given by a two-
dimensional array with rows corresponding to values from S ∪ SΦ and columns
given by elements of the set W , where S, a subset of Φ∗, is a non-empty, finite,
prefix-closed set of sequences of processing functions and W , a subset of Φ∗, is a
non-empty, finite, suffix-closed set of sequences of processing functions. Initially
in the observation table we have S = W = {ε}.

Consider a sequence of processing functions, p ∈ (S ∪ SΦ)W . In order to
establish the value of O(p), the algorithm will decide if p ∈ RΦ. The following
cases can be then distinguished:

• p /∈ RΦ. In this case it does not matter if p ∈ LMZ
since p does not

contribute to the computed function fZ . Consequently, we assign O(p)
the don’t care value −1, i.e. O(p) = −1.

• p ∈ RΦ. In this case the algorithm will construct input sequence s
such that (m0, s) ∈ dom ‖p‖ and will ask the teacher for the value
g = fZ(s). Let ‖p‖(m0, s) = (g′,m), g′ ∈ Γ, m ∈ Mem. Since Φ is
output-distinguishable, p ∈ LMZ

if and only if g = g′ [13]. Then O(p) = 1
if g = g′ (as it is known that p ∈ LMZ

) and O(p) = 0 otherwise (as it is
known that p /∈ LMZ

).

Now, suppose that the algorithm has constructed a conjecture DSXM Z ′.
Then the oracle will be asked if Z is correct and, otherwise, a counterexample t,
such that fZ(t) 6= fZ′(t), will be produced. Let fZ(t) = g and fZ′(t) = g′. Let
p ∈ LMZ′ be such that ‖p‖(m0, t) = (g′,m) for some m ∈Mem. As g 6= g′ and
Φ is output-distinguishable, it follows that p /∈ LMZ

Hence p ∈ LMZ′ \ LMZ
.

Note 4.3. From the above observations, it looks as though the DSXM learning
algorithm can be reduced to the LSep algorithm for learning a minimal separating
DFA of U1 and U2, where U1 = LMZ

∩ RΦ and U2 = LMZ
∩ RΦ (according to

Note 4.2, RΦ is regular, hence the above language is regular).

Note 4.4. However, the application of the LSep algorithm to DSXMs is not
straightforward since finding a minimal DFA consistent with a 3DFA (the 3rd
step of the algorithm) may yield a non-deterministic SXM, as shown next.

As the associated DFA of a DSXM has one rejecting state, the 3DFAs that
result from the application of the (extended) Angluin algorithm will also have
one rejecting state rej.

9

Note that, if a sequence p ∈ Φ∗ of processing functions is not realizable, then
pp′ ∈ Φ∗ is not realizable either for every p′ ∈ Φ∗, so any transition from a Dont
state will also go to a Dont state. Thus, one don’t state will suffice, so we can
consider that Dont = {dont} and h(dont, φ) = dont for all φ ∈ Φ.

Definition 4.3. Let C = (Φ, Q ∪ {rej}, h, q0, Acc, {rej}, {dont}), Q = Acc ∪
{dont}, be a 3DFA over the set of labels of the processing functions Φ. C is called
Φ-deterministic if for every φ1, φ2 ∈ Φ, and q ∈ Q such that h(q, φ1) ∈ Acc and
h(q, φ2) ∈ Acc then either φ1 = φ2 or dom φ1 ∩ dom φ2 = ∅.

One can observe that a Φ-deterministic 3DFA is also deterministic.

Example 4.1. A Φ-deterministic 3DFA, C1, and a minimal DFA, M1, consis-
tent with C1, but not Φ-deterministic are built.

Let C1 = (Φ, Q ∪ {rej}, h, q0, Acc, {rej}, {dont}) be as follows. Let Σ =
{a, b}, Γ = {x, y}, Mem = {0, 1, 2, 3}. Let Φ = {φ1, φ2, φ3, φ4} with φ1, φ2, φ3, φ4

defined by:
φ1(0, a) = (x, 1), φ1(2, a) = (x, 3);
φ2(1, a) = (y, 2), φ2(3, a) = (y, 3);
φ3(0, b) = (x, 1), φ3(1, b) = (x, 1), φ3(2, b) = (x, 2);
φ4(0, b) = (y, 1), φ4(3, b) = (y, 3).

Let Acc = {q0, q1, q2, q3} and h as defined in Figure 1. Also, for any φi ∈ Φ,
1 ≤ i ≤ 4, the next-state function, h, is defined in dont by h(dont, φi) = dont,
1 ≤ i ≤ 4. Let M1 = (Φ, Q′∪{rej′}, h′, q′0, Q′) with Q′ = {q′0, q′1} and h′ defined
as in Figure 2. M1 is consistent with C1 and, furthermore, M1 is a minimal
DFA. It can be observed that dom φi∩dom φj = ∅, 1 ≤ i < j ≤ 4, (i, j) 6= (3, 4)
and dom φ3 ∩ dom φ4 6= ∅. Since for every i, 0 ≤ i ≤ 3, h(qi, φ3) ∈ Acc
and h(qi, φ4) ∈ Acc do not hold simultaneously, C1 is a Φ-deterministic 3DFA.
On the other hand, since h′(q′1, φ3) = q′1 and h′(q′1, φ4) = q′1, M1 is not a Φ-
deterministic DFA.

q0 q1 q2 q3

dontrej

φ1, φ3

φ2

φ4 φ1, φ4

φ2

φ3

φ1

φ2, φ4

φ3

φ1, φ3

φ2, φ4

Figure 1: State transition diagram of C

The remainder of the paper investigates the construction of a minimal Φ-
deterministic DFA consistent with a Φ-deterministic 3DFA. The problem to

10

q′0 q′1

rej′

φ1, φ3

φ2

φ4

φ1, φ2, φ3, φ4

Figure 2: State transition diagram of M1

.

be addressed is as follows. Let Φ be a set of processing functions. In this
section we will use DFAs and 3DFAs over the set of labels of Φ. Let C =
(Φ, Q∪{rej}, h, q0, Acc, {rej}, {dont}), Q = Acc∪{dont}, be a Φ-deterministic
3DFA over the set of labels of Φ. We assume, without loss of generality, that
every state of C is reachable by some sequence from the initial state (otherwise
it can be removed without changing the languages accepted by C). We need to
construct a minimal Φ-deterministic DFA M that is consistent with C, that is
LC− ⊆ LM ⊆ LC+ (Definition 3.2). (A minimal Φ-deterministic DFA consistent
with C is a DFA that has minimum states among all Φ-deterministic DFAs
consistent with C).

5. Closed and domain-consistent decompositions

In our construction, we will use closed and domain-consistent decompositions
of the state space, as defined below.

Definition 5.1. Let C = (Φ, Q ∪ {rej}, h, q0, Acc, {rej}, {dont}), Q = Acc ∪
{dont}, be a Φ-deterministic 3DFA as above and M = (Φ, Q′∪{rej′}, h′, q′0, Q′)
a Φ-deterministic DFA. Given state q′ ∈ Q′∪{rej′} of M and state q ∈ Q∪{rej}
of C, we say that q′ covers q if, for every p ∈ Φ∗, (1) h(q, p) = rej implies
h′(q′, p) = rej′; (2) h(q, p) ∈ Acc implies h′(q′, p) ∈ Q′. We say that M covers
C if q′0 covers q0.

From this definition it follows that dont is covered by any state of M .
Let C be as in the first running example. Let M = (Φ, Q′∪{rej′}, h′, q′0, Q′)

with Q′ = {q′0, q′1, q′2} and h′ defined as in Figure 3. Then q′0 covers q0, q1 and
dont, q′1 covers q1, q2 and dont, q′2 covers q3 and dont, rej′ covers rej and dont.
As q′0 covers q0, M covers C.

Note 5.1. Given a subset of states R ⊆ Q ∪ {rej} and φ ∈ Φ, we denote
h(R,φ) = {h(q, φ) | q ∈ R}.

11

q′0 q′1 q′2

rej′

φ1, φ3

φ2

φ4

φ1

φ2, φ3

φ4
φ1, φ3

φ2, φ4

Figure 3: State transition diagram of M

.

The following definitions will refer to a Φ−deterministic 3DFA as defined
above.

Definition 5.2. States q1 and q2, q1, q2 ∈ Q ∪ {rej}, are said to be domain-
compatible if, for every φ1, φ2 ∈ Φ, the following holds: if h(q1, φ1) ∈ Acc and
h(q2, φ2) ∈ Acc then either φ1 = φ2 or dom φ1 ∩ dom φ2 = ∅.

Definition 5.3. Let Q1, Q2, . . . Qn, Qi ⊆ Q ∪ {rej}, 1 ≤ i ≤ n, be non-empty
subsets of states of C (not necessarily disjoint). Then D = {Q1, Q2, . . . Qn} is
called a decomposition of Q∪{rej} if (1) for every i, 1 ≤ i ≤ n, either Qi ⊆ Q
or Qi ⊆ {dont, rej} and (2) Q1 ∪ Q2 ∪ . . . ∪ Qn = Q ∪ {rej}. Qi is called an
accepting subset if Qi ⊆ Q and Qi is called a rejecting subset if Qi ⊆ {dont, rej}.

Definition 5.4. A decomposition D = {Q1, Q2, . . . Qn} of Q∪ {rej} is said to
be closed if for every i, 1 ≤ i ≤ n, and every φ ∈ Φ, there exists j, 1 ≤ j ≤ n,
such that h(Qi, φ) ⊆ Qj.

Definition 5.5. A decomposition D = {Q1, Q2, . . . Qn} of Q∪ {rej} is said to
be domain-consistent if, for every accepting subset Qi of the decomposition and
every two states q1, q2 ∈ Qi, q1 and q2 are domain-compatible.

A Φ-deterministic 3DFA admits at least one closed and domain-consistent
decomposition, the decomposition in which all subsets are singletons.

For C1 as in Example 4.1, D = {{q0, q1, dont}, {q1, q2, dont}, {q3, dont},
{rej, dont}} is a closed and domain-consistent decomposition of Q ∪ {rej}.

It will transpire that, in the construction of our minimal Φ-deterministic
DFA, we will need closed and domain-consistent decompositions with minimum
number of subsets of states. Therefore, it will be sufficient to consider decom-
positions for which there is only one rejecting subset (otherwise the rejecting
subsets can be merged and a closed and domain-consistent decomposition with

12

less number of subsets will be obtained) and there is no subset Qi = {dont}
(such a subset can be merged with the rejecting subset and, again, a closed and
domain-consistent decomposition with less number of subsets will be obtained).
Consequently, we impose the following additional restrictions on the definition
of a decomposition: (1) the decomposition contains only one rejecting subset
and (2) there is no subset Qi such that Qi = {dont}.

Definition 5.6. Let C = (Φ, Q ∪ {rej}, h, q0, Acc, {rej}, {dont}) be a Φ-de-
terministic 3DFA and D = {Q1, Q2, . . . Qn} a closed and domain-consistent
decomposition of Q ∪ {rej}. Then we denote by C/D the set of all DFAs M =
(Φ, Q′ ∪ {rej′}, h′, q′0, Q′) such that

• the state set Q′ ∪ {rej′} is D; the final states Q′ are all the accepting
subsets Qi; rej

′ indicates the rejecting subset of D;

• the next-state function is defined by: for every Qi ∈ D and every φ ∈ Φ,
if h(Qi, φ) = {dont} then h′(Qi, φ) = rej′, otherwise h′(Qi, φ) = Qj for
some Qj ∈ D such that h(Qi, φ) ⊆ Qj;

• the initial state is some Qi0 ∈ D such that q0 ∈ Qi0 .

The next-state function h′ is well defined since the decomposition D is closed –
see Note 5.1 and Definition 5.4.

The next-state function h′ has the property that, for every Qi ∈ D and
every φ ∈ Φ, h′(Qi, φ) = Qj for some Qj ∈ D such that h(Qi, φ) ⊆ Qj .
Additionally, when h(Qi, φ) = {dont}, Qj is necessarily the rejecting subset
indicated by rej′. This extra condition is imposed to ensure that the resulting
M is Φ-deterministic. Indeed, let φ1, φ2 ∈ Φ and i, 1 ≤ i ≤ n, such that
h′(Qi, φ1) ∈ Q′ and h′(Qi, φ2) ∈ Q′. Then there exist q1 ∈ Qi and q2 ∈ Qi such
that h(q1, φ1) ∈ Acc and h(q2, φ2) ∈ Acc. Since D is domain-consistent, either
φ1 = φ2 or dom φ1 ∩ dom φ2 = ∅. Thus M is Φ-deterministic.

For C1 as in Example 4.1, let Q1 = {q0, q1, dont}, Q2 = {q1, q2, dont},
Q3 = {q3, dont}, Q4 = {rej, dont}}. Then D = {Q1, Q2, Q3, Q4} is a closed and
domain-consistent decomposition of Q ∪ {rej}. We observe that h(Q1, φ1) =
{q1} = Q1 ∩Q2 and h(Q1, φ3) = {q1} = Q1 ∩Q2 and for all i and j, 1 ≤ i ≤ 3,
1 ≤ j ≤ 4, (i, j) /∈ {(1, 1), (1, 3)} there is precisely one k, 1 ≤ k ≤ 4 such
that h(Qi, φj) ⊆ Qk. Then C/D = {M1,M2,M3,M4}, where Mi = (Φ, Q′ ∪
{rej′}, h′i, q′0, Q′), 1 ≤ i ≤ 4, with Q′ ∪ {rej′} = D, q′0 = Q1, rej′ = Q4 and the
next-state functions defined as Figure 4 a), b), c) and d), respectively.

Theorem 5.1 (proved below) shows that a minimal Φ-deterministic DFA
consistent with C can be found among the elements of C/D.

In the next lemmas the notations introduced in Definition 5.6 will be used.

Lemma 5.1. M is consistent with C if and only if M covers C.

Proof. “⇒”: Suppose M is consistent with C. Then LC− ⊆ LM ⊆ LC+ .
We prove that q′0 covers q0. Let p ∈ Φ∗. If h(q0, p) = rej then p ∈ LC+ . As
LC+ ⊆ LM , it follows that p ∈ LM , so h′(q′0, p) = rej′. If h(q0, p) ∈ Acc then

13

Q1 Q2 Q3 Q4 a)

Q1 Q2 Q3 Q4 b)

Q1 Q2 Q3 Q4 c)

Q1 Q2 Q3 Q4 d)

φ1, φ3

φ2

φ4

φ1

φ2, φ3

φ4

φ1, φ3

φ2, φ4

φ3

φ1, φ2

φ4

φ1

φ2, φ3

φ4

φ1, φ3

φ2, φ4

φ1

φ2, φ3

φ4

φ1

φ2, φ3

φ4

φ1, φ3

φ2, φ4

φ1, φ2, φ3

φ4

φ1

φ2, φ3

φ4

φ1, φ3

φ2, φ4

Figure 4: State transition diagram of M1 (a), M2 (b), M3 (c) and M4 (d)

p ∈ LC− . As LC− ⊆ LM , it follows that p ∈ LM , so h′(q′0, p) ∈ Q′. Thus q′0
covers q0, so M covers C.

“⇐”: Suppose M covers C. We prove that LC− ⊆ LM . Let p ∈ LC− . Then
h(q0, p) ∈ Acc. As q′0 covers q0 it follows that h(q′0, p) ∈ Q′, so p ∈ LM . We
prove now that LM ⊆ LC+ , which is equivalent to LC+ ⊆ LM . Let p ∈ LC+ .
Then h(q0, p) = rej. As q′0 covers q0, it follows that h(q′0, p) = rej′, so p ∈ LM .

Lemma 5.2. Let C = (Φ, Q ∪ {rej}, h, q0, Acc, {rej}, {dont}) be a Φ-determi-

14

nistic 3DFA and D = {Q1, Q2, . . . Qn} a closed and domain-consistent decom-
position of Q ∪ {rej}. Then for any M ∈ C/D, M covers C.

Proof. We prove that q′0 covers q0. Let p = φ1 . . . φk ∈ Φ∗, φ1, . . . , φk ∈ Φ,
k ≥ 0. Let h(qj , φj+1) = qj+1, 0 ≤ j ≤ k − 1. For any qj , qj+1, 0 ≤ j ≤ k − 1,
as above, there exist Qpj , Qpj+1

from D, such that qj ∈ Qpj and qj+1 ∈ Qpj+1
.

From Definition 5.4 it follows that h(Qpj , φj+1) ⊆ Qpj+1 . Then h′(Qpj , φj+1) =
Qpj+1 , 0 ≤ j ≤ k − 1. If h(q0, p) = rej then qk = rej ∈ Qpk , so Qpk = rej′.
Hence h′(q′0, p) = rej′. If h(q0, p) ∈ Acc then qk ∈ Acc and qk ∈ Qpk , so Qpk is
an accepting subset. Hence h′(q′0, p) ∈ Q′.

Lemma 5.3. Let C = (Φ, Q ∪ {rej}, h, q0, Acc, {rej}, {dont}) be a Φ-determi-
nistic 3DFA and D = {Q1, Q2, . . . Qn} a closed and domain-consistent decom-
position of Q ∪ {rej}. Then for any M ∈ C/D, M is consistent with C.

Proof. Follows from Lemma 5.1 and Lemma 5.2.

Theorem 5.1. Let C = (Φ, Q ∪ {rej}, h, q0, Acc, {rej}, {dont}) be a Φ–deter-
ministic 3DFA. Then there exists D = {Q1, Q2, . . . Qn} a closed and domain-
consistent decomposition of Q ∪ {rej} such that any M ∈ C/D is a minimal
Φ-deterministic DFA consistent with C.

Proof. Let M ′′ = (Φ, Q′′ ∪ {rej′′}, h′′, q′′0 , Q′′) be a minimal Φ-deterministic
DFA consistent with C. Let {q′′ ∈ Q′′ ∪ {rej′′} | ∃q ∈ Q such that q′′ covers
q} = {q′′1 , . . . , q′′n}. We build a closed and domain-consistent decomposition D
and show that any M ∈ C/D is a minimal Φ-deterministic DFA consistent with
C.

Let D = {Q1, Q2, . . . Qn} with Qi = {q ∈ Q | q′′i covers q}, 1 ≤ i ≤ n.
By construction Qi 6= ∅, 1 ≤ i ≤ n. We prove that D is a closed and domain-
consistent decomposition of Q∪{rej}. We first prove that D is a decomposition.
Let i, 1 ≤ i ≤ n. If q′′i ∈ Q′′ then q′′i 6= rej′′. Let qi ∈ Qi. Since q′′i covers qi it
follows that qi 6= rej, so qi ∈ Q. Thus Qi ⊆ Q. If q′′i = rej′′ then q′′i /∈ Q′′. Let
qi ∈ Qi. Since q′′i covers qi it follows that qi /∈ Acc, so qi ∈ {dont, rej}. Thus
Qi ⊆ {dont, rej}. We now prove that Q1 ∪Q2 ∪ . . . ∪Qn = Q∪ {rej}. Assume
otherwise. Then there exists q ∈ Q ∪ {rej} such that q /∈ Q1 ∪ Q2 ∪ . . . ∪ Qn.
Then, for every q′′ ∈ Q′′ ∪ {rej′′}, q′′ does not cover q. Let p ∈ Φ∗ such that
h(q0, p) = q. Since q′′0 covers q0, h′′(q′′0 , p) covers q. This provides a contradiction
and so Q1 ∪Q2 ∪ . . . ∪Qn = Q ∪ {rej}. Then D is a decomposition. We prove
that D is closed. Let i, 1 ≤ i ≤ n, and φ ∈ Φ. Let Qi = {q ∈ Q | q′′i covers
q}. Let h′′(q′′i , φ) = q′′j . Then for every qi ∈ Qi, q

′′
j covers h(qi, φ). Thus

h(Qi, φ) ⊆ Qj = {q ∈ Q | q′′j covers q}. Hence D is closed. We prove that D
is domain-consistent. Let i, 1 ≤ i ≤ n, and q1, q2 ∈ Qi = {q ∈ Q | q′′i covers
q}. Suppose h(q1, φ1) ∈ Acc and h(q2, φ2) ∈ Acc. Since q′′i covers q1 and q′′i
covers q1, h′′(q′′i , φ1) ∈ Q′′ and h′′(q′′i , φ1) ∈ Q′′. As M ′′ is Φ-deterministic,
either φ1 = φ2 or dom φ1 ∩ dom φ2 = ∅. Thus D is domain-consistent.

As D is a closed and domain-consistent decomposition of Q ∪ {rej}, by
construction, any M ∈ C/D is a Φ-deterministic DFA. By Lemma 5.3, any M ∈

15

C/D is consistent with C. Since D has at most the same number of elements
as the number of states of M ′′, any M ∈ C/D has at most the same number of
states as the number of states of M ′′. Since M ′′ is a minimal Φ-deterministic
DFA consistent with C, any M ∈ C/D will have the same number of states
as the number of states of M ′′ (hence M ′′ has n states and Q1, Q2, . . . Qn are
distinct subsets). Thus, any M ∈ C/D is a minimal Φ-deterministic DFA
consistent with C.

6. Compatible states

As we have seen, a minimal Φ-deterministic DFA consistent with C can be
found by checking the decompositions of Q ∪ {rej} of 1, 2, . . . elements until a
closed and domain-consistent decomposition D is found. On the other hand,
many decompositions can be outright eliminated using the concept of compatible
pairs of states and Theorem 6.1 below.

Definition 6.1. Let q1, q2 ∈ Q ∪ {rej}; q1 and q2 are said to be compatible if
there exists D = {Q1, Q2, . . . Qn} a closed and domain-consistent decomposition
of Q ∪ {rej} such that q1, q2 ∈ Qi for some i, 1 ≤ i ≤ n.

Definition 6.2. States q1, q2 ∈ Q∪{rej} are said to be acceptance-compatible
if either: (1) q1, q2 ∈ Q or (2) q1, q2 ∈ {dont, rej}.

Theorem 6.1. Let q1, q2 ∈ Q ∪ {rej}. Then q1 and q2 are compatible if and
only if for any p ∈ Φ∗, q′1 = h(q1, p) and q′2 = h(q2, p) are acceptance-compatible
and domain-compatible.

Proof. “⇒”: Suppose q1 and q2 are compatible. Then there exists D =
{Q1, Q2, . . . Qn} a closed and domain-consistent decomposition of Q ∪ {rej}
such that q1, q2 ∈ Qi for some i, 1 ≤ i ≤ n. Let p ∈ Φ∗, h(q1, p) = q′1 and
h(q2, p) = q′2. Since D is a closed decomposition, there exists j, 1 ≤ j ≤ n, such
that h(Qi, φ) ⊆ Qj . Then q′1, q

′
2 ∈ Qj , so either q′1, q

′
2 ∈ Q or q′1, q

′
2 ∈ {dont, rej}.

Thus q′1 and q′2 are acceptance-compatible. Since D is a domain-consistent de-
composition, q′1 and q′2 are domain-compatible.

“⇐”: For every p ∈ Φ∗, we define Rp = {h(q1, p), h(q2, p)}. Let R =⋃
p∈Φ∗ Rp. Let D = {Rp | p ∈ Φ∗} ∪ {{q} | q ∈ Q ∪ {rej} \ R}. As Q ∪
{rej} is a finite set, there will be a finite number of sets Rp, so the number
of elements of D will be finite. We denote them Q1, Q2, . . . Qn. We prove
that D = {Q1, Q2, . . . Qn} is a closed and domain-consistent decomposition of
Q ∪ {rej}. We first prove that D is a decomposition. Let i, 1 ≤ i ≤ n. Then
either Qi = Rφ for some p ∈ Φ or Qi = {q} for some q ∈ Q ∪ {rej} \ R.
Suppose Qi = Rφ for some p ∈ Φ. Since q′1 = h(q1, p) and q′2 = h(q2, p) are
acceptance-compatible either q′1, q

′
2 ∈ Q or q′1, q

′
2 ∈ {dont, rej}. Thus Qi ⊆ Q

or Qi ⊆ {dont, rej}. If Qi = {q} for some q ∈ Q ∪ {rej} \ R then, clearly,
Qi ⊆ Q or Qi ⊆ {dont, rej}. Q1 ∪Q2 ∪ . . . ∪Qn = Q ∪ {rej} follows from the
construction of D. Then D is a decomposition. We prove that D is closed. Let

16

i, 1 ≤ i ≤ n. Suppose Qi = Rp for some p ∈ Φ∗. Let φ ∈ Φ and Rpφ = Qj ,
1 ≤ j ≤ n. Then h(Qi, φ) ⊆ Qj . If Qi = {q} for some q ∈ Q ∪ {rej} \ R then,
clearly, h(Qi, φ) ⊆ Qj for some j, 1 ≤ j ≤ n. Thus D is closed. We prove that
D is domain-consistent. Let i, 1 ≤ i ≤ n. If Qi contains two distinct states then
Qi = Rp for some p ∈ Φ∗ and the two states are h(q1, p) = q′1 and h(q2, p) = q′2.
Then q′1 and q′2 are domain-compatible. Thus D is domain-consistent. Therefore
D is a closed and domain-consistent decomposition of Q ∪ {rej}. By definition
q1, q2 ∈ Rε (ε is the empty path) and so the implication follows.

On the basis of this result, we provide an algorithm for determining the
pairs of compatible states, as described next. Let Q ∪ {rej} = {q1, q2, . . . ql}.
Let PQ = {(qi, qj) | 1 ≤ i ≤ l − 1, i + 1 ≤ j ≤ l}. The algorithm keeps a table
as a mapping from PQ to 2PQ ∪ {yes, no}, where yes 6= no and yes, no /∈ 2PQ.
For qi, qj ∈ Q ∪ {rej}, qi 6= qj , we denote next(qi, qj) = {(q′i, q′j) | h(qi, φ) =
q′i, h(qj , φ) = q′j , φ ∈ Φ, q′i 6= q′j , q

′
i 6= dont, q′j 6= dont} \ {(qi, qj)}.

The initial table T0 : PQ −→ 2PQ∪{yes, no} is defined by: T0(qi, qj) = yes,
if qi and qj are acceptance-compatible and domain-compatible and next(qi, qj) =
∅; T0(qi, qj) = no, if qi and qj are not acceptance-compatible or not domain-
compatible; T0(qi, qj) = next(qi, qj), if qi and qj are acceptance-compatible and
domain-compatible and next(qi, qj) 6= ∅.

Suppose that we have constructed Tk, k ≥ 0. Then Tk+1 is defined by:
Tk+1(qi, qj) = yes, if Tk(qi, qj) = yes; Tk+1(qi, qj) = no, if Tk(qi, qj) = no;
Tk+1(qi, qj) = no, if Tk(qi, qj) /∈ {yes, no} and there exists (q′i, q

′
j) ∈ Tk(qi, qj)

such that Tk(q′i, q
′
j) = no and Tk+1(qi, qj) = Tk(qi, qj), otherwise. (dont is

compatible with any state in Q∪{rej} and that, for any accepting state q ∈ Acc,
q and rej are not compatible, so there is no need to construct Tt(qi, qj), t ≥ 0,
when qi ∈ {dont, rej} or qj ∈ {dont, rej}.)

Since the set Q ∪ {rej} is finite, there exists k ≥ 0 such that Tk = Tk+1.
Also, for all t ≥ k, Tk = Tt. Theorem 6.2 below provides a stopping criterion
for the algorithm. The complexity of the algorithm is polynomial in the size of
the state space and the number of processing functions of C.

Theorem 6.2. Let k be the minimum index for which Tk = Tk+1. Then for
every pair of states qi, qj ∈ Q ∪ {rej}, qi 6= qj, qi and qj are compatible if and
only Tk(qi, qj) 6= no.

Proof. “⇒”: Suppose qi and qj are compatible. By Theorem 6.1, for any
p ∈ Φ∗, q′i = h(q1, p) and q′j = h(qj , p) are acceptance-compatible and domain-
compatible. We prove by induction on t ≥ 0 that Tt(qi, qj) 6= no. Since
qi and qj are acceptance-compatible and domain-compatible, T0(qi, qj) 6= no.
Suppose Tt(qi, qj) 6= no. If Tt(qi, qj) = yes then Tt+1(qi, qj) = yes. Other-
wise Tt(qi, qj) = next(qi, qj). Assume Tt+1(qi, qj) = no. Then there exists
(q′i, q

′
j) ∈ Tt(qi, qj) such that Tt(q

′
i, q
′
j) = no. Then there exists φ ∈ Φ such that

h(qi, φ) = q′i and h(qj , φ) = q′j are not acceptance-compatible or not domain-
compatible. This provides a contradiction, as required. Thus Tt(qi, qj) 6= no for
all t ≥ 0.

17

“⇐”: Suppose Tk(qi, qj) 6= no. First, observe that q1 and q2 are acceptance-
compatible and domain-compatible. Indeed, if we assume otherwise then T0(qi, qj)
6= no and so Tk(qi, qj) 6= no, which provides a contradiction. We prove by in-
duction on the length of p that for any p ∈ Φ∗ (1) q′1 = h(q1, p) and q′2 = h(q2, p)
are acceptance-compatible and domain-compatible and (2) Tk(q′i, q

′
j) 6= no.

For p = ε, q′1 = q1 and q′2 = q2. The statement follows since q1 and q2

are acceptance-compatible and domain-compatible and Tk(qi, qj) 6= no. Sup-
pose that (1) q′1 = h(q1, p) and q′2 = h(q2, p) are acceptance-compatible and
domain-compatible and (2) Tk(q′i, q

′
j) 6= no. Let φ ∈ Φ, q′′1 = h(q′1, pφ) and

q′′2 = h(q′2, pφ). Suppose q′′i and q′′j are not acceptance-compatible or not
domain-compatible. Then T0(q′′i , q

′′
j) = no and so Tk(q′′i , q

′′
j) = no. Then

Tk+1(q′i, q
′
j) = no. Since Tk = Tk+1, Tk(q′i, q

′
j) = no. This provides a con-

traction and so q′′i and q′′j are acceptance-compatible and domain-compatible.
Suppose Tk(q′′i , q

′′
j) = no. Then Tk+1(q′′i , q

′′
j) = no, so Tk(q′i, q

′
j) = no. This

provides a contradiction, so Tk(q′i, q
′
j) 6= no. Then for any p ∈ Φ∗, q′i = h(qi, p)

and q′j = h(qj , p) are acceptance-compatible and domain-compatible. Then by
Theorem 6.1, qi and qj are compatible.

Example 6.1. Let C = (Φ, Q ∪ {rej}, h, q0, Acc, {rej}, {dont}) be as follows.
Φ = {φ1, φ2, φ3, φ4, φ5}; for simplicity we omit the definitions of the processing
functions, but we state instead that dom φi ∩ dom φj = ∅ for all i, j, 1 ≤ i <
j ≤ 5, (i, j) 6= (4, 5) and dom φ4 ∩ dom φ5 6= ∅; Q = {q0, q1, q2, q3, q4, q5, dont};
h defined as in Figure 5. It can be observed that the pairs of states (qi, qj),
1 ≤ i < j ≤ 4, are domain-compatible and the pairs of states (qi, q5), 1 ≤
i ≤ 4 are not domain-compatible. T0, T1 and T2 are as shown in Table 6.
It can be observed that T2 = T1. Then the pairs of compatible states are:
(q0, q1), (q1, q2), (q1, q3), (q2, q3), (q3, q4) and (qi, dont), 0 ≤ i ≤ 5, (rej, dont).

7. Constructing minimal Φ-deterministic DFA

In order to obtain the decompositions used in the construction of a minimal
Φ-deterministic DFA consistent with the Φ-deterministic 3DFA C, it is useful
to construct the maximal compatible set of states of C.

Definition 7.1. A set of states R ⊆ Q ∪ {rej} is a set of compatible states if
all states in R are pairwise compatible. R is called a maximal compatible set of
states if there is no larger set of compatible states that contains R.

The set MC of maximal compatible sets of accepting states can be gradually
constructed by an algorithm that at each step, for each compatible pair of
states qi and qj , adds state qj to all subsets of sets in MC that contain states
compatible with qj ; if no such subsets are found then the set {qi, qj} is added
to MC. For C as in the second running example,

MC = {{q0, q1}, {q1, q2, q3}, {q3, q4}, {q5}}.

18

q0 q1 q2 q3

q4q5dontrej

φ1, φ4

φ2
φ3

φ5

φ1, φ3

φ2

φ4

φ5

φ1, φ2, φ3

φ4

φ5

φ1

φ2

φ3

φ4

φ5

φ1, φ5

φ2

φ3

φ4

φ1

φ2, φ4

φ3

φ5

Figure 5: State transition diagram of C

The set of all maximal compatible sets of (accepting, rejecting and don’t care)
states of C is

{{q0, q1, dont}, {q1, q2, q3, dont}, {q3, q4, dont}, {q5, dont}, {dont, rej}}.

Once MC has been determined, we construct all decompositions (if any)
D = {Q1, Q2, . . . , Qn} of Q ∪ {rej} decompositions D = {Q1, Q2, . . . , Qn},
n ≥ 2, for which there is precisely one i, 1 ≤ i ≤ n, such that Qj = Qaj ∪{dont}
for all j, 1 ≤ j ≤ n − 1, with Qaj contained in a maximal compatible set of
accepting states such that

⋃
1≤j≤n,j 6=iQ

a
j = Acc and Qn = {rej, dont}. The

value of n is then increased until a closed decomposition is found. The any
element of C/D is a minimal Φ-deterministic DFA consistent with C, Since the
set of all maximal compatible sets of states of C is closed, the algorithm will
find a solution for a value of n that does not exceed the number of elements of
MC plus 1.

For the second running example the algorithm will return n = 5 elements.
There is more than one decomposition that satisfy the above requirement. One
is D = {Q1, Q2, Q3, Q4, Q5}, Q1 = {q0, q1, dont}, Q2 = {q1, q2, q3, dont}, Q3 =
{q3, q4, dont}, Q4 = {q5, dont}, Q5 = {dont, rej}. C/D contains more than
one DFA. One is M ′ = (Φ, Q′ ∪ {rej′}, h′, q′0, Q′) with Q′ = {Q1, Q2, Q3, Q4},
rej′ = Q5, q′0 = Q1 and h′ defined is in Figure 6.

The above algorithm involves some enumeration and so, naturally, is com-
putationally expensive. The following heuristic, inspired from automata ap-
plications [29], can be used to significantly reduce its complexity. Instead of
constructing a minimal Φ-deterministic DFA consistent with C, the following

19

Table 1: T0, T1, T2

T0 q1 q2 q3 q4 q5

q0 yes {(q1, q3), (q3, q5)} {(q1, q4), (q2, q5), (q0, q1)} {(q3, q5), (q0, q1)} no
q1 {(q2, q3), (q0, q1)} yes {(q2, q5)} no
q2 {(q3, q4), (q0, q1)} {(q3, q5), (q0, q1)} no
q3 {(q2, q3)} no
q4 no

T1 q1 q2 q3 q4 q5

q0 yes no no no no
q1 {(q2, q3), (q0, q1)} yes no no
q2 {(q3, q4), (q0, q1)} no no
q3 {(q2, q3)} no
q4 no

T2 q1 q2 q3 q4 q5

q0 yes no no no no
q1 {(q2, q3), (q0, q1)} yes no no
q2 {(q3, q4), (q0, q1)} no no
q3 {(q2, q3)} no
q4 no

Q1 Q2 Q3 Q4 Q5

φ1, φ4
φ2

φ3

φ5

φ1

φ2, φ3

φ4

φ5

φ1

φ2φ3

φ4

φ5

φ1

φ2, φ4

φ3

φ5

Figure 6: State transition diagram of M ′

Φ-deterministic DFA consistent with C, which is not necessarily minimal, is
constructed.

Definition 7.2. Let Q1, Q2, . . . Qn be the maximal compatible sets of states of
C = (Φ, Q ∪ {rej}, h, q0, Acc, {rej}, {dont}). We define a DFA M ′′ = (Φ, Q′′ ∪

20

{rej′′}, h′′, q′′0 , Q′′) as follows:

• the states set is Q′′∪{rej′′} = {Q1, Q2, . . . , Qn}; Q′′ is the set of accepting
subsets of D; rej′′ is the rejecting subset;

• the next-state function is defined by: for every Qi ∈ D and every φ ∈ Φ, if
h(Qi, φ) = {dont} then h′′(Qi, φ) = rej′′, otherwise h′′(Qi, φ) = R where
R is the largest subset Qj such that h(Qi, φ) ⊆ Qj (if more than one such
subset exist, one is randomly chosen);

• the initial state is the largest subset that contains q0 (if more than one
such subset exist, one is randomly chosen);

• the final states are all the accepting subsets Qi.

Clearly, D = {Q1, Q2, . . . Qn} is a decomposition of Q ∪ {rej}. M ′′ is well
defined since the next states of a set of compatible states are also compatible
states. Naturally, there may exist more than one such M ′′.

For the second running example, Q1 = {q0, q1, dont}, Q2 = {q1, q2, q3, dont},
Q3 = {q3, q4, dont}, Q4 = {q5, dont} and Q5 = {dont, rej} are the maximal
compatible sets of states of C as defined in our second running example. Then
M ′′ = (Φ, Q′′ ∪ {rej′′}, h′′, q′′0 , Q′′), where Q′′ = {Q1, Q2, Q3, Q4}, rej′′ = Q5,
q′′0 = Q1 and h′ as in Figure 7. It can be observed that, in this case, M ′′ is
uniquely determined.

Q1 Q2 Q3 Q4 Q5

φ1, φ2

φ3

φ4

φ5

φ1

φ2, φ3

φ4

φ5

φ1

φ2φ3

φ4 φ5

φ1

φ2, φ4

φ3, φ5

Figure 7: State transition diagram of M ′′

According to our experimental results, although M ′′ (as defined above) is
not necessarily minimal, it is usually close to a minimal Φ-deterministic DFA
and its construction is considerably faster than our original algorithm. However,
an in-depth investigation of the results produced by this heuristic is beyond the
scope of this paper.

If this heuristic is used then the overall algorithm reduces to (1) determining
the pairs of compatible states of the 3DFA C, (2) constructing the set of maximal
compatible sets of C and (3) constructingM ′′. Thus, in this case, the complexity

21

of the algorithm is polynomial in the size of the the state space and the number
of processing functions of C.

8. Conclusions

In this paper we have investigated some fundamental problems and algo-
rithms related to constructing a minimal deterministic stream X-machine Z
consistent with a deterministic 3DFA that has as inputs the processing func-
tions of Z and a heuristic for improving the complexity of the solution to this
problem. This theoretical problem is essential for learning deterministic stream
X-machines, special classes of extended finite state machines, from queries. In
practice, one might encounter applications, such as agent-based systems using
the FLAME framework, or state-based testing strategies [34] for classes of mem-
brane systems used in various development projects, requesting more complex
models than simple stream X-machines. Consequently, an important continua-
tion of this work is the extension of the current results to communicating stream
X-machines. Due to the established connections between X-machines and mem-
brane systems, as mentioned in the Introduction section, it is also expected that
this paper will open the door for algebraic inference approaches for membrane
systems.

Acknowledgements. The authors would like to thank the anonymous
reviewers for carefully reading the paper and making suggestions that led to its
improvement.

[1] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages,
Springer Verlag, Berlin, Heidelberg, 1997.

[2] J. E. Hopcroft, J. D. Ullman, An Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 1979.

[3] B. Krena, T. Vojnar, Automated formal analysis and verifica-
tion: an overview, Int. J. General Systems 42 (4) (2013) 335–365.
doi:10.1080/03081079.2012.757437.
URL https://doi.org/10.1080/03081079.2012.757437

[4] A. P. Mathur, Foundations of Software Testing (2nd Edition), Addison-
Wesley, 2014.

[5] D. Angluin, Learning regular sets from queries and counterexamples, Inf.
Comput. 75 (2) (1987) 87–106. doi:10.1016/0890-5401(87)90052-6.
URL https://doi.org/10.1016/0890-5401(87)90052-6

[6] H. Hungar, O. Niese, B. Steffen, Domain-specific optimization in automata
learning, in: CAV, 2003, pp. 315–327. doi:10.1007/978-3-540-45069-6 31.
URL https://doi.org/10.1007/978-3-540-45069-6_31

[7] T. Berg, B. Jonsson, H. Raffelt, Regular inference for state machines with
parameters, in: FASE, 2006, pp. 107–121. doi:10.1007/11693017 10.
URL https://doi.org/10.1007/11693017_10

22

[8] F. Ipate, Learning finite cover automata from queries, J. Comput. Syst.
Sci. 78 (1) (2012) 221–244. doi:10.1016/j.jcss.2011.04.002.
URL https://doi.org/10.1016/j.jcss.2011.04.002

[9] F. Howar, B. Steffen, Active automata learning in practice - An annotated
bibliography of the years 2011 to 2016, in: Machine Learning for Dynamic
Software Analysis, Lecture Notes in Computer Science, Vol. 11025, Springer
Verlag, 2018, pp. 123–148. doi:10.1007/978-3-319-96562-8 5.
URL https://doi.org/10.1007/978-3-319-96562-8_5

[10] I. Dinca, F. Ipate, A. Stefanescu, Model learning and test generation for
Event-B decomposition, in: Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering Change - 5th In-
ternational Symposium, ISoLA 2012, Heraklion, Crete, Greece, October
15-18, 2012, Proceedings, Part I, 2012, pp. 539–553. doi:10.1007/978-3-
642-34026-0 40.
URL https://doi.org/10.1007/978-3-642-34026-0_40

[11] M. Fantinato, M. Jino, Applying extended finite state machines in soft-
ware testing of interactive systems, in: DSV-IS 2003: Proceedings of 10th
International Workshop on Interactive Systems. Design, Specification, and
Verification, Lecture Notes in Computer Science, vol 2844, Springer Verlag,
2003, pp. 34–45. doi:10.1007/978-3-540-39929-2 3.
URL https://doi.org/10.1007/978-3-540-39929-2_3

[12] R. Yang, Z. Chen, Z. Zhang, B. Xu, EFSM-based test case gen-
eration: Sequence, data, and oracle, International Journal of Soft-
ware Engineering and Knowledge Engineering 25 (4) (2015) 633–668.
doi:10.1142/S0218194015300018.
URL https://doi.org/10.1142/S0218194015300018

[13] M. Holcombe, F. Ipate, Correct systems - building a business process solu-
tion, Applied computing, Springer, 1998.

[14] K. Bogdanov, M. Holcombe, F. Ipate, L. Seed, S. K. Vanak, Testing meth-
ods for X-machines: a review, Formal Asp. Comput. 18 (1) (2006) 3–30.
doi:10.1007/s00165-005-0085-6.
URL https://doi.org/10.1007/s00165-005-0085-6

[15] R. M. Hierons, Checking experiments for stream X-machines, Theor. Com-
put. Sci. 411 (37) (2010) 3372–3385. doi:10.1016/j.tcs.2010.05.014.
URL https://doi.org/10.1016/j.tcs.2010.05.014

[16] M. G. Merayo, M. Núñez, R. M. Hierons, Testing timed systems modeled
by stream X-machines, Software and System Modeling 10 (2) (2011) 201–
217. doi:10.1007/s10270-009-0126-3.
URL https://doi.org/10.1007/s10270-009-0126-3

23

[17] R. M. Hierons, F. Ipate, Testing a deterministic implementation against a
non-controllable non-deterministic stream X-machine, Formal Asp. Com-
put. 20 (6) (2008) 597–617. doi:10.1007/s00165-008-0087-2.
URL https://doi.org/10.1007/s00165-008-0087-2

[18] F. Ipate, Testing against a non-controllable stream X-machine us-
ing state counting, Theor. Comput. Sci. 353 (1-3) (2006) 291–316.
doi:10.1016/j.tcs.2005.12.002.
URL https://doi.org/10.1016/j.tcs.2005.12.002

[19] F. Ipate, M. Holcombe, Testing data processing-oriented systems from
stream X-machine models, Theor. Comput. Sci. 403 (2-3) (2008) 176–191.
doi:10.1016/j.tcs.2008.02.045.
URL https://doi.org/10.1016/j.tcs.2008.02.045

[20] F. Ipate, D. Dranidis, A unified integration and component testing ap-
proach from deterministic stream X-machine specifications, Formal Asp.
Comput. 28 (1) (2016) 1–20. doi:10.1007/s00165-015-0345-z.
URL https://doi.org/10.1007/s00165-015-0345-z

[21] A. Guignard, J. Faure, G. Faraut, Model-based testing of PLC programs
with appropriate conformance relations, IEEE Trans. Industrial Informatics
14 (1) (2018) 350–359. doi:10.1109/TII.2017.2695370.
URL https://doi.org/10.1109/TII.2017.2695370

[22] D. E. Jackson, M. Holcombe, F. L. W. Ratnieks, Trail geometry gives
polarity to ant foraging networks, Nature 432 (7019) (2004) 9079.
doi:10.1038/nature03105.
URL https://doi.org/10.1038/nature03105

[23] R. H. Smallwood, M. Holcombe, The epitheliome project: multiscale
agent-based modeling of epithelial cells, in: Proceedings of the 2006
IEEE International Symposium on Biomedical Imaging: From Nano
to Macro, Arlington, VA, USA, 6-9 April 2006, 2006, pp. 816–819.
doi:10.1109/ISBI.2006.1625043.
URL https://doi.org/10.1109/ISBI.2006.1625043

[24] Flame web site, http://flame.ac.uk/.

[25] Păun, Gh., Computing with membranes, Journal of Computer and System
Sciences 61 (1) (2000) 108–143. doi:10.1006/jcss.1999.1693.
URL https://doi.org/10.1006/jcss.1999.1693

[26] Păun, Gh., G. Rozenberg, A. Salomaa (Eds.), The Oxford Handbook of
Membrane Computing, Oxford University Press, Inc., 2010.

[27] J. Aguado, T. Bălănescu, A. Cowling, M. Gheorghe, M. Holcombe,
F. Ipate, P systems with replicated rewriting and stream X-machines
(Eilenberg machines), Fundam. Inform. 49 (1-3) (2002) 17–33.

24

URL http://content.iospress.com/articles/fundamenta-

informaticae/fi49-1-3-03

[28] P. Kefalas, I. Stamatopoulou, I. Sakellariou, G. Eleftherakis, Transform-
ing communicating X-machines into P systems, Natural Computing 8 (4)
(2009) 816–832. doi:10.1007/s11047-008-9103-y.
URL https://doi.org/10.1007/s11047-008-9103-y

[29] Y. Chen, A. Farzan, E. M. Clarke, Y. Tsay, B. Wang, Learning minimal
separating DFAs for compositional verification, in: Tools and Algorithms
for the Construction and Analysis of Systems, 15th International Confer-
ence, TACAS 2009, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, 2009, pp. 31–45. doi:10.1007/978-3-642-00768-2 3.
URL https://doi.org/10.1007/978-3-642-00768-2_3

[30] O. Grinchtein, M. Leucker, N. Piterman, Inferring network invariants auto-
matically, in: Automated Reasoning, Third International Joint Conference,
IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, 2006,
pp. 483–497. doi:10.1007/11814771 40.
URL https://doi.org/10.1007/11814771_40

[31] A. Gupta, K. L. McMillan, Z. Fu, Automated assumption generation for
compositional verification, Formal Methods in System Design 32 (3) (2008)
285–301. doi:10.1007/s10703-008-0050-0.
URL https://doi.org/10.1007/s10703-008-0050-0

[32] J. M. Pena, A. L. Oliveira, A new algorithm for exact reduction of incom-
pletely specified finite state machines, IEEE Trans. on CAD of Integrated
Circuits and Systems 18 (11) (1999) 1619–1632. doi:10.1109/43.806807.
URL https://doi.org/10.1109/43.806807

[33] M. C. Paull, S. H. Unger, Minimizing the number of states in incompletely
specified sequential switching functions, IRE Trans. Electronic Computers
8 (3) (1959) 356–367. doi:10.1109/TEC.1959.5222697.
URL https://doi.org/10.1109/TEC.1959.5222697

[34] M. Gheorghe, F. Ipate, S. Konur, Testing based on identifiable P sys-
tems using cover automata and X-machines, Inf. Sci. 372 (2016) 565–578.
doi:10.1016/j.ins.2016.08.028.
URL https://doi.org/10.1016/j.ins.2016.08.028

25

