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RESEARCH

“Float First”: Trapped Air 
Between Clothing Layers Significantly 
Improves Buoyancy After Immersion

Martin J. Barwood, Victoria Bates, Geoffrey Long, 
and Michael J. Tipton

Approximately 450,000 people drown annually worldwide. The capacity of 
immersed adults and children to float in clothing is less well understood, but it is 
possible that air trapped between clothing layers increases buoyancy. These studies 
aimed to quantify buoyancy and the practical implications thereof. Study 1 (n = 24) 
quantified this buoyancy and the consequence of any buoyancy by measurement of 
airway freeboard (mouth to water level distance). Study 2 examined the capability 
of children (n = 29) to float with freeboard used as the outcome measure and is 
expressed as a percentage of occasions that freeboard was achieved. Buoyancy 
(measured in newtons; N) was provided for winter clothing as 105(± 12)N, for 
autumn/spring clothing as 87(± 13)N, and for summer clothing as 68(± 11)N. In 
all cases, buoyancy was greater than for the control condition of 61(± 11)N. Aver-
age freeboard was 63(± 2) % for winter clothing, 62(± 2) % for autumn/spring 
clothing, 66(± 2)% for summer clothing, and 15(± 1)% for the control condition. 
Children were more buoyant, 95(± 17)% freeboard, irrespective of gender, than 
adults. “Float first” is advocated as a primary survival mechanism.

Keywords: Floating, freeboard, cold shock, drowning

An average of 445 people per annum drown in the UK (Royal Society for the 
Prevention of Accidents, 2002, 2005). The majority of these drowning incidents 
occurred in inland rivers and streams or in the relatively calm waters of lakes and 
reservoirs. Many of the victims were young, who had accidentally fallen into the 
water, were fully or partially clothed, and drowned within a short distance of the safe 
refuge of land. Indeed, data from the International Lifesaving Federation (Interna-
tional Lifesaving Federation, 2010) suggest that approximately 40% of drownings 
occur within 2 m of safety and a quarter occur in water less than 1 m deep. These 
data suggest that swimming performance in the early minutes of immersion is 
impaired. This, in part, is due to the low average annual water temperature in and 
around the U.K where temperatures reach a nadir of ∼6 °C in spring and a peak of 
16 °C in autumn throughout the yearly cycle (Lowestoft et al., 2007-2008). Even 
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148  Barwood et al.

with the partial protection provided by clothing, immersion into water throughout 
this range of temperatures impairs swimming performance (Tipton, Eglin, Gennser, 
& Golden, 1999), may cause anxiety (Barwood, Dalzell, Datta, Thelwell, &Tipton, 
2006; Barwood, Datta, Thelwell, & Tipton, 2007), and induces hazardous cardio-
respiratory responses (Tipton, Stubbs, & Elliott, 1990; Tipton, 2003).

The physiological responses during the first few minutes of cold water immer-
sion (CWI) are well understood and have been studied extensively (Barwood et 
al., 2006, 2007; Datta & Tipton, 2006; Tipton, Eglin, & Golden, 1998; Tipton, 
Golden, Higenbottam, Mekjavic, & Eglin 1998). They have been described col-
lectively as the “cold shock” response (Tipton, 1989) and characterized by an 
“inspiratory gasp,” hyperventilation, tachycardia, peripheral vasoconstriction, and 
hypertension. The hyperventilatory component of the cold shock response makes 
coordinating breathing during swimming difficult and significantly decreases 
maximum breath-holding time (Barwood et al., 2006). Thus, during the early 
minutes of immersion, there is an increased risk of aspirating water and drowning 
(Tipton, 1995). This represents a further hazard in addition to that posed by the 
high cardiovascular strain (Tipton, 2003). The “cold shock” response declines 
after the first three minutes of immersion as the cutaneous cold sensitive ther-
moreceptors adapt to the cold water (Mekjavic & Bligh, 1989). Following this 
adaptation, heart rate and breathing frequency return toward preimmersion levels 
and swimming a short distance may become possible (Ducharme & Lounsbury, 
2007). Therefore, even in calm water, attempts to swim while experiencing cold 
shock may result in drowning. The current experimental evidence supports not 
attempting to swim (i.e., floating if possible) for a period of two to three min-
utes upon CWI to regain control over breathing (Ducharme & Lounsbury, 2007; 
Golden, Hardcastle, Pollard, & Tipton, 1986). Golden et al. (1986) demonstrated 
that swim failure within ten minutes was more likely on cold water immersion 
(5 °C) if participants, who were competent pool swimmers, began to swim 
immediately; swim failure did not occur if participants rested in the water for 
two minutes before beginning to swim.

Some drowning accidents may also be attributable to a lack of basic swimming 
skills and appropriate survival behavior. The existing standards for teaching people 
to swim are primarily focused on achieving the correct swimming technique for 
performance and to a lesser extent on achieving basic survival skills that are specific 
to cold water (Swim Teachers Association, 2010). Within the swim teaching cur-
riculum, floating is encouraged to maintain buoyancy if accidentally immersed in 
water by means of making a flotation device from an item of clothing (e.g., tying 
knots in the legs of a pair of trousers) or lying supine in the water (Swim Teachers 
Association, 2010). There is currently no evidence basis for floating or the use of 
inherent buoyancy as a survival strategy. If adopted, this approach would be comple-
mentary to the suggestion that it is advisable to remain still (i.e., float if possible) 
for the first minutes of immersion while the cold shock response subsides (Golden 
et al., 1986; Ducharme & Lounsbury, 2007). It has already been suggested, but not 
investigated, that trapped air between clothing layers may provide some buoyancy 
to immersed victims (Golden & Tipton, 2002; Tipton et al., 1990), but swimming 
(or actions such as waving for help) may release the air trapped within the clothing, 
thereby reducing the freeboard (distance between water level and victim’s mouth) 
of the immersed victim and increasing the chances of submersion of the airway and 
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drowning. It appears that the behavior during the initial minutes of accidental cold 
water immersion can be critical in determining survival prospects and a policy of 
“float first” during this period could improve survival prospects. This approach is 
counter-intuitive, however, and has not been empirically investigated; it therefore 
currently lacks an empirical evidence base.

This study aimed to examine the possibility that an immersed victim may be 
aided by buoyancy provided by air trapped between clothing layers during the 
initial minutes of immersion. A laboratory study was conducted to establish the 
buoyancy associated with three different seasonal clothing assemblies in adults, 
and one field-based (swimming pool) study was conducted to establish the practi-
cal significance (i.e., did any inherent buoyancy enable the airway to remain clear 
of the water and to maintain freeboard) of any clothing buoyancy for children and 
adolescents.

The experimental hypotheses for study 1 (adult participants) were that (a) 
there would be significant buoyancy provided by air trapped between clothing 
layers, (b) buoyancy would increase with the number of clothing layers, and (c) the 
buoyancy of the participant would be influenced by the experimental manipulation 
of swimming in comparison with floating. The experimental hypothesis for study 
2 (child and adolescent participants) was that any buoyancy provided by clothing 
would enable children and adolescents to float and that swimming compared with 
floating would decrease buoyancy.

Method: Study 1

Participants

The study was approved in advance of data collection by the University of Ports-
mouth Biosciences Research Ethics Committee. All participants provided written 
and informed consent to participate. All participants were screened to ensure they 
were fit to complete the study and provided health history information. Each partici-
pant underwent a medical examination and a 12 lead electrocardiogram was taken, 
inspected, and approved by a qualified independent medical officer. The physical 
characteristics of participants in study 1 are reported in Table 1.

Table 1 Mean (SD) Participant Characteristics for the Male  
and Female Adults Who Completed Study 1

Age 
(Years) Height (m) Mass (kg)

Skinfold 
(mm)

Body Fat 
(%)

Overall  
(n = 24) 21 (3) 1.73 (0.1) 71.2 (11.4) 47.0 (18.4) 21.5 (8.4)

Adult Males 
(n = 12) 22 (3) 1.78 (0.1) 75.7 (9.7) 34.2 (8.6) 14.0 (3.0)

Adult Females  
(n = 12) 21 (3) 1.69 (0.1) 66.8 (11.6) 59.9 (16.5) 29.0 (4.0)
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Experimental Design

Participants visited the laboratory on one occasion, where they completed a total 
of seven submersions in a counter-balanced order in a swimming flume contain-
ing chlorinated thermoneutral water (35 °C). Six of the submersions took place 
in different clothing assemblies reflecting the “typical” clothing worn in winter, 
spring/autumn, and summer; for the remaining submersion, the participants wore a 
bathing costume only, which acted as the control condition. The order of conditions 
was determined using a Latin square procedure. The estimated clothing insulation 
(CLO) of each clothing assembly was 1.1, 0.7, 0.2 and > 0.1 for the winter, spring/
autumn, summer, and control conditions, respectively; 0 CLO corresponds to a 
naked individual and 1 CLO is 0.155m2 KW equivalent to a typical business suit.

The participants completed two experimental manipulations in each of the three 
clothing conditions. Each manipulation was preceded and followed by a subjec-
tive observation of floating position and objective quantitative measurements of 
buoyancy using underwater weighing. The subjective observations were included to 
demonstrate face validity to the procedures, whereas the buoyancy measurement was 
included to reliably quantify buoyancy. The two manipulations were a two-minute 
“float only” condition and a two-minute controlled swim. In the control condition, 
it was assumed that buoyancy would be unchanged by floating, compared with 
swimming and therefore only the float condition was conducted. Figure 1 indicates 
the order and timing of the measurements taken as part of study 1.

Experimental Procedure

The timing of all data collection (i.e., initial buoyancy measurement, start and end 
of swimming period, second buoyancy measurement) was closely matched to avoid 
temporal variation between test conditions. Each test lasted approximately five and 
a half minutes in total. The participants dressed in the first clothing assembly and 
entered the environmental chamber. Subsequently, they sat on an immersion chair 
attached by a chain to an electronic winch (CPM, F1–8; 2–8; 5–4, Yale, Shropshire, 
U.K) with a calibrated strain gauge (Biometrics Ltd, VA, USA) in series of the chain. 
The strain gauge was zeroed before each test with the chair attached. Therefore the 
participants’ weight and its change with submersion were recorded during each test.

Before each test, the participants securely fastened a seat belt equipped with 
a release button before being winched above the swimming flume. The procedural 
requirements of the participants were then reiterated, and they were lowered, at a 
reproducible rate (8m∙min-1), into still water to the level of the most buoyant part 
of the clothing assembly above the head (i.e., hood); this took ∼23 s. Following a 
maximal inhalation, the participants held their breath before entering the water; the 
volume of the maximum inhalation was measured before the first submersion test 
(see measurements section below). Following submersion, the chair was steadied 
and a measurement of mass was recorded for ∼20 s. If the participants were unable 
to breath hold for 20 s, a shorter duration was selected; three female participants 
chose to breath-hold for 15 s. At the end of the 20 s period the participants were 
winched back up to shoulder level and released the seatbelt, moved away from 
the chair, and lay floating on their back for 20 s. It was noted whether the airway 
remained clear of the water and if the participants needed to paddle to achieve a 
floating position (assessment of freeboard). Subsequently, and depending on the 
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Buoyancy After Immersion in Clothing  151

Figure 1 — Order and timing of the measurements taken in study 1. Points 1 and 2 denote 
buoyancy measurements 1 and 2. FB denotes the points at which freeboard was estimated. Either 
resting (floating) occurred between FB measurements (condition dependent). Study 2 used a 
similar measurement order but did not include buoyancy quantification (points 1 and 2).

test manipulation, the participants either remained still and floated for a further two 
minutes or turned on to the front and swam (breaststroke) against a gentle current 
generated by the swimming flume for two minutes at a speed of 0.5m∙s-1, which 
was equivalent to a distance of ∼60 m. At the end of this two-minute period, the 
participants either remained still for a further 20 s (float manipulation) or moved 
onto the backs (swim manipulation) for a further assessment of freeboard. The 
participants then sat back on the immersion chair and a further measurement of 
buoyancy was made (submersion to the same depth as in buoyancy one measure-
ment) by underwater weighing.

Finally, the participants were winched from the immersion pool and undressed 
to their bathing costume. The participants dried with a towel and redressed in dry 
clothes in preparation for the next condition. The difference in underwater weight 
before and after the interventions, and in comparison with the control (swim suited) 
submersions, was used to indicate the amount of air (buoyancy) lost in the cloth-
ing. On one occasion, a measure of body composition was made (see below) in 
the period between tests.

Each clothing assembly was based on the insulation required to keep indi-
viduals warm in the average temperature conditions of the different seasons. They 
comprised the following:

 1. Control condition: a normal bathing costume (i.e., close fitting trunks or female 
bathing costume); one test: control (CON)

 2. Summer condition: trainers, knee length cotton shorts, and a t-shirt tucked into 
the waistband of the shorts. Two tests: summer float (SF) and summer swim 
(SS)

 3. Autumn/spring condition: trainers, jeans, a t-shirt, and a long sleeve cotton shirt 
tucked into the waistband of the trousers and a waterproof/windproof jacket 
with the hood down. Two tests: autumn/spring float (A/SF) and autumn/spring 
swim (A/SS)

 4. Winter condition: trainers, jeans, long-sleeve cotton shirt, a woolen jumper, 
and a waterproof/windproof jacket with the hood up. Two tests: winter float 
(WF) and winter swim (WS)
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Measurements

The primary measure was the underwater weight of the participants on initial 
submersion and after the period of floating or swimming. The underwater weight 
was measured by a load cell (Biometrics Ltd, VA, USA) located in series with the 
winch support chain. The load cell was accurate to 100 g. The calibration process 
involved hanging certified weights from the load cell and verifying accuracy. Strain 
gauge data were recorded continuously throughout buoyancy measurement at a 
frequency of 1∙s-1 (Biometrics data logging system, Biometrics Ltd, VA, USA).

The volume of each participant’s maximum inhalation was measured in air 
while adjacent to the swimming flume and assumed to be the same volume as the 
breath taken just before the participants were submerged. It was measured while 
seated in a chair and breathing through a two-way Hans-Rudolph mouthpiece 
connected to a piece of respiratory tubing attached to a spirometric transducer 
(Spirometric transducer module, KL Eng. Co., Northridge, USA). After breathing 
normally, participants took a maximal inhalation and the volume was recorded. 
Each participant performed this maneuver on three consecutive occasions. After 
this, their vital capacity (VC; the maximum amount of air that could be expelled 
from the lungs after a maximal inhalation) was also measured using the same 
equipment. The average of three attempts was again calculated.

A qualitative measurement of the consequence of any inherent buoyancy was 
made by assigning a fixed value of 1 to participants whose airway remained clear 
of the water without paddling, 0.5 if the airway remained clear of the water with 
minimal paddling, and zero if the participant’s airway was consistently submerged 
requiring significant paddling to float.

Participants completed an anthropometric profile of skinfold thickness at 
four different sites (bicep, tricep, subscapular, iliac crest). Measures were taken 
in duplicate by an accredited anthropometrist. These data were used to estimate 
body composition (body fat percentage) using a sum of four skinfolds, which will 
contribute, in part, to interindividual variation in buoyancy. The equations of Durnin 
and Womersley (1974) were used to estimate fat percentage in adults based on the 
assumptions of the Siri equation (Siri, 1961).

Data Analyses

The data generated by the biometrics load device (in kilograms) were converted to 
Newtons by multiplying by 9.81. A mean (SD) value for buoyancy was calculated 
for the 20 s period preceding (i.e., buoyancy measurement 1) and following (i.e., 
buoyancy measurement 2) resting and swimming for each clothing condition. 
Data were then compared using an analysis of variance (ANOVA) with repeated 
measures for buoyancy change (a) as a consequence of swimming compared with 
floating, (b) between genders, and (c) between clothing assemblies. Assumptions 
of sphericity were checked using Mauchly’s test. Where nonspherical data sets 
were evident, a Greenhouse-Geisser adjustment was used.

To establish the practical significance of any inherent buoyancy, the freeboard 
data were converted to a percentage by dividing the value assigned (0, 0.5, or 1) 
by the number of occasions the participants were asked to take the freeboard posi-
tion in study 1: 6 clothing assemblies, two tests (swim vs. float) plus two Control 
tests, a total of 14 occasions; study 2: 1 clothing assembly, two tests (swim vs. 
float), a total of 4 occasions. Percentage freeboard was calculated for each cloth-
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ing assembly, manipulation, and time point using the data collected in study 1 and 
were compared between gender.

To assess the relationship(s) between the freeboard data following the first 
buoyancy measurement and the measured respiratory and anthropometric variables 
that may influence buoyancy, a Pearson’s correlation was calculated for the winter 
and control conditions. The alpha level for all statistical tests was set at 0.05

Results
The data indicated that (a) a significant amount of air (causing buoyancy) was 
trapped underneath the layers of clothing during submersion (p = .001; Figure 2). 
This averaged 25 (± 16) N across conditions for buoyancy measurement 1; (b) this 
buoyancy declined over time (p = .001; Figure 2) to 10 (± 4) N across conditions; 
and (c) the amount of air remaining over time varied between the clothing assem-
blies (p = .001; Figure 3). For buoyancy measurement 2, these values averaged, 
irrespective of having rested or swum: W 14 (± 1) N, AS/S 10 (± 2) N, and S 6 
(± 1) N and did not differ between resting and swimming manipulations (p > .05; 
Figure 3). With the exception of the control and summer clothing conditions (no 
difference observed; see Table 2), the buoyancy was always significantly lower in 
the second buoyancy measurement than the first, irrespective of whether the par-
ticipants rested using floating or swam. A significant amount of residual buoyancy 
still remained in all clothing conditions irrespective of having floated or swum in 
comparison with the control condition (p = 0.02); this averaged 10 (± 4) N across 
clothing conditions. Table 2 provides details of mean (± SD) positive buoyancy 
in each clothing condition before and after submersion and Figure 2 shows this 
buoyancy adjusted against the buoyancy evident in the control condition.

Figure 2 — Mean buoyancy (N) adjusted against the buoyancy evident in the control condition in 
all participants from study 1 before (black bars) and after (white bars) swimming or floating (n = 24).
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Figure 3 — Mean percentage freeboard achieved in each clothing condition in adult males tested 
in study 1 before (black bars) and after (white bars) swimming or floating (n = 12); * denotes sig-
nificantly different to control condition.

Table 2 Positive Buoyancy (Newtons, N) Measured During 20 s 
Submersion Before and After Floating or Swimming

WF (N) WS (N) A/SF (N) A/SS (N) SF (N) SS (N) CF (N)

Subm 1  
(n = 24)

*104

(12)a,b,c

*105

(12)a,b,c

*86

(14)b,c

*87

(12)b,c

69

(11)c

67

(11)c

61

(11)

Subm 2  
(n = 24)

76

(12)b,c

74

(21)b,c

70

(12)b,c

73

(11)b,c

67

(8)

68

(10)

61

(11)
Males 
Subm 1  
(n = 12)

*99

(8)a,b,c

*100

(6)a,b,c

*80

(9)b,c

*84

(8)b,c

62

(8)c

63

(7)c

57

(6)
Males 
Subm 2  
(n = 12)

68

(8)c

64

(24)

65

(11)c

69

(11)c

60

(9)

62

(8)

58

(7)
Females 
Subm 1  
(n = 12)

*109

(15)a,b,c

*109

(16)a,b,c

*91

(16)b,c

*90

(15)b,c

76

(9)c

71

(13)c

65

(13)
Females 
Subm 2  
(n = 12)

84

(12)a,b,c

85

(8)a,b,c

76

(11)c

77

(10)c

74

(8)c

74

(8)c

65

(14)

*denotes significant difference between submersion 1 and 2 within condition, a = greater than the A/S condition, 
b = greater than S condition, and c = greater than the CF condition.
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Overall, females were significantly more buoyant than were males (p = 0.001), 
but the statistical analysis revealed no significant male and female interactions 
between clothing assembly, condition, and across time (submersion 1 vs. submer-
sion 2; see Table 2).

Freeboard

The freeboard data partially supported the observations seen in the buoyancy data 
where (a) the amount of air (buoyancy) trapped underneath the layers of clothing 
after submersion enabled the participants to achieve freeboard more often (p = 
0.001), (b) the freeboard capability reduced significantly over time (p = .041), but 
(c) the freeboard capability did not vary in accordance with the buoyancy noted 
in each clothing assembly (p = 0.11). The freeboard characteristics also did not 
differ between floating and swimming manipulations (p = 0.11).

There were significant effects associated with gender where females achieved 
freeboard significantly more often (p = 0.001) than did males. This effect was 
evident in each clothing condition where, with the exception of the control condi-
tion on initial immersion (p = 0.275), females achieved freeboard significantly 
more often (p = 0.001) than did males. The percentage freeboard achieved in 
each clothing condition is displayed in males and females in Figures 3 and 4, 
respectively.

Figure 4 — Mean percentage freeboard achieved in each clothing condition in adult females tested 
in study 1 before (black bars) and after (white bars) swimming or floating (n = 12).
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Irrespective of the clothing condition, experimental condition (floating or swim-
ming) or gender, the participants achieved freeboard (i.e., the airway remained clear 
of the water) on 56 (19)% of occasions just following the first buoyancy measure-
ment and 52 (± 20)% of occasions just before the second buoyancy measurement 
(n = 24). Males floated on 24 (± 9)% of occasions just after the first buoyancy 
measurement and 22 (± 13)% of occasions just before the second buoyancy mea-
surement (n = 12). Females floated on 88 (± 30)% of occasions just after the first 
buoyancy measurement and 83 (±28)% of occasions just before the second buoyancy 
measurement (n = 12). In all cases, the freeboard statistic was significantly higher in 
all clothing conditions in females compared with the control condition (p = 0.001), 
but there were no differences between any of the clothing conditions (p = 0.58). In 
males, differences were evident between clothing conditions and the control (p = 
0.02), but these differences did not alter as a consequence of swimming compared 
with floating (p = 0.488). With the exception of WF and AS/S all other conditions 
were different from the control. The freeboard statistics for males and females are 
displayed in Figures 3 and 4, respectively. 

Correlational Data
In the winter clothing assembly, the initial freeboard value (i.e., just after the first 
buoyancy measurement) was significantly correlated with the first buoyancy mea-
surement (p = 0.048, r = 0.407), the sum of skinfolds (p = 0.001, r = 0.738), the 
body fat percentage (p = 0.001, r = 0.859), and the vital capacity (p = 0.001, r = 
0.647). Relationships were also found between the freeboard value generated just 
before the second buoyancy measurement and the second buoyancy measurement 
(p = 0.001, r = 0.622), the sum of skinfolds (p = 0.001, r = 0.748), the body fat 
percentage (p = 0.001, r = 0.879), and the vital capacity (p = 0.001, r = 0.649). These 
relationships were not as strong in the control condition as they were when clothing 
was worn. The initial freeboard value was correlated with buoyancy measurement 
(p = 0.046, r = 0.411), sum of skinfolds (p = 0.002, r = 0.595), body fat percentage 
(p = 0.002, r = 0.595), and vital capacity (p = 0.034, r = 0.435).

Study 2
Participants

The study was approved in advance of data collection by the University of Ports-
mouth Biosciences Research Ethics Committee. All participants provided written 
and informed consent to participate. Where participants were under the age of 
18 years, written assent for participation was given by their parent or guardian. 
All participants were screened to ensure they were fit to complete the study and 
provided health history information. The physical characteristics of participants 
in study 2 are reported in Table 3.

Experimental Design

Participants visited a local swimming pool on one occasion where they completed 
two immersions into warm water (29.5 °C). Both immersions took place while 
wearing the winter clothing assembly with a similar CLO to that used in study 1. 
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Freeboard was measured subjectively and quantitatively at the start and end of each 
immersion (see Figure 1). The two experimental manipulations were a “float only” 
(rest) condition and one condition where freeboard measurement was followed by 
up to 25 m of submaximal breast stroke swimming; the tests ended with a further 
freeboard measurement.

Experimental Procedure

The timing of all data points (i.e., initial freeboard measurement, second freeboard 
measurement) was matched to those noted in the first condition (winter clothing 
assembly and swimming). Each test lasted approximately two minutes. The partici-
pants dressed in winter clothing assembly and lowered themselves on to the second 
step of the pool’s entry steps while holding on to the hand rail. At this time only 
their feet were immersed. Following a countdown, the participants fell backward 
into the water with arms outstretched and to the side of the body. Following water 
entry, the participants lay still in the water while an objective (see measurements 
section) and subjective assessment (experimenter observation) was made of the 
freeboard. Depending upon the experimental manipulation, the participants then 
either swam a maximum of 25 m (swim manipulation) or remained still, paddling 
as little as possible to remain afloat (float manipulation). If the participants were 
unable to swim 25 m, they stopped, lay on their back, and freeboard was measured 
before exiting the pool. The total distance covered was recorded. The test ended 
following the second freeboard measurement.

The participants then undressed to a bathing costume, dried with a towel, 
and redressed in dry clothes in preparation for the floating experimental condi-
tion. Freeboard measurements before and after the float condition were compared 
with the swim condition used to indicate the extent of any buoyancy retained in 
the clothing. Body composition was also measured (see below) either before or 
following the immersion tests.

The winter clothing assembly corresponded to that used in the laboratory tests 
(study 1) and was based on the insulation required to keep an average individual 
warm in winter conditions. The participants were asked to bring two sets of their 
own clothing to ensure a good fit of the garments. The experimenters provided the 
waterproof jacket sized to fit.

Table 3 Mean (SD) Participant Characteristics for Children 
and Adolescents Who Completed Study 2

Age 
(years) Height (m) Mass (kg)

Skinfold 
(mm)

Body Fat 
(%)

Overall 
(n = 29) 12 (3) 1.53 (0.2) 48.7 (15.8) 36.9 (19.4) 20.9 (6.4)

Junior Males 
(n=16) 13 (3) 1.55 (0.2) 51.6 (17.2) 33.1 (17.0) 18.1 (5.3)

Junior Females 
(n=13) 12 (2) 1.51 (0.1) 45.1 (14.0) 41.6 (21.7) 24.3 (6.2)

11

Barwood et al.: “Float First:” Trapped Air Between Clothing Layers Significantly

Published by ScholarWorks@BGSU, 2011



158  Barwood et al.

Measurements

Quantitative measurements of the practical significance of any inherent buoy-
ancy (freeboard) were made on two occasions during each test. The quantita-
tive measurement was made using a parallax measuring device (see Figure 5), 
deployed by a safety swimmer who was in the water adjacent to the participants 
throughout all tests. The freeboard measuring device was a perspex cylinder 
mounted on a swim float, with gradations marked at 0.5cm intervals on opposite 
sides. The zero baseline was set at the water level. The safety swimmer measured 
the height of the lowest part of the mouth above the waterline by fixating upon 
the mouth and aligning the measurement scales situated on the parallax device 
on either side of the perspex cylinder. The value that corresponded to the point 
where the measurement scales crossed on either side of the cylinder was recorded 
by an experimenter at the poolside. On one occasion, participants completed 
the same anthropometric profile as noted in study one with body composition 
calculated using an equation suitable for body fat estimation in children (Brook,  
1971).

Means (± SD) for the objective freeboard data were calculated for the mea-
surements generated before and after resting or swimming using both qualita-
tive and quantitative data. Data were then compared using a repeated measures 
analysis of variance (ANOVA) for change in freeboard, both as a consequence 
of swimming compared with resting and between genders.

To gain an estimation of the physical effort required to swim the 25 m in 
comparison with floating, participants were asked to rate their required effort on 
a modified Borg (1982) scale where 1 corresponded to low intensity exercise/
easy and 10 corresponded to a maximal effort exercise/hard. These data were 
statistically examined for differences using a paired samples t test.

Figure 5 — Pictorial representation of how buoyancy was quantified using the parallax 
device in study 2. 
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Swim Performance

The average (SD) distance swum by the participants was 24 (± 4) meters and was 
similar in males, 23 (± 5.3) m and females, 25 (± 0.0) m. The time taken to complete 
this distance averaged 69 (± 14) seconds and was again similar between males, 69 
(± 15) s and females, 69 (± 12) s. The duration of the float condition was matched 
to the duration of the swim condition. The participants perceived that the effort 
required to swim was significantly greater, 6 (±2) out of 10, than that required to 
float, 3 (± 2) out of 10, for a similar period of time (p = 0.001).

Freeboard

When freeboard was directly quantified, the airway remained clear of the water on 
initial immersion by an average (SD) of 5.5 (± 3.0) cm (n = 29), a distance that was 
similar in males, 5.5 (± 3.4) cm and females, 5.4 (± 2.7) cm. The airway became 
significantly closer to the water over time (p = 0.001), but this distance was not 
influenced by whether the participant swam or remained still (floated p = 0.992). 
There was no difference in the decrease in the freeboard measurement between 
males and females (p = 0.849); freeboard measurement 2 averaged 3.0 (± 1.7) cm (n 
= 29) and was 3.4 (± 1.7) cm in males (n = 16) and 2.7 (±1.7) cm in females (n=13).

The freeboard statistics and effects were the same as noted above. Irrespective 
of clothing condition, experiment condition, and gender, the participants floated (i.e., 
the airway remained clear of the water) on 94 (± 21)% of occasions just following 
entry to the water and 77 (± 30)% of occasions at the end of the experiment (n = 
29). Males floated on 92 (±27)% of occasions just after entering the water and 75 
(± 32)% of occasions at the end of the experiment (n = 16). Females floated on 96 
(± 13)% of occasions just after entering the water and 79 (±29)% of occasions at 
the end of the experiment (n = 13).

General Discussion
Study 1 examined the extent to which buoyancy was provided by air trapped between 
clothing layers on immersion and whether staying still (floating) enabled more air 
to remain trapped between clothing layers in the early minutes of immersion. The 
data suggest that a significant amount of buoyancy, over and above that seen when 
unclothed (control), was present on initial immersion; the experimental hypothesis 
(a) is therefore accepted. Indeed, up to an average of 45 N of buoyancy (similar to 
that provided by an entry level buoyancy aid) was apparent in the winter clothing 
assembly, with this clothing assembly providing the greatest amount of buoyancy 
in the present tests. As the clothing layers were reduced, the amount of inherent 
buoyancy was also significantly reduced to 25 N and 7 N for autumn/spring and 
summer, respectively. The experimental hypothesis (b) is again accepted. Buoyancy 
was reduced to a similar value within each clothing condition irrespective of whether 
the participants swam or floated after the first buoyancy measurement. Experimental 
hypothesis (c) is therefore rejected. During the second buoyancy measurement, 
clothing provided 5–14 N more buoyancy than that seen in the control condition, 
with the winter clothing assembly again providing the most buoyancy at this time.
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Despite the increased buoyancy with clothing layers, the participants were 
only able to lie still with their airway clear of the water (freeboard) on half of the 
occasions. Those participants who were initially able to float were still able to do 
so even if they had swum for two minutes. This, in part, can be attributed to gender 
differences. There were clear differences in measured buoyancy and freeboard 
between adult males and females, confirming that physical characteristics, such 
as percentage body fat (Table 1), play a role in determining the ability to remain 
afloat. In study 2, the average estimated body fat percentage of boys undertaking 
the current studies was about four percent higher than that of the adult males (Table 
3). This is similar to the difference seen in anthropometric studies (Guo, Chumlea, 
Roche, & Siervogel, 1998). Using the data of Barlett et al. (1991), based on U.S. 
citizens, it is possible to estimate the ratio of fat mass to fat free mass for children 
and adults of corresponding age to those in the current study. Given the buoyancy 
characteristics of human fat and fat-free tissue, the higher this ratio, the more likely 
it is that an individual will be able to float. In adult females and children, this ratio 
is reported as being between 0.29 and 0.30 in boys and girls aged 11–13 years old 
and closer to 0.35 in adult females aged 19–22 years old. This is reported as being 
lower in adult males who have a ratio closer to 0.24 (19–22 years old; Barlett et 
al., 1991), whereas the adult males tested in study 1 have a ratio of closer to 0.17; 
this helps to explain the relative difficulty this group have in achieving freeboard.

The data from study 2 suggest that children with an average age of 12 years 
of age who wore typical winter clothing were able to float on entry to water and 
keep their airway clear of the water with only minimal paddling. The ability to 
float was relatively unaffected by a short period of swimming in comparison with 
remaining still, which suggested that any inherent buoyancy created by trapped air 
between clothing layers diminishes by a small amount with time, irrespective of 
body movement. These data agree with the observations made on adults in study 1.

The results obtained from children and adults were not identical. From the tests 
conducted, the vast majority of children were able to float irrespective of gender; 
this finding corresponded with that seen in adult females, with a smaller percentage 
of adult males being able to float without paddling. The differences in the responses 
seen between children and adult males may in part be due to the methodological 
differences between studies 1 and 2 (i.e., no prior buoyancy quantification in study 2 
before freeboard measurement). Alternatively, it could be due to the similarities and 
differences in the anthropometric characteristics of children and adult females and 
males, and the possibility that the amount of air trapped in the clothing assembly 
of children is relatively greater in relation to body mass due to the higher surface 
area to mass ratio of children. This combined with buoyant footwear (i.e., trainers) 
may have been sufficient to enable flotation in most children.

The volume of air in the lungs (Pendergast, di Prampero, Craig, Wilson, & 
Rennie, 1977) and the temperature, salinity, and viscosity of water in which the 
immersion takes place will also influence float capability. In addition to these fac-
tors, our data suggest that the type of clothing worn will also influence the ability 
to retain buoyancy. The permeability of the surface clothing layer, which was 
waterproof in the present tests, appears to be the main determinant of the amount 
of buoyancy provided and the rate at which it dissipates. When the waterproof 
layer was not worn, the initial buoyancy was reduced to ∼7 N, a value that we 
primarily attribute to the wearing of trainers which were partly comprised of foam. 
However, even this minor addition to buoyancy enabled the female participants to 
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“float freely” on approximately 95% of occasions; this percentage fell to ∼25% 
when the trainers were removed in the control condition (Figure 4).

It is also possible that during an actual accidental immersion, more buoyancy 
would be retained in clothing than was established in the present tests. This is 
because the measurement of buoyancy by underwater weighing may, itself, have 
reduced buoyancy due to hydrostatic compression of the clothing. While this 
will occur on any immersion, experimental or accidental, it is unlikely that an 
immersion victim would be held underwater for a period of 20 s necessary in the 
present experiments to determine underwater weight in a scientifically valid and 
reproducible way. It is interesting to note that the buoyancy data in the first 5 s 
of submersion in winter clothing condition was 59 (± 13) N and subsided to 39 
(±13) N in the final 5 s of submersion (data adjusted against the control condition). 
Despite the extended period of submersion the buoyancy data showed a significant 
relationship with the freeboard data in both the control and winter clothing condi-
tions. During an accidental immersion, it is possible that the victim’s head would 
be forced below the level of the water. In such a situation, air trapped in the hood 
of the clothing could assist the victim in returning to the surface of the water and 
help keep the airway clear of water.

We concluded that a significant amount of air is trapped by clothing on immer-
sion in water, and the volume of this air is primarily dependent on the permeability 
of the surface clothing layer. This buoyancy is reduced over the initial minutes of 
immersion, irrespective of whether an individual swims or floats, but for up to at least 
two minutes, buoyancy remains higher than that seen without clothing. Therefore, 
the wearing of clothing may assist buoyancy in certain real life scenarios where 
accidental immersion occurs. Further investigations may be required to cover other 
aspects of the immersion scenario not covered in this investigation (e.g., effects 
of water temperature, salinity, viscosity, and currents) to provide further evidence 
for the value of this survival mechanism. Based on the present data, any inher-
ent buoyancy may be of greater assistance to children and adult females who are 
better able to float than adult males. Consistent with observations from the cold 
immersion literature (Golden et al., 1986), which suggest that cold shock can cause 
swim failure during the initial minutes of immersion, our data support a policy of 
“float first” for the initial minutes of accidental immersion in cold water, and we 
advocate that this survival behavior should be taught to children in conjunction 
with learning to swim. The effort required to swim even a short distance in warm 
water is significantly increased by wearing clothing, and the fatigue associated with 
clothed swimming is likely to be exacerbated in cold water (Tipton et al., 1999). 
Therefore, the behavioral advice after the early minutes of cold water immersion 
may be to remove clothing layers before attempting to swim to safety; the evidence 
for this approach has yet to be established. The policy of “float first” does not 
reduce the importance of learning to swim or of becoming confident in the water 
(i.e., developing water competence).
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