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Summary

Dual-continuum (DC) models can be tractable alternatives to explicit appro-

aches for the numerical modelling of multiscale materials with multiphysics

behaviours. This work concerns the conceptual and numerical modelling of

poroelastically coupled dual-scale materials such as naturally fractured rock.

Apart from a few exceptions, previous poroelastic DCmodels have assumed isot-

ropy of the constituents and the dual-material. Additionally, it is common to

assume that only one continuum has intrinsic stiffness properties. Finally, little

has been done into validating whether the DC paradigm can capture the global

poroelastic behaviours of explicit numerical representations at the DC model-

ling scale. We address the aforementioned knowledge gaps in two steps. First,

we utilise a homogenisation approach based on Levin's theorem to develop a

previously derived anisotropic poroelastic constitutive model. Our development

incorporates anisotropic intrinsic stiffness properties of both continua. This

addition is in analogy to anisotropic fractured rock masses with stiff fractures.

Second, we perform numerical modelling to test the DCmodel against fine-scale

explicit equivalents. In doing, we present our hybrid numerical framework, as

well as the conditions required for interpretation of the numerical results. The

tests themselves progress from materials with isotropic to anisotropic mechani-

cal and flow properties. The fine-scale simulations show that anisotropy can

have noticeable effects on deformation and flow behaviour. However, our nu-

merical experiments show that the DC approach can capture the global poro-

elastic behaviours of both isotropic and anisotropic fine-scale representations.
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1 | INTRODUCTION

Numerical modelling of multiscale, poroelastically coupled materials can be challenging due to inherent length scale
heterogeneities and multiphysics behaviours. Explicit modelling approaches allow one to account for each length scale
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directly within a model. This representation can therefore provide accurate and detailed descriptions. However, the
number of degrees of freedom needed for direct models of multiscale, poroelastic materials can make simulation
computationally prohibitive. Further, particularly within the subsurface, the data needed to populate such explicit
approaches may be sparse.

Implicit models alleviate the problems associated with explicit models, at the expense of abstraction of local-scale
physics. One such modelling concept is the dual-continuum (DC) model, originally attributed to Barenblatt et al.1 This
implicit approach has been used successfully within the context of flow modelling in a variety of subsurface engineering
settings.2-5 In the DC paradigm, one continuum represents a high-storage, low-permeability material (e.g., matrix),
whilst the other represents a low-storage, high-permeability material (e.g., fractures).

This work concerns the DC modelling of multiscale, poroelastic geomaterials. We address two knowledge gaps
associated with the DC modelling paradigm within the context of poroelasticity as follws:

First, we develop the poroelastic DC modelling approach. We introduce the underlying modelling assumptions
whilst considering the material symmetry and mechanical properties of the constituents in the process. With respect to
the latter, previous poroelastic DC models have, for the most part, assumed isotropy of the continua and bulk mate-
rial.6-9 However, rock formations are well known to exhibit anisotropic properties.10-12 Recent work by Zhang et al13

showed that anistotropic permeabilities can have measurable impacts on the flow patterns in poroelastic DC materials.
Further to anisotropy, and in the case of fractured materials, the fractures themselves can have intrinsic mechanical
properties owing to local asperities and/or bridging material between fracture faces.14-16 Intrinsic mechanical properties
of both continua have been considered for isotropic materials in the works of Berryman,17,18 Elsworth and Bai19 and
Nguyen and Abousleiman.20 In this work, we further explore the impact of the anisotropic elasticity, in addition to
permeabilities, on DC responses.

Incorporating anisotropic and intrinsic properties can be done at the constitutive modelling stage. In the follow-
ing, we add to a micromechanically derived anisotropic constitutive model by Dormieux et al.21 Contrary to the
model by Dormieux et al,21 we incorporate linear (poro-)elastic properties for the low-storage, high-permeability
continuum at the microscale. In this case, both continua have intrinsic stiffness properties. Following homogenisa-
tion, the resulting model, complete with expressions for the effective parameters, is an anisotropic, dual-stiffness
constitutive model. Previous isotropic constitutive models reviewed in Ashworth and Doster22 can then be recovered
under isotropy and void-space assumptions on the general anisotropic, dual-stiffness constitutive model derived
herein.

Second, with the derived poroelastic constitutive model, we proceed to numerical modelling. We investigate
whether the DC representation is able to capture the global poroelastic behaviours of a fine-scale (FS) explicit model at
the DC modelling scale. Whilst work has gone into testing and validating the DC concept for the flow problem
(e.g., previous studies23,24), little has been done to asses validity of the poroelastically coupled DC approach. Further,
we discuss several considerations to ensure meaningful interpretations between the two modelling approaches.

To summarise, our aims are twofold. First, in Section 2, we use a homogenisation approach and develop a
previously introduced anisotropic DC constitutive model. For this development, we allow both continua to have
(anisotropic) intrinsic mechanical properties. Second, we perform numerical modelling of the poroelastic DC concept,
investigating its validity against FS explicit representations. To do so, we introduce the hybrid numerical framework
used to perform the numerical study in Section 3. We present the numerical tests, modelling considerations and test
results in Section 4. For our study, we consider numerical test cases as conceptualisations of naturally fractured rock
samples that satisfy certain representative elementary volume (REV) requirements. Our results show that the DC model
is capable of capturing the global poroelastic behaviours of isotropic and anisotropic FS equivalents. Finally, we offer
conclusions and recommendations for future work in Section 5.

2 | HOMOGENISATION OF THE DUAL PROBLEM

In the following, we develop the anisotropic, dual-stiffness constitutive model for a poroelastic DC material. To do so,
we expand the homogenisation approach originally proposed by Dormieux et al21 by including intrinsic mechanical
properties for the low-storage, high-permeability continuum.

Whilst this work strictly assumes linear poroelasticity, the inclusion of stiffness properties are necessary for
extensions to nonlinear modelling of materials.25 For example, it is well known that mechanically weak materials, such
as fractures, show nonlinearly elastic, or inelastic, hardening behaviours even at small deformations.15,26-28 We
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acknowledge the simplifying assumptions used in the current work, with a view to incorporating more realistic
deformation behaviours on the basis of the modelling concepts developed herein.

To keep notation brief, we refer to the low-permeability storage continuum as the matrix continuum and the low-
storage, high-permeability transport continuum as the fracture continuum. However, this work is sufficiently general
such that other multiscale materials can be considered, for example, soil aggregates (under the assumption of infinitesi-
mal deformations).7,29

2.1 | Volume averaging

We define the averaging operation, and assumptions therein, required in the homogenisation approach. A DC represen-
tation can be justified if an REV can be taken from a large macroscopic structure. Identification of an REV requires the
satisfaction of the scale separation principle summarised as30

s� S�L, ð1Þ

where s, S and L denote the characteristic lengths at the local heterogeneity, REV and macroscopic body scales, respec-
tively. Equation (1) should honour length scale requirements for the physical system, both geometrically (Figure 1),
and with respect to the wavelengths of the physical process.31,32 Accordingly, the REV represents the scale at which
relationships between averaged quantities are defined (Figure 1).

Defining an REV over fractured media is a subject of much debate due to the challenge of establishing criteria for
scale separation.33-36 In the following, however, we suppose a material for which an REV can be defined, such as
densely fractured rock masses.37

To proceed, we assume statistical homogeneity of the underlying material and thus make use of the volume average
over the REV38

z=
1
jΩj

ð
Ω
zðxÞdV , ð2Þ

where z is an arbitrary tensor field, x is the microscopic position vector within an REV and jΩj is the volume of the
REV within the body.

FIGURE 1 A geometrical

interpretation of an representative

elementary volume (REV) over a

microscopic scale from a large

macroscopic structure (MS). The REV is

used to define the macroscopic dual-

continuum (DC) model in which matrix

(m) and fracture continua (f) are

superposed in space and time.

Intercontinuum mass exchange is

described by the transfer term γα
[α=m,f]. Notations s, S and L denote

characteristic lengths of local

heterogeneities, the REV and the

macroscopic structure, respectively

[Colour figure can be viewed at

wileyonlinelibrary.com]
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2.2 | Homogenisation

2.2.1 | Preliminaries

To develop the homogenisation problem introduced by Dormieux et al,21 we consider the domain, Ω, over an REV in
which there exists a porous matrix continuum, Ωm�Ω, and porous fracture continuum, Ωf�Ω. We assume linear por-
oelasticity for each continuum39,40 and that the continua are saturated by the same slightly compressible fluid. Further,
we assume isothermal evolutions and zero initial stress and pressure conditions.

An important assumption is that we consider microscopic fluctuations in pressures are negligible with respect to the
macroscopic (average) continuum pressures.21 As a result, fluids are assumed to be in steady state, but at different
equilibrium pressures, within the respective continua in the REV. Accordingly, we model solid-fluid interactions at the
microscale using uniform continuum pressures.41

With the given assumptions, the local constitutive model for a continuum, α, is then

σα =Cα : ϵα−bαPα inΩα, ð3Þ

dφα = bα : ϵα +
1
nα

Pα inΩα, ð4Þ

where Cα [α=m,f] is the intrinsic fourth-order stiffness tensor for continuum α and the second-order tensors, σα, ϵα,
bα, are the microscopic Cauchy stress and linearised strain tensors and intrinsic Biot coefficient for continuum α,
respectively. Parameter n−1

α is the inverse of the Biot modulus, Pα is the macroscopic fluid pressure and dφα =φα−φ0
α is

the evolution of the local Lagrangian porosity from the reference state (denoted by superscript 0), all written in terms
of continuum α. The local Lagrangian porosity is the ratio of the continuum pore volume, jΩp

αj , to the bulk volume
of the undeformed continuum configuration, jΩ0

αj . As is customary, we take stress and strain as positive in the
tensile direction.

It is useful to rewrite Equations (3) to (4) in a unified way as follows:21

σðxÞ=CðxÞ : ϵðxÞ+ σpðxÞ 8x 2Ω, ð5Þ

where CðxÞ, and the prestress tensor distributions related to the fluid pressure,42 σp(x), are given by

CðxÞ= Cm inΩm

Cf inΩf

�
, ð6Þ

σpðxÞ= −bmPm inΩm

−bf Pf inΩf

�
, ð7Þ

respectively.
The essence of the homogenisation approach is to define a boundary value problem on the REV, the solution to

which allows for the determination of macroscopic constitutive properties. Accordingly, the conservation of momentum
boundary value problem is defined as

r�σ=0 inΩ, ð8Þ

σ=CðxÞ : ϵ+ σpðxÞ inΩ, ð9Þ

û=E �x on ∂Ω, ð10Þ

where ∂Ω is the boundary of Ω, u is the microscopic displacement vector and E is the macroscopic (or surface
prescribed) strain tensor. Quantities denoted by^are boundary assigned values, that is, u= û on ∂Ω.
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Using the averaging operation, Equation (2), it can be shown (e.g., Hashin43) for uniform displacement boundary
conditions, Equation (10), that

E= ϵ ð11Þ

and

ϵ= vmϵm + vf ϵf , ð12Þ

where zα = jΩαj−1Ð
Ωα
zαðxÞdV and vα is the volume fraction of continuum α, defined as the ratio of the continuum

volume, jΩ0
αj, to the bulk volume, jΩ0j, taken at reference conditions.

To give the link between microscopic fields, in this case strain, and macroscopic counterparts, we consider a
mapping between ϵ(x) and E. Owing to the linearity of Equation (8), we can define a linear mapping so that

ϵðxÞ=AðxÞ :E, ð13Þ

where AðxÞ is the fourth-order mapping tensor.44

Finally, combining Equations (11) to (13), it can be shown that

ϵ= vmAm :E+ vfAf :E, ð14Þ

from which we can see

I=A= vmAm + vfAf , ð15Þ

where I is the fourth-order identity tensor.

2.2.2 | Recovery of the constitutive system

From the superposition property in linear systems, Equations (8) to (10) can be decomposed into two subproblems.
Subproblem I can be interpreted as a drained poroelastic problem as follows:

r�σI = 0 inΩ, ð16Þ

σI =CðxÞ : ϵI inΩ, ð17Þ

ûI =E �x on ∂Ω, ð18Þ

with

ΣI = σI =C∗ :E ð19Þ

where the macroscopic stress tensor, Σ = σ ,43 and C∗ =C :A :E are the upscaled stiffness tensors for the dual-material.
Subproblem II defines a constrained material, E= 0, subject to loading via the prestress field, σp, as follows:

r�σII = 0 inΩ, ð20Þ

σII =CðxÞ : ϵII + σpðxÞ inΩ, ð21Þ
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ûII = 0 on ∂Ω, ð22Þ

with

ΣII = σII =CðxÞ : ϵI + σpðxÞ: ð23Þ

From Dormieux et al,21 one can show

ΣII =Σp, ð24Þ

where Σp = σp :A. Equation (24) is a part of a classical result in micromechanics referred to as Levin's theorem.45 That
is, the macroscopic constitutive equation follows the form of the linear local constitutive relation, Equation (3),

Σ=ΣI +ΣII =C∗ :E+Σp, ð25Þ

where we make use of the linearity of the problem to superpose subproblems I and II. Owing to the definition of CðxÞ,
and from Equations (14) and (15), the homogenised stiffness tensor of the composite dual-material is defined as

C∗ = vmAm :Cm + ðI−vmAmÞ :Cf : ð26Þ

Similarly, the homogenised prestress tensor is given as

Σp = −vmAm : bmPm−ðI−vmAmÞ : bf Pf : ð27Þ

Intuitively, Equation (27) can be interpreted as a weighted sum of the continuum pressures. In the work of Borja
and Koliji,46 they derive a pore fraction weighting formulation that is thermodynamically consistent. Such an approach
was also proposed in Coussy.40 Given the thermodynamic consistency, it would be interesting to see how one could
recover a pore fraction weighted formulation within the general framework of microporomechanics.

To proceed, using Equation (27), and with the result from Equation (26), we can identify the first of the macroscopic
constitutive parameters, that is, the effective Biot coefficients,

Bm = bm : C∗−Cf
� �

: Cm−Cf
� �−1

h i
, ð28Þ

Bf = bf : I−bf
� �

: C∗−Cf
� �

: Cm−Cf
� �−1

h i
: ð29Þ

From the energy approach to poromechanics,40 the DC model requires state equations for the evolutions of
macroscopic Lagragian porosity.22 Accordingly, for subproblem I,

dϕI
α = vαdφα = vαAα : bα :E

=Bα :E,
ð30Þ

where we have made use of Equation (4) in defining Equation (30).
Given subproblem II, we have

dϕII
m = vmbm : ϵIIm +

vm
nm

Pm, ð31Þ

dϕII
f = −vmbf : ϵ

II
m +

vf
nf

Pf , ð32Þ
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where we have used Equation (11) together with the fact ϵII = 0 to eliminate vf ϵf . To advance, we must substitute for
vmϵIIm. Following Dormieux et al,21 vmϵIIm can be expressed as

vmϵ
II
m = Cm−Cf

� �−1
: ½ðvmbm−BmÞPm + ðvfbf −Bf ÞPf �: ð33Þ

With Equation (33) in Equations (31) and (32), we recover

dϕII
m =

1
Nm

Pm +
1
Qm

Pf , ð34Þ

dϕII
f =

1
Qf

Pm +
1
Nf

Pf , ð35Þ

where the effective constitutive parameters N −1
α and Q−1

α are defined as

1
Nm

= bm : ðvmbm−BmÞ : Cm−Cf
� �−1

h i
+

vm
nm

, ð36Þ

1
Qm

= bm : ðvfbf −Bf Þ : Cm−Cf
� �−1

h i
, ð37Þ

1
Nf

= bf : ðBf −vfbf Þ : Cm−Cf
� �−1

h i
+

vf
nf

, ð38Þ

1
Qf

= bf : ðBm−vmbmÞ : Cm−Cf
� �−1

h i
: ð39Þ

Provided that the storage continuum is isotropic, Q−1
m =Q−1

f since bm= bm1, where 1 is the second-order identity
tensor.21

Finally, through superposition of subproblems I and II for the macroscopic variables Σ and dϕα, we recover the
anisotropic, dual-stiffness constitutive model for the dual-scale, poroelastic material as

Σ =C∗ :E−BmPm−Bf Pf , ð40Þ

dϕm =Bm :E+
1
Nm

Pm +
1
Qm

Pf , ð41Þ

dϕf =Bf :E+
1
Qf

Pm +
1
Nf

Pf , ð42Þ

where expressions for the effective constitutive parameters C∗ , Bm, Bf, N −1
m , Q−1

m , N −1
f and Q−1

f are given by
Equations (26), (28), (29) and (36) to (39), respectively.

2.2.3 | Model equivalencies

Under certain conditions, the parameter models just referenced reduce to other mechanical property-based parame-
ter models proposed in literature. For example, in the case of soils, the high-permeability (transport) continuum is
all void space.47 As a result Cf =0, and we recover the original anisotropic parameter models proposed by.21 For an
isotropic material, the constitutive system can be written in terms of scalar invariants of the tensorial quantities.
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Accordingly, with a change from the mixed-compliance constitutive formulation to a pure-stiffness formulation, we
recover the dual-stiffness models introduced by previous studies.17,22 Using parameter models by Berryman,17 we show
some possible situations in which the inclusion of intrinsic fracture stiffness properties may be important. Further, in
Kim et al,48 the authors show use of Berryman17-type coefficient models lead to well-posed mathematical problems, an
important consideration for numerical modelling. Finally, combining the void space transport and isotropic dual-
material assumptions allows us to recover parameter models originally proposed by Berryman and Wang6 and Khalili
and Valliappan.8

Under long-term drainage, Pm= Pf, DC models should reduce to single-continuum equivalents.6 As a result, we
recover the following compatibility relations:

B= 1−C∗ :C−1
s : 1=Bm +Bf , ð43Þ

1
N

= B−ϕ1ð Þ :C−1
s : 1=

1
Nm

+
1
Nf

+
1
Qm

+
1
Qf

, ð44Þ

where Cs is the solid-grain stiffness tensor and ϕ= ϕm+ ϕf. Equations (43) and (44) hold, provided that Cs is the same
for both the matrix and fracture continua. Accordingly, applying the long-term drainage condition and contracting
Equations (40) to (42), we recover the single-porosity constitutive model originally proposed in Biot,39 albeit for aniso-
tropic materials. Alternatively, we could recover the single-porosity model by setting vf= 0, and thus Cf =0 with
C∗ =Cm.

3 | NUMERICAL FRAMEWORK

Here, we introduce the computational framework used for modelling the coupled DC problem. We start by introducing
the strong form of the DC poroelastic problem and then progressing to its fully discrete counterpart.

3.1 | Strong form

In addition to Equations (40) to (42), we require constitutive relations for intracontinuum and intercontinuum mass
flux terms, wα and γα, respectively. Intracontinuum mass flux is given according to Darcy's law,

wα = ρlqα = −ρl
k∗
α

μl
� ðrPα−ρlgÞ, ð45Þ

where qα is the volumetric flux vector associated with continuum α, ρl and μl are the intrinsic fluid density and fluid vis-
cosity respectively, g is the gravity vector and k∗

α is the macroscopic continuum permeability tensor. The inter-
continuum mass flux, γα, is given according to a first-order transfer term originally proposed by Warren and Root,49

γα = ρl
ϰk0

μl
ðPβ−PαÞ, ð46Þ

where k0 denotes the interface permeability, taken here as the intrinsic matrix permeability,1,7 and ϰ is a parameter
referred to as the shape factor.49 In this work, we use an analytically derived ϰ for an isotropic matrix given according
to Lim and Aziz,50

ϰ=
Nπ2

s2
, ð47Þ

where N is a dimension parameter related to the number of fracture sets and s is the characteristic spacing length of the
fracture continuum (Figure 1).
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Finally, we give the compatibility between the macroscopic linearised strain tensor and macroscopic displacement,
U, as

E=rU =
1
2
ðrU +r>UÞ, ð48Þ

where we introduce notation r to denote the symmetric gradient operator on U.
The conservation equations considered for the DC poroelastic problem are the momentum equation

r�Σ + ρg= ~γ ð49Þ

and the continuity equations for each continuum

∂ml,m

∂t
+r�wm = γm, ð50Þ

∂ml,f

∂t
+r�wf = γf : ð51Þ

Notations ρ and ~γ in Equation (49) are the bulk density of the dual-material, and a momentum source arising from
the intercontinuum mass transfer, respectively. For the remainder, we assume ~γ ≈ 0, with respect to the other force den-
sity terms in Equation (49). Notation ml,α in Equations (50) and (51) is the fluid mass content associated with contin-
uum α. The fluid mass content is given by ml,α= ρlϕα.

We consider the conservation equations over a domain, ΩD �R2 , bounded by ∂ΩD . The domain boundary is sepa-
rated into disjoint boundary segments corresponding to Dirichlet and Neumann boundary conditions for the mechani-
cal and flow problems. For the mechanical problem, this implies displacement (ΓU) and traction (ΓT) boundary
conditions. To ensure well-posedness, ΓU[ΓT = ∂ΩD and ΓU\ΓT =∅. For the flow problem, the boundary conditions
for a given continuum are pressure (ΓP

α ) and flux (ΓQ
α ). Again, for a well-posed problem, we have ΓP

α [ΓQ
α = ∂ΩD and

ΓP
α \ΓQ

α =∅.
The strong form is finally defined as follows: Find U, Pm and Pf that satisfy Equations (49) to (51) subject to the

following boundary conditions:

U = Û on ΓU, ð52Þ

Σ �n= T̂ on ΓT, ð53Þ

Pm = P̂m on ΓP
m, ð54Þ

qm �n= q̂m on ΓQ
m, ð55Þ

Pf = P̂f on ΓP
f , ð56Þ

qf �n= q̂f on ΓQ
f , ð57Þ

with initial conditions

U =U0, Pm =P0
m, Pf =P0

f , ð58Þ

for all ðX , tÞ 2 ðΩD × t=0Þ. Notation X is the macroscopic position vector.
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The single porosity linear poroelastic model can be recovered from Equations (49) to (58) under the assumption
P= Pm= Pf and combining Equations (50) and (51). With the contraction to a single-continuum system, DC constitutive
parameters reduce to single-porosity equivalents, Equations (43) and (44).

3.2 | Weak form

The weak formulation of the strong form introduced previously requires the definition of the appropriate function
spaces. Accordingly, solution spaces for continuum pressure and the displacements are SPα =L2ðΩDÞ and SU = fU 2
H1ðΩDÞd :U = Ûon ΓUg, respectively, where L2 and H1 are the typical square integrable and first-order Sobolev function
spaces. Weighting function spaces are then defined as WPα =L2ðΩDÞ and WU = fη2H1ðΩDÞd : η= 0on ΓUg.

To progress, we substitute the constitutive equations, Equations (40) to (42), (45) and (46), and macroscopic strain
compatibility relation, Equation (48), into Equations (49) to (51). We adopt the material and fluid assumptions intro-
duced in Section 2 whilst also neglecting gravitational effects. Assuming isotropic matrix material results in
Q−1
m =Q−1

f =Q−1 and Bm= Bm1. Further, we restrict our anisotropic experiments to orthotropic materials. Finally, com-
paring trial functions against weight functions, the weak form is defined as follows: Find ðU ,Pm,Pf Þ 2 ðSU ×SPm ×SPf Þ
such that for all ðη,ωm,ωf Þ 2 ðWU ×WPm ×WPf Þ,

gðη, UÞ−Ð
ΩDðrηÞ �BmPmdV−

Ð
ΩDðrηÞ �Bf Pf dV

=
Ð
ΓTη � T̂dS,

ð59Þ

Ð
ΩD

∂

∂t
ωm Bm :rU +

1
Mm

Pm +
1
Q
Pf

� �
dV

−
Ð
ΩDωmr� k∗

m

μl
�rPm

� �
dV =

Ð
ΩDωm

ϰk0

μl
ðPf −PmÞdV ,

ð60Þ

Ð
ΩD

∂

∂t
ωf Bf :rU +

1
Q
Pm +

1
Mf

Pf

� �
dV

−
Ð
ΩDωfr� k∗

f

μl
�rPf

� �
dV =

Ð
ΩDωf

ϰk0

μl
ðPm−Pf ÞdV :

ð61Þ

The bilinear form g(� , �) in Equation (59) is given by

gðη,UÞ=
ð
ΩD

rη :Σ0ðUÞdV , ð62Þ

where Σ0ðUÞ=C∗ :rU is the effective stress tensor. The term M−1
α in Equations (60) and (61) is given as

1
Mα

=
1
Nα

+
ϕ0
α

Kl
, ð63Þ

where Kl is the fluid bulk modulus.

3.3 | Discrete block matrix form

The discrete counterpart to Equations (59) to (61) is formulated using the finite-volume method (FVM) for flow, the
virtual-element method (VEM) for mechanics51,52 and the backward Euler method for time. This hybrid numerical
approach to poroelasticity was originally developed using the Matlab Reservoir Simulation Toolbox (MRST)53,54 by
previous studies55,56 for single-continuum materials and later expanded in Ashworth and Doster57 to DC materials. We
use this hybrid framework in the current work due to its availability. However, recent works have shown the current
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modelling framework to be suitable for subsurface applications where complex geometrical structures can lead to irreg-
ular grids not easily handled by standard finite-element methods.56,58

We partition our domain into disjoint elements (or cells). Accordingly, for the DC problem, ΩD =[nelem
j=1Ω

D
j , where

nelem is the number of elements. Notation ΩD
j denotes the DC element for which there are two pressure degrees of free-

dom, corresponding to each continuum.
We define the following discrete solution spaces for the DC problem as Sh

Pα
�SPα and Sh

U �SU . Discrete weighting
spaces are given as Wh

Pα
�WPα and Wh

U �WU . Discrete continuum pressure fields, Ph
α 2Sh

Pα
, and discrete displacement

fields, Uh 2Sh
U , are given according to the following interpolation relations, respectively:

Ph
α =

Xnelem
j=1

Ij~Pj
α, ð64Þ

Uh =
Xnnode
b=1

Nb ~U
b
, ð65Þ

where nnode denotes the total number of vertices and ~P
j
α and ~U

b
are pressure and displacement degrees of freedom

respectively, with the corresponding basis functions denoted by Ij and Nb.
In FVM, we consider ~P

j
α to be cell-centred quantities. Notation Ij is then an indicator function for continuum α

given as

IjðXÞ= 1 if X inΩD
j

0 otherwise

(
: ð66Þ

Further, we replace discrete pressure weight functions, ωh
α 2Wh

Pα
, by the indicator function whilst also using

Equation (64) such that Equations (60) and (61) can be interpreted as element-wise conservation statements. Using
Gauss's theorem, element-wise divergence of flux volume integrals in Equations (60) and (61) are turned into face-wise
surface integrals. In this work, we use the two-point flux approximation to calculate these face-wise flux integrals
(see Lie53 for further details).

The nodal basis function matrix, Nb , takes the identity matrix 1 when located at node b and 0 at all other nodes.
VEM is a Galerkin-based method, thus the discrete displacement weight, ηh 2Wh

U , is an interpolation of the type shown
in Equation (65). However, in VEM, contrary to standard finite-element methods, the bilinear form with discrete fields
can never be directly calculated, as basis functions are never explicitly defined. Due to basis function independence,
VEM can be interpreted as a generalisation of the finite-element method to arbitrary polygonal and polyhedral meshes.
Such a property is desirable for subsurface modelling, where degenerate cells and hanging nodes are encountered.56

Instead, the idea in VEM is to approximate the bilinear form, such that

gðηh,UhÞ≈ ghðηh,UhÞ, ð67Þ

where ghðηh,UhÞ=
Xnelem
j=1

ghj ðηh,UhÞ and where details of the element-wise first-order bilinear VEM approximation,

ghj ðηh,UhÞ , can be found in Gain et al52 and Andersen et al.56 Finally, as part of the VEM assembly, the constitutive

relation, Equation (62), need only be computed once, similar to a one-point quadrature finite-element scheme.59

Replacing solutions and weighting functions with their discrete counterparts, and using the time discretisation, the
discrete residual equations from Equations (59) and (60) are

Ra
U = ghðNa,Uh,n+1Þ−Ð

ΩDðrNaÞ �BmPh,n+1
m dV

−
Ð
ΩDðrNaÞ �Bf P

h,n+1
f dV −

Ð
ΓTNa � T̂dS

= 0, 8a=1,…,nnode,

ð68Þ
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Ri
Pm

=
Ð
ΩD

i
Bm �Δ rUh,n+1

� �
+

1
Mm

ΔPh,n+1
m +

1
Q
ΔPh,n+1

f dV

−Δt
Ð
∂ΩD

i

k∗
m

μl
�rPh,n+1

m

� �
�ndS

−Δt
Ð
ΩD

i

ϰk0

μl
ðPh,n+1

f −Ph,n+1
m ÞdV

=0, 8i=1,…,nelem,

ð69Þ

Ri
Pf

=
Ð
ΩD

i
Bf �Δ rUh,n+1

� �
+

1
Q
ΔPh,n+1

m +
1
Mf

ΔPh,n+1
f

� �
dV

−Δt
Ð
∂ΩD

i

k∗
f

μl
�rPh,n+1

f

� �
�ndS

−Δt
Ð
ΩD

i

ϰk0

μl
ðPh,n+1

m −Ph,n+1
f ÞdV

=0, 8i=1,…,nelem,

ð70Þ

where we make use of Voigt notation for tensor representation. Notation Δzn+ 1 = zn+ 1− zn, where n denotes the
vcurrent time level. Details of the VEM calculations for the boundary and gradient terms involving Na in Equation (68)
can be found in Andersen et al.56

Even though we assume linearity in the current work, poroelastic problems are generally nonlinear due to material
and geometric nonlinearities. To provide a general numerical framework, we therefore present the discrete equations
describing the DC problem following application of Newton's method. In MRST, this is handled naturally using an
automatic differentation framework to generate the Jacobian. We give the discrete system of equations in block matrix
form as

K −D>
m −D>

f

Dm Fm Em

Df Ef F f

2
64

3
75
ðlÞ

δ ~U

δ~Pm

δ~Pf

2
64

3
75
n+1,ðlÞ

= −
RU

RPm

RPf

2
64

3
75
n+1,ðlÞ

, ð71Þ

where RU = ½R1
U ,…,R

nnode
U �> and RPα = ½R1

Pα
,…,Rnelem

Pα
�> . Notations δ and l denote the change in solution and current

iteration levels, respectively. Further, ~U = ½ ~U1
,…, ~U

nnode �> and ~Pα = ½~P1
α,…, ~P

nelem
α �> . The individual matrices comprising

the Jacobian in Equation (71) are given as

Kab =
∂Ra

U

∂ ~U
b = ghðNa,NbÞ, ð72Þ

Dib,α =
∂Ri

Pα

∂ ~U
b =

ð
ΩD

IiðX iÞBα �rNbdV , ð73Þ

Eij,α =
∂Ri

Pα

∂~P
j
β

=
Ð
ΩDIiðX iÞ 1QIjðX iÞdV

−Δt
Ð
ΩDIiðX iÞϰk

0

μl
IjðX iÞdV ,

ð74Þ

F ij,α =
∂Ri

Pα

∂~P
j
α

=
Ð
ΩDIiðX iÞ 1

Mα
IjðX iÞdV

+Δt
Ð
ΩDIiðX iÞϰk

0

μl
IjðX iÞdV +ΔtGij,α,

ð75Þ
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where Xi denotes the centroid of element ΩD
i and Gij,α is the transmissibility matrix for continuum α arising from the

two-point flux approximation.53

Finally, Equation (71) is solved using a fully coupled approach,60 although extensions to sequential solution strate-
gies for DC materials have been shown in Kim et al48 and Ashworth and Doster.57

4 | NUMERICAL TESTS

With the framework in-hand, we present and conduct the numerical tests used to investigate whether the macroscopic
DC poroelastic model can capture global flow and deformation behaviours of a FS explicit model. In doing, we review
several considerations for the interpretation of the results at the scale of the DC model.

4.1 | Test cases

We introduce four numerical experiments to test the validity of the DC poroelastic concept. In each case, we consider
an idealised representation of a naturally fractured rock sample. Our idealisation comes in that we assume the fracture
fabric to be periodic. To start, we consider an undeformable isotropic material to understand the physics of the flow
problem. We progress by introducing mechanics to the isotropic system and then adding complexity by considering
anisotropic material cases.

In every case, we consider the dimension of the domain to be 1 m × 1 m. Each experiment then represents a thin 2D
slice taken from a 3D sample such that, in the case of the mechanical problem, the plane-stress assumption applies.

4.1.1 | Undeformable isotropic

For this test, we study an (isotropic) undeformable matrix permeated by an isotropic undeformable fracture
network. The test is setup as a uniaxial drainage problem, such that the top boundary is open to flow, P̂m = P̂f =0,
whilst the left, right and bottom boundaries are zero flux boundaries (Figure 2A). Initial pressures for the continua are
set at P0

m = P0
f =2MPa. Volume fractions for matrix and fracture material are vm= 0.998 and vf= 0.002, respectively,

given a fracture spacing, s, of 0.1 m. Local porosities for the two continua are then prescribed as φm= 0.1 and φf= 0.9,
where the volume fractions link the global and local Lagrangian porosities so that ϕα= vαφα. Intrinsic matrix
permeability, km, is taken as 0.01 md, whilst individual fracture permeability, kf, is calculated using the parallel plate
model with a fracture aperture of af ≈ 1.05 × 10−4 m.61 The resulting permeability is 950 d for each fracture.* Fluid
properties are ρl =1,000kgm−3 , μl= 1 cp and Kl= 2.5 GPa. Upscaling individual fracture permeability to a continuum
permeability for use in the DC model is done using the cubic law.61 The resulting isotropic fracture continuum

FIGURE 2 Conceptual illustrations of the

geometries and boundary conditions for (A) the

undeformable isotropic problem and (B) the

deformable isotropic problem. In (B), the base is

fixed whilst the left, right and top boundaries

can move vertically [Colour figure can be

viewed at wileyonlinelibrary.com]

*1 darcy (d) = 9.87 × 10−13 m2.
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permeabitity is k∗f ≈1,000md. Finally, due to the dissociation by the fracture network, the macroscopic matrix perme-
ability is zero.

4.1.2 | Deformable isotropic

We now consider a deformable counterpart to the experiment described in Section 4.1.1(Figure 2B). Accordingly,
Young's moduli for the matrix and fracture materials are Em= 36 GPa and Ef= 36 MPa, respectively. The latter is cho-
sen for illustrative purposes as Ef= Em/1,000. Both continua are assigned a Poisson's ratio of ν= 0.2. For an isotropic
medium under the plane-stress assumption, the stiffness tensor written with Voigt notation is given as

C=

E
1−ν2

νE
1−ν2

0

E
1−ν2

0

sym G

2
66664

3
77775, ð76Þ

where parameter G= E/(2(1 + ν)) is the shear modulus. Entries for Cm and Cf can be calculated with Equation (76)
and the defined intrinsic parameter values.

For C∗ , parameters must be calculated by homogenisation. Ashworth and Doster22 suggest using the Hashin-
Shtrikman lower bounds62 as an initial homogenisation approach for the estimation of the mechanical properties of
densely fractured rock. For the bulk and shear moduli, these lower bounds are quoted as62

KHS−
=Kf +

vm
½ðKm−Kf Þ−1 + 3vf ð3Kf +4Gf Þ−1� , ð77Þ

GHS−
=Gf

+
vm

½ðGm−Gf Þ−1 + 6vf ðKf +2Gf Þð5Gf ð3Kf +4Gf ÞÞ−1� ,
ð78Þ

where Kα and Gα are the 3D bulk and shear moduli for continuum α, respectively.
We map between the 3D bulk modulus calculated in Equation (77) and the 2D homogenised bulk modulus under

plane-stress, K∗, using the following relation (e.g., Torquato63):

K∗ =
9KHS−

GHS−

3KHS−
+4GHS− : ð79Þ

The Poissons ratio for the composite DC under plane-stress is given by

ν∗ =
K∗−GHS−

K∗ +GHS− : ð80Þ

Finally, the homogenised Young's modulus, E∗, can be recovered as

4K∗ = 1 :C∗ : 1=
2E∗

ð1−ν∗Þ : ð81Þ

With Equations (80) and (81), the homogenised parameters are ν∗= 0.2 and E∗= 18.0 GPa.
We assume the matrix and fracture skeletons to be made up of the same solid material. We then assign a solid

modulus, Ks, of 70 GPa for both continua.
For the coupled mechanics and flow problem, we consider a different method of initialisation to Section 4.1.1.

Instead of assigning initial continuum pressures, we define the starting point for the experiment to be the undrained,
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loaded configuration, P0+
m , P0+

f , U0+. This undrained state is induced following the application of an instantaneous load
on an unpressurised and undeformed domain, P0

m =P0
f =0 and U0 = 0. Loading is prescribed as a vertical traction of

−Σ�ny=−2 MPa on the top boundary. The domain is horizontally constrained at the boundaries but remains free to
move along the vertical axis apart from at the bottom boundary where the sample is fixed. The parameters for flow are
as defined in Section 4.1.1

4.1.3 | Geometry-induced anisotropy: Explicit computation of C∗

The third experiment is concerned with an anisotropic deformable material. Anisotropy has recently been studied in
poroelastic DC materials in the context of flow properties.13 However, here we consider the directional dependence of
both mechanical and flow properties. Anisotropy is introduced geometrically by considering just a single vertical
fracture set which is aligned with the second principal axis (Figure 3a). The 2D domain is then orthotropic. Whilst
anisotropy exists at the macroscale, the intrinsic mechanical parameters remain isotropic for each continuum and are
as described in Section 4.1.2. The plane-stress stiffness tensor for an orthotropic material is given by

C=

E1

1−ν12ν21

ν21E1

1−ν12ν21
0

E2

1−ν12ν21
0

sym G12

2
66664

3
77775: ð82Þ

Parameters of the homogenised stiffness tensor may be approximated explicitly for this geometry, using mixture the-
ory. Accordingly, for Young's moduli,

E∗
1 =

vm
Em

+
vf
Ef

� �−1

, E∗
2 = vmEm + vf Ef , ð83Þ

where having removed a fracture set, the volume fraction of the fracture continuum is now vf= 0.001 (resp. vf= 0.999).
For the homogenised Poisson's ratio, ν∗21, and shear modulus, G∗

12, mixture theory gives

ν∗21 = vmνm + vf νf , G
∗
12 =

vm
Gm

+
vf
Gf

� �−1

: ð84Þ

FIGURE 3 Conceptual illustrations of the

geometries and boundary conditions for (A) the

anisotropic problem with one fracture set (and

explicit computation of C∗) and (B) the

anisotropic problem with two fracture sets (and

numerical computation of C∗). In both cases,

the bases are fixed whilst the left, right and top

boundaries can move vertically [Colour figure

can be viewed at wileyonlinelibrary.com]
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The other Poisson's ratio, ν∗12, is readily determined by the symmetry in Equation (82), which requires ν12E2 = ν21E1.
From Equations (83) and (84) and the aformentioned symmetry relation, the mechanical parameters are given as
E∗
1 = 18:0GPa, E∗

2 = 36:0GPa, ν∗21 = 0:200, ν∗12 = 0:100 and G∗
12 = 7:50GPa.

The anisotropic fracture continuum leads to an anistropic permeability tensor so that permeability in the x and
y directions are k∗f ,x =0 and k∗f ,y ≈ 1000md, respectively. For the matrix, the macroscopic permeability is also anisotropic
with k∗m,x =0 and k∗m,y ≈ 0:01md . The remaining flow parameters, boundary conditions and initialisation are as
described in Sections 4.1.1 and 4.1.2.

4.1.4 | Material-induced anisotropy: Numerical computation of C∗

The final experiment is on an anisotropic material with two fracture sets aligned with each of the principal axes
(Figure 3B). Anisotropy is now introduced through the fracture material, with each fracture set having different intrin-
sic mechanical and flow properties. These property differences are in analogy to fractures containing different amounts
of infill material. To represent this conceptually within the model, we assign different intrinsic porosities to the individ-
ual fracture sets. Further, we separate the intrinsic Young's moduli and permeabilities of each fracture set by two orders
of magnitude. For the horizontal fracture set, we assign φh

f =0:9, Eh
f =3:6MPa and an intrinsic fracture permeability of

kf= 950 d. For the vertical fracture set, we assign φv
f =0:4 , Ev

f =360MPa and an intrinsic permeability of 9.5 d.
Upscaling the fracture permeability remains trivial, with k∗f ,x ≈ 1,000md and k∗f ,y≈10md. However, homogenistion for
the parameters in the homogenised stiffness tensor now cannot be done by explicit approximation. Instead, we use a
deformation-driven computational homogenisation approach: We generate unit strains for a sequence of linear dis-
placement boundary conditions, and in doing, determine the entries of C∗ .64 Linear displacements are chosen as they
produce better estimates for effective stiffness tensors for materials with a stiff matrix and weaker inclusion material,65

as is the case here.
With the computational homogenisation approach, the mechanical parameters in C∗ are calculated as

E∗
1 = 32:7GPa, E∗

2 = 3:40GPa, ν∗21 = 0:019, ν∗12 = 0:173 and G∗
12 = 1:28GPa.

The overall volume fraction for the fracture continuum is the same as in experiment two. However, the intrinsic
Lagrangian fracture porosity is now the arithmetic average of the two intrinsic fracture set porosities (φf= 0.65). Fluid
and matrix properties remain the same as those for the other experiments. Boundary conditions and initialisation are
the same as in experiments two and three.

4.2 | Modelling considerations

Here, we review several considerations to enable the interpretation of the test results to follow.

4.2.1 | On the REV

Our periodic assumption of the underlying microstructure eases the requirements on our definition for an REV. In this
periodic case, all the necessary geometrical and physical process information are captured within an elementary cell
that is the size of the heterogeneity (s).21,66 The separation of scales is now defined as s� L. The elementary cell defini-
tion of our REV will be useful for interpreting the discretisation choice of the DC problem.

4.2.2 | Meshing

For the four tests, we discretise the FS problem with a 200 × 200 Cartesian mesh, which is locally refined around the
fractures (Figure 4). For the DC problem, we discretise the domain using a 10 × 10 Cartesian mesh. In the latter case,
each element then coincides with an elementary cell (in the geometrical sense) (Figure 4).

FS and DC fields are compared at an observation point at the base of our samples. At this point, we assume that our
pressure solutions are sufficiently smooth, thus satisfying the physical process scale separation requirement. Further,
the observation point coincides with the macroscopic material point, in this case the element centroid (Figure 4).
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4.2.3 | Quantities of interest

At each test observation point, we consider the element-wise total and continuum volumetric strains and continuum
pressures. Element-wise total and continuum volumetric strains are defined as Ev

j = trðEjÞ=ΔjΩD
j j=jΩD,0

j j and
Ev
j,α =ΔjΩD

j,αj=jΩD,0
j,α j, respectively. We compare averaged results over the FS with element-level results from the DC. To

enable the former, we define the following discrete continuum counterpart to Equation (2):

�zDj,α =
1

jΩD
j,αj

ð
ΩD

j,α

zhðxÞdV , ð85Þ

where z is a scalar field of interest. Continuum averaged pressures and volumetric strains can then be recovered using
Equation (85) with discrete microscopic fields ph or ϵv,h in place of zh. Total volumetric strain is likewise obtained using
Equation (85) by replacing jΩD

j,αj with jΩD
j j.

For the DC problem, pressures and element-wise total volumetric strain are recovered naturally from the element
centroid.55 To get continuum strains, however, we must take a different approach. Starting with the matrix continuum,
and comparing a volume averaged change in local porosity, Equation (4), to the effective change in matrix porosity
given by Equation (41), such that dϕm= vmdφm, allows us to derive the following expression for the volumetric matrix
strain:

Ev
m = 1 : ϵm =

1
bm

1
vm

Bm1 :E+
Pm

Nm
+
Pf

Q

� �
−
Pm

nm

� �
: ð86Þ

We note that the expression for Ev
m in Equation (86) is only possible for an isotropic matrix as the inverse contrac-

tion map involving bm is otherwise ill-posed. With Ev and Ev
m, we can recover the fracture volumetric strain, Ev

f , for the
DC model using Equation (14).

4.3 | Results and discussion

Here, we present the results and analyses for the numerical test cases described in Section 4.1 under the modelling con-
siderations described above. All results are given from observation points such as that shown in Figure 4.

4.3.1 | Undeformable isotropic

Figure 5 shows the element-averaged pressure evolutions from both FS explicit and DC simulations for the
undeformable isotropic material case. Both models show a rapid decrease in fracture pressure within the first

FIGURE 4 Representations of the

isotropic test problem: (A) the

dual-continuum grid containing the

observation point where the two

modelling approaches are compared,

(B) an elementary cell and (C) an

equivalent fine-scale representation of

the elementary cell [Colour figure can

be viewed at wileyonlinelibrary.com]
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millisecond followed by a delayed pressure response in the matrix. These general patterns can be attributed to the con-
trast in continuum permeabilities. Whilst both models show general decreasing trends, the FS fracture pressure
decrease begins to smooth out at lower pressures. Further, the onset of FS matrix pressure diffusion happens earlier.
When matrix pressure diffusion does occur in the DC model, the process occurs more rapidly (indicated by a steeper
gradient) than in the FS case.

The disparities in matrix and fracture pressure diffusion between the two modelling approaches arise from the first-
order transfer term, Equation (46), used by the DC model. In using a linear mass transfer model, one implicitly places a
pseudosteady-state diffusion assumption on the communication between matrix and fracture continua. As a result,
transient matrix drainage effects are neglected by the DC approach. Neglecting transient effects leads to the delay in
DC matrix pressure diffusion we see in Figure 5, and the loss of pressure support in the fractures.

Shortcomings of using simplified transfer concepts have been well documented in literature (e.g., previous stud-
ies67,68). Previous works have thus sought to improve on the linear inter-continuum flow coupling term by including
transient effects (other studies3,69-71). However, in the current work, we acknowledge the shortcomings of the transfer
term used herein, with the focus being on understanding the coupled poroelastic behaviour.

4.3.2 | Deformable isotropic

Pressure and total element volumetric strain results for the deformable isotropic case are shown in Figure 6. In
Figure 6A, both modelling approaches predict higher induced initial pressures in the fracture than in the matrix.

FIGURE 5 Matrix and fracture continuum element averaged

pressure evolutions for the undeformable isotropic test case. ‘FSα’ and

‘DCα’ denote quantities related to fine-scale and dual-continuum

models for continuum α, respectively [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 6 (A) Matrix and fracture

continuum element-averaged pressure and

(B) total element volumetric strain evolutions

for the deformable isotropic test case. ‘FSα’ and

‘DCα’ denote quantities related to fine-scale and

dual-continuum models for continuum α,

respectively [Colour figure can be viewed at

wileyonlinelibrary.com]
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Further, both approaches show rapid decreases in fracture pressure and gradual decreases in matrix pressure. In
Figure 6B, the FS and DC models show increasing volumetric strain evolution behaviours. However, for both pressure
and strain, specific differences of the variable fields between the two modelling approaches may be observed at both
early and late times. The disparity in late-time matrix pressure evolution (Figure 6A) is again due to the first-order
intercontinuum transfer model (see Section 4.3.1). Over the same late-time period, we also observe a difference in volu-
metric strain (Figure 6B).

Of more interest in Figure 6 are the early-time results for continuum pressures. In Figure 6A, both FS matrix and
fracture pressures exhibit nonmonotonic behaviour, known as the Mandel-Cryer effect. These pressure rises are not
seen in the DC pressure responses. A similar observation was also made in the work of Zhang et al,13 albeit for a differ-
ent problem.

Figure 7 shows individual continuum volumetric strain evolutions. In Figure 7B, both modelling approaches show
similar increasing strain behaviour with time. However, in Figure 7A, we observe that the FS matrix strain shows early-
time nonmonotonic behaviour, contrary to DC matrix strain.

The early nonmonotonic differences in pressure and matrix strain between the two modelling approaches result
from the underlying pressure assumption made for the DC model. In the derivation of the constitutive model in Sec-
tion 2.2, we assumed a local equilibrium of pressure within each continuum over an REV. The induced response
predicted in by the DC model is thus for a system in mechanical and hydrostatic equilibrium. Instead, the FS model
makes no such pressure assumption. To understand the specific impacts of the latter, it is interesting to look at the local
flow and deformation behaviours shown by the FS.

Figure 8 shows the FS pressure and volumetric strain responses within the first 100 μs. At t0+ in Figure 8A, we
observe pressure in the horizontal fracture is higher than the vertical fracture. This disequilibrium is concurrent with
the negative and positive fracture strains for the horizontal and vertical fractures, respectively (Figure 8B). From t0+ to
t1, Figure 8A shows that, away from the fracture intersection, horizontal fracture pressure drops slightly. However, ver-
tical fracture pressure increases. These pressure changes occur with further contraction and expansion, respectively
(Figure 8B). Over the same time period, matrix strain increases (Figure 8C). From t1 to t5, the pressure in both fractures
is increasing (Figure 8A), with matrix and fracture deformations following the same evolution paths described previ-
ously. Finally, at t10, the fractures reach a pressure equilibrium (Figure 8A).

We can now explain the early-time nonmonotonic behaviours in Figures 6A and 7A with the description of the local
processes shown in Figure 8. Following t0+, intrafracture flow is driven by the pressure disequilibrium between the hor-
izontal and vertical fractures. Between t0+ and t1, horizontal fracture contraction occurs primarily due to the dissipation
of the fluid pressure support. Vertical fracture expansion follows due to poroelastic coupling to accommodate incoming
fluid from the horizontal fracture. As the vertical fracture expands, it forces the contraction of the matrix, and thus the
increasing matrix strain shown in Figures 7A and 8. After t1, deformation drives the horizontal fracture pressure
increase due to fluid compressibility. The overall fracture continuum pressure increases (Figure 6A), with strain gener-
ating pressure in the horizontal fracture whilst the pressure change associated with vertical fracture expansion slows.
The latter occurs due to the low matrix permeability which prohibits dissipation of excess matrix pressure, until later
times. As a result, the undrained matrix stiffness increases with its progressive contraction, slowing vertical fracture

FIGURE 7 (A) Matrix and (B) fracture

volumetric strain evolutions for the deformable

isotropic test case. ‘FS’ and ‘DC’ denote

quantities related to fine-scale and dual-

continuum models [Colour figure can be

viewed at wileyonlinelibrary.com]

ASHWORTH AND DOSTER 19

http://wileyonlinelibrary.com


expansion until a mechanical equilibrium is reached. The overall fracture continuum pressure rise finally stops when
the fractures have reached mechanical equilibrium with the matrix and an internal hydrostatic equilibrium.

The local processes shown by the FS model are not captured by the DC model due to the underlying homogenisa-
tion assumptions made in the latter. However, Figures 6 and 7 do show that, aside from the local equilibration pro-
cesses, the DC model can capture the global poroelastic behaviours of the FS model.

4.3.3 | Geometry-induced anisotropy: Explicit computation of C∗

Here, we show the results for the geometry-induced (single-fracture set) anisotropy case. Pressure and total volumetric
strain are given in Figure 9, whilst Figure 10 shows the individual continuum volumetric strains.

Figure 9A now shows a smaller disparity between the initial matrix and fracture pressures, with the fracture pres-
sure being only slightly higher. Further, we do not observe the Mandel-Cryer effect in the FS model. However, away
from the initial pressures, the general trends we see in Figure 6A can still be observed in Figure 9A. Specifically, a rapid
decrease in fracture pressure is followed by a smoother matrix pressure decrease. As expected, the late-time differences
in matrix pressure observed previously are present in the current test. For both modelling approaches, there is a good
agreement in matrix and fracture pressure evolutions. The total element volumetric strain evolutions are also similar
between the two modelling approaches, with an overall increase in strain as the material compacts.

The similarity in total volumetric strain between the two approaches is reflected in the individual continuum strains
(Figure 10). The matrix shows early-time expansion behaviour followed by contraction. Fracture deformation is coupled
to matrix deformation (and vice versa). Fracture contraction is therefore followed by a period of expansion as the matrix
drains and contracts.

The small difference in initial continuum pressures observed in Figure 9A can be explained by considering the geo-
metric anisotropy induced by the fractures. With the fracture set being aligned with the direction of loading
(Figure 3A), the stiffer matrix acts like a series of columns, supporting a significant portion of the applied load. Through
the coupling between stress and pressure, the low portion of stress ‘seen’ by the fracture phase leads to the low induced

FIGURE 8 (A) Pressure and

volumetric strain (highlighted for

fractures and matrix, (B) and

(C), respectively) fields at different time

levels, ti, for the fine-scale

(FS) representation of the deformable

isotropic material. Each field plot is

5 mm × 5 mm and is located at the

observation point. Subscript 0+ denotes

the time level corresponding to the

undrained, loaded configuration

[Colour figure can be viewed at

wileyonlinelibrary.com]
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fracture pressure shown in Figure 9A. Finally, the absence of the Mandel-Cryer effect in the current case is due to the
pressure being at equilibrium within the single fracture set. As a result, local processes do not drive early-time
poroelastic intracontinuum and intercontinuum pressure generation.

4.3.4 | Material-induced anisotropy: Numerical computation of C∗

Figures 11 and 12 show pressure and total strain and individual continuum strain results, respectively, for the material-
induced anisotropy case. Both models in Figure 11A show a strong difference in the early-time magnitudes of matrix
and fracture pressures. The FS model shows similar early-time Mandel-Cryer fracture behaviour to what we observed
in Figure 6A. In contrast, the FS matrix nonmonotinicity is negligible in Figure 11A compared with the isotropic case.
At later times, we see a significant nonmontonic evolution in matrix pressure that is shown by both modelling
approaches. This nonmonotonic matrix pressure rise starts earlier in the FS model than the DC model. Finally, we
observe that matrix and fracture diffusion starts at similar times, indicating a single-continuum response. Coupled to
the delayed fracture diffusion response is the delayed increase in total volumetric strain (Figure 11B).

In Figure 12, both modelling approaches give similar continuum strain evolutions. Similar to Figure 7A, Figure 12A
shows that the DC approach misses the early-time matrix strain nonmonotinicity displayed by the FS approach. How-
ever, contrast to Figure 7A, Figure 12A shows a smoother early-time FS matrix strain nonmonotinicity, whilst the late-
time matrix strain nonmonotinicity for both approaches is much sharper.

Results in Figures 11 and 12 can be explained by considering the material anisotropy in the fracture continuum.
The smoother early-time nonmonotinicity in FS matrix strain occurs because the vertical fractures are stiffer. These
fractures then expand less with incoming fluid, reducing poroelastic coupling (and thus deformation) with the matrix
compared with the isotropic case. As a result, since FS matrix pressure does not change significantly, the initial matrix

FIGURE 9 (A) Matrix and fracture

continuum element averaged pressure and

(B) total element volumetric strain evolutions

for the (deformable) anisotropic test case with

one (vertical) fracture set. ‘FSα’ and ‘DCα’

denote quantities related to fine-scale and dual-

continuum models for continuum α,

respectively [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 10 (A) Matrix and (B) fracture

volumetric strain evolutions for the

(deformable) anisotropic test case with one

(vertical) fracture set. ‘FS’ and ‘DC’ denote

quantities related to fine-scale and

dual-continuum models [Colour figure can be

viewed at wileyonlinelibrary.com]
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pressures for the two modelling approaches are similar. This result suggests that mechanical anisotropy can noticeably
affect the degree of intercontinuum coupling. The delay in fracture pressure diffusion occurs due to the low vertical
fracture permeability. Accordingly, we see the nonmonotonic rise in matrix pressure with local intercontinuum equili-
bration processes occuring at similar timescales to macroscopic fracture flow. Further, the pseudosteady-state mass
transfer assumption leads to the delayed response of this nonmonotinicity in the DC model. The influx of fluid from
the fractures into the matrix is accompanied by expansion of the matrix material, followed by contraction as fluid drains
out (Figure 12A).

The results in the current test show again how the DC model misses early-time effects due to local equilibration
processes. Neglecting these local processes is implicit due to the steady-state pressure assumption made during
homogenisation. However, once local equilibration is reached, the DC model does predict the general poroleastic
behaviours of the FS model.

5 | CONCLUSIONS

DC models are an implicit approach to modelling multiscale materials. Further, with the appropriate extensions, they
can be used to model complex multiphysics problems such as the coupled mechanics and flow phenomena studied in
this work.

In this paper, we derived a DC poroelastic constitutive model that makes no assumptions on the material symmetry
and mechanical properties of the dual-material and its constituents. We termed the resulting model the anisotropic,
dual-stiffness constitutive model. Further, we discussed how under isotropy of the continua and bulk material, and void
space assumptions of the high-permeability transport phase, previously introduced constitutive models can be recov-
ered from the constitutive model developed herein.

FIGURE 11 (A) Matrix and fracture

continuum element averaged pressure and

(B) total element volumetric strain evolutions

for the (deformable) anisotropic test case with

two orthogonal fracture sets. ‘FSα’ and ‘DCα’

denote quantities related to fine-scale and

dual-continuum models for continuum α,

respectively [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 12 (A) Matrix and (B) fracture

volumetric strain evolutions for the

(deformable) anisotropic test case with two

orthogonal fracture sets. ‘FS’ and ‘DC’ denote

quantities related to fine-scale and dual-

continuum models [Colour figure can be viewed

at wileyonlinelibrary.com]
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Second, using numerical modelling, we investigated whether the DC approach with the derived constitutive model
is able to capture the global poroelastic behaviours of FS explicit models. We introduced the computational framework
used to carry out our investigation and described the resulting numerical tests therein. We observed that anisotropy can
have measurable impacts on flow and deformation behaviour. However, we showed that the DC approach is capable of
capturing the global poroelastic behaviours for both isotropic and anisotropic FS equivalents. Discrepancies between
the two model representations arise when local equilibration processes not accounted for in the homogenisation
approach are significant.

Finally, interesting extensions to the current work involve the study of nonlinear poromechanical effects and
measurement methodologies for the material parameters used herein. In the former, it is well known that fracture (and
soil aggregate) deformation is geometrically nonlinear, leading to coupled material nonlinearities at the macroscopic
scale. Modelling these scale effects requires comprehensive multiscale modelling approaches and is an active area of
research.25,72,73 Lastly, in analogy to the work of Biot and Willis,74 it is highly desirable to develop methods of measure-
ment for the parameters introduced in this work. In particular, the challenge remains on how to map individual
fracture characteristics to continuum properties. In this context, a microporomechanics framework could provide useful
insights into experimental and theoretical methodologies (e.g., Lemarchand et al15).
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