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Abstract: For high-resolution scene mapping and object recognition, optical technologies such as cameras and LiDAR are the
sensors of choice. However, for future vehicle autonomy and driver assistance in adverse weather conditions, improvements in
automotive radar technology and the development of algorithms and machine learning for robust mapping and recognition are
essential. In this study, the authors describe a methodology based on deep neural networks to recognise objects in 300 GHz
radar images using the returned power data only, investigating robustness to changes in range, orientation and different
receivers in a laboratory environment. As the training data is limited, they have also investigated the effects of transfer learning.
As a necessary first step before road trials, they have also considered detection and classification in multiple object scenes.

1 Introduction
All major car manufacturers are evaluating LiDAR, passive optical
and radar sensing capabilities for automotive applications [1],
aiming beyond advanced driver-assistance systems (ADASs) such
as automatic cruise control, parking assistance and collision
avoidance, towards full automotive autonomy. Each technology has
benefits and drawbacks, but a key benefit of automotive radar is an
operating range up to 150 m or more, and an ability to function in
adverse weather, such as fog, rain or mist. However, radar sensors
offer much lower resolution than optical technologies. Current
automotive radar systems operate at 24 and 79 GHz, with a typical
bandwidth of 4 GHz, can perform low-resolution mapping and
detection in relatively uncluttered scenes, but object recognition is
really challenging.

Deep neural networks (DNNs) have proven to be a powerful
technique for image recognition on natural images [2–4]. In
contrast to manual selection of suitable features followed by the
statistical classification, DNNs optimise the learning process to
find a wider range of patterns, achieving better results than
formerly on quite complicated scenarios. For example, this
includes the ImageNet challenge first introduced in 2009 [5],
which has at the time of writing more than 2000 object categories
and 14 million images.

In this paper, we investigate the capacity of DNNs to recognise
prototypical objects in azimuth-range power spectral images by a
prospective 300 GHz automotive radar with an operating
bandwidth of 20 GHz. The first contribution of our work is to
assess the robustness of these DNNs to variations in viewing angle,
range and the specific receiver operational characteristics, using a
simple database of six isolated objects. For greater realism, our
second contribution is to evaluate the performance of the trained
neural networks in more challenging scenarios with multiple
objects in the same scene, including detection and classification in
the presence of both uniform and a cluttered background. Third,
since we have limited data, we have also investigated how transfer
learning can improve the results. This 300 GHz prototype has
limited range and scanning speed; therefore, our experiments are
conducted in a laboratory setting rather than from a mobile vehicle.
Further, we avoid the use of range-Doppler spectra to classify
images, but perform experiments using the radar power data alone.
This is justifiable because future automotive technology must have
the capability to classify traffic participants even when static, e.g.
at traffic lights, although motion may be used as an ancillary
variable to good effect.

2 Related work
Together with scene mapping, object recognition is a necessary
capability for autonomous cars. When we create a map of the
immediate environment, we also need to identify key actors, such
as pedestrians and vehicles, and other street furniture, traffic signs,
walls, junctions and so on. For actors, we also wish to predict their
movements in order to create a safe system, and identity is a key
component of such prediction.

The use of deep convolutional neural networks (DCNNs) [2, 6]
for large scale image recognition has changed significantly the
field of computer vision. Although questions remain on
verifiability [7], confidence in the results [8], and on the effects of
adversarial examples [9], the best results for correct identifications
applied to large image datasets have been dominated by DCNN
algorithms. The development of GPU's and large annotated
datasets has helped the popularity of deep learning methods in
computer vision.

Of course, the results on natural image data such as ImageNet
can be replicated to a large extent using automotive data, such as
the KITTI benchmarks [10]. However, in adverse weather, optical
sensors have poor performance, so we wish to examine the
potential of radar data for reliable recognition. This is especially
challenging; most automotive radars sense in two dimensions only,
azimuth and range, although research is underway to develop a full
3D radar [11]. Although range resolution can be of the orders of
cm, azimuth resolution is poor, typically 1°–2° although again there
is active research to improve this [12]. Natural image recognition
relies to a great extent on surface detail, but the radar imaging of
surfaces is much less well understood, is variable, and full
electromagnetic modelling of complex scenes is extremely
difficult.

There has been some recent work in applying deep learning
techniques to radar images for automotive applications, but the vast
majority of these rely on the Doppler capabilities of radar as a
feature to recognise the objects. For example, Wöhler et al. [13,
14] used Long Short-Term Memory (LSTM) neural networks to
classify road actors in the automotive scenario in which the
motion-compensated Doppler velocity was a key feature. Other
broadly similar works include Rohling et al. [15], who used a 24 
GHz radar to classify pedestrians by analysing the Doppler
spectrum and range profile, Major et al. [16] who classified and
detected vehicles in a highway scenario using a range-azimuth-
Doppler spectrum based on 3D convolutions and LSTM networks,
and Bartsch et al. [17] who classified pedestrians using the area
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and shape of the object and Doppler spectrum features. Bartsch et
al. analysed the probability of each feature and used a simple
decision model, achieving 95% accurate classification rates for
optimal scenarios, but this dropped to 29.4% when the pedestrian
was in close proximity to cars due to low resolution from the radar
sensors. Of particular interest is the work of Angelov et al. [18]
who investigated the capability of different DCNNs to recognise
cars, people and bicycles with variable success rates ranging
between accuracies of 44–88% depending on the problem. In
Section 4, we use their network as a point of comparison. The
conclusion from these studies is that prototypical motion from
Doppler spectra can be a powerful aid to object identification, but
with powerful caveats. First, a car is still a car if stationary at
traffic lights, and second, for a moving vehicle equipped with
sensors, the whole scene is moving, not just readily separable
targets.

In contrast, Lombacher et al. [19] use the power spectrum alone
to recognise a significant number of roadside objects with a 76 
GHz radar system. There are several differences to the current
paper. First, we use a higher frequency, 300 GHz, radar system
with higher resolution in both range and azimuth. Second,
Lombacher et al. used multiple images from different viewpoints to
aggregate points from a moving car; this has an artificially created
higher resolution that is not achievable in practice for a forward-
looking radar. In our work, we consider a single view from such a
radar system.

3 Applying DNNs to 300 GHz radar data
3.1 Objective

The main objective of the first part of our study is to design and
evaluate a methodology for object classification in 300 GHz radar
data using DCNNs, as illustrated schematically in Fig. 1. This is a
prototype radar system; we have limited data, so we have
employed data augmentation and transfer learning to examine
whether this improves our recognition success. To verify the
robustness of our approach, we have assessed recognition rates
using different receivers at different positions, and objects at
different orientations and range. We also evaluated the performance
of the method in a more challenging scenario with multiple objects
per scene.

3.2 300 GHz FMCW radar

A current, typical commercial vehicle radar uses MIMO
technology at 77–79 GHz with up to 4 GHz IF bandwidth, a range
resolution of 4.3 cm, and an azimuth resolution of 15° [20]. This
equates to a cross-range resolution of ≃ 4 m at 15 m such that a car
will just occupy one cell in the radar image. This clearly makes
object recognition very challenging based on radar cross-section.
Rather, in this work, we collected data using an FMCW 300 GHz
scanning radar designed at the University of Birmingham [21]. The
parameters for one of the 300 GHz sensors used in this work can be
seen in Table 1. The main advantage of the increased frequency
and bandwidth is a better-resolved radar image, which may lead to
more reliable object classification. The 300 GHz radar used in this
work has a bandwidth of 20 GHz, which equates to 0.75 cm range
resolution. The azimuth resolution is 1.1° which corresponds to
≃ 20 cm at 10 m.

The raw data captured by the 300 GHz radar is a time-domain
signal at each azimuth direction. To transform the raw signal into
an image, two steps were performed. The first step is to apply a fast
Fourier transform (FFT) to each azimuth signal to create a range
profile. The original polar image is converted to Cartesian
coordinates, as shown in Fig. 2. This ensures equal dimensions in
the x and y planes over all distances. Before training the neural
network with this data, we applied whitening by subtracting the
mean value of the image data, as this helps the stochastic gradient
descent (SGD) to converge faster. The convergence happens faster
because the weight initialisation of neural networks is based on a
Gaussian distribution with zero mean [22]. It means that the bias
term will have less influence during the learning process.

3.3 Experimental design and data collection

The main objective is to establish whether the proposed
methodology has the potential to discriminate between a limited set
of prototypical objects in a laboratory scenario, prior to collecting
wild data in a scaled-down or alternate radar system. In the wild,
by which we mean outside the laboratory and as a vehicle-mounted
sensor navigating the road network, we anticipate even more
problems due to overall object density and proximity of targets to
other scene objects. In the laboratory, we wanted to gain
knowledge of what features were important in 300 GHz radar data,
and whether such features were invariant to the several possible

Fig. 1  300 GHz FMCW radar object recognition: Methodology developed using DCNNs to process data acquired by a prototype high-resolution 300 GHz
short-range radar [12]. Steps: 1. Radar signal processing and Cartesian radar image generation. 2. Bounding box annotation to crop object region. 3. DNN
and transfer learning for radar-based recognition

 
Table 1 300 GHz FMCW radar parameters for the system
used in our experiments [21]
sweep bandwidth 20 GHz
H-plane (azimuth) beamwidth (−3 dB) 1.1°
E-plane (elevation) beamwidth (−3 dB) 7.0°
azimuthal scan angle increment 0.25°
range resolution 0.75 cm
azimuth resolution (at 10 m) 19.2 cm
 

Fig. 2  Polar to Cartesian radar image
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transformations. The objects we decided to use were a bike, trolley,
mannequin, sign, stuffed dog and cone. Those objects contain
varieties of shapes and materials, which to some extent, typify the
expected, roadside radar images that we might acquire from a
vehicle.

The equipment for automatic data collection included a
turntable to acquire samples every 4°, covering all aspect angles,
and at two stand-off distances, 3.8 and 6.3 m. The sensors are
shown in Fig. 3. In collecting data, we used 300 and 150 GHz
radars, a Stereo Zed camera and a Velodyne HDL-32e Lidar, but in
this paper, only data from the 300 GHz radar is considered. The
300 GHz radar has one transmitter and three receivers. The three
receivers were used to compare the object signatures at different
heights, and to a lesser extent, whether the different receivers had
different operational characteristics. We used a carpet below the
objects to avoid multi-path and ground reflections. Table 2
summarises how many samples were captured from each object at
each range. Since we have 3 receivers, we have 1425 images from
each range and 2850 images in total. In Fig. 4, we can see sample
images from all objects at different ranges using receiver 3. 

All the collected images were labelled with the correct object
identity, irrespective of viewing range, angle and receiver height. A
fixed-size bounding box of 400 × 400 cells, which corresponds to
3 m × 3 m, was cropped from the image with the object in the
middle of the box.

3.4 Neural network architecture

In this work, we used four networks, which are illustrated in Fig. 5.

• CNN-2: This network is a vanilla CNN with two convolutional
layers and a fully connected layer in the end to classify the
objects.

• CNN-3: This network is the same as CNN-2 with an additional
convolutional layer.

• VGG-like: The VGG-like network was developed by Angelov et
al. [18] for range-Doppler radar object recognition.

• A-ConvNet: This network developed by Chen et al. [23]
achieved state-of-the-art recognition on SAR target recognition.

All networks contain standard layers such as a convolutional layer,
rectified linear unit (ReLU), max pooling, dropout, fully connected
and softmax layers. A description of the properties of all these
layers can be found in [24]. The CNN-2 and -3 networks provide a
baseline solution of minimal complexity. The VGG-like network
was chosen as it provided a very recent point of comparison on a
similar problem, of course, with the significant difference that it
was designed for range-Doppler data. Finally, we chose the A-
ConvNet architecture because it was also employed to recognise
static objects in radar images, albeit synthetic aperture radar (SAR)
images. This also allowed us to investigate transfer learning using
this same network trained on the SAR data and sharing the initial
weights. For all networks, we decided to use the original input

Fig. 3  Experimental sensor setup
 

Table 2 Data set collection showing a number of different raw images collected at each range
3.8 m 6.3 m

bike 90 90
trolley 90 90
mannequin 90 90
cone 25 25
traffic sign 90 90
stuffed dog 90 90
total 475 × (3 rec.) = 1425 475 × (3 rec.) = 1425

 

Fig. 4  Sample images from each object from the dataset collected using the 300 GHz radar
 

IET Radar Sonar Navig., 2020, Vol. 14 Iss. 10, pp. 1483-1493
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

1485



layer of A-ConvNet (88 × 88), so our input data was resized using
bilinear interpolation.

To train our neural network, we used stochastic gradient descent
(SGD). SGD updates the weights of the network depending on the
gradient of the function that represents the current layer, as in the
following equation:

Wt + 1 = Wt − α∇ f (x; W) + ηΔW (1)

In (1), η is the momentum, α is the learning rate, t is the current
time step, W defines the weights of the network and ∇ f (x; W) is
the derivative of the function that represents the network. To
compute the derivative for all layers, we need to apply the chain
rule, so we can compute the gradient through the whole network.
The loss function used to minimise was the categorical cross-
entropy (2). The parameters used in all experiments in all training
procedures are given in Table 3. For all experiments, we used 20%
of the training data as validation, and we used the best results from
the validation set to evaluate the performance. In (2), y^ is the
predicted vector from softmax output and y is the ground truth.

L(y^, y) = − ∑
i

yilog(y^i) (2)

3.5 Data augmentation

As shown in Table 2, we have limited training data. Using a
restricted dataset, the DCNNs will easily overfit and be biased
towards specific artefacts in the dataset. To help overcome this
problem, we generated new samples to create a better
generalisation. The simple technique of random cropping takes as
input the image data of size 128 × 128 and creates a random crop
of 88 × 88. This random crop ensures that the target is not always
fixed at the same location, so that the location of object should not
be a feature. We cropped each sample eight times and also flipped
all the images left to right to increase the size of the dataset and
remove positional bias.

4 Experiments: classification of isolated objects
As described in Section 3.3, we used 6 objects imaged from 90
viewpoints with 3 receivers at two different ranges (3.8 and 6.3 m).
Four different experiments were performed, as shown in Table 4. 
The metric used to evaluate the results is accuracy, i.e. the number
of correct divided by the total number of classifications in the test
data.

Experiment 1: Random selection from the entire data set: This
is the often used, best-case scenario, with a random selection from
all available data to form training and test sets. Intuitively, the
assumption is that the dataset contains representative samples of all
possible cases. To perform this experiment, we randomly selected
70% of the data as training and 30% as test data. The results are
summarised in Table 5. 

From Table 5, we conclude that the results are very high across
the board, so it is possible to recognise objects in the 300 GHz
radar images, with the considerable caveats that the object set is
limited, they are at short range in an uncluttered environment, and
as all samples are used to train, then any test image will have many
near neighbours included in the training data with a high statistical
probability.

Experiment 2: Receiver/height influence: The second
experiment was designed to investigate the influence of the
receiver antenna characteristics and height (see Fig. 3). The
potential problem is that the DCNNs may effectively overfit the
training data to learn partly the antenna pattern from a specific
receiver or a specific reflection from a certain height. All available
possibilities were tried, i.e.

• Experiment 2.1: Receivers 2 and 3 to train and receiver 1 to test.
• Experiment 2.2: Receivers 1 and 3 to train and receiver 2 to test.
• Experiment 2.3: Receivers 1 and 2 to train and receiver 3 to test.

Table 6 shows the results for Experiment 2. In comparison with
Experiment 1, the results are poorer, but not to the extent that we
can determine as significant on a limited trial. This was expected

Fig. 5  Networks architectures used
 

Table 3 Neural network parameters
learning rate (α) 0.001
momentum (η) 0.9
epochs 100
batch size 100

 

Table 4 Set of experiments performed
Train Test

experiment 1 random (70%) random (30%)
experiment 2 two receivers one receiver
experiment 3 one range other range
experiment 4 quadrants 1, 3 quadrants 2, 4
 

Table 5 Accuracy for Experiment 1: random selection from
all data

CNN-2 CNN-3 VGG-Like A-ConvNet
random selection 92.3% 94.9% 96.4% 99.7%
Bold value indicates the best result.
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from the examination of the raw radar data, since there is not much
difference in the signal signatures from the receivers at different
heights. If anything, receiver 3, which was closest to the floor and
so, received more intense reflections, gave poorer results when
used as the test case, which implied that the DCNNs did include
some measure of receiver or view-dependent characteristics from
the learnt data. In this instance, the drop in performance is
markedly less severe in the preferred A-ConvNet architecture.

Experiment 3: Range influence: Clearly, the range of the object
influences the return signature to the radar as the received power
will be less due to attenuation, and less cells are occupied by the
target in the polar, radar image due to degrading resolution over
azimuth. Therefore, if the training data set is selected only at range
3.8 m, for example, to what extent are the features learnt
representative of the expected data at 6.8 m (and vice versa)?
Table 7 summarises the results achieved when we used one range
to train the network, and the other range to test performance. 

• Experiment 3.1: Train with an object on 3.8 m. Test with an
object on 6.3 m.

• Experiment 3.2: Train with an object on 6.3 m. Test with an
object on 3.8 m.

The key observation from Table 7 is that if we train the DCNNs at
one specific range which has a given cell structure and received
power distribution, and then test at a different range, the
performance is not as accurate as in the base case as this drops
from over 99 to 82.5% and 91.1%, respectively, in the case of A-
ConvNet. Again, the other networks do not perform as well.

Experiment 4: Orientation influence: The final experiment was
designed to examine whether the neural network was robust to
change of viewing orientation. Here, we used as training sets the
objects in quadrants 1 and 3, and as test sets the objects in
quadrants 2 and 4. Quadrant 1 means orientation from 0° to 89°,
quadrant 2 means orientation from 90° to 179°, quadrant 3 means
orientation from 180° to 269° and quadrant 4 means orientation
from 270° to 359°, as shown in Fig. 6. 

The DCNNs do not perform as well compared to Experiments 1
and 2, for example dropping to 92.5% for A-ConvNet. However,
since we flipped the images left to right as a data augmentation
strategy, the network was capable of learning the orientation
features, as the objects exhibited near mirror symmetry, and in one
case, the cone, is identical from all angles. Therefore, we have to
be hesitant in drawing conclusions about any viewpoint invariance
within the network as the experiments are limited and all objects
have an axis or axes of symmetry (as do many objects in practice).

Together with Experiments 2 and 3, this experiment shows that
it is necessary to take into account the differences in the acquisition
process using different receivers at different ranges and orientation
in training the network. While, this is to some extent obvious and
equally true for natural images, we would observe that the artefacts
introduced by different radar receivers are much less standardised
than those introduced by standard video cameras, so the results
obtained in future may be far less easy to generalise. Although
Experiment 2 only showed limited variation in such a careful
context, we would speculate that the effects of multi-path and
clutter would be far more damaging than in the natural image case,
as highlighted in [17].

4.1 Comparison between the networks

As shown in Tables 5–8, in all scenarios, A-ConvNet was superior. 
The CNN-2 and CNN-3 networks are the baseline, and it shows
that without much engineering, we manage to have networks with
suitable results, however, they are not as good as a network
designed for SAR target recognition. Angelov et al. [18] designed a
network for a range-Doppler image, which in our scenario (just
using the power spectra) did not manage to work as well as A-
ConvNet. The A-ConvNet architecture was designed for the most
similar problem, and for these experiments achieved very good
results. Since A-ConvNet was shown to be the superior network of
the ones presented here, succeeding experiments in this paper use
this architecture.

4.2 Transfer learning

As summarised in Table 2, we have a small dataset and there is the
potential to learn image-specific characteristics rather than features
of the objects themselves. Therefore, we have investigated the use
of transfer learning to help capture more robust features using a
pre-existing dataset, i.e. to use prior knowledge from one domain
and transfer it to another [25]. To apply transfer learning, we first
trained the DCNNs on the MSTAR (source) data, then the weights
from the network were used as initial weights for a new DCNNs
trained on our own 300 GHz (target) data. The MSTAR data is
different in viewing angle and range compared to our own data as
shown in Fig. 7. It was developed to recognise military targets
using SAR images. The data contains 10 different military targets
and around 300 images per target with similar elevation viewing
angles of 15 and 17. In total, MSTAR has around 6000 images and

Table 6 Accuracy for Experiment 2: receiver influence
CNN-2 CNN-3 VGG-Like A-ConvNet

receiver 1 test experiment 82.6% 85.9% 81.1% 98.9%
receiver 2 test experiment 90.0% 93.2% 93.5% 98.4%
receiver 3 test experiment 60.4% 65.9% 65.6% 87.7%
Bold values indicates the best results.

 

Table 7 Accuracy for Experiment 3: range influence
CNN-2 CNN-3 VGG-Like A-ConvNet

object at 6.3 m test
experiment

58.3% 60.2% 59.6% 82.5%

object at 3.8 m test
experiment

58.5% 69.5% 37.7% 91.1%

Bold values indicates the best results.
 

Fig. 6  Quadrants
 

Table 8 Accuracy for Experiment 4: orientation influence
CNN-2 CNN-3 VGG-Like A-ConvNet

Q2,Q4 test experiment 76.5% 78.3% 92.2% 92.5%
Bold values indicates the best results.
 

Fig. 7  MSTAR dataset
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is used widely by the radar community in order to verify
classification algorithms.

The DCNNs function in the source domain is defined by the
following equation:

ys = f (Ws, xs) (3)

where Ws are the weights of a network, xs and ys are the input and
output from the source domain. To learn the representation, an
optimiser must be used, again stochastic gradient descent (SGD),
expressed by the following equation:

Wsi + 1 = SGD(Wsi, xs, ys) (4)

where SGD is a function that updates the weights of the neural
network, as expressed in (1). Hence, using the trained weights from
our source domain as the initial weights, this is expressed as (5). It
is intended that the initial weights give a better initial robust
representation, which can be adapted to the smaller dataset. Wt1
represents the first step of the SGD before we start to train and Ws
is the trained weights from the source dataset

Wt1 = SGD(Ws, xt, yt) (5)

We repeated Experiments 1–4 using transfer learning. The results
are summarised in Table 9. To gain further insight, we also show
the confusion matrix from the orientation experiments without and
with transfer learning in Tables 10 and 11. The main confusion is
between the dog and mannequin, since both have similar clothed
material; and cone and sign, since they have a similar shape.

4.3 Effect of transfer learning

As can be seen, transfer learning gives higher values for accuracy
in the majority but not all cases. The MSTAR dataset is a much
bigger dataset, and although it exhibits some characteristics in
common with our own data, it uses a synthetic aperture technique,
and there is no significant variation in elevation angle during data
collection. However, there are two distinguishable strong features,
the shape and reflected power, and like our data, the objects are
viewed at all possible rotations in the ground plane. As these
characteristics have much in common with our own data, it is
possible that the network is able to better generalise to cope with
new situations as shown, for example in the Receiver 3 and
different range experiments. To draw any firmer conclusion
requires much more extensive evaluation.

Nevertheless, in these experiments, we can conclude that the
neural network approach is robust in maintaining accuracy with
respect to sensor hardware, height, range and orientation.

4.4 Visualisation of feature clusters

To better understand what is being learned by our network, the t-
stochastic neighbour embedding technique (t-SNE) [26] was used
to visualise the feature clusters. t-SNE employs nonlinear
dimensionality reduction to build a probability distribution by
comparing the similarity of all pairs of data, then transformed into
a lower dimension. Then it uses Kullback–Leibler (KL)-divergence
to minimise with respect to the locations in the cluster space.

Fig. 8 shows the result from the t-SNE clustering of samples
using raw image features; in this case, the orientation experiment. 
Figs. 8b and c show the t-SNE clusters from the features extracted
from the penultimate layer of the trained neural network with and
without transfer learning, using different colour maps for each
object for better visualisation. First, we can see that the trained
neural network was able to cluster similar classes and similar
features in each case. Second, transfer learning shows slight

Table 9 Accuracy after applying transfer learning
Without TL With TL

Exp 1: random split Exp. 99.7% 99.1%
Exp 2.1: Rec. 1 test Exp. 98.9% 95.8%
Exp 2.2: Rec. 2 test Exp. 98.4% 98.8%
Exp 2.3: Rec. 3 test Exp. 87.7% 94.1%
Exp 3.1: 6.3 m test Exp. 82.5% 85.2%
Exp 3.2: 3.8 m test Exp. 91.1% 93.5%
Exp 4: Q2, Q4 test Exp. 92.5% 98.5%
Bold values indicates the best results.

 

Table 10 Orientation experiment trained on A-ConvNet without transfer learning
Acc: 0.925 Predicted label

Bike Trolley Cone Mannequin Sign Dog
true label bike 1.00 0.00 0.00 0.00 0.00 0.00

trolley 0.03 0.97 0.00 0.00 0.00 0.00
cone 0.00 0.00 1.00 0.00 0.00 0.00

mannequin 0.00 0.00 0.00 0.86 0.00 0.14
sign 0.00 0.00 0.00 0.00 1.00 0.00
dog 0.03 0.00 0.02 0.10 0.00 0.86

 

Table 11 Orientation experiment trained on A-ConvNet with transfer learning from MSTAR
Acc: 0.985 Predicted label

Bike Trolley Cone Mannequin Sign Dog
true label bike 1.00 0.00 0.00 0.00 0.00 0.00

trolley 0.00 1.00 0.00 0.00 0.00 0.00
cone 0.00 0.00 1.00 0.00 0.00 0.00

mannequin 0.00 0.00 0.00 0.96 0.00 0.04
sign 0.00 0.00 0.00 0.00 1.00 0.00
dog 0.00 0.00 0.00 0.03 0.00 0.97
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improvement by creating larger, better-separated clusters of objects
of the same class. Although it is hard to give actual interpretability
of neural networks, the t-SNE framework can give some insights
into the type of features that have been learned.

5 Experiments: detection and classification
within a multiple object scenario
The previous dataset contains one windowed object in each image.
In an automotive or more general radar scenario, we must both
detect and classify road actors in a scene with many pre-learnt and
unknown objects. This is much more challenging. Hence, in the
next set of experiments, we include multiple objects, and this has
several additional phenomena, including occlusion, multi-path and
interference between objects, as well as objects which are not
included as a learnt object of interest. We use the same object
dataset (bike, trolley, cone, mannequin, sign, dog) in different parts
of the room with arbitrary rotations and ranges, and the network is
trained by viewing the objects in isolation, as before. We also
include some within-object variation, using, for example different
mannequins, trolleys and bikes. The unknown, laboratory walls are
also very evident in the radar images. This new dataset contains
198 scenes, 648 objects, an average of 3.27 movable objects per
scene. Fig. 9 shows the examples of 3 scenes in the multiple object

dataset. Fig. 10 shows the statistical data explaining the number of
instances of each learnt object, the number of objects in each scene,
and the distribution of ranges of the objects. Fig. 11 illustrates the
possible problems that can occur in multiple objects dataset. 

5.1 Methodology

In classical radar terminology, detection is described as
‘determining whether the receiver output at a given time represents
the echo from a reflecting object or only noise’ [27]. Conversely, in
computer vision, using visible camera imagery to which the vast
majority of CNN methods have been applied, detection is the
precise location of an object in an image (assuming it is present)
containing many other objects, as for example in the pedestrian
detection survey of Dollar et al. [28]. Although the image may be
noisy, this is generally not the major cause of false alarms.

The extensive literature on object detection and classification
using cameras, e.g. [29–32], can be grouped into one-stage and
two-stage approaches. In the one-stage approach, localisation and
classification are done within a single step, as with the YOLO [32],
RetinaNet [31] and SSD [30] methods. Using a two-stage
approach, first localises objects, proposing bounding boxes and
then performs classification in those boxes. R-CNN [33], fast R-
CNN [34] and faster R-CNN [29] are examples of the two-stage
approach.

Fig. 8  t-SNE plots from the orientation experiment
(a) t-SNE using raw features, (b) t-SNE without transfer learning, (c) t-SNE with transfer learning

 

Fig. 9  Multiple object dataset. Above: 300 GHz radar image. Below: reference RGB image
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For this work, we developed a two-stage technique. We first
generate bounding boxes based on the physical properties of the
radar signal, then the image within each bounding box is classified,
similar to the R-CNN [33]. Fig. 12 shows the pipeline of the
detection methodology developed. For radar echo detection, we use
simply Constant False Alarm Rate (CFAR) [27] detection. There
are many variations, including Cell Averaging Constant False
Alarm Rate (CA-CFAR) and Order Statistics Constant False Alarm
Rate (OS-CFAR). In this work, we used the CA-CFAR algorithm
to detect potential radar targets. In order to compute the false alarm
rate, we measured the background noise level, and the power level
from the objects, setting a CFAR level of 0.22. After detecting
potential cells, we form clusters using the common Density-based
spatial clustering of applications with noise (DBSCAN) algorithm
[35], which forms clusters from proximal points and removes
outliers. For each cluster created we use the maximum and
minimum points to create a bounding box of the detected area. The
parameters for DBSCAN were selected empirically; ϵ = 0.3 m
which is the maximum distance of separation between 2 detected

points, and S = 40, were S is the minimum number of points to
form a cluster.

To compute the proposed bounding boxes with DBSCAN, we
use the centre of the clusters to generate fixed-size bounding boxes
of known dimensions, since, in contrast to the application of CNNs
to camera data, the objects in radar images are fixed scale over a
range. Hence, the boxes are of size 275 × 275, the same size as the
data used to train the neural network for the classification task. The
image is resized to 88 × 88 and each box is classified. As with the
isolated objects experiments, we used the A-ConvNet architecture.

To consider the background, we randomly cropped 4 boxes
which do not intersect with the ground truth bounding boxes
containing objects in each scene image from the multiple object
dataset and incorporated these in our training set. However, as
there are effectively two types of background, that which contains
other unknown objects such as the wall, and the floor areas which
have low reflected power, we ensured that the random cropping
contained a significant number of unknown object boxes. This is
not ideal, but we are limited to collect data in a relatively small

Fig. 10  Possible unwanted effects in the multiple object dataset
 

Fig. 11  Multi-object dataset statistics
(a) Number of object instances per class, (b) Number of objects per scene, (c) Distribution of object range

 

Fig. 12  Methodology developed for the detection task
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laboratory area due to the restricted range of the radar sensor and
cannot fully model all possible cluttering scenarios.

5.2 Results for multiple objects

In order to evaluate performance, we have considered three
different scenarios. In particular, we wish to ascertain how
performance is affected by failures in classification, assuming a
perfect CFAR + DBSCAN pipeline, and to what extent failures in
the box detection process lead to misclassification. Further, we
make a distinction between confusing objects (mainly the lab wall)
and due to system noise from the floor area.

• Perfect detector: In this scenario, we do not use the CFAR + 
DBSCAN pipeline; we use the labelled ground truth to form the
detected bounding boxes. Each bounding box is fed to the
trained neural network.

• Easy: In this scenario, we manually crop the walls and focus on
the potential area containing objects of interest. This includes
the CFAR + DBSCAN in an easy scenario, in which the removal
of static objects is analogous to background subtraction.

• Hard: In this scenario, we assume the whole scene has potential
targets. Hence, the wall should result in positive detections and
is a challenge to the CNN classification.

We also decided to label our scene data depending on the density of
objects, since a highly cluttered scene should increase the
likelihood of unwanted radar sensing effects, such as multi-path,
occlusion, and multiple objects in the same bounding box.

• #Objects <4: At a low density of objects, it is likely that the
scene will suffer less from these effects.

• 4≤#Objects <7: At mid-density, we will encounter some of the
unwanted effects.

• #Objects ≥7: At high density, many of these effects occur.

We also have decided to evaluate performance at different ranges:

• Short-range (objects <3.5 m): This scenario is not necessarily
the easiest since coupling between the transmitter and receiver
happens at this range [36].

• Mid-range (3.5 m <objects 7 m): This is the ideal scenario, as
the objects were learnt within these ranges, and the antenna
coupling interference is reduced.

• Long-range (objects >7 m): This is the most challenging
scenarios. At >7 m, most of the objects have low power of
return, close to background noise.

The metric we use for evaluation is average-precision (AP), which
is a commonly used standard in the computer vision literature for
object detection, classification and localisation [37] in which the
Intersection over Union (IoU) measures the overlap between 2
bounding boxes. If the overlap is greater than 0.5 and the
classification is correct, then this is a true positive. To compute AP
we need to compute precision (6) and recall (7), where TP is true
positive, FP is a false positive and FN is a false negative. To
compute AP we compute the area under the curve from the
precision–recall plot varying the confidence level of the prediction
of each bounding box. The AP is computed as shown in the (8)
where p is precision and r is recall

Precision = TP
TP + FP (6)

Recall = TP
TP + FN (7)

AP = ∫
0

1

p(r)dr (8)

For these experiments, we retrained the neural network from the
single object dataset using the orientation experiments. For the
Easy and Perfect Detector cases, we do not include the background
data. For the Hard case, we also added four background images per
scene inside our training set. Extensive results for all these
scenarios are shown in Tables 12–14. 

As expected, the results from a scene containing many known
objects and confusing artefacts are much poorer than when the
objects are classified from images of isolated objects. Nevertheless,
the results show promise. For example, considering the mid-range
Perfect Detector case, there is an overall mean average precision
(mAP) of 61.36%, and for specific easily distinguishable objects
such as the trolley, it is as high as 97.06% in one instance. Other
objects are more confusing, for example cones usually have low
return power and can be easily confused with other small objects.
As also expected, the results degrade at long range and in scenes
with a higher density of objects.

The Easy case shows performance comparable but not as good
as the Perfect Detector, for example dropping to 50.35% mAP. The
CFAR + DBSCAN method is a standard option to detect objects in

Table 12 Perfect detector
AP Overall #Ob jects < 4 4 ≤ #Ob jects < 7 #Ob jects ≥ 7 Short Mid Long

Overall Short Mid Long Overall Short Mid Long Overall Short Mid Long
bike 64.88 79.17 50.00 83.33 75.00 48.42 25.00 56.77 33.33 76.26 N/A 67.05 N/A 35.00 66.19 57.14
cone 46.87 50.00 50.00 50.00 50.00 58.29 55.56 83.33 N/A 42.49 68.75 26.67 N/A 62.07 43.30 3.57
dog 51.34 77.62 77.78 87.72 47.62 49.13 77.78 55.45 33.33 26.40 60.0 N/A 12.50 70.95 65.02 20.19
mannequin 37.73 70.53 53.33 85.71 33.33 25.57 36.36 30.00 8.00 37.78 14.29 50.00 22.35 33.08 48.72 13.61
sign 85.64 81.86 0.00 89.47 66.67 86.60 N/A 90.10 81.08 86.44 N/A 88.89 85.46 0.00 89.65 81.94
trolley 81.68 87.75 79.17 97.06 82.35 85.35 100.00 87.61 70.13 75.45 92.67 83.65 10.00 93.53 88.76 60.41
mAP 61.36 74.49 51.71 82.22 59.16 58.89 58.94 67.21 37.65 57.47 58.93 63.25 26.06 49.1 66.94 39.48
 

Table 13 CFAR + DBSCAN detector easy
AP Overall #Ob jects < 4 4 ≤ #Ob jects < 7 #Ob jects ≥ 7 Short Mid Long

Overall Short Mid Long Overall Short Mid Long Overall Short Mid Long
bike 53.97 79.17 50.00 66.67 100.0 43.79 50.00 36.28 6.67 43.80 N/A 31.82 N/A 50.00 42.39 65.08
cone 19.49 36.36 50.0 16.67 0.00 47.60 55.56 60.00 N/A 2.12 0.00 3.81 N/A 23.71 18.16 0.00
dog 34.32 53.36 77.78 77.35 12.12 31.09 50.00 37.01 0.00 18.18 60.0 N/A 0.00 64.00 47.33 3.33
mannequin 36.91 70.57 64.00 85.71 16.67 21.51 32.73 26.67 5.83 39.66 0.00 52.94 29.41 29.57 48.72 14.22
sign 81.84 81.86 0.00 89.47 66.67 81.65 N/A 84.88 77.17 83.89 N/A 83.33 84.5 0.00 85.02 79.31
trolley 75.55 77.30 67.42 87.72 71.56 81.56 97.44 87.32 56.73 71.33 79.56 74.49 13.33 82.46 80.78 51.62
mAP 50.35 66.44 51.53 70.60 44.50 51.20 57.14 55.36 24.40 43.16 34.89 49.28 25.45 41.62 53.73 35.60
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radar, but it does introduce some mistakes where, for example the
bounding box is misplaced with respect to the learnt radar patterns.

Regarding the Hard case, the mAP drops significantly to
35.18%. This shows how hard it is to recognise objects in radar
images when the scene contains other, unseen and un-learnt,
objects. Indeed, when the density of objects is greater than 7, some
mAP values for bike, cone and mannequin are actually 0.00, which
means that those objects were not recognised under those specific
conditions.

Finally, we observe that the trolley is the easiest object to
recognise in all cases. The trolley has a very characteristic shape,
and strongly reflecting metal corner sections that create a
distinguishable signature from all other objects. In interpreting true
and false results in non-standardised datasets, which is the case in
radar as opposed to visible camera imagery, one should be careful
when comparing diverse published material.

6 Conclusions
In this work, we evaluated the use of DCNNs applied to images
from a 300 GHz radar system to recognise objects in a laboratory
setting. Four types of experiments were performed to assess the
robustness of the network. These included the optimal scenario
when all data are available for training and testing at different
ranges, different viewing angles, and using different receivers. As
expected, this performs best when all the training and test data are
drawn from the same set. This is a valuable experiment as it sets an
optimal benchmark, but this is not a likely scenario for any radar
system applied in the wild, first because radar data is far less
ubiquitous or consistent than camera data, and second because the
influence of clutter and multi-path effects are potentially more
serious than for optical technology.

Regarding the single object scene data, we should be
encouraged by two principal results, first that the performance was
so high for the optimal case, and second that transfer learning may
lead to improvements in other cases, Transfer learning from
MSTAR using A-ConvNet can prevent overfitting to the 300 GHz
source data by generalising using more samples from a different
radar data set, e.g. increasing from 92.5 to 98.5% in the experiment
using Q1 and Q3 to train and Q2 and Q4 to test. This leads to a
more robust classification.

The multiple object dataset is a very challenging scenario, but
we achieved mean average precision rates in the easy case >60%
(<4 objects per scene), but much less, 35.18%, in a high cluttered
scenario. However, the pipeline we have adopted is probably
subject to improvement, in particular, using the classification
results to feedback to the detection and clustering. To avoid
problems with occlusion, object adjacency, and multi-path, further
research on high-resolution radar images is necessary. We also note
that we have not made use of Doppler processing, as this implies
motion of the scene, the sensor or both. For automotive radar, there
are many stationary objects (e.g. a car at a traffic light), and many
different motion trajectories in the same scene, so this too requires
further research.
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