
1

Robot Motor Skill Transfer
with Alternate Learning in Two Spaces

Jian Fu, Xiang Teng, Ce Cao, Zhaojie Ju, Ping Lou

Abstract— Recent research achievements in Learning from
Demonstration (LfD) demonstrate that the reinforcement learn-
ing is effective for the robots to improve its movement skills. The
current challenge mainly remains in how to generate new robot
motions, which have similar preassigned performance indicator
but are different from the demonstrated tasks. To deal with
the above issue, this paper proposes a framework to represent
the policy and conduct imitation learning and optimization for
robot intelligent trajectory planning, based on the improved local
weighted regression(iLWR) and policy improvement with path
integral by dual perturbation (PI2-DP). Besides, the reward-
guided weight searching and basis function’s adaptive evolving
are performed alternately in two spaces, i.e. the basis function
space and the weight space, to deal with the above problem.
The alternate learning process constructs a sequence of two-
tuples which joins the demonstration task and new one together
for motor skill transfer. So that the robot skills can be
gradually learnt from similar tasks, and those skills can also
correspond the demonstrated tasks to dissimilar tasks in different
criterion. Classical via-points trajectory planning experiments are
performed with the SCARA manipulator, a 10 DOF planar and
the UR robot. These results show that the proposed method is
not only feasible but also effective.

Index Terms— motor skill acquisition, alternate learning in
two spaces(ALTS), improved local weighted regression(iLWR),
PI2-DP

I. INTRODUCTION

HUMAN motor skills are ideal examples for robot move-
ment skill generation. Robotic researchers put enormous

efforts into studying human motor skills and trying to transfer
such advanced motor skills into robot motions. Recently,
reinforcement learning has been successfully integrated into
the LfD framework and provides an effective way for robots
not only to learning skills from human demonstrations but
also to be able to self-improve such skills to complete more
complex tasks than human demonstration. The reinforcement
learning based LfD (LfDRL) becomes one hottest topic in
robotics and currently receive significant research interest [1]–
[8].

We in the paper focus on scenarios with a few demonstra-
tion for a motion planning task, so we only investigate the

This work was supported by the National Natural Science Foundation of
China under Grants 61773299, 51575412, Excellent Dissertation Cultivation
Funds of Wuhan University of Technology under Grants 2017-YS-066, 2017-
YS-067. Corresponding Author: Zhaojie Ju

J. Fu, X. Teng and C. Cao are with the School of Automation,
Wuhan University of Technology, Wuhan, Hubei 430070, China. (e-mail:
fujian@whut.edu.cn, tengxiang 131@163.com, 1310518618@qq.com).

Z. Ju is with School of Computing, University of Portsmouth, UK. (e-mail:
zhaojie.ju@port.ac.uk).

P. Lou is with the School of Information, Wuhan University of Technology,
Wuhan, Hubei 430070, China. (e-mail: louping@whut.edu.cn).

dynamic model scheme instead of end-to-end training scheme.
Generally speaking, the LfDRL has 3 phases to develop:
representation phase, imitation phase and optimization phase.
The first phase is to select a parametric policy representation
to efficiently modulate online and exhibit robustness via a
dynamic model. Two of the most popular dynamic models
are Dynamical Movement Primitives (DMPs) [9]–[11] and
Motion Scheduling (DS) [12], [13] . In the former, the robot
motions are modelled as superimposition of a linear dynamic
system and a nonlinear term. The latter not only represents
motion planning in the form of a nonlinear autonomous
dynamic system but also guarantees the global convergence.
In the second phase, the various models are designed to learn
appropriate parameters based on the demonstrated data, such
as radial basis function networks [14], regularized kernel least-
square, locally weighted regression (LWR) [15], [16] and
Gaussian process [17], [18] etc.

In the optimization phase, model-free policy search methods
are more popular than model-based method since learning
a policy is normally easier than modelling a robot in a
dynamic environment. Some classic model-free policy search
methods were proposed recently, such as Policy learning
by Weighting Exploration with the Returns (PoWER), Cost-
Regularized Kernel Regression (CRKR), Covariance Matrix
Adaptation-Evolutionary Strategy (CMA-ES), Trust Region
Policy Optimization (TRPO) and path integral with policy
improvement(PI2). As for PoWER [19], a linear policy param-
eters rather than action are perturbed and a reward-weighted
regression is conduced later. CRKR is a nonparametric
nonlinear policy method which is is more flexibility to model
a function than by using specified feature vectors [20], [21].
However, its output dimensions of the policy are typically
modeled as independent Gaussian distributions ignoring the
correlations. Differently, CMA-ES is a black-box optimizer.
It applies heuristic information to estimate the weight and
update the exploration distribution, which is found to be
efficient in practice but not well founded theoretically [22].
TRPO [23] is a method for optimizing control policies with
guaranteed monotonic improvement by means of advantage
function. However, it adopts policy representation in the form
of stochastic neural network without decomposing task into
optimal control and supervised phases [24]. PI2 [25] is a
promising method which can acquire optimal control laws for
nonlinear continuous time systems by performing monte-carol
rollouts to solve the HJB equation indirectly.

It is noticed that many current studies focus on the contri-
bution in one phase. Besides, there is an open dilemma–it can
not endow the robot flexible and specific imitation capability

2

simultaneously in traditional LfDRL framework. In our previ-
ous research [26], [27], an effective policy representation has
been developed and a preliminary study on alternate learning
in two spaces has been carried out. In this paper we aim to
develop a generic method with theoretic analysis for motor
skill learning, with which robot could be broad applicable for
the motion task with various performance indicators compared
with the demonstration and of good quality for given motion
planning task as well. Inspired by the idea of deep learning
[28], [29] which conduct an adaptive reperentaion learning,
we propose and develop a novel alternate learning in two
spaces(ALTS), basis function space and weight space, in the
paper. ALTS seeks proper representations depending on the
transition state from demonstration to new task and it works
serially. In this way, ALTS skillfully solves the above problems
via data-driven modeling and optimizing across three-phases
repeatedly. To the best knowledge, it is the first to investigate
LfDRL for generalization and specialty simultaneously. It
is believed that this paper will not only propose a useful
framework and algorithm but also stimulate further study and
advance the robot’s assimilation into the human lives.

This paper is organized as follows. DMPs-iLWR for policy
representation and imitation learning is presented in Sect. II.
Sect. III presents the policy optimization based on PI2-DP in
the scenario of robot motion planning from a perspective of
stochastic optimal control. Sect. IV proposes ALTS algorithms
and theoretic convergence analysis. Sect. V presents in detail
the classical benchmark experiment trajectory planning via
prior unknown point(s), with discussion on the experimental
settings and results. Last Sect. concludes this paper with
highlighs.
II. DMPS-ILWR BASED ROBOT MOTOR SKILL LEARNING

Generally, the rigid robot motion obeys a dynamic model
which involves inertia matrix, Coriolis and centrifugal forces,
gravity force and joint control inputs [30]. In this paper,
it is assumed that underlying joint controllers can assure
perfect reference tracking. So only the kinematic model is
considered instead. This assumption helps us to focus on the
core of problem discussed in the paper: robot movement skill
acquisition and refinement.

Classical DMPs model the robot movement in each de-
gree of freedom(DOF) as independent transformation system,
which is synchronized in time dimension by a share phase
variable shown as equation (1).



τ2ẍt=αx(βx(g−xt)−τ ẋt)︸ ︷︷ ︸
spring−damping.system

+Ψθ(st)st(g−x0)︸ ︷︷ ︸
forcing.term

transf.system

τṡt=−αsst canon.system

Ψθ (st)=
∑Γ
i=1 ψiwi∑Γ
i=1 ψi

func.approx,

(1)
where τ is the scaling factor for the duration of motion. xt is
the reference trajectory generated by transformation system
for one DOF, st is the phase of the movement generated
by canonical system, which decays from 1 to 0 over the
same duration with transformation system. ψi is the Gaussian

kernel function with the variance spaced equally across motion
duration. wi is associated weight. The goal g is a point attractor
and x0 is the start state. αx,βx,αs are positive constants. The
spring damping system denoted as as is modeled as a 2-
order critical damping system. And forcing term presented as
af is modeled via classical LWR methods. θ is the hyper-
parameter for basis functions. Γ is the number of Gaussian
kernel functions.

We in this paper propose ALTS which covers innovations
along three phases of LfdRL. Here we begin with the DMPs-
iLWR component in policy representation phase and imitation
phase phase. Usually, synchronization between transform
system and canonical system is considered. So both system
can reach the goal (within the tolerance for exampe 2%)
simultaneously. In other words, the settling time of the former
is 0.4667τ when forcing term is ignored, and αs is well
assigned as αx

3 to guarantee synchronicity of the latter. Also,
phase generated by canonical system in equation (1) usually
decrease exponentially. It can guarantee the convergence of
transform system. However such design in canonical system
results in the phase being not linear correlation with time,
which may cause inconvenience when statistical inference
involving time is conducted. So we put forward improved
Local Weighted Regression(iLWR) to solve above problem. It
is shown in equation (2), which comprises a canonical system,
a transformation system, and a weighted basis function. We
will investigate them one by one in detail as following



τ2ẍt = αx(βx(g−xt)−ẋt)︸ ︷︷ ︸
as

+htB̄stw̄(g−x0)︸ ︷︷ ︸
af

transf.system

τ ṡt =

{
1/% if st ≤ %τ
0 otherwise

canon.system

ht = 1
1+eαh(t−%τ) gating.system

w̄ = [w̄1 · · · w̄K w̄K+1 · · · w̄2K]
T

weight
B̄st = [γ1st · · · γKst γ1· · ·γK] basis.function,

(2)

where αh is a coefficient which regulates the steepness of
gating system, % is a parameter which determines the specific
time when ht = 0.5 and st = 1 simultaneously. Since
0.4667τ

0.98 = %minτ
1 , so % is in the domain of [0.4762, 1] and

we choose % = 0.75 in the paper as shown in Fig.1. And γ is
a component which we will depict in detail hereinafter.

Unlike our previous algorithm in DMPs for imitation learn-
ing, we adopt a slight revised canonical system similar to [4],
which is described in equation (2) and τ denotes the mea-
surement of motion duration. Usually, we choose time base τ
as the per-unit value(P.U.), shown in Fig.1, in coding. Obvi-
ously, it is approximately twice the expected movement time,
since spring-damping system approaches the target within 2%
deviation in 0.4667τ . New canonical system equation (2) can
guarantee that the phase is proportional to time in the transient
process. So the distortion between af (st) and af (t) caused
by canonical system in equation (1) is avoided. Hereafter we
adopt terminology phase or time alternately in our proposed
model.

Besides, we employ the revised gating system ht similar
to [4] to guarantee the convergence of forcing term, since

3

Time(P.U.)
0 0.2 0.4 0.6 0.8 1

C
oe

ffi
ci

en
t

0.2

0.4

0.6

0.8

1

T
sigmoid

(a) ht: the sigmoidal dacay function
which mimics the step function as the
gating system

Time(P.U.)
0 0.2 0.4 0.6 0.75 1

P
ha

se
(P

.U
.)

0.2

0.4

0.6

0.8

1

τ

exp.dec.
linear.inc.

(b) st: original exponential decay
phase(black) and modified linear in-
crease phase(red)

Fig. 1. the graphic of the gating system and canonical system

it equals 0.5 at t = %τ and decline to zero in exponential
level after t > %τ as the Fig.1(a) shows. And the fitting
component modeled by iLWR results in the linear function
form and is bounded because revised phase maintains 1 when
it reaches. So the forcing term which is the multiplication of
fitting component and gating system will converge to zero with
no doubt.

Next, we will discuss the improvement of flexible adjust-
ment. The forcing term of traditional LWR shown as

f(st) =

∑Γ
i=1 ψi(st)wi∑Γ
i=1 ψi(st)

st (g − x0) (3)

presents an restrictive effect of imitation learning, and

ψi = e

(
− 1

2σ2
i

(st−ci)2

)

is the form, σi and ci are appropriate variance and mean
respectively. Because the default fitting trajectories must cross
the origin of coordinates, which means if the phase variable
is close to zero, so must be the forcing term. Therefore we
revise the controlling term from pattern (y = Ax) to pattern
(y = Ax+B) to avoid this restriction.

Now we can get the new forcing term as

f(st) =

∑Γ
i=1 ψi(st)

[
Ai Bi

]∑Γ
i=1 ψi(st)

[
st
1

]
(g − x0) (4)

=

Γ∑
i=1

γ(i)(Aist +Bi)(g − x0).

where

γ(i) =
e

(
− 1

2σ2
i

(st−ci)2

)

∑Γ
j=1 e

(
− 1

2σ2
j

(st−cj)2

) , (5)

and ψ is named as meta basis function.
Associated with the optimization policy of PI2-DP, we can

learn this two parameters(A and B) simultaneously. With this
in mind, we can re-index the above components with index ι
from 1 to 2Γ. Corresponding to the normal form equation (2),
we can obtain

B̄(ι)
st =

{
γ(i)st ι = i, ι 6 Γ
γ(i) ι=i+Γ,Γ<ι62Γ

and accordingly the length of w̄(ι) become 2Γ

w̄(ι) =

{
Ai ι = i, ι 6 Γ
Bi ι=i+Γ,Γ<ι62Γ

Apparently, basis function B̄
(ι)
st is compose of all meta

gaussian function ψi. We would like to note that w̄(ι) (ι 6 Γ)
and w̄(ι+Γ) (ι 6 Γ) are the slope and interception of the linear
function, respectively. For the sake of simplicity, we replace
Bst as Bt hereinafter.

III. POLICY IMPROVEMENT BASED ON PI2-DP

Although DMPs-iLWR can effectively replicate and gen-
eralize robot demonstration movement, it maybe not an op-
timal/suboptimal policy for the task, let alone autonomously
fulfill the motion different from demonstration with a high-
quality level. So we combine DMPs-iLWR with a PI2-
DP policy improvement similar to [25] through stochastic
optimal control to meet the requirement. Specifically, we apply
Feynman-Kac theorem to derive the state value function of
robot with D DOFs based on path integral, and then deduce
the optimal control policy.

As we can see, the transformation system of robot with dth
DOF can be expressed as

τ ẍd;t = αx(βx(gd − xd;t)−ẋd;t)+hd;tB̄d;twd(gd−x0)
⇒ ẍd;t = f(xd;t, ẋd;t)+Bd;twd.

(6)

Next, we introduce cost R (ξd;t) as the cumulative return in
finite horizon along the path ξd;t starting in the state ηd;t at
time t and ending in the state ηd;tN at time tN to evaluate the
trajectory planning for dth DOF, where ηd;t = [st xd;t ẍd;t]

T

is associated state at time t. For given robot task with D DOFs,
cost R (ξt) is shown as

R (ξt)=

D∑
d=1

(
φd;tN +

∫ tN

t

rd;ζdζ

)

=

D∑
d=1

[
φd;tN +

∫ tN

t

(
q∗d;ζ+

1

2
wT
dQwd

)
dζ

]
, (7)

where t is the time index, φd;tN is the immediate reward
associated with the trajectory terminal state with dth DOF in
the time index tN , rd;ζ is the immediate reward with dth DOF
in the time index ζ, q∗d;t is a state-dependent cost function with
dth DOF in the time index t, Q is an appropriate semi-define
constant.

Alternatively, seeking for appropriate trajectory program-
ming for each DOF could be treated as stochastic optimal
control issue given that perturbation is applied. In other words,
trajectory programming is generated by robot which consists
of D stochastic dynamic sub-systems synchronized by the
time. For dth DOF, it could be presented as

ẍd;t = fd;t + Bd;t (wd + εd;t) , (8)

where εd is a random variable with zero expectation and

4

variance as Λd. And associated HJB equation is

−∂d;tVt =min
wd

(
rd;t +

(
∇ẋd;t

Vt
)T
fd;t

+
1

2
trace

((
∇ẋd;tẋd;t

Vt
))

Bd;tΛd;tB
T
d;t

)
, (9)

where the value function under the optimal parameterized
control policy is Vt. It can be expressed as

Vt = min
w

E [R (ξt)] (10)

and w = {wd}D1 is a vector with component wd .
Substituting value function with Ψt = e−

Vt
λ , we can obtain

−∂d;tΨt =− 1

λ
rd;tΨt +

(
∇ẋd;t

Ψt

)T
fd;t

+
1

2
trace

((
∇ẋd;tẋd;t

Ψt

))
Bd;tΛd;tB

T
d;t, (11)

which is a standard backward Kolmogorov partial differential
equation. Then we apply Feynman-Kac formula and gain

Ψt=

D∑
d=1

{∫ tN

t

p (ξ·;t |η·;t)

exp

[
− 1

λ

(
φd;tN +

∫ tN

t

rd;ydy

)]
d (δξd;t)

}
, (12)

where δξd;t is all the variational paths with dth DOF, and
d (δξd;t) is all infinitesimal differential along the path with dth
DOF, p (ξ·;t |η·;t) is probability of sample path conditioned
on the start state η·;t with all DOFs, · indicate all DOFs from
d = 1 to D and λ is a constant. Without losing generality, we
can discretize it with sufficient small time interval. Thus the
above formula is transformed as

Ψi =

D∑
d=1

{
lim

∆t→0

∫
p (ξ·;i |η·;i)

· exp

− 1

λ

φd;N +

N−1∑
j=i

rd;j

 dξd;i

 , (13)

where ξd;i = (ηd;i,ηd;i+1, · · · ,ηd;N) is a sample trajectory
with dth DOF, i is an abbreviation for time index ti.

In practical algorithm, strategy of per-basis exploration
noise is applied. In other words, for specific st, iLWR-PI2

seeks the maxim γ(i) in equation (5) for coefficient index i,
then perturbs w(i) + ε (i.e. Ai + ε) as well as w(i+Γ) + ε (i.e.
Bi + ε) simultaneously. That is PI2 with dual perturbation
denoted as PI2-DP.

As we known, p (ξd;i |ηd;i) is the probability of sample path
conditioned on the start state ηd;ti . Specifically, it is expressed
as

p (ξd;i |ηd;i) = p (ηd;N , · · · ,ηd;i+1 |ηd;i)

= ΠN−1
j=i p (ηd;j+1 |ηd;j)

∝ exp

(
− 1

2λ

N−1∑
j=i

‖Bd;j (wd;j + εd;j)‖2H−1
d;j

)
on the consideration of ε is a Gaussian distribution, where
Hd;j = Bd;jQ

−1BT
d;j .

So we can gain

p (ξ·;t |η·;t) =
D∏
d=1

p (ξd;t |ηd;t)

Substituting it into equation (13), we can derive the formula
as

Ψi ∝
D∑
d=1

(
lim

∆t→0

∫
exp

(
− 1

λ
S (ξd;i)

)
dξd;i

)
(14)

and

S (ξd;i) = φd;N+

N−1∑
j=i

qd;j+
1

2

N−1∑
j=i

(wd+εd;j)
T

·
Bd;jB

T
d;j

BT
d;jR

−1Bd;j
(wd+εd;j)+

λ

2

N−1∑
j=i

ln |Hd;j |. (15)

We would like to point out that λ
2

∑N−1
j=i ln |Hd;j | in original

PI2 is removed given that basis function is fixed. However,
this term is indispensable in our algorithms because of varying
basis function in the procedure of ALTS.

Based on the preceding deduction, we can obtain the
optimal time-variant policy with value function Vi as

wd;i = −Q−1BT
d;j

(
∇ẋd;i

Vi
)

=
∫
P (ξi)u (ξd;i) dξi,

(16)

where

P (ξi)=
e−

1
λ (
∑D
d=1 S(ξd;i))∫

e−
1
λ (
∑D
d=1 S(ξd;i))dξi

(17)

u (ξd;i)=
R−1Bd;iB

T
d;i

BT
d;iQ

−1Bd;i
(wd + εd;i) (18)

Specifically, P (ξi) is the path depended probability distribu-
tion with robot, and u (ξd;i) is respective local optimal control
derived by value function for dth DOF.

We would like to point out that it is unrealistic to in-
tegral along all the variational paths under the theoretical
requirement. In practical engineering, we usually carry out
K roll-outs. And for specific time index i, we gain P (ξ·;i;k)
as probability of robot (all DOFs) based on kth episodic
sample in time index i which is similar to softmax function
represented as

P (ξ·;i;k) =
e−

1
λ (
∑D
d=1 S(ξd;i;k))∑K

k=1 e
− 1
λ (
∑D
d=1 S(ξd;i;k))

, (19)

where k is the index of K episodes, ξd;i;k is trajectory sample
with dth DOF in kth episode in time index i.

Apparently, it is P (ξ·;i;k) that guides and coordinates
all DOFs’ local u (ξd;i) to drive the robot to approach an
optimal/sub-optimal point as a whole. As an result, the respec-
tive weight wd,i with dth DOF in time i is obtained. Since
weight is usually a constant instead of a variable, we achieve
weighted average of adjustment ∆wd;i = wd;i −wold across
N time index as equivalent time-invariant policy, which could

5

be expressed as

∆wd =

∑N−1
i=0 (N − i) Bd;i∆wd;i∑N−1

i=0 (N − i) Bd;i

. (20)

IV. BASIS FUNCTION RECONSTRUCTION AND ALTERNATE
LEARNING IN TWO SPACES

The embodiment feature specifies the robot intelligence is
strongly linked to the robot morphology and its environmental
interaction capability [31]. So the basis function in the policy
representation is the key to establish the intelligence feasibility
based on the robot kinematics. If the robot needs to finish a
different task from the demonstration, the current basis func-
tion based on the demonstrated task will not be appropriate
for the new task.

The question arises as to how to obtain the suitable basis
function for new task on conditioan that demonstration data
are avaliable at the start. Motivated by the gradual and iterative
process of cognition and practice for human’s new skill acqui-
sition [32], [33], we assume that robot skill acquisition also has
corresponding processes. Cognition process is performed as
searching appropriate latent pattern based on good experience
so far by means of representation learning, practice process is
performed as applying acquired new pattern to explore better
trajectory or R (ξ) by means of reinforcing learning. Two
processes are carried out alternately.

Based on the above idea and analysis, we put for-
ward DMPs-iLWR together the alternate learning in two
spaces(ALTS) to conduct motion skill transfer from demon-
stration to new task. For the sake of simplicity, we denote it
as iLWR-PI2-AL. It’s workflow is described as following.

Policy representation (iLWR) for motor skill is firstly devel-
oped in reference to maximum entropy. It means alike meta
Gaussian functions ψi with identical variances are equally
allocated during the phase, so that it can enable the policy to
learn the new motions with the fixed number of basis function.
Afterwards, LfD is performed to find suitable weights for
reproduce the demonstration. Then, RL(PI2-DP) is employed
to find right weight until the cost doesn’t reduce significantly
anymore. It indicates that the algorithm has already found
optimal/sub-optimal approximation point on the corresponding
weight space for the new task with the current basis function.
Thus DB-Kmeans is applied to cluster on the data generated
by those candidate elites represented as {st, af/

[
τ2(g−x0)

]
}.

Then EM-GMM is adopted to obtain µi and Σi of every
multivariate Gaussian components. Next, st-axis component
of µi is taken and assigned to µi. Σi is decomposed into
eigenvalue and eigenvector which is orthonormal. Let’s denote
Υi as eigenvector which is with respective to the orientation
of st-axis and νi as correspond eigenvalue. So the norm of
vector which is the projection of

√
νiΥi on st-axis is assigned

to σi. In this way, appropriate parameters µi and σi for
respective meta basis function ψi are achieved. Finally, these
parameters will be assign to γ(i)st and γ(i) to reconstruct
the new basis function B̄st . In a sense, more appropriate
basis functions are constructed adaptively based on data-driven
according to the character of targeted task. Also, LfD is
performed to seek weights to replicate the best trajectories so

far with a posterior maximization. Based on them, we again
apply RL(PI2-DP) to search the best approximation in the new
space. This procedure repeat until a satisfied trajectory is
obtained. Detail of ALTS is depicted in the form of pseudo
codes. Please see algorithms 1 hereafter and algorithms 2-4 in
appendix.

Algorithm 1 ALTS
Require: N: maximum elapsed steps for each episode

D: number of joints
MaxIter: maximum iteration numbers
Γ: number of meta basis functions
K: maximum number of rollouts

Ensure: trajectory ξ, reward R (ξ)
1: Initialize iteration index p = 0
2: Initialize basis function B ← {Bd}D1 according to maxi-

mum entropy of meta basis function
3: ξ ← {xj , uj}N1 // trajectory including state,action from

demonstration
4: {ξd}D1 ← ξ // resolved into each DOF
5: for d = 1 to D do
6: wd ←iLWR LfD(ξd,Bd) // conduct imitation learning
7: end for
8: w← {wd}D1
9: while p < MaxIter do

10: p = p+ 1
11: wnew, {ξk, R(ξk)}K1 ← Weight Learning(w,B)
12: ξ,R (ξ)← Policy Evaluation(wnew,B)
13: if Ṙ (ξN)<0 and

∣∣∣Ṙ (ξN)
∣∣∣<Thre for 3 times in a row

then
14: {ξ?} sel←− {ξk, R(ξk)}K1 // select elite set
15: {ξ?d}D1 ← {ξ?} // resolved into each DOF
16: for d = 1 to D do
17: wnew

d ,Bnew
d ←Basis Learning(ξ?d ,Γ)

18: end for
19: end if
20: w,B← wnew,Bnew

21: end while
22: ξ,R (ξ)← Policy Evaluation(w,B)

We now proceed to investigate the theoretic analysis of
ALTS algorithm. We use s ∈ S to denote states, a ∈ A
to denote actions, r (st,at) to denote reward function. State
st+1 evolves from {st,at} in the scenario of discrete-time
finite horizon. The problem aims to find a policy parameter
w that minimize the total reward Σtr(st,at) on episode,
no matter state-index policy p(at|st,w) or time-index policy
p(at|t,w) is applied. The expectation is taken under the
policy’s trajectory distribution p (ξ), presented by

p (ξ) = p (s1,a1, . . . , sN ,aN) .

Here, we investigate RL formulation from a respective
which is illustrated by a HMM-like graphic model with
optimality variables ot shown in Fig.2. ot is a binary random,
where ot = 1 denotes that time step t is optimal. No loss of

6

generality, we can choose the distribution over this variable as

p (ot = 1|st,at) = exp (−r (st,at)) .

Thus we can obtain

p (o1:N = 1|ξ) = exp

(
N∑
t=1

−r (st,at)

)
,

which can be interpreted as the event of obtain minimum total
reward by choosing a serial optimal actions.

gragic model.pdf

O1 O2 O3

a1 a2 a3

s1 s2 s3

ON

aN

sN

Fig. 2. A diagram of graphical model

Let’s consider optimality variables o1:N as observable data,
trajectory ξ as hidden state. Let weight w present model pa-
rameters controlling distribution of o1:N and ξ. Let qz (ξ |o1:N)
be a family of distribution of ξ parameterized by latent z which
is the parameters of meta basis function such as {cj , σj}Γ1 .
It can be interpreted as the fact that the distribution of ξ is
determined by basis B via z on condition that event of optimal
actions occurred.

What we search is the appropriate policy to fulfill the task
with minimum total reward. It can be presented as

arg max
w

E[p(w|o1:N)]=arg max
w

E[logp(w,o1:N)]. (21)

Note

E[logp(w,o1:N)]

=
∑
ξ

qz (ξ |o1:N) logp(w,o1:N) (22)

=
∑
ξ

qz (ξ |o1:N) log
p(w, ξ,o1:N)

qz (ξ |o1:N)

qz (ξ |o1:N)

p (ξ|w,o1:N)
(23)

=L (z,w) +K (z,w) (24)

where

L (z,w) =
∑
ξ

qz (ξ |o1:N) log
p(w, ξ,o1:N)

qz (ξ |o1:N)
(25)

K (z,w) =
∑
ξ

qz (ξ |o1:N) log
qz (ξ |o1:N)

p (ξ|w,o1:N)
(26)

We would like to point out that K (z,w) is the KL
divergence KL (qz (ξ |o1:N) ||p (ξ|w,o1:N)). Since KL diver-
gence is non-negative, so L (z,w) is a lower bound on
E[logp(w,o1:N)]. ALTS works like a generalized expectation
maximization to improve this bound iteratively to approach
the maximum. In other words, we can gain a sequence of two-
tuples

(
w(1),z(1)

)
,
(
w(2),z(2)

)
, · · · by iteration in two spaces.

Specifically, in the procedure of k + 1 iteration, there are E
Step and M Step.

E Step: In this step, ALTS manage to search z(k+1) to
satisfy the equation as

z(k+1) = arg max
z

L
(
z,w(k)

)
. (27)

Since L
(
z(k),w(k)

)
= E

[
log p

(
w(k),o1:N

)]
−K

(
z(k),w(k)

)
and E

[
log p

(
w(k),o1:N

)]
is a constant, this step amounts to

minimizing K
(
z,w(k)

)
with respect to z. That is, it chooses

an appropriate z to construct a member of the variational fam-
ily qz which is as close as possible to the current p (ξ|w,o1:N).
From the perspective of algorithm implementation, it involves
clustering by DB-Kmeans, searching z by EM-GMM and
identifying new basis B by iLWR. We would like to point
out that basis functions’ adaptive evolving is definitely corre-
sponding to the learning in the basis function space.

M Step: In this step , ALTS manage to search w(k+1) to
satisfy the equation as

w(k+1) = arg max
w

L
(
z(k+1),w

)
. (28)

From graphical model illustrated in Fig.2, we can get

p(ξ,o1:N)=p(s1)

N∏
t=1

p(ot=1|st,at)p(st+1|st,at)

=p(s1)p(o1:N = 1|ξ)
N∏
t=1

p(st+1|st,at)

=ϑ · exp

(
N∑
t=1

−r (st,at)

)
. (29)

where ϑ = p (s1)
∏T
t=1 p(st+1|st,at). For deterministic dy-

namics, ϑ is a constant for all trajectories that are dy-
namic feasible. So p (ξ,o1:N)∝exp

(∑N
t=1−r(st,at)

)
is derived.

And p(w|ξ,o1:N) is the probability of the event w = wopt

when variational distribution ξ is fixed and actions is opti-
mal. When exp

(∑N
t=1−r(st,at)

)
is minimized, p (w|ξ,o1:N)

equals 1 at its maximum value. Considering p(w,ξ,o1:N) =
p (ξ,o1:N)p(w|ξ,o1:N), so maximizing L

(
z(k+1),w

)
with re-

spect to w is equivalent to maximizing total reward on
episode since qz is fixed. From the perspective of algorithm
implementation, it involves variational searching by PI2-DP.
We would like to point out that reward-guided searching is
definitely corresponding to the learning in weight space.

Briefly, we can obtain L
(
z(k+1),w(k)

)
>L

(
z(k),w(k)

)
in E

step and L
(
z(k+1),w(k+1)

)
>L
(
z(k+1),w(k)

)
in M step. In this

way, the monotone convergence of ALTS is guaranteed, and a
sequence of two-tuples is constructed until a local minimum
value is reached, so that the demonstration task and new one
are joined.

V. SIMULATION EXPERIMENT

A. Application Scenario I: SCARA

In this section, we employ the SCARA manipulator shown
in [34] to perform motor skill acquisition experiments. The
SCARA manipulator has four joints: revolute joints q1, q2, q3

7

and prismatic joint q4. l1 denotes the length of the link 1, and
l2 denotes the length of the link 2.

Skill acquisition experiences are described as below. First,
man gives a demonstration of one stroke motion with which
the end-effector of the robot moves from the initial point to
end point with duration is 5s. Then a small box is arbitrarily
located in the space, where the robot can reach (excluding the
initial and end points). Therefore the robot arm should be able
to move and pass this via-point (e.g. sucking, photographing
or laser marking) from the initial point to end point in the
same time. Moreover, the cost of equation (31) is satisfied.

Assumed there is a suction force applied to pick up the
target block, so we don’t pay attention to the orientation of
the joint. Besides, prismatic joint is perpendicular to others
three revolution joints. Also, we suppose that the velocity of
it is much quicker that of other three evolute joints. Based
on the above assumptions, we omit the joints q3 and q4, then
deduce the forward kinematic expression for simplicity shownx̃ =−l1 sin q1 − l2 sin (q1 + q2)

ỹ = l1 cos q1 + l2 cos (q1 + q2)
z̃ = l0

(30)

It is a classical via-point benchmark in the X-Y cross-section
plane with z̃ = l0. As for the SCARA robot in the experiment,
l0 = l1 = l2 = 10cm are assumed. Obviously the start point
is (0, 10, 10) in base frame(operation space).
B. Experiment I-1:Trajectory programming via a given point

We set the terminal point with (−16, 4.5, 10)cm in base
frame which is corresponding to (0.7068, 1.17964, 0)rad (unit
will be omitted later) and also expect manipulator to
grasp at the specific position (−6, 18, 10)cm in Cartesian
coordinate . Here we adopt joint trajectory as (0, 0, 0) →
(−0.000, 0.6435, 0) → (0.7068, 1.17964, 0) based on a tra-
ditional min-energy criterion in engineering.

Here iLWR-PI2-AL will be evaluated via different experi-
ments. Table I shows the results. The cost function J is defined
as

D∑
d=1

(
0.5

N−1∑
i=1

(
103ẍ2

d;i+a
2
d;i;f

)
+1010(xd;m−xd;m;v)

2

+103
[
ẋ2
d;N+(xd;N− xd;N ;g)

2
]
+0.1

N−1∑
i=1

Bd;iB
T
d;i

) (31)

where i is the time index from 1 to N , d is the joint index
from 1 to D. D equals 3 here. Besides, xd;N ;g denotes the
expected position of point d when the task ends. When the
time index equals m, xd;m is the position of joint d which is
corresponding to the expected via-point xd;m;v . Apparently,
ẍd;i and ad;i;f are acceleration and forcing term relevant to
joint d at the time index i, respectively. ẋd;N is the velocity
of joint d when time index is N . Bd;i is the control matrix in
equation (8) with joint d when time index is i.

As for Table I, we evaluate the respective total cost when
we vary the time index from 1.25s to 1.95s with expected
via-point (−0.000, 0.6435, 0) fixed in joint spaces within the
duration is 5s. Each row of data was average total cost from 30
experiments. The results demonstrate that the proposed iLWR-

TABLE I
THE FINAL COSTS WHEN ALGORITHM STOPS

Time Cost1(LWR-PI2) Cost2(iLWR-PI2) Cost3(iLWR-PI2-AL)
1.25 6.23E+07 6.07E+07 3.23E+07
1.30 5.74E+07 5.72E+07 3.15E+07
1.35 5.58E+07 5.28E+07 3.12E+07
1.40 5.55E+07 5.16E+07 3.07E+07
1.45 5.62E+07 4.52E+07 3.03E+07
1.50 5.89E+07 4.91E+07 3.05E+07
1.55 5.08E+07 4.82E+07 3.13E+07
1.60 6.57E+07 4.86E+07 3.13E+07
1.65 6.25E+07 5.44E+07 3.24E+07
1.70 7.63E+07 5.06E+07 3.37E+07
1.75 8.55E+07 5.13E+07 3.51E+07
1.80 9.13E+07 5.47E+07 3.54E+07
1.85 1.25E+08 5.41E+07 3.73E+07
1.90 1.40E+08 6.71E+07 3.92E+07
1.95 1.52E+08 6.89E+07 4.06E+07

Mean 8.37E+07 5.43E+07 3.35E+07

PI2-AL methods can achieve better performance than original
LWR-PI2 and iLWR-PI2. Compared with the improvemnt of
iLWR, ALTS seems to make more contributions.

Time index of via-point

1.2 1.4 1.6 1.8 2

F
in

a
l
c
o
s
t

×108

0.5

1

1.5

2
LWR-PI

2

Time index of via-point

1.2 1.4 1.6 1.8 2

F
in

a
l
c
o
s
t

×107

0

2

4

6

iLWR-PI
2
-AL

Fig. 3. Error bars between classical LWR-PI2 and iLWR-PI2-AL

To be clearly, In Fig.3 we plot two error bars to demonstrate
cost change when the time index for via-point varies. Besides,
we compare the learning rate between two methods. The
total cost vary along with iteration number are shown in
Fig.4(left) and Fig.4(right), respectively. Quicker coverage
speed of iLWR-PI2-AL is manifest.

Number of rollouts

0 500 1000 1500 2000 2500

C
o
s
t

×10
9

0

0.5

1

1.5

2

LWR-PI
2

X: 2255

Y: 6.08e+07

Number of rollouts

0 500 1000 1500 2000 2500

C
o
s
t

×10
9

0

1

2

3

4

iLWR-PI
2
-AL

X: 2255

Y: 2.266e+07

Fig. 4. Progress of cost between classical LWR-PI2 and iLWR-PI2-
AL

And Fig.5 shows the typical amelioration of joint trajecto-
ries (3 joints in joint space) from relevant demonstration to
targeted improvement. The green lines in both figures indicate
the joint’s trajectories planning learned by LfD. The red lines
on the right figure represent the final trajectories learned by
iLWR-PI2-AL, which pass by the (−8.845e− 005, 0.6434, 0)
at time index equals 0.2s. Meanwhile, the red lines on the
left figure represent the final trajectories learned by LWR-PI2,
which pass by the (1.307e− 004, 0.6437, 0) at the same time
index.

8

Time(s)

0 1 2 3 4 5

P
o

s
it
io

n
(r

a
d

)

-0.5

0

0.5

1

1.5
the LfD and LWR-PI

2

LWR-PI
2
 Joint1

LfD Joint1

LWR-PI
2
 Joint2

LfD Joint2

LWR-PI
2
 Joint3

LfD Joint3

Time(s)

0 1 2 3 4 5

P
o
s
it
io

n
(r

a
d
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
the LfD and iLWR-PI

2
-AL

iLWR-PI
2
-AL Joint1

LfD Joint1

iLWR-PI
2
-AL Joint2

LfD Joint2

iLWR-PI
2
-AL Joint3

LfD Joint3

Fig. 5. Comparison of joint’s trajectories between classical LWR-PI2

and iLWR-PI2-AL

C. Experiment I-2:Trajectory programming via two given
points

We now proceed to exhibit ALTS’s learning ability rein-
forced by the adaptive evolving of meta basis functions. We
carefully design the experiments as adding another different
via-point in the trajectory programming. Both via-points are
with distinct distance in space whereas in very small time
interval. In other words, their time index fall on the domain
of the same basis function.

Time(s)

0 1 2 3 4 5

P
o
s
it
io

n
(r

a
d
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

learned by iLWR-PI
2
-AL

learned by LWR-PI
2

target at 1.15s

target at 1.60s

Fig. 6. Survey of the motor skill acquisition(via two given points)

As depicted in LWR-PI2, its basis functions are evenly dis-
tributed across the phase dimension. Usually, it is impossible
to only adjust weights to make a sudden curve change within
the domain of identical basis function. So it is unfeasible
to performance via-two-points task successfully unless the
distribution of the basis functions can be changed adaptively
to meet the task’s requirements. In this experiment, the joints
are demand to pass through joints point (0.5, 0.2, 0) at 1.15s
and (0.2, 0.8, 0) at 1.60s, which is labeled as ’+’ in Fig.6.

The learning progress of a typical ALTS running are dis-
played in Fig.7. In order to show it clearly, we only display
the first, second and final learned by iLWR-PI2-AL and LWR-
PI2, respectively.

We all know that the meta basis function ψ is evenly
distributed before iLWR-PI2 learning. In Fig.8(a), as we can
see, the shape and scatter of meta basis function generated
from imitation learning (the first reconstruction of meta basis
function) sounds arbitrary to some degree. However, after
several iteration of ALTS, the shape and scatter of meta basis
function have made a targeted adjustment and improvement
in Fig.8(b). The kernel nearby 1.15s (phase=0.3067) and
1.60s (phase=0.4267) evolving into two distinct meta basis
functions. Each of them is with a very compact projection
in the time dimension, and with significant different projec-

Time(s)
0 1 2 3 4 5

P
o

s
it
io

n
(r

a
d

)

0

0.2

0.4

0.6

0.8
Joint 1

learned by LWR-PI
2

first learned by iLWR-PI
2
-AL

second learnedby iLWR-PI
2
-AL

final learned by iLWR-PI
2
-AL

target at 1.15s

target at 1.6s

(a) Progress of the motor skill acqui-
sition of joint1 (via two given points)

Time(s)

0 1 2 3 4 5

P
o
s
it
io

n
(r

a
d
)

-0.4

0

0.4

0.8

1.2
Joint 2

learned by LWR-PI
2

first learned by iLWR-PI
2
-AL

second learned by iLWR-PI
2
-AL

final learned by iLWR-PI
2
-AL

target at 1.15s

target at 1.6s

(b) Progress of the motor skill acqui-
sition of joint2 (via two given points)

Fig. 7. Progress of the motor skill acquisition

tion in the acceleration dimension. This kind of construction
and distribution of associated meta basis functions are very
suitable for the above target task (via specific points at 1.15s
and 1.60s). It can be regarded as reflection of embodiment
intelligence.

Phase
0 0.5 1

f(
c
m

/s
2
)

-200

0

P
S

I

0

0.5

1

(a) The distribution of meta basis
functions by using iLWR-PI2-AL un-
der first recombination

Phase
0 0.5 1

f(
c
m

/s
2
)

-150

-100

-50

0

50

100

P
S

I

0
0.2
0.4
0.6
0.8
1

(b) The distribution of meta basis
functions by using iLMR-PI2-AL un-
der final recombination

Fig. 8. Adaptive evolving of meta basis functions I

D. Application Scenario II: 10 DOF planar

In this section, we will use a 10 DOF planar to inspect
iLWR-PI2-AL algorithm. The 10 DOF planar has 10 revolute
joints, and the length of each link is 10cm. This robot looks
like a multi-segment snake in a plane. According to this
structure, we can calculate the end-effector coordinates by
using angle of joints(q1, q2, . . . , q10) as shown in equation (32)x̃ = lCq1+lC(q1+q2)+· · ·+lC(q1+. . .+q10)

ỹ = lSq1+lS(q1+q2)+. . .+ lS(q1+· · ·+ q10)
z̃ = 0

(32)

In equation (32), l denotes the length of each link,
C is abbreviation of cos, and S is abbreviation of sin.
q1, q2, q3, . . . , q10 denote the current angle of each joint. x̃,
ỹ and z̃ denote the position of end-effector, z̃ equals zero
because the 10 DOF planar can only move in a 2D coordinate
system.
E. Experiment II-1:Trajectory programming via a given point

In this experiment, we set the start point as
(0, 0, · · · , 0)10×1

* in joint space and terminal point
(0.5, 0.5, · · · , 0.5)10×1 as the end point in joint space. Also
we set (0.3, 0.2, 0.4, 0.2, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2) as the via

*All joint radians of the 10 DOF planar are zero. The value inside bracket
indicates respective joint radian, and subscript indicates the dimension.

9

point and the cost function is in the form similar to equation
(31) with D equals 10.

As shown in Table II, we have investigate the difference
among LWR-PI2, iLWR-PI2 and iLWR-PI2-AL, further evalu-
ate the respective cost when we vary the time index from 1.25s
to 1.95s. In Fig.9, we also plot two error bars to describe the
process of change for the cost on condition that time index
for via-point varying from 1.25s to 1.95s.

TABLE II
THE FINAL COSTS WHEN ALGORITHM STOPS

Time Cost1(LWR-PI2) Cost2(iLWR-PI2) Cost3(iLWR-PI2-AL)
1.25 2.42E+07 1.32E+07 1.14E+07
1.30 2.78E+07 1.38E+07 1.37E+07
1.35 3.35E+07 1.30E+07 1.26E+07
1.40 3.72E+07 1.30E+07 1.05E+07
1.45 4.31E+07 1.40E+07 1.15E+07
1.50 4.86E+07 1.41E+07 1.27E+07
1.55 5.42E+07 1.39E+07 1.25E+07
1.60 6.62E+07 1.34E+07 1.25E+07
1.65 7.90E+07 1.37E+07 1.03E+07
1.70 1.05E+08 1.35E+07 1.07E+07
1.75 1.68E+08 1.37E+07 1.05E+07
1.80 2.18E+08 1.29E+07 1.22E+07
1.85 3.15E+08 1.31E+07 1.20E+07
1.90 3.94E+08 1.41E+07 1.11E+07
1.95 4.94E+08 1.41E+07 1.29E+07

Mean 1.40E+08 1.35E+07 1.18E+07

Time index of via-point

1.2 1.4 1.6 1.8 2

F
in

a
l
c
o
s
t

×108

0

2

4

6
LWR-PI

2

Time index of via-point

1.2 1.4 1.6 1.8 2

F
in

a
l
c
o
s
t

×107

0

1

2

3
iLWR-PI

2
-AL

Fig. 9. Error bars between classical LWR-PI2 and iLWR-PI2-AL

According to this table we can easily know the cost of
iLWR-PI2-AL is smaller than that of LWR-PI2. Besides,
experiment illustrates that cost of iLWR-PI2-AL drops faster
than that of LWR-PI2 shown in Fig.10.

Number of rollouts

0 500 1000 1500

C
o
s
t

×10
9

0

1

2

3

4

LWR-PI
2

X: 1505

Y: 2.645e+08

Number of rollouts

0 500 1000 1500

C
o
s
t

×10
9

0

1

2

3

4

iLWR-PI
2
-AL

X: 1505

Y: 1.04e+07

Fig. 10. Progress of cost between classical LWR-PI2 and iLWR-PI2-
AL

The real trajectory is shown in In Fig.11. The left figure is
learned by LWR-PI2 and the right figure is learned by iLWR-
PI2-AL. They should pass through point (2.541, 8.224)cm
(unit will be omitted later) at time index 1.0s. The trajectory
pass through point (2.777, 8.185) at time index 1.0s in the left
of Fig.11 and the point (2.541, 8.217) at time index 1.0s in
the right of Fig.11, respectively.

x
-5 0 5 10

y

0

2

4

6

8

LWR-PI
2

trajectory

target at 1s

real position at 1s

x
-5 0 5 10

y

0

2

4

6

8

10
iLWR-PI

2
-AL

trajectory

target at 1s

real position at 1s

Fig. 11. Comparison of trajectories between classical LWR-PI2 and
iLWR-PI2-AL

F. Experiment II-2:Trajectory programming via two given
points

In the last experiments, we have driven 10 DOF planar via
a certain point at a certain time index. At this part, we add
another different via-point in the trajectory programming as
we have done in SCARA. The trajectory should via point
(2.541, 8.224) at 1.15s and via point (−0.5281, 6.654) at 1.60s
which are labeled as ’×’ in Fig.12 .

x

-4 -2 0 2 4 6 8 10

y

0

2

4

6

8

10
LWR-PI

2

trajectory

target at 1.6s

target at 1.15s

real position at 1.15s

real position at 1.6s

x
-4 -2 0 2 4 6 8 10

y

0

2

4

6

8

10
iLWR-PI

2
-AL

trajectory

target at 1.15s

target at 1.6s

real position at 1.15s

real position at 1.6s

Fig. 12. Comparison of trajectories of motor skill acquisition(via two
given points) between classical LWR-PI2 and iLWR-PI2-AL

As described in LWR-PI2, the meta basis function of LWR-
PI2 is evenly distributed in the time dimension. Actually, it is
impossible to go through two points if the time indexes of
these points are distributed in the same basis function. So, we
can not easily get a trajectory which could via two certain
points unless the distribution of the basis functions can be
changed adaptively to meet the task’s requirements. As shown
in Fig.12, we find out that using LWR-PI2 can not make the
trajectory pass through the symbol ’x’ in time. However guided
by iLWR-PI2-AL, the robot can pass through the given points
at a specific time.

In Fig.13(a), the shape and scatter of meta basis function
generated from imitation learning sounds arbitrary to some
degree. Even more, after several iterations of ALTS, the meta
kernels nearby 0.3067 to 0.4267 in phase is evolving into three
distinct meta basis functions in Fig.13(b).

G. Application Scenario III: UR5

In this part, we employ UR5 robot shown to verify the
effectiveness of the proposed method. There are six joints on
UR5 , and from A to F it successively represents as: base,
Shoulder, Elbow, wrist1, wrist2 and wrist3.

The robot is supposed to move within given duration 5s, and
we expect the arm can move via the landmark with various
time index form 1.25s to 1.95s by self-learning and self-
improved.

In the experiment, we set the start point with (83.88,-
175.09,601.31) mm (unit will be omitted later)in the operation

10

Phase
0 0.2 0.4 0.6 0.8 1

f(
c
m

/s
2
)

-100

0

100

P
S

I

0

0.5

1

(a) The distribution of meta basis
functions by using iLWR-PI2-AL un-
der first recombination

Phase
0 0.2 0.4 0.6 0.8 1

f(
c
m

/s
2
)

-100

0

100

P
S

I

0

0.5

1

(b) The distribution of meta basis
functions by using iLMR-PI2-AL un-
der final recombination

Fig. 13. Adaptive evolving of meta basis functions II

space, and the terminal point is (91.23,-630.98,-296.22) and
the choosed landmark is (-325.92,-552.71,231.54).Our model
is learned in joint space and we can get it by inverse kinematics
equations.

We now proceeded to test the performance of iLWR-
PI2-AL, iLWR-PI2 and LWR-PI2. Detailed results are listed
in Table.III. And the associated cost function is carefully
designed in the form similar to equation (31) with D equals
6. Specifically, we execute the experiment fifteen times with
the same via point and different time index. According to the
result, the proposed iLWR-PI2-AL methods performs better
than original LWR-PI2 and iLWR-PI2 .

TABLE III
THE FINAL COSTS WHEN ALGORITHM STOPS

Time Cost1(LWR-PI2) Cost2(iLWR-PI2) Cost3(iLWR-PI2-AL)
1.25 6.35E+08 1.70E+08 6.55E+07
1.30 5.63E+08 1.73E+08 6.43E+07
1.35 5.15E+08 1.74E+08 7.03E+07
1.40 4.60E+08 1.69E+08 7.19E+07
1.50 3.78E+08 1.75E+08 8.15E+07
1.55 3.57E+08 1.79E+08 6.79E+07
1.60 3.65E+08 1.73E+08 7.10E+07
1.65 3.61E+08 1.92E+08 8.66E+07
1.70 3.71E+08 1.87E+08 8.72E+07
1.75 3.62E+08 1.79E+08 8.14E+07
1.80 3.56E+08 1.80E+08 9.11E+07
1.85 3.63E+08 1.83E+08 9.36E+07
1.90 3.60E+08 1.78E+08 9.47E+07
1.95 3.63E+08 2.00E+08 8.38E+07

Mean 4.11E+08 1.81E+08 8.11E+07

Number of rollouts

0 500 1000 1500 2000 2500

C
o
s
t

×10
9

0

5

10

LWR-PI
2

(a) The learning curve of LWR-PI2.

Number of rollouts

0 500 1000 1500 2000 2500

C
o
s
t

×10
9

0

5

10

iLWR-PI
2
-AL

(b) The learning curve of iLWR-PI2-
AL.

Fig. 14. Comparison of learning speed of LWR-PI2 and iLWR-PI2-AL

Besides, we compare the typical learning rate between
iLWR-PI2-AL and LWR-PI2 shown in Fig.14. Also Fig.15

Time(s)

0 1 2 3 4 5

P
o

s
it
io

n
(r

a
d

)

-2

-1.5

-1

-0.5

0

0.5

1

1.5
LWR-PI

2

joint1

joint2

joint3

joint4

joint5

joint6

(a) the curve of LWR-PI2 through
via-point

Time(s)

0 1 2 3 4 5

P
o

s
it
io

n
(r

a
d

)

-2

-1.5

-1

-0.5

0

0.5

1

1.5
iLWR-PI

2
-AL

joint1

joint2

joint3

joint4

joint5

joint6

(b) the curve of iLWR-PI2-AL
through via-point

Fig. 15. the curve of iLWR-PI2 and LWR-PI2 through via-point in
the joint space

shows the results of iLWR-PI2-AL and LWR-PI2 through via-
point in the joint space. They both have excellent results when
they pass the via-point. But clearly, the curve of iLWR-PI2-
AL shown in the Fig.15(b) is more smooth than LWR-PI2,
and the iLWR-PI2-AL is more accurate than the LWR-PI2

which can be clearly seen in joint2 of UR5. The actual track
of iLWR-PI2-AL and LWR-PI2 on the UR5 arm is displayed in
Fig.16. Compared Fig.16(a) with Fig.16(b), it can be noticed
that the track of iLWR-PI2-AL can hit the red landmark with
pinpoint accuracy, but the track of LWR-PI2 can only brush
the landmark by inches. So we can conclude that our proposed
iLWR-PI2-AL has stronger self-learning ability.

(a) the track of LWR-PI2 (b) the track of iLWR-
PI2-AL

Fig. 16. the motion track of the UR5

VI. CONCLUSION AND FUTURE WORK

Generating new motor skills for robots attracts broad recent
research interests and has wide applications in various appli-
cations. Nevertheless, the associated difficulty in skill transfer,
how to endow the robot both flexible and specific imitation ca-
pability simultaneously, is still remaining. This paper proposes
a new iLWR-PI2-AL motor skill learning method to deal with
this difficulty in all three phases of LfDRL. iLWR-PI2-AL
comprises two parts: DMPs-iLWR for LfD, and PI2-DP for
RL. Furthermore, ALTS is capable of capture the key features
and conduct the target-oriented exploration based on the basis
function created via previous ALTS. With this iterative process
going for a certain time, the robot is then able to generate
new skills to accomplish the new/unfamiliar tasks with an
optimal/suboptimal criterion.

Future work can be focused on the following interesting
aspects. It is worthwhile to investigate a more efficient way

11

to find the optimal hyper-parameters for PI2 with less compu-
tational cost. Another potential improvement of the proposed
method maybe achieved through not only considering the last
information from the algorithm but also integrating the old
information to get better flexibility for the algorithm. Finally,
how to biologically-inspired deal with and manipulate the
different basis functions generated by the ALTS in different
evolving phases during the skill transfer is also an interesting
future topic [35].

APPENDIX

Algorithm 2 Basis Learning
Require: trajectories ξ?d , number of basis function Γ
Ensure: weight wd, basis function Bd

1: {µj}Γ1 ← DB-KMEANS(ξ?d ,Γ) // decide initial cluster
centers

2: {µj ,Σj}Γ1 ←EM-GMM(ξ?d ,Γ) // search for cluster cen-
ters and variances

3: {cj , σj}Γ1 ←PROJ({µj ,Σj}Γ1) // projected onto phase-
axis to obtain parameters of meta basis function

4: for j = 1 to Γ do
5: γ(j) ← Equ.5({cj , σj}Γ1) // equation 5
6: B

(j)
d ← stγ

(j)

7: B
(j+Γ)
d ← γ(j)

8: end for
9: Bd ← {Bj

d}2∗Γ1 // assembled into basis in term of DOF
10: wd ←iLWR LfD(ξ?d ,Bd) // conduct imitation learning
11: return wd,Bd

Algorithm 3 Weight Learning
Require: weight wold, basis function B
Ensure: new weight wnew, two-tuple set for sample trajecto-

ries and respective rewards{ξk, R(ξk)}K1
1: for k = 1 to K do
2: for d = 1 to D do
3: for i = 1 to N do
4: S(ξd;i;k)← Equ.15(wold,B) //equation 15
5: P (ξ·;i;k)← Equ.19(S(ξd;i;k)) //equation 19
6: u(ξd;i;k)← Equ.18(S(ξd;i;k)) //equation 18
7: end for
8: end for
9: end for

10: ξk ← {ξd;N;k}D1
11: R

(
ξk
)

=
D∑
d=1

S (ξd;N;k)

12: for d = 1 to D do
13: for i = 1 to N do
14: wd;i ← Equ.16(P (ξ·;i;k), u(ξd;i;k))) //equation 16
15: ∆wd;i = wd;i −wd

16: end for
17: ∆wd ← Equ.20(B,∆wd;i) //equation 20
18: wd = ∆wd + wold

d

19: end for
20: wnew ← {wd}D1
21: return wnew, {ξk, R(ξk)}K1

Algorithm 4 Policy Evaluation
Require: weight w, basis function B
Ensure: trajectory ξ, reward R (ξ)

1: {wd}D1 ← w //resolved into each DOF
2: {Bd}D1 ← B //resolved into each DOF
3: for d = 1 to D do
4: ξd ← Equ.6(wd,Bd) //equation 6
5: end for
6: R (ξ)←Equ.7

(
{ξd}D1

)
//equation 7

7: ξ ← {ξd}D1
8: return ξ,R (ξ)

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous Syst.,
vol. 57, no. 5, pp. 469–483, 2009.

[2] J. Rey, K. Kronander, F. Farshidian, J. Buchli, and A. Billard, “Learning
motions from demonstrations and rewards with time-invariant dynamical
systems based policies,” Autonomous Robots, vol. 42, no. 1, pp. 45–64,
2018.

[3] M. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search
for robotics,” Journal of Intelligent and Robotic Systems, vol. 15, no. 1,
pp. 1–2, 2013.

[4] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. Worgtter, “Joining move-
ment sequences: Modified dynamic movement primitives for robotics
applications exemplified on handwriting,” IEEE Trans. Robotics, vol. 28,
no. 1, pp. 145–157, 2012.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[6] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Scalable deep reinforcement learning for vision-based robotic manipu-
lation,” in Proceedings of The 2nd Conference on Robot Learning, ser.
Proceedings of Machine Learning Research, vol. 87. PMLR, 29–31
Oct 2018, pp. 651–673.

[7] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal
and autonomous control using reinforcement learning: A survey,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 29, no. 6,
pp. 2042–2062, 2018.

[8] U. E. Ogenyi, J. Liu, C. Yang, Z. Ju, and H. Liu, “Physical human-
robot collaboration: Robotic systems, learning methods, collaborative
strategies, sensors, and actuators,” IEEE transactions on cybernetics,
2019.

[9] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[10] A. Ude and T. Gams, A. Asfour, “Task-specific generalization of discrete
and periodic dynamic movement primitives,” IEEE Trans. Robotics,
vol. 26, no. 5, pp. 800–815, 2010.

[11] C. Yang, C. Zeng, Y. Cong, N. Wang, and M. Wang, “A learning
framework of adaptive manipulative skills from human to robot,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1153–1161,
2019.

[12] S. M. Khansari-Zadeh and A. Billard, “Bm: An iterative algorithm to
learn stable non-linear dynamical systems with gaussian mixture mod-
els,” in 2010 IEEE Int. Conf. Robotics and Automation, Anchorage,USA,
May 2010, pp. 2381–2388.

[13] S. Manschitz, M. Gienger, J. Kober, and J. Peters, “Mixture of attractors:
A novel movement primitive representation for learning motor skills
from demonstrations,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 926–933, 2018.

[14] C. Yang, C. Chen, W. He, R. Cui, and Z. Li, “Robot learning system
based on adaptive neural control and dynamic movement primitives,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
no. 3, pp. 777–787, 2019.

[15] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learn-
ing,” Artificial Intelligence Review, vol. 11, no. 1, pp. 11–73, 1997.

[16] O. Sigaud, C. Salaun, and V. Padois, “On-line regression algorithms
for learning mechanical models of robots: A survey,” Robotics and
Autonomous Syst., vol. 59, no. 12, pp. 1115–1129, 2011.

12

[17] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 2, pp. 408–423, 2015.

[18] H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters,
“Interaction primitives for human-robot cooperation tasks,” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014/5/31 - 2014/6/7, pp. 2831–2837.

[19] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Machine Learning, vol. 84, no. 1-2, pp. 171–203, 2011.

[20] J. Macedo, C. Santos, and L. Costa, “Using cost-regularized kernel
regression with a high number of samples,” in 2014 IEEE Int. Conf.
Autonomous Robot Syst. and Competitions, Espinho, Portugal, May
2014, Book Section, pp. 1371–1394.

[21] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to adjust
robot movements to new situations,” in 22th Int. Joint Conf. Artificial
Intell., Barcelona,Spain, July 2011, pp. 2650–2655.

[22] M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electro-
magnetics optimization: The covariance matrix adaptation evolutionary
strategy.” IEEE Antennas Propagat. Mag., vol. 57, no. 3, pp. 48–59, Jun.
2015.

[23] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, 2015, pp. 1889–1897.

[24] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. P. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations,
2016.

[25] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” J. Mach. Learn. Res.,
vol. 11, pp. 3137–3181, 2010.

[26] J. Fu, L. Ning, S. Wei, and L. Zhang, “A novel ds-gmr coupled primitive
for robotic motion skill learning,” in 2015 Int. Conf. Ind. Informatics-
Computing Technology, Intelligent Technology, Ind. Inform. Integration,
Wuhan, China, Dec 2015, pp. 111–115.

[27] J. Fu, S. Chen, M. Pang, and P. Lou, “Robot motor skill acquisition
with alternate learning in two spaces,” Journal of Huazhong University
of Science and Technology(Natural Science Edition), vol. 45, no. 10, pp.
90–94+110, 2017.

[28] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal.Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, 2013.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[30] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control (Advanced Textbooks in Control and Signal
Processing), 1st ed. Springer, 2 2011.

[31] R. Pfeifer and J. Bongard, How the body shapes the way we think: a
new view of intelligence. MIT press, 2006.

[32] A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G.
Ungerleider, “Functional mri evidence for adult motor cortex plasticity
during motor skill learning,” Nature, vol. 377, no. 6545, pp. 155–158,
1995.

[33] U. Halsband and R. K. Lange”, “Motor learning in man: A review of
functional and clinical studies,” Journal of Physiology-Paris, vol. 99,
no. 4, pp. 414 – 424, 2006.

[34] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation. CRC, Mar. 1994.

[35] C. Yang, C. Chen, N. Wang, Z. Ju, J. Fu, and M. Wang, “Biologically
inspired motion modeling and neural control for robot learning from
demonstrations,” IEEE Transactions on Cognitive and Developmental
Systems, vol. 11, no. 2, pp. 281–291, 2018.

