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Abstract

There are many tasks in radiology departments which involve assessment 
of image quality. Equipment purchasing is partly based on performance 
specifications, acceptance testing verifies that the system fulfils the specified 
performance criteria, constancy testing attempts to notice any changes in the 
imaging system, clinical testing concentrates on the fulfilment of clinical needs, 
and optimisation processes attempt to find best ways to use the imaging system 
for clinical purposes. These different tasks are best performed by different 
assessment methods and the outcome is often referred to as technical (or physical) 
image quality or clinical image quality, according to the method used. Although 
establishing the link between physical image quality measures and clinical 
utility has been pursued for decades, the relationship between the results of 
physical measurements, phantom evaluations and clinical performance is not 
fully understood. This report shortly discusses various assessment methods, 
points out factors that may influence the interpretation of their results, and 
reviews recent studies that have explored the relationships between them.
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Tiivistelmä

Röntgenosastoilla on monia tehtäviä, joissa tarvitaan kuvanlaadun arviointia. 
Laitteiden hankinta perustuu osaltaan suorituskykyspesifikaatioihin, vastaan-
ottotarkastuksessa varmennetaan näiden spesifikaatioiden täyttymistä, 
vakioisuusmittauksin pyritään mahdollisimman varhaisessa vaiheessa 
huomaamaan kuvantamislaitteessa tapahtuneet muutokset, kliininen testaus 
keskittyy lääketieteellisten tarpeiden täyttymiseen ja optimoinnilla yritetään löytää 
laitteen parhaat käyttötavat käytännön työhön. Näihin erilaisiin tarkoituksiin 
soveltuvat parhaiten toisistaan poikkeavat kuvanlaadun arviointimenetelmät. 
Niiden perusteella mitattua tai arvioitua kuvanlaatua kutsutaan usein tekniseksi 
(tai fysikaaliseksi) kuvanlaaduksi tai kliiniseksi kuvanlaaduksi arvioinnissa 
käytetyn menetelmän mukaan. Fysikaalisen kuvanlaadun mittaukseen 
käytettävien suureiden ja kliinisen käytettävyyden välistä yhteyttä on yritetty 
selvittää jo kauan, mutta fysikaalisten mittausten, erilaisista kappaleista 
otettujen testikuvien ja kliinisen suorituskyvyn välistä yhteyttä ei vieläkään 
kunnolla tunneta. Tässä raportissa käsitellään lyhyesti erilaisia kuvanlaadun 
arviointimenetelmiä, tarkastellaan tekijöitä, jotka vaikuttavat niiden avulla 
saatavien tulosten tulkintaan ja tehdään kirjallisuuskatsaus viimeaikaisiin 
julkaisuihin, joissa on tutkittu eri arviointimenetelmien antamien tulosten 
välistä yhteyttä.
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1 Introduction

There are many tasks in radiology departments which involve assessment of image 
quality. Equipment purchasing is partly based on performance specifications, 
acceptance testing verifies that the system fulfils the specified performance 
criteria, constancy testing attempts to notice any changes in the imaging system, 
clinical testing concentrates on the fulfilment of clinical needs, and optimisation 
processes attempt to find best ways to use the imaging system for clinical 
purposes. These different tasks are best performed by different assessment 
methods and the outcome is often referred to as technical (or physical) image 
quality or clinical image quality, according to the method used. Sometimes (e.g., 
ICRU 2003), the term image quality is devoted mainly to the technical aspects 
of the image: primarily contrast, sharpness and noise. 

Even when one speaks of clinical image quality, the actual point of view 
and the definition of image quality are often left unspecified. Most often one just 
refers to a subjective judgement of quality in the clinical radiographs and/or 
fluoroscopic image. If the opinion is just based on an impression of quality, the 
usefulness of the assessment may be questionable (Vucich 1979, Barrett and Myers 
2004, Månsson 2000). When judged by task-based criteria – for example by the 
opinion of the radiologist relating to his ability to perceive certain anatomical 
details or features in the image and his/her confidence on the perception of these 
details, the assessment is more relevant. However, even then the outcome may be 
uncertain: the subjectivity of the evaluation leaves notable variability and bias 
in the results (ICRU 1996, Krupinski 2000, Barrett and Myers 2004). 

In medical radiology, images are used to diagnose patients (diagnostic 
radiology) or to treat them (interventional radiology). Therefore, image quality 
in radiology is most meaningfully defined through the usefulness of the images 
in accomplishing these tasks. The present consensus for defining diagnostic 
image quality is based on such a task-based approach (ICRU 1996, Barrett and 
Myers 2004). This approach differs from subjective assessment by setting a 
specified task for the image and actually measuring the performance achieved. 
This controlling of the outcome is not done in a subjective assessment, and often 
even the task is left unspecified. 

Because of the limited value of subjective assessment and the difficulty of 
performance-based measurement of image quality from clinical images, other, 
more precise and analytical means are needed for such purposes as equipment 
design, performance specification and acceptance and constancy testing 
(Tapiovaara 2005). The methods used include the measurement of the physical 
characteristics of the images (and the imaging system) and/or evaluation of 
image quality from phantom images. These various methods have been reviewed, 
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e.g., by ICRU (1996), Martin et al. (1999a) and Dobbins (2000) for radiology in 
general, and by Bosmans et al. (2005) for digital mammography in particular. 
Although establishing the link between physical image quality measures and 
clinical utility has been pursued for decades, the relationship between the results 
of physical measurements, phantom evaluations and clinical performance is not 
fully understood (Wagner 1977 and 1987, Wagner et al. 2001). 

The purpose of this paper is to shortly discuss various assessment methods, 
to point out factors that may influence the interpretation of their results, and 
to review recent studies that have explored the relationships between them. 
Further references can be found in the cited papers. The work has been limited 
to projection imaging. Computed tomography (CT) has not been considered, in 
spite of its importance in radiology, as it is outwith the remit of the SENTINEL 
project, within which this review was made. 
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2 Hypothetical relationship between 
diagnostic performance and 
physical image quality

The relationship between diagnostic performance and physical image quality 
(mainly contrast, sharpness and noise) has been discussed, for example, in ICRU 
(1986) where it was depicted by a simplified graph, similar to that shown in Fig. 1. 
If the level of physical image quality is extremely low, the image can provide no 
information for the diagnosis and diagnostic accuracy is unaffected by the x-ray 
examination. When the physical image quality improves, important radiological 
patterns become recognizable and diagnostic performance improves. Beyond a 
certain level of physical image quality – where all the important features are 
already visible and no additional image information that would be useful for the 
radiologist can be brought in the image – the performance will saturate. On the 
other hand, there are also examples with improved image quality decreasing the 
performance of radiologists. For example, this could happen in detecting small 
nodules or pulmonary masses in chest radiographs, because of the increased 
normal background visibility and complexity (ICRU 2003). In digital imaging 
this is not contradictory to the curve in Fig. 1, however: it is more a question 
of image processing and display than a question of hardware performance. In 
digital imaging, sharp images can always be processed to be unsharp, if it is 
deemed useful.

Figure 1. Simplified qualitative relationship between physical image quality and 
diagnostic performance (Adapted from ICRU 1986).
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Diagnostic performance, and the curve depicted in Fig. 1, depend of course also 
on other factors than physical image quality. Among such factors are for example 
1) the diagnosed disease and the nature, subtlety and specificity of the radiological 
features it causes, 2) the anatomical structures and their variability in both the 
positive and the negative patients, 3) the prior information of the patient given 
to the radiologist, and 4) the skill, medical knowledge and experience of the 
radiologist (Nodine and Mello-Thoms 2000). Of course, such curves may then 
differ widely if they are drawn to depict the performance of a given radiologist, 
a specific group of radiologists or the profession in general; they would also 
differ if drawn for a given patient, a group of patients with certain examination 
indications or the whole ensemble of patients. 

Clinical performance does not improve along with physical image quality 
when the operating point is already on the saturated region of the curve. However, 
it is not always known where one is working on such a curve and whether clinical 
performance would be affected by moderate changes in physically or technically 
assessed quality. Similar considerations apply also to the relationship between 
subjectively assessed image quality and clinical performance: it is not always 
granted that diagnostic performance would be better when the images give an 
impression of improved quality (Leitz et al. 1993, Krupinski 2000, Tingberg et 
al. 2005a). If it would be known that all features of interest are confidently seen 
in all the evaluated images, the value of saying that the features are “better” 
visible in some of them would be of questionable or no significance. On the other 
hand, such sufficiency of certain features may be seldom granted, and their better 
visibility is likely to indicate that the image would also be able to reveal fainter 
features that cannot be seen in the other images. Then the improved system 
could also be more effective clinically. 

Striving for the best possible physical or technical image quality is not 
optimal in medical radiology, because image quality is intimately related to the 
radiation dose to the patient and this would result to unacceptably high doses. In 
film-screen imaging this would correspond to choosing excessively slow screens 
and film and in digital imaging working at an unnecessary high image receptor 
air kerma level. Therefore, the optimum is presently often defined such that one 
obtains an image quality that is sufficient for the intended purpose, with the 
lowest possible dose to the patient. For example, when bone angle measurements 
are made the dose to the patient can in digital x-ray imaging be reduced to a 
small fraction of what is needed in film-based imaging (Sanfridsson et al. 1999) 
as this examination would not benefit from improving the visualisation of faint 
details. Similarly, Kotre et al (2004) demonstrated that low dose fluoroscopy is 
acceptable in cardiac pacing and electrophysiology, where the clinical requirement 
is that the high contrast wires are adequately distinguished. The idea of being 
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content to work with sufficient image quality should not, however, be taken 
too literally to mean that one should work too close to the limit of perceiving 
important details. The risks from an inadequate examination could then easily 
exceed the health benefits from a reduced dose (ICRP 1996, Martin et al. 1999b). 
Although one would work on the shoulder region of the average-patient curve, 
where benefits to the patients from improved physical image quality would be 
small on the average, the benefits to some individual patients could be large. 
Defining the actual optimal operating point on such a graph would require a 
detailed comparison of costs, health detriments from the patients’ radiation dose 
and expected health benefits from the examination. Suggestions for choosing a 
sufficient dose level (corresponding to high, medium or low image quality) for 
different examination indications and different types of digital x-ray equipment 
have been given by Busch (2004) and discussed by Busch and Faulkner (2005).

Båth et al. (2005a) have discussed optimisation strategies for digital x-ray 
imaging. They note that digital imaging has provided new freedom for choosing the 
exposure and image contrast, and suggest that imaging technique optimisation 
should: a) include the anatomical background during the optimisation, b) be 
performed at a constant effective dose, and c) separate the image display stage 
from the image collection stage. During the actual optimisation, one should 
first determine the optimal settings of technique parameters, then determine 
the optimal processing and display settings, and finally determine the optimal 
(necessary) dose level using the best combination of imaging technique and 
processing/display parameters. In this paper (Båth et al. 2005a) they note that 
traditional physical optimisation has been based on determining detectability 
of faint details in uniform phantoms, although growing evidence shows that in 
digital radiography at presently typical dose levels detection is often more limited 
by the anatomical background than by quantum noise. 
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3 Assessment of clinical image quality

3.1 Controlled patient studies (ROC and AFC)
As already stated above, the purpose of medical images is to provide information 
on the health state of the patient or to enable treating the patient. Therefore, in 
principle, image quality should optimally be measured by methods that address 
clinical performance. The measurement of receiver operating characteristics 
(ROC) is presently considered being the best method of quantifying and reporting 
diagnostic performance, and the ROC curve can then also be considered as a good 
descriptor of clinical image quality. 

ROC analysis is based on the fact that the diagnostician can adapt to 
different “critical confidence levels” for calling an image normal or abnormal. 
Therefore, simple measurement of the sensitivity and specificity of the diagnosis 
is not sufficient, but the sensitivity and specificity pairs need be evaluated for 
various critical confidence levels: these sensitivity and specificity pairs then 
define the ROC graph. For references on the ROC methodology see, e.g., ICRU 
(1996) or Metz (2000). There are also variants of the ROC methodology that take 
the locations of the lesions into account and thereby increase the statistical power 
of the evaluation (Chakraborty 2000, Månsson 2000).

If sensitivity and specificity data at different critical confidence levels are 
not needed, the results of ROC experiments are often summarized in terms of 
a single number, such as the area under the ROC curve (Az) or the detectability 
index da. The same measure can also be obtained by two-alternative forced-
choice (2-AFC) (or multiple alternative forced choice (M-AFC)) methods (ICRU 
1996, Burgess 1995, Metz 2000), where the observer is presented two images 
(or a larger number of images in M-AFC) of which only one is actually abnormal 
and the task of the observer is to choose the abnormal image. The result of the 
experiment is the probability of the correct response. It can be transformed to the 
detectability index d’, which can be interpreted as the decision stage signal-to-
noise ratio of the observer for the signal detection task in question (in practice, 
d’ and da are same quantities, see e.g. ICRU 1996, Burgess 1995 or Metz 2000). 
AFC experiments are simpler and quicker to perform than complete ROC studies, 
but require more images to achieve equal statistical power (Burgess 1995). 

All these methods require a large number of patient images and that 
the true health state of each patient is known. Further, the patient cases need 
to be so difficult that errors will be made in the image interpretation. These 
requirements make the measurement of clinical performance difficult in practice. 
The methods are most easily used for comparing different imaging modalities 
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or imaging techniques with images that are taken from the same patients: 
comparison of patient image-based ROC results between different clinics, for 
example, is not reasonable unless one can be sure that the patient material is 
similar in all the clinics of the study. Somewhat similarly, the results depend on 
the skills of the participating radiologists. Also, if a new imaging method with 
vastly different image characteristics is being compared to a commonly used old 
imaging method, it must be considered whether the results from the novel system 
could have suffered from the unusual appearance of its images compared to the 
old modality, with which the radiologists have worked a long time. Radiological 
expertise is much based on image-reading experience (Nodine and Mello-Thoms 
2000) thus the results with the new system might unfairly suffer from the lack 
of experience. 

The ROC method suffers from its inability to deal simultaneously with 
multiple diagnostic alternatives in a completely adequate way. This may be 
particularly cumbersome in chest radiology where a wide range of image features 
are of interest and a large number of different pathological conditions can be found 
(ICRU 2003). Metz (2000) also points out a potential problem with the difference 
in actually-positive image prevalence between ROC experiments (typically 
around 50%) and the clinical situation (of the order of 0.5% in mammography 
screening): the extent to which human strategy and performance may change 
at very low disease prevalence is not known. A further concern of the clinical 
relevance of ROC analyses is the need of the ROC experiment to focus on very 
subtle lesions and the fact that much of the ROC curve depicts false positive 
diagnosis probabilities that are not acceptable in most radiological practice 
(ICRU 2003).

A recent example of ROC-based image quality comparisons is the paper 
of Eisenhuber et al (2003) where the aim was to measure the visibility of low-
contrast catheter fragments in bedside chest radiographs obtained with film-
screen (400-speed) and storage phosphor based image receptors at various 
dose levels (corresponding to 200-, 400- and 800-speed systems). The problem 
of patient material variability was avoided by imaging the same patients in an 
intensive care unit with the various systems on consecutive days, and the problem 
of establishing the truth was not present because the experimenters knew the 
actual position of each catheter fragment. It was found that the detectability of 
the catheters was significantly better in the CR images of all dose levels than in 
the film-screen image. The detectability was significantly poorer in the 800-speed 
CR image than in the 200- and 400-speed images; no significant difference was 
found between the latter two. Another recent ROC experiment compared observer 
performance in detection of wrist fractures with a common PC display and a 
dedicated diagnostic display (Doyle et al. 2005): surprisingly, no differences in 
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performance were seen in spite of the much more modest technical specifications 
of the PC display.

ROC or AFC studies need not necessarily be made based on actual patient 
images. Instead, one can use images of a suitable phantom in which a relevant 
signal detail can be added or removed. Then the experimenter has no difficulty 
in knowing the actual truth state in any image. In principle it is possible to use 
such phantoms and details that the images represent most of the physical aspects 
of the clinical images, but it is difficult to obtain similar variability in the images 
that would result from the variability in real patients’ anatomy (background) and 
features of pathology (signal). In practice, the phantoms are often homogeneous 
attenuating and scattering blocks or anatomical phantoms in which the observer 
knows (or may get familiar with) the background structure. Also, usually the 
observer knows the shape and location of the signal detail, which is very often 
a simple object like a circular or square disk. While such studies can be totally 
adequate to take into account all the physical factors affecting the visibility of the 
detail in the test setting, it is often difficult to know how well the results would 
agree with data that would be obtained with actual patient imaging. However, 
it seems plausible to expect that the results of such phantom studies would be 
closely related to clinical performance if all the factors that are important for the 
detectability of the diagnostic details in the patients are taken into account in 
the phantom study. This is not always given the emphasis that it would require 
in planning the phantom study. For example, experiments trying to optimise 
the radiation quality for detecting a certain detail in the phantom may result 
in incorrect conclusions if the energy dependence of the contrast of the test 
detail differs from that of the relevant signals in actual patients. Therefore, for 
example, it is not reasonable to use test details made of aluminium or plastic 
material for optimising examination conditions when iodine contrast material 
in the patient needs be seen. Similarly, the conclusions of a phantom study are 
doubtful if the experiments are made using a homogeneous phantom, while the 
detectability of the actual detail in the clinical images would be mainly restricted 
by the varying and non-homogeneous background in the patient images – which 
the phantom study does not include. Recently, an example of poorly simulated 
anatomical details in attempting to find the optimal x-ray tube voltage for digital 
radiography was pointed out by Venema et al. (2005). They criticized a paper 
where anatomical soft tissue details in chest radiography were mimicked by 
using organic material soaked with iodine contrast medium. 

Realistic, variable radiological backgrounds can be obtained by using 
images of verified normal patients (Metz 2000), and artificially adding signals 
that represent pathological changes in the images. The main difficulty in such 
an approach is that it is imperative that the computationally added signal 



15

STUK-A219

images are similar to images that would have been obtained if the lesion had 
actually been in the patient (Sorenson et al. 1980). This requires at a least 
thorough consideration of the factors influencing the contrast and sharpness 
of the signal details, and therefore, among other things, accurate and realistic 
modelling of the lesions and the imaging system. For the latter of these factors, 
the modulation transfer function (MTF) and the signal transfer of the imaging 
system need to be measured. This is not a trivial task: e.g., consideration needs 
to be given to unsharpness resulting from the actual shape and size of the x-ray 
tube focal spot, the unsharpness from signal spread in the image receptor, and 
even motion unsharpness. One practical alternative, properly taking into account 
many of the factors, might be to take images of actual detail objects embedded 
in homogeneous, patient simulating phantoms and to extract the signals from 
these phantom images. Using mathematically defined details and modifying 
them by factors related to the radiation contrast of the detail and the sharpness 
and sensitometric properties of the imaging system may be more challenging in 
practice.

Routine conduction of controlled observer studies (ROC, 2-AFC or M-AFC) 
is not practical because of the large number of images and the significant observer 
time and overall amount of work that the evaluation requires. Therefore, simpler 
methods to assess clinical image quality are needed. However, in principle, 
controlled observer studies with clinical images can be considered being the 
gold standard against which other assessment methods should be validated. In 
practice, the results of ROC studies are specific for the type of signal/background 
combination studied and a generalised measure of clinical image quality is 
difficult to obtain (Båth et al. 2005a). Therefore, Båth et al. (2005a) suggest that 
subjective evaluation methods should be more suitable than ROC methods for 
studies attempting to optimise imaging technique parameters. 

3.2 Subjective assessment of clinical image quality
As noted in the ICRU report (1996) “subjective” refers to individual human 
judgement, so all methods employing human observers are subjective. However, 
the above mentioned methods (ROC and AFC) can, in a broader sense, be thought 
to provide objective measures of image quality – they provide numerical results 
that are not dependent on the opinion of the observer, but on the performance 
that the observer achieves. Here, subjective methods refer to methods which rely 
on the observers’ preference and where the correctness of their opinion is not 
controlled (and cannot even be defined).

Subjective evaluation of image quality is of course useful – and often it 
is also the only practical alternative for assessing clinical image quality (ICRU 
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1996, Dobbins 2000): some kind of verification of the clinical acceptability of 
patient images is necessary (Dobbins 2000, ICRU 2003). However, it should 
be understood that there are many possible sources of bias and uncertainty in 
these evaluations. The sources of bias range from preference for the aesthetically 
pleasing to prejudice against the unfamiliar (ICRU 1996); according to Krupinski 
(2000), basing her view on a number of papers, the unspoken assumption of 
better performance in image preference studies translating to better clinical 
performance may not always be true. 

There is also notable variability in subjective assessment results. The 
sources of variability include between-observer variability, within-observer 
variability and case variability (variability of individual patient images). These 
factors will limit the use of these methods only to finding large differences in 
image quality (ICRU 1996, Krupinski 2000), and may make comparisons of 
results obtained in different clinics virtually impossible unless image qualities 
clearly below or above standard clinical practice are involved (Verdun et al. 1993). 
These methods are more easily used for comparisons of, e.g., various imaging 
techniques within an x-ray department (e.g., Almén et al. 2000 and 2004, Tingberg 
et al. 2004, Tingberg and Sjöström 2005). 

Some reduction of variability and bias may be obtained by giving the 
observers instructions to focus their attention upon specific features in the 
image (Thornbury et al. 1977, Vucich 1979, ICRU 1996, Dobbins 2000). Such 
an approach has been adopted in the image criteria which the Commission of 
European Communities (CEC) and others have published (Commission of the 
European Communities 1996a, 1996b and 2000, European CT Study Group 
2004, Busch 2004, Bernardi et al. 2005a); these criteria are intended to be used 
to characterise acceptable radiographs of normal, healthy patients. The use of 
anatomical landmarks in assessing the quality of radiographs has been discussed 
in more detail by Vucich (1979). 

Methods for subjective quantitative assessment of clinical images have also 
been discussed by Dobbins (2000). These tests typically fall into two categories: 
side-by-side comparative studies and independent assessments on an absolute 
scale of merit. These are sometimes referred to as relative or absolute visual 
grading analysis (VGA), respectively: most often, however, the term VGA refers 
only to the relative method using a reference radiograph. The special case of 
fulfilling the European image criteria has been referred to as image criteria 
scoring (ICS). For references on such studies see e.g. Börjesson et al. (2005) and 
Tingberg et al. (2004 and 2005a). In the study of Tingberg et al. (2004) it was 
found that in repeated readings of the same radiographs the radiologists changed 
their opinion on the visibility of a structure in about one out of four times, on 
the average. It is noted that the relative VGA method, where the same reference 
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radiograph is compared against each other image, is able to provide much more 
consistent results than the absolute VGA method (Tingberg et al. 2000). 

The relevance of the image criteria for diagnostic performance has not been 
strictly proved, but they are based on the professional judgement of a group of 
radiologists. It is not self-evident that the fulfilment of all or some of the criteria is 
necessary or sufficient for accurate diagnostics – either in general or for specified 
examination indications in particular. There are few publications ascertaining 
this relationship by using the traditional ROC approach (which, of course, would 
be very tedious and still only applicable to the specific examination and pathologic 
condition chosen). An example where a strong link between performance and 
subjective evaluation was found is the study on the diagnostics of craniosynostosis 
by Pilgram et al. (1989). Comparisons of subjective evaluation and free-response 
forced error (FFE) experiments with simulated pathology have provided mixed 
results. In an earlier experiment where images were manipulated to correspond 
to three different screen-film combinations the subjective evaluation and FFE 
results were in good agreement (Tingberg et al. 2000), whereas in a later paper 
Tingberg et al. (2005a) found that images with low noise were preferred in 
the VGA study although the noise level did not affect detectability in the FFE 
experiment. (One should note however that the result of the FFE experiment 
relates only to the type of detail used in the study.) However, it seems clear 
that also the visibility of normal anatomy is of great diagnostic significance to 
radiologists. Demonstration of expected structures and patterns is reassuring 
to the interpreting physician and allows pathology to be excluded more reliably. 
The trade-offs that arise in the demonstration of normal anatomy are largely the 
same that arise when depiction of pathology is considered (ICRU 2003). Vañó et 
al. (1995) have analysed the fulfilment of the image criteria in both accepted and 
rejected chest radiographs, and found that rejected radiographs failed to meet 
the CEC image criteria much more often than accepted radiographs did. 

It seems evident that the European image criteria are not always 
unequivocal and radiologists may interpret them differently (Maccia et al. 1997, 
Almén et al. 2000, Tingberg et al. 2004 and 2005b); modification of the European 
image criteria has been suggested in several papers (e.g., Vañó et al. 1995, Almén 
et al. 2004, Hemdal et al. 2005). If the criteria are used for comparing different 
imaging systems, inter-observer variability is often larger than the difference 
between the systems (Tingberg 2005b). Tingberg et al. (2005b) attempted to 
reduce the inter-observer variability in image quality assessments by masking 
the images to show only the parts of the images that were necessary for the image 
criteria evaluation. However, it was found that this increased the variability, 
against expectations, and therefore they recommended not using the masking 
technique. 
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Also in the trial evaluation of the quality criteria for cardiac angiographic 
images (Bernardi et al. 2005b) notable variability was seen in the assessment of 
many patient studies, although the variability was small for the majority of them 
(which obtained nearly the maximum score in the evaluation). It also seems to be 
a common finding that overall image quality is judged sufficient even if not all 
CEC image criteria are fulfilled (Vañó et al. 1995, Maccia et al. 1997, Martin et 
al. 1999a, Offiah and Hall 2003) and it has been suggested that the importance of 
different image criteria should be identified and scored. Otherwise, not fulfilling 
a single but important criterion could easily result to wrongly accepting an 
inadequate radiograph (Vañó et al. 1998). 

As already mentioned above, the CEC image criteria have been developed 
as a means to demonstrate acceptable image quality in film-screen radiography. 
They cannot be easily used to alert for excessively high (and therefore non-
optimal) image quality. This was also pointed out in the discussion notes following 
Vucich’s paper (1979), where the merit of “optimally visualised” over “adequately 
visualised” was questioned. 

A recent example of using subjective evaluation methods is the paper 
of Uffmann et al. (2005) where chest images were taken with a CsI-based flat 
panel system from the same patients at three different x-ray tube voltages but 
with equal effective dose to the patient at each tube voltage. The tube voltage 
dependence of the visibility of various anatomic structures was evaluated by 
both absolute and relative visual grading analysis. In the paper these were 
referred to as visibility of anatomic structures and preference of acquisition 
technique, respectively. The radiologists in the study ranked images taken at 
90 kV significantly superior to images taken at 121 kV and 150 kV. Geijer and 
Persliden (2005) have compared lumbar spine radiographs of an anthropomorphic 
phantom obtained at various x-ray tube voltages and equal effective dose with 
a flat-panel detector. They concluded that the examination would be optimised 
with lower than their present clinical x-ray tube voltage (77 kV); best overall 
evaluation was obtained at 52 kV. They found similar results also in contrast-
detail measurements with a CDRAD 2.0 phantom placed in the middle of a 20 cm 
thick PMMA slab phantom.

Sometimes, subjective comparisons of different imaging systems 
or techniques may be performed on patients with pathological changes by 
imaging the same patient with various methods. This possibility is restricted to 
examinations where the dose to the patient is low and even then only a small 
number of imaging conditions can be considered. A practical difficulty with this 
method is that it is hard to find patients where the pathological condition is 
only marginally detectable so that differences in diagnostic performance could 
be reliably inferred. Of course, if a sufficient number of patients could be found 
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it would be better to make the evaluation using the ROC methodology. For 
references of this approach in chest radiology see ICRU (2003). 

Many of the difficulties of the patient image-based evaluations can be 
avoided by using mathematically simulated pathological details or phantoms 
with added details instead of actual patients (section 4.2). Båth et al. (2005b) 
have suggested an approach to optimise the dose level in radiography by using 
computational methods to manipulate clinical images to correspond to images 
being taken with a lower dose. Also Monte Carlo models with voxel phantoms 
have been suggested for image optimisation studies (e.g., Sandborg et al. 2001b, 
McVey et al. 2003 and Ullman et al. 2006). More often, the Monte Carlo method 
has been used for similar purposes with simple phantom models.
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4 Assessment of physical or 
technical image quality

4.1 Physical approach
Imaging is basically a process consisting of two distinct stages: image recording 
and image display (Wagner 1983, ICRU 1996). This division is especially important 
in digital imaging, where these stages are clearly separate. In digital imaging 
the image recording stage (or the image data stage) determines the information 
that has been captured in the image data and can be analysed in terms of the 
pixel values. Performing actual physical measurements of the display stage 
is cumbersome and its evaluation is for the most part done mainly visually. 
In screen-film imaging the analysis is made using a microdensitometer and 
sensitometry of the film response. Below, mainly the assessment of the image 
data stage in digital imaging is considered. The post-processing and display 
stage should be designed and arranged so that a human observer can perceive 
the image information efficiently. In spite of the importance of the display stage 
it has been given here only a minimal consideration.

 The most fundamental quality-related factors in imaging are contrast, 
sharpness and noise. Clearly defined quantitative measures exist for these 
factors. For example, the sharpness of imaging systems can be described by the 
modulation transfer function (MTF), contrast gain by the characteristic curve of 
the system, and noise by the noise power spectrum (NPS, also referred to as the 
Wiener spectrum) (for these factors see, e.g., Dainty and Shaw 1974, Barrett and 
Swindell 1981, Cunningham 2000, Dobbins 2000 and Barrett and Myers 2004. 
For recent intercomparisons of different measurement methods see Neitzel et 
al. 2004, Dobbins et al. 2006 and Samei et al. 2006). 

It is pointed out that some often-used simple descriptors of the above 
factors are not sufficient to characterise them. For example, the measurement 
of resolution by a line pair test object attempts to express sharpness by finding 
the maximum frequency that is seen in the image. It does not describe signal 
transfer at lower frequencies, which are in practice responsible for giving the 
diagnostic information (Cowen et al. 1997). Somewhat similarly, a measurement 
of noise by just obtaining the variance of pixel values is not sufficient. The noise 
in medical images is typically not independent from one pixel to another, and 
therefore the noise power spectrum (or, equivalently, the noise autocovariance 
function in the spatial domain) is required for full characterisation of noise. Even 
these descriptors are not sufficient if the noise is not stationary. Pixel variance is 
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a useful quantity, of course, if it is known that the shape of the NPS is constant in 
all cases being compared. Using pixel variance may therefore be reasonable and 
sufficient in constancy testing, but it is absolutely not an appropriate quantity 
for comparing the noise in imaging systems with different NPS shapes.

Digital images can be altered easily and, therefore, the MTF and NPS are 
not of equal importance alone by themselves as they are in film-based imaging: 
they must be combined together to express the quality of imaging (e.g., Moy 2000). 
This combining is based on statistical decision theory (SDT) (Wagner and Brown 
1985, ICRU 1996, Beutel et al. 2000, Myers 2000, Barrett and Myers 2004) where 
image quality is evaluated by the observer’s performance in a specified imaging 
task. The central concept in this approach is the ideal observer, which uses all 
available image information and all available prior information about the task 
in an optimal way to make its decision. The ideal observer achieves the best 
performance that is possible (statistically, in a large number of trials). Therefore, 
its performance in a specified imaging task with specified prior information is 
a measure of the amount of image information that is relevant to that task. 
This approach differs from the controlled human observer studies (section 3.1) 
basically only by not using human observers but the best possible observer. One 
should note that the ideal observer’s performance cannot be improved by image 
post-processing without actually bringing new information in the image (although 
the opposite is of course possible). Image post-processing may be very useful for 
a human observer, but cannot improve human performance above the level that 
the ideal observer would achieve in the non-processed images: post-processing 
can be seen just as a means to try to improve the interface between the image 
data and the human observer. 

To define the ideal observer, one needs to first define optimality of detection 
performance. Various definitions exist: e.g., minimum error probability, Bayes 
criterion for minimum expected cost and the Neyman-Pearson criterion for 
maximising detection probability for a given probability of false alarm. It can be 
shown that all these definitions of optimal detection can be accomplished by basing 
the decision on the likelihood ratio of the data (Whalen 1971). The likelihood ratio 
may be extremely complicated in most detection tasks but it is well-known and 
simple in some special cases; this allows the measurement of the ideal observer’s 
performance in such simple signal detection tasks. The best understood and most 
widely considered imaging task in this approach is the so-called signal-known-
exactly/background-known-exactly (SKE/BKE) detection task with additive 
(i.e., signal-independent), normally distributed, stationary noise and a linear 
(or linearizable) imaging system. The ideal observer’s performance in this task 
can be summarised by the ideal-observer’s signal-to-noise ratio (SNRideal) which 
for the continuous (analogue) imaging case can be written as
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This depicts the ideal observer’s SNR at the decision stage and is an equal 
concept to the detectability index d’ (and da) mentioned earlier. Here ∆S(fx,fy) 
is the Fourier transform of ∆s(x,y), the signal to be detected, and G takes care 
of treating the signal and noise in the same units. MTF(fx,fy) and W(fx,fy) are 
the modulation transfer function of the system and the noise power spectrum, 
respectively. This equation shows how the system’s large area signal transfer, 
sharpness and noise combine to an overall quantity expressing image quality 
for a particular task, the detection of the signal ∆s(x,y). When the signal and 
noise are expressed in relative (contrast) units the first factor in the integrand 
is called the noise equivalent quanta (NEQ) and expresses the effective fluence 
that the image is worth at each spatial frequency. When NEQ is divided by the 
actual fluence used for forming the image, one obtains the detective quantum 
efficiency (DQE), which expresses the efficiency of information transfer in the 
imaging system. Presently, imaging systems are often specified by their DQE for 
specified x-ray spectra (IEC 2003). In principle one can then calculate the SNRideal 
for signal details of various sizes and shapes and different image receptor dose 
levels (provided that the imaging system is quantum noise limited in the dose 
range being considered). A difficulty in obtaining SNRideal by this approach, in 
addition to the measurement of G, MTF(fx,fy) and W(fx,fy), is that one needs to 
accurately model the radiation contrast of the detail. Also, DQE measurements 
are usually intended to characterise only the image receptor part of the imaging 
system. The influence of other factors, e.g., scattered radiation and the finite size 
of the x-ray tube focal spot are minimised in the measurements. 

The SDT approach is used also in digital imaging. For a precise treatment 
using the vector notation of discrete imaging and a thorough discussion of 
the concepts, see Barrett and Myers (2004). It is noted, however, that digital 
imaging systems do not generally fulfil the assumption of shift-invariance 
(which is needed for applying the MTF concept) and this makes the applying 
of the approach cumbersome. This has been circumvented by introducing the 
concept of presampling MTF (Fujita et al. 1989, Dobbins 2000). When SNRideal 
is calculated, the signal needs be first filtered with the presampling MTF and 
then sampled according to the pixel pitch before it can be compared to the NPS. 
SNRideal is then dependent of the accurate location of the detail with respect to 
the pixel sampling points. In the case of undersampling, NEQ and DQE are 
not strictly valid concepts. In spite of this, the DQE of digital imaging systems 
is often calculated using the presampling MTF in the formula for DQE (e.g., 

(1)SNR
G MTF (f ,f )

W(f ,f )
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IEC 2003). This makes the interpretation of the resulting quantity challenging 
(Dobbins 1995 and 2000, Albert and Maidment 2000, Pineda and Barrett 2001, 
Gagne et al. 2001a and b). 

The SNR measurement in digital imaging systems can also be done more 
directly, by not going through the transfer function analysis, but by estimating 
the expected signal (i.e., the numerator of eq. 1) from the difference of averaged 
signal and background images (Tapiovaara and Wagner 1993, Tapiovaara 1993, 
Chakraborty 1996, 1997a and 1999, Gagne et al. 2001a and 2006). Then, shift-
invariance needs not be assumed, G and MTF(fx,fy) need not be measured, and one 
does not need a model for ∆s(x,y): an actual signal detail object is used instead. 
The practical difficulty with this approach is in obtaining a sufficient number of 
signal and background images for the averaging, so that the error from residual 
noise in the estimate of ∆s(x,y) is small, or correcting for the bias from the small 
number of sample images (Gagne and Wagner 1998, Tapiovaara 2003, Gagne et al. 
2006). Linearity of the imaging system is not a prerequisite of this measurement. 
However, in order for the noise being multivariate normally distributed and for 
being able to extrapolate the SNR to different imaging conditions, it is useful to 
verify that the system is linear in the pixel value range of the images. 

In measuring the SNR, it may not always be necessary to consider the 
strict ideal observer. Other sub-optimal computational observers, such as the 
non-prewhitening matched filter (NPWMF, Wagner and Brown 1985) or the DC-
suppressing observer (Tapiovaara and Wagner 1993) perform often almost equally 
well and may be more easily employed. If the NPS is constant in the frequency 
range of the signal, the NPWMF is in fact the ideal observer. In cases where the 
noise is typical to projection x-ray imaging (low-pass noise) and the signal is of 
reasonable size the penalty of not prewhitening the data is small (Tapiovaara 
and Sandborg 1995). The DC-suppressing observer is otherwise similar to the 
NPWMF, but it does not use the DC component (average image brightness) in 
its decision. This suppression, or equivalently, normalizing images to the same 
average brightness, is often necessary for the computational observer to tolerate 
small variability in the average brightness of real radiographs: this suppression 
then brings the NPWMF observer closer to the ideal observer by filtering out the 
noisy DC-channel (Tapiovaara and Wagner 1993). Other observer models, which 
include some features of human vision, will be discussed later in section 5.1.

In addition to the under-sampling problems discussed earlier, the direct 
SNR-measurement method provides also a solution to a further problem in NEQ- 
and DQE-like quantities, which inherently apply only to imaging where a detail 
object changes only the intensity of the radiation and leaves the x-ray spectrum 
behind the detail unchanged (Tapiovaara and Wagner 1985 and 1993, Cahn et 
al. 1999). In x-ray imaging the detail of interest modifies also the x-ray spectrum 



24

STUK-A219

shape. Therefore, when optimising the x-ray imaging conditions (for example the 
x-ray spectrum), it is not sufficient to consider only NEQ or DQE, but one must 
consider the spectral dependence of radiation contrast as well, and include it 
in the factor ∆s(x,y) above. Spectral dependence is properly and automatically 
taken care of by the direct SNR measurement methods.

The above methods apply for static x-ray images. To measure the information 
relevant to the detectability of a static detail in fluoroscopy, one must determine 
the accumulation rate of SNR2 (SNR2

rate, see Tapiovaara and Wagner 1993, 
Tapiovaara 1993, 1997 and 2003, Tapiovaara and Sandborg 2004). This quantity 
is the live-image analogy of SNR2 in static imaging, and is required in fluoroscopy 
because the information obtained depends on the length of the image sequence; 
in fluoroscopy, the ideal observer’s SNR2 for detecting a static signal is equal to 
SNR2

rate times the imaging time (Tapiovaara 1993, see also Cunningham et al. 
2001 and Siewerdsen et al. 2002). A full characterisation of fluoroscopic systems 
would require measuring the spatiotemporal noise power spectrum W(fx,fy,ft) and 
the spatiotemporal modulation transfer function MTF(fx,fy,ft). These could then 
be combined with the fluence rate and the characteristic curve to obtain the 
spatiotemporal DQE. Similarly, the SNR could be measured for time-dependent 
signals ∆s(x,y,t).

We make here one further note considering DQE. The main application of 
this quantity is to describe the efficiency of the image receptor. Therefore, in the 
calculation of DQE, the number of noise equivalent quanta is compared to the 
actual number of quanta impinging on the image receptor. This is not directly 
the optimisation problem that is of greatest interest in x-ray imaging. X-ray 
imaging efficiency is better described by comparing the achieved image quality 
(SNR2) to the dose (D) of the patient. Therefore, in many papers discussing 
optimal imaging conditions optimisation is based on maximising the efficiency 
of radiation use in terms of the dose-to-information conversion factor SNR2/D 
which is a nearly dose-independent quantity when quantum noise dominates. The 
imaging parameters which result to the maximum SNR2/D are the most efficient 
parameters for the detection task considered, and the optimisation is concluded 
by deciding on the image quality level (or dose level) required. This final result is 
then the identification of the optimal imaging conditions, in the physical sense of 
image formation. The DQE can also be generalized to include other components 
of the imaging system than the image receptor alone. Kyprianou et al. (2005) 
have presented a DQE generalization to take into account the effect of the focal 
spot unsharpness and x-ray scatter from the patient. 

However, all the above approaches are based on the SKE/BKE task and do 
not consider variability in (or prior uncertainty of) the signal and background. 
Good performance in SKE/BKE detection tasks does not always guarantee good 
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performance in clinically relevant detection tasks where there is less a-priori 
information available. It is known, that also in the ideal observer formalism it 
is necessary in some cases to include variability in the detection task in order to 
obtain results that would be reasonable to more realistic detection tasks (Myers 
et al. 1990, Myers 2000). However, when the prior information on the detection 
task is not complete, the ideal observer becomes mathematically complicated. 
An example of this is given in Brown et al. (1995), where the case of unknown 
signal position was considered. In the detection task of that paper a monotonic 
relationship was found for the performance in the SKE/BKE and unknown signal 
position cases, however. Wagner et al. (1990) have discussed also other detection 
tasks involving uncertainty of the signal and background. The relationship of the 
performance of the ideal observer and human observers is considered in more 
detail in chapter 5.

4.2 Phantom based approaches
The clinical imaging task can be made better defined and the case variability 
reduced by evaluating images of phantoms and test objects instead of real 
patients (chapter 3). X-ray technique optimisation studies are often based 
on simple phantoms with suitable test objects. Then, it is important that the 
results are also verified by actual patient studies before being put into use (e.g., 
Vassileva 2004). 

As discussed in section 3.1 phantoms could be constructed to mimic patients 
within arbitrary detail. For example, Månsson et al. (1999) have compared various 
chest radiography systems by using an antropomorphic chest phantom and test 
details simulating pathology. Further, they did not rely on subjective measures 
of detectability but measured the detection performance of their observers using 
a modified free-response receiver operating characteristic (FROC) analysis, the 
free-response forced error experiment (FFE). In most phantom-based studies, 
however, detectability refers to a subjective judgement of detail visibility and 
the phantoms are stylised homogeneous blocks of material, and mimic the 
patient mainly just by scattering, filtering and attenuating radiation essentially 
similarly as a patient would do. Even then, the appearance of the test detail in 
the final processed images may be very different to what it would have been in 
actual patient images if images are digitally post-processed according to the 
image contents. 

Various phantoms and test objects are extensively discussed in volume 49 of 
Radiation Protection Dosimetry (1993), which consists of papers presented at the 
workshop “Test Phantoms and Optimisation in Diagnostic Radiology and Nuclear 
Medicine”. After that, for example Guibelalde et al. (2001) have described the use 
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of dynamic phantoms and Balter (2001) has described a phantom intended to be 
used for dose and image quality measurements in cardiovascular fluoroscopy. 
Various quality control protocols for digital fluorography and digital subtraction 
angiography have been reviewed by Kotre and Marshall (2001) and Schreiner-
Karoussou (2005) has reviewed image quality measurement standards for digital 
x-ray systems. Test methods that are intended for evaluating sharpness, contrast 
and noise only in general terms, without referring to particular test objects or 
test methods are discussed below. Other important image quality related factors, 
e.g., image distortions, artefacts and image homogeneity issues (with respect to 
brightness, sharpness or dead pixels) will not be reviewed either. 

It is not always tried to simulate patient imaging in image quality 
measurements. For example, when the resolution of an x-ray image intensifier-
television system is measured, it is customary to focus only to the performance 
of the image intensifier and television part of the whole x-ray system. The lead-
bar test object is then placed as close to the image receptor as possible in order 
to minimise the effect of the x-ray tube focal spot, the contrast is kept maximum 
by using a low x-ray tube voltage and no phantom, and noise is minimised by 
setting the dose rate high. This is done in order to minimise the influence of any 
other factor than the sharpness of the x-ray image intensifier-television chain. 
The measurement result expresses the maximum line-pair frequency seen in the 
image. Similar measurements are also done for radiographic systems. 

Such measurements are useful for equipment constancy testing purposes 
and for indicating the resolution of the imaging system, but they are not 
sufficient to fully characterise sharpness: as already mentioned earlier, they 
give no emphasis for lower frequencies than the maximum. For a more complete 
characterisation of image sharpness the MTF is needed. If the sharpness of the 
whole imaging system needs to be evaluated, the test object needs to be located 
further away from the image receptor and also movement unsharpness (resulting 
from movements of the patient or mechanical vibrations in the imaging system) 
may need to be taken into account. In dynamic imaging movement unsharpness 
is related to temporal lag and may, e.g., result to different amounts of blurring 
in continuous and pulsed fluoroscopy of moving objects.

Another common test of the performance of the image receptor is the 
measurement of the contrast threshold (also referred to as low contrast resolution), 
which is the lowest contrast detail (usually a circular disk) of a given size that 
can be seen in the image. The result is mainly dependent on the contrast of the 
detail and the noise of the image, but other factors (such as image sharpness, 
image display settings and the lag in a fluoroscopic system) contribute, too. 
Typically also this measurement is aimed to characterise just the image receptor 
part of the x-ray system and the influence of other factors is then minimised. 
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For example, the commonly used Leeds fluoroscopic test objects (Cowen et al. 
1992) are intended to be used under specified conditions (x-ray tube voltage, 
additional filtration, no scatter) that allow the inherent radiation contrast of 
the details to be known and which facilitate reproducible testing. The results 
for a given x-ray system depend, among other things, on the dose rate (because 
of quantum noise), which should then be unchanged in constancy testing and be 
at least accounted for if the test is used for checking fulfilment of performance 
specifications or for comparing different x-ray systems against each other. There 
are various designs of test objects for contrast threshold measurement, both for 
fluoroscopic and radiographic imaging. 

A variant of the contrast threshold measurement is the measurement of 
contrast-detail detectability (or threshold contrast detail detectability, C-D or 
TCDD), where the lowest visible contrast is measured and reported for a range 
of detail sizes (for further references, see e.g. Martin et al. 1999a, Dobbins 2000 
or Evans et al. 2004). The measurement can then be considered combining the 
system’s sharpness, contrast transfer and noise properties. Also in contrast-
detail testing the result depends on the dose (radiographic imaging) or dose rate 
(fluoroscopic imaging), which then needs be considered along with the results 
(Dobbins 2000, Gallacher et al. 2003). Evans et al. (2004) concluded that image 
receptor structure noise may dominate over quantum noise in image-intensifier 
based digital radiography. Therefore, they suggest not making a dose effect 
correction to such C-D results although recommend correction for the effect of 
dose rate in fluoroscopy. 

As already pointed out, the above measurements are often intended for 
characterising just the image receptor, not the imaging performance of the whole 
system. In order to better resemble patient imaging the measurement setup is 
sometimes modified: a soft tissue equivalent phantom is used to attenuate the 
x-ray beam and to produce scattered radiation in the image, and the test object 
is inserted within the phantom to properly include the unsharpness from the 
x-ray tube focal spot size (e.g., Geleijns et al. 1993 and van Engen et al. 2003). 
Such a measurement setup is often used especially in contrast-detail testing, 
and the results are then given in terms of the thickness of the last detectable 
detail (instead of contrast), as a function of the detail diameter. As in section 
3.1, it is again noted that if the aim is to find optimal imaging conditions one 
needs to carefully consider the relevance of the phantom and the test details to 
the actual clinical task. 

Test object details that are made of metal (e.g., aluminium, copper or 
gold) may not always be appropriate for comparing different imaging systems 
or imaging techniques, because their contrast may behave differently to the 
contrast of clinically interesting details with a changing radiation quality. One 
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may end up optimising the system to good performance in the phantom test 
instead of good performance in clinical tasks (as pointed out in, e.g., Bosmans 
et al. 2005). However, in mammography aluminium details have been reported 
to give reasonably similar energy dependence of contrast as would be obtained 
for microcalcifications or mass lesions in average breast material (Jennings 
et al. 1981, Brettle and Cowen 1994, the approximate similarity of the energy 
dependence of microcalcification and mass lesion signals is also noted in Dance 
et al. 2000). Aluminium is also often used to approximate the contrast of bony 
structures. Test details that are made of plastic disks or by drilling holes of 
different depths in a plastic plate should evidently be appropriate for simulating 
soft tissue details in chest imaging (Honey et al. 2005). However, care is required 
in using a contrast-detail phantom with plastic details because the diameter of 
the smallest details may be several times less than the thickness of the detail. 
The detail is not imaged as intended if the radiation is not directed accurately 
along the axis of the detail.

A serious problem in the above visual measurements is that one is trying 
to measure something that in fact does not exist: the detection threshold. In 
reality the transition from not visible to clearly visible is smooth and goes through 
various levels of certainty in perceiving the detail, somewhat similarly to the 
graph in Fig. 1. The observer needs to try to adapt to a certain critical confidence 
level in order to obtain consistent results. It is difficult to define, communicate 
and keep such a criterion. Therefore, notable variability between the results of 
different observers and the results in repeated observations of the same observer 
are constantly found both in radiography (Loo et al. 1983, Cohen et al. 1984) and 
fluoroscopy (Marshall et al. 1992, Launders et al. 1995, Tapiovaara and Sandborg 
2004). Barrett and Myers (2004) criticize contrast detail measurements by the 
lack of any control of the decision threshold and particularly by the lack of a 
control of false positive detection (wishful thinking). They note that contrast 
detail testing is frequently used in quality assurance but caution against using 
such methods as a quantitative tool in the assessment of imaging systems. The 
precision of the measurements can be improved by increasing the number of 
observers, image samples and repeated readings (Cohen et al. 1984). In order 
to fully improve the precision all such readings should be independent, which 
requires careful planning of the image reading sessions. However, even if a large 
number of images and observers were used, it is not certain that the obtained 
average results would be always the same. The results are likely to depend on the 
instructions given for the observers and it may be that different observer groups 
tend to adopt different confidence criteria. This was seen in the experiments 
of Loo et al. (1983), where radiologists adopted more strict confidence criteria 
than other observer groups. Designing the test as a M-AFC or ROC experiment 
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may make the measurement results of various assessments better comparable 
(Loo et al. 1983), because the critical confidence level of declaring the detail 
visible is being controlled. However, much of the practicality of the test is then 
lost. A practical method to improve the detection of image quality changes with 
the subjective measurement method is to compare images against a previously 
taken reference image.

It is a natural attempt to try to achieve objectivity in test image evaluation 
by employing systems that are based on a computer analysis of images, instead 
of using human observers (Chakraborty and Eckert 1995). Many computer-based 
methods have been suggested for measuring the sharpness and low-contrast test 
detail detectability in phantom images. Often also other quality related features 
(e.g., image uniformity, image aspect ratio, artifacts) are evaluated in addition 
to them. Such automatic phantom image evaluation systems are available from 
some x-ray system manufacturers, to be used in the quality control of their 
equipment.

Some of the computer-based methods to measure low-contrast detail 
detectability are based on statistical decision theory (e.g., Desponds et al. 1991, 
Chakraborty 1996 and 1997a, Gagne et al. 2001a and 2006, Moeckli et al. 2000, 
Tapiovaara and Wagner 1993, Tapiovaara 1993 and 2003, Verdun et al. 1996). 
Other methods exist, too (Brok and Slump 1989, Chakraborty and Eckert 1995, 
Brooks et al. 1997, Castellano Smith et al. 1998, Dougherty 1998, Jansen and 
Zoetelief 2000, Wang et al. 2001, Kwan et al. 2003, Schiltz 2004a and 2004b, 
Jahnen 2004, Pascoal et al. 2005, Rampado et al. 2006, among others). Typically 
they measure the signal difference that a test object causes and treat the noise 
just by calculating the pixel variance, but other analysis methods have been used 
as well (e.g., Schiltz 2004a, where the assessment is based on edge extraction and 
Hough transformation). The methods are commonly reported to have yielded test 
phantom image quality scores which have been comparable to but more consistent 
than scores given by human observers. It seems clear that such systems should 
be very useful for constancy testing. However, these ad hoc methods cannot be 
confidently used for more general image assessment purposes, e.g., for setting 
image quality standards or for comparing different imaging systems: this would 
require SDT-based evaluation methods which properly take into account the 
characteristics of signal transfer and noise, and whose results relate directly to 
the information in the images.

The above discussion applies also for measurements of the contrast-to-
noise ratio (CNR), where the pixel value difference between a test object (typically 
a thin aluminium disk) and its neighbourhood is measured and compared to 
the pixel value standard deviation in the background (van Engen et al 2003, 
Bosmans et al 2005). [CNR is equal to the concept of signal-difference-to-noise 



30

STUK-A219

ratio (SdNR, Samei et al. 2005).] Such measurements are useful for constancy 
testing and may also be used, e.g., for optimising the radiation quality in a given 
x-ray system if: (1) the contrasting detail material is reasonably chosen, (2) the 
dose-pixel value relationship is linear, (3) the NPS shape can be assumed to stay 
constant and (4) it is known that the modifications of the imaging parameters do 
not change the MTF of the system. Similarly as was concluded with other pixel 
value variance-based methods above, CNR is clearly not a suitable quantity for 
comparing different imaging systems to each other or for setting performance 
limits. 

It is stressed that the methods using the variance of pixel values as a 
measure of noise are also sensitive to any deterministic trend or inhomogeneity 
in the area used: all deviations from a constant value are interpreted as being 
random noise. The method of Brok and Slump (1989) to evaluate image noise from 
the difference image between two similar radiographs or the method suggested 
by Samei et al. (2005) to obtain two images, one with and one without the signal 
detail, should be useful in computer based QA constancy testing because they 
remove the trends and other deterministic image inhomogeneities (structure 
noise) assuming that the repeatability of the x-ray generator and the image 
detector is good. The importance of this correction for quantitative measurements 
of actual random noise has also been pointed out by Burgess (2004). On the other 
hand, it may frequently be difficult for a human observer to make a distinction 
between deterministic but random-appearing image inhomogeneity and truly 
random image noise; their effect on detail detectability is often similar (Kume et 
al. 1986, Marshall et al. 2001). Then one should also take into account this type 
of structure noise in the image receptor in the evaluation of image quality. Even 
then, removal of large scale trends and artefacts should be made.
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5 Relationships between the 
various assessment methods

5.1 Statistical decision theory and phantom imaging
There are many studies concerning the relationship between human performance 
(as measured by the AFC or ROC methods) and the performance of the ideal 
observer in detecting signals embedded in noise (for references, see ICRU 1996, 
Myers 2000, Barrett and Myers 2004). This detection task corresponds closely to 
that with flat-background test phantoms. The general finding in these experiments 
is that the detection performance of human observers is reasonably close to the 
performance of the ideal observer (typically human observer efficiencies of the 
order of 30–50%, and even up to 80%, have been found). The performance of 
human observers is therefore not far from the best achievable, and can be well 
predicted from the performance of the ideal observer. For equal performance 
the human observer just needs a somewhat lower noise or a  somewhat higher 
contrast signal. Humans have been found to fall farther away from the ideal 
observer if the contrast of the displayed image is low, the signal extends to a large 
area (or is otherwise complicated (Burgess 1985)), or if the image noise is strongly 
coloured: some of these cases leave room for improving human performance by 
image post-processing. See Myers (2000) for a more thorough discussion on the 
relationship between the human and the ideal observer and references on the 
original publications.

The above results are often interpreted such that a human observer may 
base his/her decision on a matched filter operation, but with some inconsistencies, 
such as internal noise (both additive and induced, Burgess and Colborne 1988), 
a reduced sensitivity to both high and low spatial frequencies, an inability to 
use exactly the correct signal shape and position information, an inability to 
fully integrate over a large signal area, and an inability to accurately perform 
the prewhitening operation that the ideal observer would apply before match 
filtering the data. Some of these features have been included in various observer 
models, which then predict human signal detection performance even better than 
the ideal observer does. Such models include the perceived statistical decision 
theory model (Loo et al. 1984), the NPWE model (Burgess et al. 2001b) and the 
channelized Hotelling observer (Myers and Barrett 1987). For a more detailed 
discussion and references on observer models, see ICRU (1996), Myers (2000), 
Abbey and Bochud (2000), Eckstein et al (2000) and Barrett and Myers (2004). A 
large number of publications have shown the close relationship between the ideal 
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observer, the above observer models and the performance of human observers 
for various types of images (for references, see, e.g., ICRU 1996, Myers 2000, 
Abbey and Bochud 2000 and Barrett and Myers 2004). A recent paper (Marshall 
2006) compared the NPWMF and NPWE models with human observer C-D data. 
The results agreed within approximately 15% for all dose levels studied and 
for all but the smallest detail diameter (0.1 mm). As noted in 4.1 such failing is 
not surprising because this detail size is near the pixel size of the system used 
(0.07 mm).

It can be noted that the observers above base their decision on a linear 
combination of the image data, and are therefore incapable to handle efficiently 
higher order classification tasks, involving for example detection of symmetry, 
noise level, or signals with unknown position. Humans, instead, are known to be 
able to classify images also in such cases. Therefore, the above models cannot be 
comprehensive models of human visual performance although humans may use 
the template-matching strategy in some visual tasks (Burgess 1985). Barrett and 
Myers (2004) suggest that human visual processing may consist of a combination 
of linear and logic operations, but it is also possible that humans are able to do 
higher-order than linear processing of image data: in fact visual perception is 
not a well understood process (Hawkins and Blakeslee 2004). 

Although it is not actually known how visual information is processed in 
the eye-brain system, the above models are useful and successful in predicting 
human performance. In projection x-ray imaging of test phantoms human 
performance can be predicted with reasonable accuracy by calculating the 
performance of the ideal observer or the simple sub-optimal computational 
observers mentioned in 4.1. The channelized observer models provide a better 
agreement with human observers in strongly coloured noise and may be therefore 
preferred in such cases. The NPWE observer should result to improved human 
result agreement when very small or large details are involved and the viewing 
distance is known. It is not, however, always necessary or even reasonable to 
try to find the observer model that best matches with human performance. The 
ideal observer’s performance is an absolute, and conceptually also the most 
fundamental measure of image information. 

It would seem likely that even better agreement with human observer 
performance would be achieved by incorporating further characteristics of 
human vision in the observer models. This has been attempted in computational 
prediction of subjectively assessed image quality (Eckert and Bradley 1998, 
Martens and Meesters 1998, Pons et al. 1999, Winkler 1999; see also Wang et al. 
2004). However, such refinements have not resulted in significant improvements 
over more simple computational methods, such as the measurement of the root 
mean squared error between the source image and processed image (Eskicioglu 
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and Fisher 1995, Martens and Meesters 1998, Eckert and Bradley 1998, Rohaly 
et al. 2000). 

Human observer signal-detection performance has also been compared to 
the performance of various observer models in fluoroscopic imaging. Marshall 
(2001) found a reasonable match between the perceived non-prewhitening 
matched filter model and human observers in contrast-detail measurements in 
fluoroscopy when the threshold SNR was set at 3.5 and the image integration 
time in the noise measurement was 0.64 s. Tapiovaara and Sandborg (2004) made 
human observer AFC experiments of static low-contrast detail detectability and 
found that the results were well predicted by the relationship 

where teff is the effective image information integration time. Depending on the 
test setup, values of 0.3 s and 0.6 s were found for teff : the lower value applied 
to the  16-AFC test and the higher value to the 2-AFC test. This is different to 
results obtained in M-AFC experiments with static images, where  has 
been found not to depend on the number of alternatives (M) for M values ranging 
from 2 to 1800 (Burgess and Ghandeharian 1984). This difference was suggested 
to result from the higher requirement on memory in the fluoroscopic M-AFC 
experiments (Tapiovaara and Sandborg 2004). It was further suggested that teff 
may also depend on the frame rate and temporal lag in the fluoroscopic imaging 
system. The relationship between contrast-detail performance and image lag 
has been studied by Marshall and Kotre (2002) for the case of a stationary test 
object, and by Kotre and Guibelalde (2004) for the case of a moving test object. The 
former of these papers demonstrated that the performance of human observers 
in detecting static details improves with an increasing lag, whereas the latter 
paper found that for abdomen examinations the persistence time constant should 
be approximately 0.15 s and for cardiac studies as low as possible.

Wilson et al. (2000) have compared human observer and model observer 
performance in low-acquisition rate fluoroscopy and digital temporal and spatial 
filtering of image data using computer generated white-noise images. The model 
observer considered was the NPWMF, modified by adding a spatio-temporal 
contrast sensitivity function and a temporal window function to describe the 
limited capacity of humans to use information in a sequence of images. This 
model was successful in predicting the performance of human observers to detect 
both stationary and moving targets in the image sequence. 

Above, the human observer performance has been commonly measured 
by using M-AFC or ROC methods, which are able to provide objective and 
accurate performance measures. These methods are not practical for most 

(2)′ = ⋅d SNR thuman rate
2
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image evaluation purposes because of their labour-intensity. Therefore, phantom 
images are usually evaluated by subjective assessment of the lowest contrast 
and/or smallest details that are seen in the image. Any comparison of SDT-based 
measures and phantom scoring then suffers from the variability in the visual 
assessments. Tapiovaara and Sandborg (2004) also demonstrated that observers 
were not able to keep their confidence criteria constant in cases where the noise 
level was changed. Their change of subjectively judged threshold contrast was 
notably less than was expected from detectability tests with AFC methods. 

Chakraborty has demonstrated (Chakraborty 1997b) that SNR is related 
to subjective ranking of phantom detail visibility also when the details are 
clearly seen. In his experiments SNR agreed well with observers’ preference 
ranking of images in the SNR range of 5–81. ROC and AFC methodologies are 
applicable only at lower SNR levels, because they are based on the frequency of 
the observers’ detection errors.

As in section 4.1 it is again noted that there is potential for misinterpreting 
the ideal-observer results in a SKE/BKE task, if the task is specified such that 
the features used by the ideal observer are not available in practical imaging 
tasks. An example of this is the problem of aperture-size optimisation in emission 
imaging. In a SKE/BKE task, the performance of the ideal observer improves 
with an increasing aperture size, while a statistically varying background leads 
to an aperture size that is matched to the signal (Myers et al. 1990). In this case 
the SKE/BKE task allows the observer using such features in the detection 
strategy that are not available in clinical work, and the conclusions based on 
the simplified optimisation are not valid in clinical tasks.

5.2 Computational analysis of test phantom images
The above discussion concerned the relationship between human observers 
and ideal (or sub-optimal) observers. As discussed in 4.2, also other types 
of computer programs are used for evaluating phantom images, mainly for 
equipment constancy testing purposes. Then it may not always be required that 
the evaluation is based on actual measurement of detectability as in SDT, but 
it often suffices that the results correlate with visual judgement and are able 
to verify whether the imaging system has deteriorated or not. Computational 
evaluation of the images will then usually outperform visual evaluation methods 
because the large variability in visual evaluation by humans can be avoided. For 
example, Chakraborty and Eckert (1995) found a high correlation between the 
computational image evaluation measurements they described and mean human 
observer results. A variability analysis showed that the largest components of 
variability in evaluating images were the between-reader and within-reader 
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variances of human observers. Such variability practically disappeared when 
the computer analysis system was used, and variability was then dominated 
by the case-sample variance (variability in the images). The precision was 
better by almost a factor of ten when compared with the American College of 
Radiology (ACR) method of scoring by three observers. Dougherty (1998) reported 
measurements of the contrast and a type of simple SNR-measure (contrast 
divided by the pixel standard deviation of digitised images) of these details. Of 
these measures, the contrast of the mass object was found to correlate best to 
the opinion of experts who visually ranked the images for overall quality and 
according to ACR scoring of detail visibility. Pascoal et al. (2005) evaluated a 
software package developed for automated scoring of CDRAD test object images 
and compared the software results human observer results. The precision of the 
software results was seen to be better than the precision of human observers 
and allowed detection of smaller low-contrast variations in QA measurements, 
although the variability between replicas of similarly obtained test object images 
was notable. However, the C-D curves produced by the software deviated somewhat 
from average human observer results: the software does not fully imitate an 
average observer. Similar conclusions of the usefulness of the computational 
methods are reached in many of the papers discussing them.

5.3 Physical image quality and clinical image quality
It is well known that it is more difficult to detect details against radiographic 
backgrounds of patients than against the uniform backgrounds of homogeneous 
phantoms. It is frequently found (Kundel et al. 1985, Samei et al. 1999, 2000 
and 2003, Håkansson et al. 2005b) that detectability is not limited by system 
noise (such as quantum noise, film granularity and electronic noise), but often 
by normal anatomic structure: subtle abnormalities are frequently missed. 
Manning et al. (2004) conclude by eye tracking study results that the majority of 
missed lesions in chest radiology can be classified as failures of decision rather 
than detection. Therefore, because performance does not appear to be system 
noise-limited in many diagnostic tasks, it is often concluded that there may be 
notably room for dose reduction in radiology (e.g., Månsson et al. 2005). Similar 
thoughts have been also presented regarding the fixed pattern noise of the image 
receptor: it is not optimal to work at such a high dose level where fixed pattern 
noise limits detectability (Marshall et al. 2001). 

The degree with which the anatomic background disturbs detail detection 
depends on the modality, among other factors. In cross-sectional imaging, such 
as CT, the background is simpler than in projection imaging where the patient’s 
structures at different depths are superimposed over each other. Various methods, 
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such as classical tomography, digital tomosynthesis, digital subtraction imaging 
and dual-energy imaging can be used to reduce the influence of anatomic 
structure in projection x-ray images. 

Anatomical background complicates search operations by making the 
scene busy and full of visible structures. Signals may be masked or mimicked 
by overlying anatomical background. These result to signal misses and false 
alarms and are obvious factors deteriorating human performance. However, 
they do not affect the ideal observer in the SKE/BKE task and are therefore 
not considered within the mathematical formalism described in 4.1. Of course, 
the signals and backgrounds in radiology are not fully a-priori known, and the 
ideal observer in the actual clinical detection task would then suffer from the 
variability of the signal and the background as well. However, the statistics of 
these variabilities are not known and ideal observer performance cannot be 
calculated. Also other abnormalities than the one being sought may influence 
detection by the satisfaction-of-search effect. The observer may stop the search 
prematurely after finding one abnormality in the image (Krupinski 2000, Samei 
et al. 2000).

The mechanisms of how anatomical details decrease human observers’ 
detail detectability are not well understood. It has been proposed that in 
addition to truly random system noise and deterministic image receptor non-
uniformities (structure noise or fixed pattern noise) also the overlaying of many 
small anatomical structures along the x-ray beam leads to a noise-like pattern 
without distinguishable structures in the projected image (Tischenko et al. 
2003, Hoeschen et al. 2005). These authors make a strong distinction between 
this anatomical noise and anatomical background, where the latter in their 
terminology refers to distinguishable anatomical structures. Håkansson et al. 
(2005a) concluded that the detectability of nodules in chest radiography is limited 
more because of such anatomical noise than the technical noise at the dose levels 
used today. However, the disturbing effect of anatomical background was found 
to be larger than that of anatomical noise. Similar conclusion of present-day 
chest images not being quantum-noise limited has been made by Sund et al. 
(2004) who measured the presampling MTF and DQE of four digital chest units 
and compared the results with subjective clinical evaluation of images of 23 
volunteers. The clinical evaluation results could not be wholly explained by the 
physical image quality measurements; instead they believed that the differences 
in the clinical evaluation results were related to anatomical background and 
differences in image processing.

The above distinction between anatomical noise and background is not 
always made, and the disturbing anatomic background variability is often also 
called anatomical noise. It has been shown to deteriorate detectability to a 
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much higher degree than actual stochastic noise in some cases (Ruttimann and 
Webber 1983, Kotre 1998, Bochud et al. 1999, Samei et al. 1999, Burgess et al. 
2001a and 2001b). 

The effect of anatomical structures on detection might sometimes be 
expected to be almost insignificant. This could happen if the signal features would 
not interfere with the background features and the observer could be assumed to 
be able to mentally subtract the background. At the other end of expectation, when 
one might not be able to infer and mentally ignore the background structure, 
anatomical background variability could be treated as being random noise. The 
degree to which these alternative expectations apply depends at least partly on 
the anatomical region and detection task in question (Ruttimann and Webber 
1983, Bochud et al. 1999, Burgess et al. 2001b, Båth et al. 2005c). For example, 
it would be clearly not appropriate to treat ribs in chest radiology purely as 
noise (with a random phase between the various spatial frequencies): such 
structures have a strong spatial correlation and treating them by measuring their 
spatial frequency spectrum alone, without considering the phase information, 
would overestimate their effect on detail detectability (Båth et al. 2005c). In 
mammography the effects of the anatomical background have been found to 
be different for mass objects and microcalcifications and to depend also on the 
strength of the visible anatomical background in the experiments of Bochud et al. 
(1999). The background acted partly as random noise and partly as a recognizable 
structure in detecting mass objects, but the effect depended on the strength of 
the anatomical background in microcalcification detection: a strong anatomical 
background acted as pure noise while a lower anatomical background disturbed 
the detection only slightly. Burgess et al. (2001b) came to similar conclusions 
about mass lesion detectability in mammographic backgrounds. In general, 
neither of the above extreme expectations seems to be valid for human observers, 
who often operate somewhere between these two interpretations: background 
variability appears to be a mixture of noise and deterministic components. For 
a more detailed discussion on this matter, see e.g., Burgess et al. (2001b), Samei 
et al. (2000) and Båth et al. (2005c) and the references in these papers. 

Burgess et al. (2001b) studied the detectability of nodules in mammographic 
backgrounds and random noise backgrounds with the same average NPS (1/f3 
noise). They found that the nodule was easier to find in the true mammographic 
backgrounds in a signal-known-exactly experiment, but in a search experiment 
human performance was equal for both backgrounds, suggesting that 
mammographic background can be considered to be pure random noise for this 
task. The required contrast for equal detectability in both background cases 
increased with increasing nodule size, conversely to common C-D diagrams 
obtained in typical system noise cases. Human observer results were reasonably 
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well predicted by the channelized Fisher-Hotelling observer model, and the 
efficiency of human observers against the ideal observer was about 40% in the 
simulated noise case – of the same order that has been found in experiments 
with white noise. They concluded that although mammographic backgrounds 
are not stationary, SDT -based observer models are useful to predict human 
performance in mammography. 

Sandborg et al. (2001a) studied the correlations between image criteria-
based subjective evaluation of radiographs and physical image quality measures 
(contrast and SNR of specified details) in chest and lumbar spine film-screen 
radiography. Their results show significant correlation of blood vessel contrast, 
especially in the retrocardiac area, and the subjective evaluations in chest 
imaging. The correlation of the SNR of the blood vessel and subjective evaluation 
was lower: this was suggested to indicate that in film-screen chest radiography 
clinical image quality is more limited by contrast than by noise. In lumbar spine 
imaging the best predictors of clinical image quality were the contrast and SNR 
of small soft tissue cavities in bone (trabecular structures). 

Ullman et al. (2004) have studied the effect of x-ray tube voltage on digital 
chest and pelvis radiography. Clinical image quality was evaluated by the relative 
VGA method and slightly modified CEC image criteria from radiographs of an 
anthropomorphic phantom, obtained at the same effective dose at each x-ray 
tube voltage. Physical image quality was described by the average value of the 
ideal observer’s SNR for a number of small details at various locations in the 
phantom. In chest imaging small details of blood, soft tissue and bone embedded 
in the lung tissue were used; in pelvis imaging the details were small details of 
bone embedded in soft tissue. The SNR values were obtained by Monte Carlo 
simulation. Both the clinical and the physical evaluation resulted to image quality 
decreasing monotonically with an increasing x-ray tube voltage in the range 
studied (70–150 kV in chest radiography, 50–102 kV in pelvis radiography). They 
found a positive linear relationship between the results of the two evaluation 
methods (chest PA: r2=0.91, pelvis AP: r2=0.94), indicating that the SNR is 
strongly related to the radiologists’ grading of the images. 

Tingberg et al. (2004) studied how an altered contrast, obtained by 
simulating different characteristic curves of films (H&D curves), would change 
clinical evaluation of chest and lumbar spine film-screen radiographs. They found 
that steep curves were preferred, but cautioned that this could be a consequence 
of their masking of the films to show only small local areas of interest; their 
earlier tests with unmasked radiographs suggested that the overall impression 
of high gradient films was poor. They further noted that lumbar spine images 
taken at 90 kV were significantly worse than those taken at 70 independent of 
the film gradient. Tingberg et al. (2002) studied the relative importance of spatial 
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resolution and noise by altering digitized lumbar spine radiographs. Clinical 
image quality was assessed by the visual grading analysis method, and it was 
seen that added noise was more deteriorating than reduced spatial resolution. 
They also noted that the appearance of a noisy image can sometimes be improved 
by reducing the spatial resolution.

Redlich et al. (2005) have assessed several chest radiography systems by 
measuring their DQE, performing a VGA study using clinical images and a ROC 
study using images of an anthropomorphic phantom with details simulating 
pathology. It was noted that the ranking of the image quality of the systems was 
nearly the same with all these assessment systems. This is not surprising because 
the images of the phantom and the images of each patient were taken with the 
same dose and technique factors for all the x-ray systems being compared. The 
effects of other influencing factors than physical image quality (and image post-
processing) were then largely removed, and the effect of physical image quality 
was highlighted. Anyway, also this study supports the expected result that 
physical image quality is monotonically related to clinical image quality. 

Somewhat more qualitative evidence of the relationship between technical 
and clinical image quality is given by Vañó et al. (1995) who noted that their 
Leeds TOR(CDR) and scattering phantom images that were highly scored by 
physicists coincided in time with clinical images fulfilling technique-related 
image criteria. They concluded that the correct status of the x-ray system can 
be verified by the evaluation of phantom or clinical images. 

Walsh et al. (2005) made measurements with Leeds test objects on several 
fluoroscopic systems and compared these results with the users’ subjective opinion 
of image quality. In their paper they mainly reported on the clinicians’ judgment 
of image contrast and compared it to the threshold contrast measured by the 
test object approach. Practically no correlation was found between these two 
evaluations. They explained this by the small differences between the qualities of 
the systems. (Both the test object results and the mean clinical judgements were 
typically average to good. Only one system was found that was classified as poor; 
this judgement was reached in both assessments). Overall, only a low correlation 
was found between the rank order by these two assessment methods. Walsh et 
al. point out that because of the spread of the clinical judgements of different 
patient cases it is necessary to use the average score of several cases in the 
clinical assessment. A clear trend of perceived image quality decreasing with an 
increasing patient size was seen in the results (Walsh, personal communication). 
This same effect is more easily seen when the thickness of the scattering phantom 
is increased in test object imaging; the magnitude of the effect may, of course, vary 
from one imaging system to another, for example because of different technique 
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adjustment methods used in various automatic brightness control systems or 
anti-scatter grids of different types. 

Metz et al. (1995) have reviewed the assessment of medical image quality, 
and noted that there exists a wide consensus in measuring the sensitometric 
quantities, the MTF, and the NPS of radiological systems. They also agreed that 
the combined measures NEQ, DQE and SNRideal are useful for normalising the 
measurements on an absolute scale and for relating those measurements to 
the decision performance of the ideal observer. However, they stress that in the 
two-stage (recording and display) description of the imaging process, SNRideal 
describes image quality at the stage of image recording. This can be considered 
an advantage for understanding the steps through which images are formed, 
but cannot be used alone to predict the ranking of images that a human might 
make on basis of the displayed images if the characteristics between the images 
are too different. In many cases, however, such as projection radiography using 
simple phantoms, the human and ideal observer results show a good correlation. 
Human performance is not well understood for many clinically relevant tasks, 
and the relevance of the objective measurements to human observer performance 
is not clear in all cases. Metz et al. (1995) stress that the assessment of medical 
imaging systems requires going also beyond phantom/laboratory measurements 
into the clinical setting, where clinical performance can be assessed by ROC-
studies, for example. 

This conclusion is accepted also in ICRU (1996), which recommends 
characterising an imaging system firstly by using physical measurements of the 
large area signal transfer, MTF and Wiener spectrum and combining these to the 
NEQ and/or calculating the ideal observer’s SNR for reasonably clinical-related 
tasks. In addition to these measurements image quality should be assessed 
visually by using well-controlled tests, such as ROC or 2-AFC methods, with 
images as close to the clinical situation as possible. 

ICRU (2003) contains a description of various laboratory and field methods 
for assessment of image quality related factors in chest x-ray imaging. It is 
suggested that the whole imaging chain is tested with additional separate tests 
on the various components of the chain. In the report it is noted that field 
assessments of sharpness and noise by test object detail visibility involve highly 
subjective judgements and test results should be interpreted with caution. As 
a complementary approach to test object imaging, constant evaluation of the 
visibility of normal anatomy is also recommended in the report and inclusion of 
a few further image features to the European image criteria are suggested.

In summary of the above, there can be thought to exist two regions in 
x-ray imaging, characterised by asymptotes corresponding to either quantum-
limited or quantum-saturated imaging. In the former, detection is mainly limited 
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by the imaging system noise and can be improved by decreasing the noise, e.g. 
by increasing the dose to the patient. In the latter, detectability is limited by 
anatomical variability (and image receptor fixed pattern noise) and will not 
be notably improved along with a further reduction of the random noise in the 
imaging system; this latter zone corresponds to the saturation level of Fig.1. 
Evaluation of image quality by simple test phantoms is not sufficient to optimise 
the noise level in clinical x-ray images when anatomical background is an issue 
(Månsson et al. 2005). This is not always the case; for some features detectability 
is mainly limited by random noise (Bochud et al. 1999). However, it seems that 
much of the present day x-ray imaging is performed in the quantum-saturated 
zone and would then leave room for lowering the patient’s dose. This could be 
done much more easily in present-day digital x-ray equipment than in screen-
film based x-ray systems.

Removing anatomical background often requires the use of special imaging 
techniques instead of traditional projection imaging. Therefore, being largely 
an uncontrollable factor in a given imaging system, it may not always be a 
central issue in image quality considerations: performance specification, quality 
assurance and some optimisation tasks. Also, it is noted that the detectability 
of some clinical features is limited by technical image quality issues instead of 
anatomical complexity and that anatomical background may not be as disturbing 
in all projection radiography as it is in mammography and chest imaging, where 
anatomical background is remarkable. It seems clear that keeping all other 
factors equal, improving the technical quality of images (in the SNRideal or NEQ(f) 
sense, for example) will result to an improvement in performance – although, as 
discussed above, the improvement may sometimes be minor. 
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6 Conclusions

A generally accepted principle is that image quality is most meaningfully defined 
and measured in relationship with the intended task of the image. Therefore, 
the best way of evaluating the quality of medical imaging should be to measure 
clinical performance by quantitative methods, such as the ROC analysis. This 
is not usually a practical option, however: if clinical images are used, one must 
generally be content with subjective, opinion-based evaluations instead of a truly 
quantitative measurement. Subjective evaluation suffers from inter-observer, 
intra-observer and case-sample variability, which restrict its use to reliably 
finding only large image quality differences. The precision can be improved 
significantly if the evaluation is done in a relative way, by comparing images 
side-by-side. Anyway, the significance to actual clinical performance remains 
often unclear. We further note that no patient image evaluation method can be 
considered as a measurement in the common meaning of the word: the results 
will be dependent on the diagnosticians and patient material in the study. It is 
difficult to see any method of calibrating clinical image quality measurement so 
that results obtained at different laboratories could be directly compared.

Case-sample variability can be reduced and a better transportability of 
the results introduced by using phantoms instead of patients. Technical image 
quality is frequently measured using simple uniform phantoms and various test 
objects and is reported in terms of visibility limits, such as contrast-detail curves 
and limiting resolution. However, it is still difficult to achieve equal results with 
different observers – and repeatable results with the same observer – in subjective 
threshold visibility tests. Controlled detectability measurements (such as ROC 
or AFC) allow for a well-defined measure of detectability, but suffer from the 
large number of observations required for precise results. 

Digital x-ray imaging has made the division to the image data capture 
and display stages even more evident than it was in film-screen imaging. The 
data capture stage determines the information content of the image and can be 
analysed in detail, although this is presently limited to simple detection tasks in 
practice. The display stage should attempt to build an efficient interface to the 
human visual system, such that the captured image information is well perceived. 
The data capture stage can be considered as being the more fundamental of 
these two: it sets the performance that the ideal observer will achieve and no 
other observer can exceed even by utilizing any available post-processing or 
display improvements. In the physical sense, image quality is best specified 
by the ideal observer’s SNR if a particular imaging task can be specified, or by 
NEQ(f) or DQE(f) when one wishes to evaluate the image receptor for a range of 
tasks. These measures can be related to the results of simple test object imaging. 
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The main difference between this approach and the evaluation of test object 
visibility is that the image quality is evaluated at the data stage by the ideal 
(or a sub-optimal) observer instead of a human observer doing the evaluation 
at the display stage. 

Of course, the display stage is of great significance, because image 
information which is not perceived is not useful. In visual image quality 
assessment the two stages are evaluated together. This allows the testing of the 
whole imaging chain at once. On the other hand, this may sometimes obscure 
matters because it cannot always be known which of the two stages is limiting 
performance. 

Various ways of assessing image quality – in the clinical, technical and 
physical sense of the concept – have been discussed above and studies of the 
relationships between various assessment results have been reviewed. In the 
review it was seen that the relationship between the SDT-based image quality 
measures and the performance of human observers in simple detection tasks is 
reasonably well understood. However, this does not extend to clinical imaging 
where the masking effects of anatomical background and the prior uncertainty 
of the signal and background complicate the situation. Which of the image 
quality evaluation methods should be used is clearly dependent on the purpose 
of the image quality evaluation task and the resources that can be used for 
accomplishing it. 

It seems that equipment specification is best done in terms of the objective 
SDT-based quantities (NEQ(f) and DQE(f)). They relate directly to the information 
content in the images, the measurement methods can be standardised, and the 
measurements can be repeated to see whether specifications have been met. 
This cannot easily be done by using visually evaluated descriptors of technical 
image quality because the critical confidence level of detail visibility is not 
controlled. 

Quality control constancy testing requires methods that are not too labour-
intensive and expensive; instead, they must be sensitive to detect changes in 
the imaging system. To fulfil these objectives, it may be reasonable to relax 
requirements of the results being directly descriptive of diagnostic performance, 
although diagnostic performance should be kept in mind when deciding on actions 
on deteriorated imaging performance. If such changes cannot be handled by simple 
corrective actions, but require expensive investment in equipment, it may be more 
reasonable to make decisions based on some kind of clinical evaluation than by 
simple technical limits of measured parameters. Establishing the relationship 
between technical image quality parameters and clinical performance has proved 
to be difficult or impossible. For example, the resolution limits commonly set to 
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film-screen mammography have not been met in digital mammography. In spite 
of this digital systems have generally been found to be clinically acceptable.

There are several approaches that can be used for optimising x-ray imaging 
techniques. If the anatomic background is not an issue, it seems credible that 
optimal imaging conditions can be identified by finding the technique factors 
where SNR2/D is maximum for the detail type of interest (e.g. iodine contrast 
material in a phantom). If resolution-related things are not of interest, one may 
even use the CNR instead of the ideal (or sub-optimal) observer’s SNR. Of course, 
such results must be verified by clinical experiments and finally the dose level 
must be set such that image noise does not compromise clinical performance. 
On the other hand, Månsson et al. (2005) criticize the use of contrast-detail 
phantoms (and other test methods that are based on homogeneous patient 
simulating phantoms) for optimisation studies, and suggest that their use should 
be limited to constancy checks. They argue that optimisation by such methods is 
not relevant to the actual tasks in diagnostic radiology, where lesion detectability 
is frequently much more limited by anatomical background than by system noise 
(e.g., quantum and electronic noise); therefore, optimisation studies need be done 
with actual patient images or high-quality anthropomorphic phantoms. They 
note that this approach enables one to reduce radiation doses in cases where 
the diagnosis is not quantum-limited. Also Busch and Faulkner (2005) reach the 
same conclusion that optimisation must be based on clinical studies instead of 
using test phantoms, whereas test phantom imaging is useful for, e.g., quality 
control and standardisation purposes. Test object performance data have been 
collected in a number of x-ray departments (e.g., Evans et al. 2004). Although 
such data are not directly related to clinical requirements, they should be useful 
for indicating typical and/or acceptable x-ray system performance (e.g., Cowen 
1993). Contrast-detail testing is tempting because it considers the whole imaging 
chain and the results are straightforward to interpret. The transportability of test 
results is difficult to ensure, however, and the relatively high variability makes 
the testing often insensitive to small or moderate changes in the imaging system. 
This could be improved by using SDT-based computational observers instead of 
humans, but the display stage then needs separate consideration.
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