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Due to the nature of software faults and the way they cause system failures new methods are needed
for the safety and reliability evaluation of software-based safety-critical automation systems in nuclear
power plants. In the research project “Programmable automation system safety integrity assessment
(PASSI)”, belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999–2002), various
safety assessment methods and tools for software based systems are developed and evaluated. The
project is financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of
Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT).

In this report the applicability of Bayesian networks to the reliability estimation of software-based
systems is studied. The applicability is evaluated by building Bayesian network models for the systems
of interest and performing simulations for these models. In the simulations hypothetical evidence is
used for defining the parameter relations and for determining the ability to compensate disparate
evidence in the models. Based on the experiences from modelling and simulations we are able to
conclude that Bayesian networks provide a good method for the reliability estimation of software-based
systems.
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Ohjelmistovikojen luonteesta ja vaikutustavasta johtuen ydinvoimalaitosten turvallisuuskriittisten
ohjelmoitavien automaatiosovellusten luotettavuuden ja turvallisuuden arviointiin tarvitaan uudenlai-
sia menetelmiä. Kansalliseen ydinturvallisuuden tutkimusohjelmaan (FINNUS, 1999–2002) kuuluvas-
sa ”Ydinvoimalaitosten ohjelmoitavien automaatiojärjestelmien turvallisuuden arviointi (PASSI)”-tut-
kimushankkeessa kehitetään, kokeillaan ja arvioidaan tähän soveltuvia menetelmiä. Hanketta ovat
rahoittaneet Säteilyturvakeskus (STUK), Kauppa- ja teollisuusministeriö (KTM) sekä Valtion teknilli-
nen tutkimuskeskus (VTT).

Raportissa tarkastellaan erityisesti Bayes-verkkojen soveltuvuutta ohjelmoitavien järjestelmien luo-
tettavuuden arviointiin. Soveltuvuutta arvioidaan rakentamalla kiinnostaville järjestelmille Bayes-
verkkoihin pohjautuvia malleja ja tekemällä simulointeja kyseisillä malleilla. Simuloinneissa selvite-
tään kuvitteellisen informaation avulla mallien parametrien välisiä riippuvuuksia, sekä kykyä korvata
erilaista informaatiota keskenään. Mallinnuksesta ja simuloinneista saatujen kokemuksien perusteel-
la voidaan sanoa, että Bayes-verkot soveltuvat hyvin ohjelmoitavien järjestelmien luotettavuuden
arviointiin.
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1 INTRODUCTION
In the existing nuclear power plants the technical
and economical ageing of analogue automation
systems is causing more pressure for their repla-
cement. The rapid increase of computer based sys-
tems in automation is favouring the gradual rep-
lacement of the current analogue systems with
software-based digital systems. However, the rep-
lacement is not a straightforward operation when
the system under replacement is classified as a
safety-critical system such as the primary protec-
tion system of nuclear power plant. One of the
main reasons why a substitution of safety-critical
automated systems causes extra trouble lies in
the question of reliability of the software-based
systems and in the ability to assess this reliability.

When estimating the reliability of software-
based systems there are some special characteris-
tics to consider. First of all, the reliability of
software-based system is a property of the opera-
tion environment as well as that of the system
itself. Although there may be errors in the soft-
ware, these errors can cause a loss of safety
function only when certain inputs occurring with
very low probability are introduced into the sys-
tem. In other words, the reliability of a program-
mable system depends on the operational profile,
which as the probability distribution of input
sequences varies from one environment to anoth-
er. This restricts the use of generic operational
experience in the determination of reliability pa-
rameters. On the other hand, the quantitative
reliability estimates should always be based on
certain evidence, which is most often the opera-
tional experience statistics. Usually in the case of
safety-critical software-based systems this evi-
dence is either very limited or not applicable due
to the differences between the operational profiles
of the data sources and the actual system. Another
source of evidence is obtained from the dynamic
testing of system. If high reliability with high
confidence level is required, the number of tests is
very large, and it may be practically impossible to
test a system extensively enough. Thus the use of
additional evidence from other sources is inevita-
ble for proper reliability estimation.

To obtain better estimates for the reliability of
programmable systems, all possible evidence
should be applied in the analysis. This requires
extensive applications of expert opinions about
the weight of various pieces of evidence. A most
suitable approach for combining disparate evi-
dence together using expert judgements is based
on Bayesian inference. In Bayesian inference, all
uncertainties in the model are expressed with
probability distributions, and statistical inference
is applied to the model. This means that the model
does not actually estimate any model parameter
but it determines the parameter probability distri-
bution, which estimates the uncertainty about the
value of the parameter. The excellence of Baye-
sian models is not evident only due to the subjec-
tive, degree of belief interpretation of probability,
but also due to transparent modelling and consist-
ent application of probability calculus.

The consistent application of probability calcu-
lus applied in Bayesian inference is a powerful
tool when some variables are observed, and the
distributions of other variables are updated based
on these observations. The updating requires
methods for the modelling of the joint distribution
of all variables and methods for the modelling of
conditional or marginal distributions of certain
variables in the target system. All this can be done
by means of probability calculus, and especially
using Bayesian models. The reliability analysis of
a software-based system usually involves a large
number of variables and different potential sourc-
es of evidence. To manage in weighting and com-
bining various pieces of evidence of a target sys-
tem into a reliability estimate based on Bayesian
7
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models, there is a technical solution called Baye-
sian networks. The Bayesian networks provide
formalism with easily assimilable graphical repre-
sentation for dependency models with efficient
computational tools. Bayesian networks provide
therefore a useful and attractive method of con-
structing models, which are based on the Baye-
sian inference.

In this work we use Bayesian networks to the
reliability estimation of software-based systems.
Our special interest lies in the automation sys-
tems classified as safety critical systems. Charac-
teristic of these kind of systems is a multiple
number of reliability related variables with very
little evidence. Many of these variables are inter-
related by dependencies of an experimental, prob-
abilistic and even subjective nature, which are not
always well understood formally. We try to clarify
and relate these dependencies between different
8

variables in the models, which we build using
Bayesian networks. In the models, the construc-
tion of the automation system is left with little
consideration and most of the interest is pointed
towards the parameters reflecting the reliability
of the system.

Similar studies on the reliability of software-
based digital systems using Bayesian networks
have been made previously for example in Little-
wood et al. [1] and Fenton et al. [2]. The main
differences between our study and the previous
studies lie in the difference of focus areas. Our
study is mainly focused to the explicit analysis of
prior estimations and to the investigation of com-
bining statistical evidence from disparate sources
and operational profiles together. Also, the usage
of continuous distributions in our work provides
some new perspectives to the research area.
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2.1 Bayesian inference

The basic idea of Bayesian inference is to express the uncertainty of all the unknown parameters of the
model by probability distributions. This means that a parameter, which is unknown a priori is modelled
as a random parameter. In the text the random parameters of our interest is denoted as Q = (Q1,…,Qn),
where the index n is assumed finite. In addition to random parameters Qi, i Î (1,…,n), there is a set of
variables, which are observable. We denote these random variables by Y = (Y1,…Ym), where index m is
finite. The observable variables Yj, j Î (1,…,m), may consist of statistical observations or various
experts judgements.

The observed variables, or the evidence y = (y1,…,ym), are modelled by their joint distribution, i.e.
the likelihood function p(y|q), which can be described as the probability to observe the evidence y.
Before observations are made, the uncertainty about the value of the random parameter Q is modelled
by a probability distribution, the prior distribution, which we denote by p(q). The updated distribution,
the posterior distribution, is the conditional distribution of Q given the evidence, and we denote it by
p(q|y). The evidence y provides additional information about Q, and the posterior distribution is
updated by using the Bayes' rule: [3],[4]
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The model under interest is usually complex, and to make the model more flexible, we assume further a
random parameter F = (F1,…,Fk). So called hidden or auxiliary parameter, which cannot be valued or
observed directly. When the model contains random parameter F, the equations (1) and (2) become:
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The conditional distribution of certain Qi given the observations, or the posterior distribution, is the
conditional marginal distribution
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2 BAYESIAN NETWORKS
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2.2 Bayesian networks

In practical applications the main task usually is to update the distribution of certain parameter Qi,
when the values of the observable variables become known. In other words, we have to determine the
conditional marginal distribution of the parameter Qi, given the observations y. To do this, we have to
model the overall uncertainty by postulating the joint distribution of the all random variables of the
model, i.e., the joint distribution of random vector W = (Q1,…,Qn,Y1,…,Ym,F1,…,Fk), or
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in which we have assumed that the appropriate conditional distributions are available. [4] The form of
the joint distribution in equation (6) is determined by the dependencies between variables. Often we
may assume a hierarchical dependency structure among the variables, which simplifies the model. For
example, we may assume a model with k = n and m = n+1, conditional independence of parameter Qi,
given Qi–1, conditional independence of parameter Fi, given Qi, and conditional independence of the
variables Yi, given parameters Fi–1 and Fi. All the conditional independence lead to following joint
distribution:
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The joint distribution models described in formulas (6) and (7) consist of networks of conditional
dependencies between random variables. Such networks are often called Bayesian networks. A Bayesi-
an model, which can be represented as a directed acyclic graph, in which nodes correspond to random
variables and directed arcs between the nodes describe the statistical dependence and possibly missing
arcs between the nodes describes the statistical independence between the random variables, is a
Bayesian network. As an example the graphical representation of the hierarchical model described by
equation (7) is depicted as a Bayesian network in Figure 1.

Figure 1. Example of a Bayesian network.
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The joint distribution of the all random variables in equations (6) and (7) is also the numerator in
equation (3), and the conditional marginal distribution of the parameter Qi can be determined
combining the equations (4) and (5) to the following form:
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where the constant C stands for the normative denominator and can be solved from equation:
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In Bayesian models, where we are interested in the relationships of a large number of variables,
Bayesian network becomes an appropriate representation. A Bayesian network is a graphical model
that efficiently encodes the joint probability distribution for a large set of variables. Determining the
conditional posterior distributions for the parameters of interest is usually not a simple task in
Bayesian networks. To obtain an analytic result for the conditional posterior distribution the denomina-
tor of the Bayes formula, which normalises the conditional posterior distribution to unity, must be
evaluated. A proportional result for the posterior distribution can be obtained without solving the
denominator, but the integral for the numerator has only one dimension less. For analytic result, or at
least for a good approximation of the result, the integrals have to be determined a way or another. For
simple models the integrals can be evaluated using conventional numerical techniques, but in most
applications the Bayesian network contain tens and hundreds of parameters and the analytic evaluati-
on of the integrals by conventional numerical techniques is impossible. The evaluation of the distri-
butions in large networks must be carried out with other means such as Monte Carlo simulation, as in
our calculations below.
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3.1 Combining evidence

The main sources of reliability evidence in the
case of safety critical systems considered in this
report are depicted in Figure 2. [1] Part of the
evidence may be directly measurable statistical
evidence, such as the evidence obtained through
operational experience and testing. Part of the ev-
idence may be qualitative characterisation of the
system such as the design features and the devel-
opment process of the system. The qualitative
characterisation of the design features and the
development process follows certain quality assur-
ance and quality control principles, which are
based on applicable standards. The more strict
standards the characterisations fulfil the more re-
liable the system is believed to be. Later on in the
text the evidence based on qualitative characteri-
sation is considered as soft evidence, while evi-
dence obtained from operational experience and
testing is considered as hard evidence. The divi-
sion of evidence as hard and soft evidence is al-
ways somewhat a fuzzy procedure, since even the
evidence from testing and operational experience
usually include some qualitative characterisa-
tions. The exploitation of soft evidence in the reli-
ability analysis of software-based system requires
extensive use of expert judgement and therefore

in this work the main interest is focused to the
utilisation of hard evidence.

The software-based systems considered in this
work are automation systems containing identical
platforms with identical applications. The same
methodology used in this work could be extended
for systems with disparate platforms or applica-
tions, but the difference between different sys-
tems should be taken into consideration in the
modelling.

In the models the reliability of software-based
systems is modelled as a failure probability pa-
rameter, which reflects the probability that the
automation system fails to operate correctly when
demanded. Information for the estimation of the
failure probability parameter can be obtained from
the various sources of hard and soft evidence. To
obtain the best possible estimate for the failure
probability parameter of the target system all
evidence should to be combined.

In this report this combining is carried out
using Bayesian networks. The principle idea in
our estimation method is to build a prior estimate
for the failure probability parameter of software-
based system using the soft and hard evidence
obtained from the system development process,
pre-testing and evaluating system design features
while system is produced, but before it is de-
ployed. The prior estimation is then updated to a
posterior estimate using the hard evidence ob-
tained from testing after the system is deployed
and from operational experience while the system
is operational. The difference between disparate
evidence sources can be taken care in the struc-
tural modelling of the Bayesian network model.

To analyse the applicability of Bayesian net-
works to the reliability estimation of software-
based systems we build Bayesian network models
for safety critical systems representing on a gen-
eral level very typical and common situations in

3 RELIABILITY ESTIMATION OF SOFTWARE-
BASED SYSTEM

Figure 2. Main sources of reliability evidence in
the case of safety critical system.
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Experience

Development
Process

Design
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practice. The different models are distinguished
by the evidence, which is collected from identical
systems functioning in different operational pro-
files. The system and operational profile configu-
rations under consideration are shown in Table I.
After the Bayesian network models are built, we
run several simulations to evaluate the failure
probability parameters in the models and to study
the feasibility of Bayesian networks in the relia-
bility estimation. The modelling and simulations
are carried out using the WinBUGS program, and
so all the Bayesian networks presented below are
depicted in the WinBUGS format. For closer re-
view about the WinBUGS program, see Spiegel-
halter et al. [5].

3.2 Failure probability and
logit-transformation

For a system with hard evidence the failure prob-
ability may assume two different definitions as
the failure probability can be seen as a number of
failures on a defined number of demands or as a
number of failures on a defined time period. For
the defined number of demands n with the con-
stant failure probability p the random number of
failures Y has a binomial distribution defined as:

( )
( )

( )
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, 1 ; 0, , .
! !

n yyn
f y p n p p y n

y n y
-

= - =

-

K (10)

Respectively, for a defined time period the random
number of failures follows a Poisson distribution.
Because of the on demand nature of the safety
critical automation system, we use the binomial
representation in our models, but for Poisson rep-
resentation the models would be similar.

To obtain an estimate for the random failure
probability P, we need a prior estimation. The
most appropriate choice for the distribution of P
with binomial distributed Y would be the beta
distribution. Since binomial and beta distribu-
tions form a conjugate prior distribution pair, the
parameters P and Y could be sampled directly
from the conditional posterior distribution and no

reject-accept method would be necessary. Howev-
er, we want to be able to combine different distri-
butions flexibly together, and this can be conven-
iently carried out for example using the properties
of normal distributions. Normal distribution is
defined in the interval (–¥,¥), and since the fail-
ure probability P in the binomial distribution is
bounded between zero and one, the failure proba-
bility P needs to be transformed to extend over the
entire real axis. This can be carried out using the
following transformation:

ln ,
1

P
P

æ öQ = ç ÷è ø- (11)

and, if Q is defined, P can be solved from:
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e
P

e

Q

Q
=

+

(12)

The transformation introduced in equation (11) is
the logit-transformation of the parameter P. In
practice, the assumption that the logit-trans-
formed failure probability Q is normally distribut-
ed also enables us to easily express the uncertain-
ty about the parameter simply by altering the val-
ue of the variance in the normal distribution.

3.3 Bayesian network models

3.3.1 Model 1

The Bayesian Network shown in Figure 3 de-
scribes a system, for which the observed number
of failures Y is binomial distributed with parame-
ters N and P. Parameter N describes the number

Table I. Different system and operational profile configurations.

1ledoM eliforplanoitarepoenohtiwmetsysenomorfecnedivE

2ledoM seliforplanoitarepoowthtiwmetsysenomorfecnedivE

3ledoM seliforplanoitarepoelpitlumhtiwmetsysenomorfecnedivE

4ledoM seliforplanoitarepoelpitlumhtiwnommocnignihtemossmetsyslarevesmorfecnedivE

Figure 3. Bayesian network for one test cycle.

Y

NP
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of demands in the single test cycle and parameter
P is the random failure probability parameter.
This model can be further extended to represent a
system with several test cycles using the same
operational profile and in Figure 4 this is shown
for three separate test cycles. Since all the test
cycles with identical operational profiles form a
binomial distribution with P as a parameter, the
information can be gathered to one large test cycle
and the network shown in Figure 4 can be simpli-
fied back to the network shown in Figure 3 simply
by summing the data using following formulas:

,

.

i
i

i
i

Y Y

N N

=

=

å

å (13)

To increase the flexibility of the model depicted in
Figure 3, we include the logit-transformed P pa-
rameter named Theta into the network, and the
network becomes as shown in Figure 5. The Baye-
sian network represented as model 1 can be used
in the reliability estimation of a software-based
system attached with binomial distributed hard
evidence under unchanged operational profile.

3.3.2 Model 2

The hard evidence obtained for the reliability esti-
mation of software-based systems is usually ob-
tained from both, testing and operational experi-
ence. If the testing has been carried out under the
same operational profile as the operational experi-
ence, equation (13) can be applied and the Baye-
sian network becomes the same as the Bayesian
network in Figure 5. Often this is not the case,
and the system is tested with a different opera-

tional profile under different operational environ-
ment. Since the errors in the software are trig-
gered only when certain input occurs, the differ-
ent operational profiles provide different failure
probabilities for the same system. However, the
failure probability from testing gives us some in-
formation about the failure probability of the same
system functioning in a different operational pro-
file. The evidence provided by testing is very valu-
able and we should make a good use of it by taking
into account the difference in the operational pro-
files when building the model.

The problem of different operational profiles is
solved by first connecting the binomial distributed
evidence from different operational profiles to
separate failure probability parameters, and then
the logit-transformed failure probability parame-
ters are connected to equal each other. The differ-
ence in the operational profile of the two failure
probability parameters is carried to the model by
adding a normal distributed random term Omega'
to the logit-transformed failure probability pa-
rameter obtained from testing. The parameters of
the normally distributed random term correspond
to our belief of the difference between the two
operational profiles. The Bayesian network repre-
senting the case is illustrated in Figure 6, where
the parameters connected to the evidence ob-
tained from the testing are illustrated by parame-
ter names with apostrophes.

The fundamental idea behind the parameters
Mu' and Sigma', which define the normal distribut-
ed random parameter Omega' in Figure 6, is based
on the input space of the target system. As men-
tioned earlier in the text, it is not reasonable to
test the target system with all possible inputs it

Figure 4. Bayesian network for several test cycles using the same operational profile.

N2

Y2

Y1

N1

P

Y3

N3
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might have, since the number of possible inputs
would extend to enormous scales and the testing
would take a huge amount of time. Because the
test includes only a certain amount of inputs from
certain areas of the whole input space, we can fix
the two parameters to express our belief about the
quality of the test. The magnitude of parameter
Sigma' and the magnitude and sign of parameter
Mu' are determined from how well the inputs of
the test cover the whole input space of the target
system and whether the probability of different
inputs has been taken into account when choosing
the inputs of the test.

For example, if the sign of parameter Mu' is
negative it is believed that the test inputs are

somewhat ‘easier’ than the inputs in the opera-
tional experience, and the significance of the test
evidence applied to the reliability estimation of
the target system is downgraded. If the sign of
parameter Mu' is positive, the situation becomes
opposite. In case the normal distributed random
parameter Omega' has zero mean with zero vari-
ance the evidence obtained from testing and oper-
ational experience coincide, and model 1 can be
applied.

3.3.3 Model 3

The Bayesian network represented in Figure 6
can be generalised for the case of combining evi-
dence from multiple operational profiles for the
same system. This generalisation is depicted in
Figure 7.

The different operational profiles are repre-
sented in the figure with overlays. The multiple
operational profiles may be introduced to the
model, besides from the sources described in mod-
el 2, but also from the testing and operational
experience evidence of different power plants us-
ing the same software-base system under differ-
ent operational and environmental conditions. The
differences between the original operational pro-
file, obtained for the operational experience of the
target system, and the other operational profilesFigure 5. Model 1.

Figure 6. Model 2, the apostrophes indicate the evidence obtained from testing

N

Y

P

Theta

N'

Y'

P'N

Y

P

Theta

Theta'

Omega'

Sigma'Mu'
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are introduced to the model by adding a normal
distributed random term Omega'[i] to each Theta'[i]

parameter, which are the logit-transformed P'[i]

parameters. The addition is similar to the proce-
dure done in model 2 for the logit-transformed
failure parameter Theta' obtained from testing.

3.3.4 Model 4

In some cases we may have several different sys-
tems with something intentionally common. This
can be the case when making a reliability estima-
tion of a software-based system using information
from the previous versions of the system. The new
version of the system can be just the old version
but with known faults removed, or it can be an
extension of the old system.

In the case of a new system version the relia-
bility estimation for the system can be carried out
using model 3 depicted in Figure 7. However,
making the estimate with model 3 would not be
very wise, since the reliability estimation for the
system would have to be carried out separately

after each version update and the information
obtained from the earlier system versions would
be lost. Instead, it is more rational to model each
system version using model 3 and combine the
system versions to a chain of systems, as it is done
in Figure 8 for a model of two version updates.

The assumed enhancement or deterioration
between different system versions has been imple-
mented to the model by the same procedure as
with the different operation profiles of single sys-
tem in models 2 and 3. This means that the
difference is introduced to the model by adding a
normally distributed random variable Omega to
the logit-transformed failure probability parame-
ter Theta of each new system version. Models, such
as illustrated in Figure 8, enable reliability esti-
mations that can be expanded over the entire
lifespan of the software-based system, and thus
making the continuous reliability estimation more
feasible. The reliability estimation model for a
system with multiple versions is shown here only
as an interesting extension, and there are no
calculations concerning the model in this report.
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Figure 7. Model 3.
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4.1 Prior distribution of the failure
parameter

In the previous chapter we mentioned that the
prior estimation of failure probability parameter
is built using the information obtained from the
system development process, pre-testing and eva-
luating system design features. In the models the
prior estimation is usually given as a prior distri-
bution, which should express the assessor’s a prio-
ri knowledge on the failure probability parameter,
as well as possible. The selection of the prior
distribution is one of the most important issues of
Bayesian statistical inference. If only little is kno-
wn about the failure parameter, then the prior
distribution should be flat. On the other hand, if
the most weight is given to the sample, then so
called non-informative prior distributions should
be applied, see Box & Tiao [6] for details.

In the case of Bernoulli or binomial sampling,
which is the basic setting in this work, it would be
convenient to use a beta-prior distribution, where
the parameters can be interpreted to reflect the
assessor’s prior belief about the reliability of the
system. In beta-prior distribution B(p|a,b), the
parameters can be selected so that a is the number
of failures on a + b number of demands, for details
see Korhonen et al. [7]. However with the trans-
formed normal distributed prior distribution,
which is used in our approach, the interpretation
between the distribution parameter and number
of failures on certain number of demands is not as
straightforward. Therefore, the characteristics of
the transformed normal distributed prior should
be considered in detail.

In the text below we use parameters named by
the models in chapter 3. The relationships be-
tween different parameters are considered here
only for the most basic case, but the same rela-
tionships can be generalised to the other repeti-
tive parts in the models.

While the data in the analysis is increased, the
influence of the prior distribution is decreased.
This can be seen from Figure 9, where the 90 per-
centile posterior distribution values have been
sampled for model 1 with a variety of different
prior distributions. The prior distributions in the
figure are separated by the prior variance value of
parameter Theta, and the simulations for the pos-
terior distributions are run with increased number
of faultless data, i.e. N increases while Y remains
zero. The same figure in logarithmic scale of P is
presented in Figure 10.

Besides the prior variance value of parameter
Theta, the prior mean value of Theta has also an
influence to the posterior distribution of parame-
ter P. The corresponding graphs of 9 and 10 are
shown in Figures 11 and 12 for the different prior
mean values of Theta. From Figures 11 and 12
similar conclusions about the decreasing impor-
tance of the prior mean value of Theta to the

4 NUMERICAL EXAMPLES

Figure 9. Sampled 90 percentile posterior distri-
bution values for P. Prior mean value for Theta is
m = –4,595.
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shown in Korhonen et al. [7]. This gives us a
reason to believe that there is a certain relation
between the prior parameters of beta distribution
and the prior parameters of transformed normal
distribution. Defining such relation would be a
great advantage in the determination of the prior
parameters of the transformed normal distribu-
tion from the basis of the evidence obtained from
the qualitative characterisation and pre-testing.

From Figures 9–12 it can be approximately
estimated how many tests need to be run for a
single system functioning in one operational envi-
ronment to achieve certain reliability. The curves
in the figures indicate that a better system relia-
bility is achieved for a smaller amount of faultless
data if the prior mean is small and the prior
variance is large. In fact, a prior reliability estima-
tion of small prior mean and large prior variance
may reduce the amount of data needed to achieve
a certain reliability level for the system to a
fraction of the data that would be needed if the
prior estimate had a large prior mean with small
prior variance. However, to achieve a system reli-
ability of less than one failure in one hundred
thousand demands a huge number of tests need to
be run, no matter how favourable the prior esti-
mation is. To reduce this big number of tests
needed for the high reliability estimation of the
system it is rational to use the evidence obtained
from other operational profiles.

Figure 10. Sampled 90 percentile posterior distri-
bution values for P on logarithmic scale. Prior mean
value for Theta is m = –4,595.

Figure 11. Sampled 90 percentile posterior distri-
bution values for P. Prior variance value for Theta is
s

2 = 2.

Figure 12. Sampled 90 percentile posterior distri-
bution values for P on logarithmic scale. Prior var-
iance value for Theta is s2 = 2.
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posterior distribution of P can be made for the
increasing number of faultless data. In fact the
influence of the prior mean seems to be even
smaller than the influence of the prior variance
for large quantities of data, since the curves in
Figure 12 converge more stronger than the curves
in Figure 10 for large N.

With beta-prior distribution a similar 90 per-
centile posterior distribution for the parameter P

can be obtained. An example of such calculation is
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4.2 Combining evidence from two
operational profiles

The interesting question, when combining evi-
dence for a same system running in two different
operational profiles, is how much the evidence
coming from the other operational profile can com-
pensate the lack of operational experience ob-
tained from different operational profile. This
question is clarified in following simulations,
which are carried out using model 2 with different
values of parameters Mu’ and Sigma’.

It was shown in the previous paragraph that to
achieve the system failure probability of 10–5 per
demand, which is the required failure probability
of the reactor scram [8], the number of tests
needed for a single system operating in one opera-
tional profile extends to several hundred thou-
sand test cases. The number of tests can be
reduced if we use redundant independent systems
and the functionality of one system is enough to
secure the functionality of the whole safety opera-
tion. However, the independence of software-based
systems may not be proven as easily as it can be
proven for analogue systems. The dilemma con-
cerning the independence of software-based sys-
tems is not considered in this work or in the
simulation below, and so the reader should take
this fact into account when reading the results of
the calculations.

In the case of two redundant independent
systems the required system failure probability
drops down from 1·10–5 to approximately 3·10–3

failures per demand. The magnitude of test cases
needed for the reliability estimation of such sys-
tems is approximately 1000, which is the number
of test cases we use as a base number for the
calculations below.

In the calculations the 97,5 percentile compari-
son value is first calculated for the system with
1000 faultless test cases obtained from the opera-
tional experience, i.e. the parameter N having
value 1000 and the parameter Y having value 0.
The number of test cases N is then decreased and
by increasing the number of faultless tests ob-
tained from the other operational profile, i.e. de-
creasing N and increasing the parameter N’ with
the parameters Y and Y’ remaining 0, the corre-
sponding equilibrium with the comparison value
is determined. The same calculation is carried out

for different values of Mu’ and Sigma’. The result
for three different Mu’ values with the Sigma’ value
of one is shown in Figure 13 and the correspond-
ing result for three different Sigma’ values with
the Mu’ value of zero is shown in Figure 14. The
reader should notice that because of the Win-
BUGS language the parameter Sigma’ is the in-
verse value of the variance of the normal distrib-
uted parameter Omega’. The prior values for the
parameter Theta in all the simulations were m =
–4,595 and s2 = 1,0.
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Figure 13. Relation between the evidence obtained
from operational experience N and the evidence ob-
tained from other operational profile N’.
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Figure 14. Relation between the evidence obtained
from operational experience N and the evidence ob-
tained from other operational profile N’.
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The results confirm our former beliefs about
the meaning of the parameters Mu’ and Sigma’,
which were explained in chapter 3. With the
negative value of Mu’ the inputs of the other
operational profile are believed to be somewhat
less rigorous than the inputs of the operational
experience, and so the amount of test cases need-
ed from the other operational profile to compen-
sate the lack of operational experience is larger.
With the positive values of Mu’ the situation is
opposite and the amount of test cases needed from
the other operational profile is smaller. The situa-
tion is illustrated in detail in Figure 13, where the
solid line denotes the reference line, the upper
dashed line denotes the negative value of Mu’ and
the lower dashed line denotes the positive value of
Mu’. With the parameter Sigma’ the situation is
more straightforward. The magnitude of parame-
ter Sigma’ reflects how accurately the parameter
Mu’ can be determined, which means how well the
rigorous of the inputs of the other operational
profile can be evaluated. As the parameter Sigma’

decreases, i.e. the variance of the parameter Ome-

ga’ increases, the amount of test cases needed
from the other operational profile to compensate
the lack of operational experience is increased.
The situation is shown in detail in Figure 14.

4.3 Combining evidence from
multiple operational profiles

A similar estimation about the ability to compen-
sate the lack of operational experience as done
above for the evidence obtained from one other
operational profile can be done for the evidence
obtained from several operational profiles. In such
estimation, the interesting question is what kind
of an influence does the increasing number of oth-
er operational profiles have to the compensation
of the operational experience. To estimate such an
influence, simulations with model 3 are done with
constant parameters Mu’ and Sigma’ and with in-
creasing number of operational profiles.

The calculations are carried out using the same
method as it was done in the calculations for two
different operational profiles above. For the pa-
rameter Mu’ having value zero and the parameter
Sigma’ having value one, the number of other
operational profiles is extended from one to two
and five, and corresponding equilibrium with the
comparison value, i.e. N having value 1000 and N’

having value zero, is determined. The results of
the calculations are shown in Figure 15. From the
figure it can be seen that while the evidence
coming from the other operational profiles is di-
vided with a larger number of operation profiles
having similar parameter values, the number of
test cases needed from the other operational pro-
files to compensate the lack of operational experi-
ence becomes smaller. However it is reasonable to
ask if the evidence obtained from the other opera-
tional profiles can ever fully compensate the oper-
ational experience of the system, and therefore
can the curves in Figure 15 cross the straight line
drawn between the axes values of one thousand.

Figure 15. Relation between the evidence obtained
from operational experience N and the evidence ob-
tained from other operational profiles N’.
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Based on this study we are able to conclude that
the Bayesian network modelling provide a flexible
and compatible tool for combining different evi-
dence from various sources together. The models
built using Bayesian networks are always subjec-
tive views, encoded as probabilistic statements, of
the modeller's comprehension about the system
and the different operational environments of the
system. The transparency in the Bayesian net-
work modelling, however, ensures that all para-
meters and their prior estimations in the model
are in sight, and therefore are open for discussion
and suggestions to improve the model can be
made. On the other hand, the influence of subjec-
tive evidence introduced to the models for examp-
le by the qualitative characterisations of the sys-
tem is decreased, as more data is included to the
models.

In the simulations the influence of prior esti-
mations was determined and some notation about
the interpretation of different prior values were
made. The dependencies between different pa-
rameters, and between different parameters and

data were clarified. The ability to compensate the
evidence from one source with the evidence from
other sources was determined for the few different
cases. Overall, the simulation results indicate
that Bayesian networks provide an efficient and
consistent way of applying Bayesian inference,
and therefore probability calculus, to the complex
reliability estimation models.

Characteristic of the reliability estimation of
safety critical systems is high reliability require-
ments with only little statistical evidence availa-
ble. This dilemma cannot be solved explicitly with
any statistical method, and therefore the best way
to compensate the lack of statistical evidence is to
apply all possible evidence to the estimation. This
means that the evidence from other similar sys-
tems and the evidence from qualitative characteri-
sations of the system should also be included to
the estimation. Based on the experience of this
report the Bayesian networks provide an efficient
way of combining all kind of evidence together,
and thus generating a method for estimating the
reliability of software-based systems.

5 CONCLUSIONS
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