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Abstract—In this paper, we consider the 3D beamforming with
Multi-Active Multi-Passive (MAMP) antenna arrays. For the
optimization of the hybrid array’s active elements’ (AEs) weights
and passive elements’ (PEs) loads, we propose a novel algorithm,
i.e., the alternating optimization - stochastic 3D beamforming
algorithm (AO-S3DBA). The scheme is built on a generalized cost
function and alternates between the optimization of the loads
and weights. Despite the dramatic increase in data points, we
managed to decrease the algorithm’s complexity by employing
Adam, a popular accelerator for stochastic optimization, for the
update of the optimization variables. We present simulation re-
sults, where the proposed MAMP array can successfully emulate
the beam of a uniform rectangular array (URA) with the use
of 50% less AEs and with beam steering capabilities towards
various azimuth and elevation directions. We believe that this
newly proposed type of hybrid transceiver offers a good trade-off
between cost and performance, which can be particularly useful
in many industrial and Internet-of-Things (IoT) applications,
where the deployment of a large number of transceivers / sensors
directly affects the application’s total cost.

Index Terms—Multi-active multi-passive MAMP arrays, hy-
brid arrays, 3D beamforming, Adam, alternating optimization
stochastic 3D beamforming algorithm

I. INTRODUCTION

Electronically steerable passive array radiators (ESPARs),
which are typically considered having a single-RF (Radio
Frequency) chain [1], [2], offer the potential to increase chan-
nel capacity, enhance quality-of-service, improve RF spectrum
usage and reduce power consumption of wireless networks [3].
Moreover, they can be particularly beneficial for industrial
and IoT applications, where low cost and power consumption
is often the driving force for various applications. Multi-
Active Multi-Passive (MAMP) antenna arrays, which are the
evolution of ESPARs, are considered hybrid designs composed
of multiple AEs and PEs. The AEs of the MAMP arrays admit
both phase and amplitude adjustments (weights), whereas
the PEs (passive in the sense that they are not connected
to an active RF chain) are controlled by variable loads [4]
via the adjustment typically of the imaginary part only (real
part should ideally be zero to avoid losses). Hence, the far
field radiation pattern is modified accordingly. Other popular
hybrid designs consist of AEs and phase shifters [5], [6].
In contrast to ESPARs, MAMP arrays have demonstrated
better capabilities in beamforming [7], as compared to their
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single AE counterparts [8], [9], [10]. Transition from single
element ESPARs to MAMP arrays is far from trivial, due to:
a) the hybrid nature that complicates the design (optimal half-
wavelength spacing between AEs and closer spacing between
the PEs is required for enhanced mutual coupling) and b) the
necessity to jointly optimize the PE variable loads and the AE
weights. The latter is a combinatorial task for discrete values
of loads. In the related literature with single AE ESPARs, the
common practice was to optimize their values exhaustively
(for a small number of PEs) [1], [3], [11], [12]. However, this
approach is prohibitive for large numbers of PEs, as is the
case especially for massive MAMP arrays.

A joint load-weight optimization was recently introduced
in [7], where we proposed a novel algorithm based on al-
ternating optimization for the values of the PE loads and
the AE weights. It was demonstrated there that the azimuth
plane radiation pattern of a uniform linear array (ULA) can
be emulated by a MAMP array with a reduced number of
AEs. However, in practice, both the azimuth and elevation
angles should exhibit good properties (e.g., steering capability,
reduced side-lobes, etc.). This is the research direction of this
work, since this is not guaranteed by optimizing the azimuth
pattern only as in [7].

In this paper, we address the 3-dimensional (3D) beam-
forming of MAMP arrays in an attempt to emulate the beam
of a URA. To this end, we propose a novel algorithm for
the joint optimization of the load and weight values using
a stochastic optimization approach over a generalized cost
function. Furthermore, we employed a popular accelerator
for stochastic optimization known as Adam [13], in order to
reduce the computational complexity of the method in the
random search steps. To the best of our knowledge, this is
the first time that optimization for 3D beamforming has been
studied in the literature related to MAMP arrays or ESPARs.

II. 3D BEAMFORMING WITH MAMP ARRAYS

In this section, we present the 3D modeling of the MAMP
arrays. The normalized steering vector of an antenna array
with # elements (active, passive or both), regardless of its
selected layout (geometry), at azimuth angle q ∈ G = [0, 2c)
and elevation angle \ ∈ F = [0, c] can be expressed as:

a(q, \) =
[
4i ^r)1 u(q,\) , . . . , 4i ^r)

#
u(q,\) ]) /√#, (1)
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where ^ = 2c/_, _ = 2/ 5 is the wavelength of
the frequency 5 (2 is the speed of light), u(q, \) =

[sin \ cos q, sin \ sin q, cos \]) is the point on the unit sphere
in R3 and r= ∈ R3 are the coordinates of the =-th antenna
array element for = = 1, . . . , #. It should be noted that the
advantage of using the notation in (1) is its generality, since
it can be used with arbitrary array layout, i.e., rectangular,
circular, etc. The (normalized) beam pattern of the array is
given by the amplitude of the complex matrix with elements:(

B(q, \)
)
8, 9
= a

(
q, \

)�a(q8 , \ 9 ), (2)

for every 9 ∈ SG ⊂ G, 8 ∈ SF ⊂ F , where the sets SG
and SF correspond to countable subsets of G and F (grids),
respectively.

In our design, we consider a rectangular MAMP array (R-
MAMP) consisting of #0 AEs (dipoles) whose centers lie
in the G-axis (parallel to the I-axis) equally spaced at _/2,
and, #? (even number for symmetry) PEs per active. The PEs
are positioned along the H-axis and spaced at a distance of
?_ from each other (where ? < 0.5 to enhance the mutual
coupling). The dipoles are considered linear and ideal (no
losses) of length ; = _/2 and radius A = _/100. The total
number of elements is denoted as # = #0 (#? + 1). An R-
MAMP array design with 4 AEs and 24 PEs (4A-24P) can be
found in [7]. Let Z denote the impedance matrix (taking into
account all coupling), which (for ideal dipoles) is calculated
analytically [14]. The set of indices A = {1, . . . , #} of all
elements is separated into two disjoint subsets, i.e., S and
S2 = A \ S, corresponding to the AEs and PEs, respectively.

The beam pattern of a MAMP array is calculated from (2)
by replacing a(q, \) with the conjugate of the current vector.
The current vector of a MAMP array is given by

i = i(x, v) =
(
Z + diag(x)

)−1v,

where v is the voltage vector with non-zero complex values
corresponding to its AEs (thus vS2 = 0) and diag(x) is the
diagonal matrix with the values of the vector x on its main
diagonal. Moreover,

x = ISxS + IS2xS2 =
[
x)1 , . . . , x

)
#0

]) (3)

is the load reactance vector that controls the radiation pattern
of the MAMP array (vector x decomposed into two disjoint
parts), where I is the identity matrix and IS denotes its
columns restricted over the set S. Each vector x 9 (at the right-
hand side of Eq. (3)), 9 = 1, . . . , #0, corresponds to the loads
of the 9-th cluster of elements of the MAMP array with values

x 9 =
[
i xC9 , '0, i x19

])
, (4)

where '0 ∈ R+ is the input impedance of each AE, i2 = −1,
while the rest of its entries, i.e., xC

9
= [G 9 (1), . . . , G 9 (#?/2)]

and x1
9
= [G 9 (#?/2 + 1), . . . , G 9 (#?)] correspond to the PE

load values (in increasing order of the H-axis). The antenna
gain of the MAMP array is given by:

G(q, \) = [D(q, \), (5)

where [ ∈ [0, 1] is the antenna efficiency (for [ = 1 no losses
are assumed),

D(q, \) =
∫ 2c
0

∫ c

0 ((q, \)
��B(q, \)��2 sin \ 3\ 3q

(1/4c)
∫ 2c
0

∫ c

0

��B(q, \)��2 sin \ 3\ 3q
(6)

is the antenna distributed directivity and ((q, \) is the nor-
malized radiation intensity defined as the power per unit solid
angle [15]. From (5), (6) it is evident that the gain is directly
affected by the beam pattern of the array. Our goal is to
reproduce the beam pattern of an all-active array using an
R-MAMP with as few AEs as possible.

III. AN ALTERNATING OPTIMIZATION - STOCHASTIC
3D BEAMFORMING ALGORITHM FOR MAMP ARRAYS

In this section we introduce an algorithm for emulating the
3D beam pattern of a URA using the R-MAMP of Section
II. Therefore: a) we extend the use of the algorithm presented
in [7] to the 3D beamforming case by using a generalization
of the cost function and b) we accelerate the convergence of
the method by using Adam.

The generalization of the 2D model to the 3D beamform-
ing is achieved by using the matrix inner product, i.e, the
trace operator denoted as tr(·). Thus, we employ the cross
correlation coefficient (CCC), which represents a similarity
measure between the radiated 3D beams and is a function of
both the loads and the voltage vector. For a selected MAMP
array layout, which is determined by the set S of AEs and the
set S2 of PEs with corresponding impedance matrix Z, the
cost function that we attempt to minimize (equivalent to CCC
maximization) is expressed as:

! (xS2 ,w) = 1 −
��tr (

B�A(xS2 ,w)
) ��

‖B‖� ‖A(xS2 ,w)‖�
, (7)

where B = B(\, q) is the desired complex matrix (correspond-
ing to the beam pattern) of a full active antenna array whose
beam we wish to emulate, ‖ · ‖� denotes the Frobenius norm
of a matrix and(

A(xS2 ,w)
)
8, 9
= v) (w)

(
Z + diag (x)

)−1a" (q8 , \ 9 ). (8)

The steering vector of the MAMP array with elements in A =

S ∪ S2 is denoted as a" (q8 , \ 9 ) and is given by (1); v(w) =
IS

(
w1:#0

+ i w(#0+1):2#0

)
is the voltage vector, where w =[

<(v)S), =(v
)
S)

]) and x is given by (3).
The minimization of (7) with respect to both variables xS2

and w is non-convex (considering values in the continous
domain). Therefore, standard optimization techniques do not
apply here. Next, we highlight the major differences between
the 2D model in [7] and the proposed 3D beamforming
model. First of all, we generalize the cost function to the one
in (7). However, the transition to 3D beam patterns results
in an increase of the total complexity of the method, since
both A and B are now large dimensional matrices (e.g., 1◦
resolution in both azimuth and elevation leads to more than
65K entries per matrix). Therefore, the slow convergence of
stochastic gradient descent (SGD) does not scale well with



the problem. To this end, we employed the Adam [13], which
is an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of
lower-order moments (also used for the training of deep neural
networks). As a result, we managed to decrease the running
time from several hours to approximately 15 minutes using
MATLAB R2018b on a PC running Windows 10 with Intel
i7-6700 CPU at 3.40GHz. The proposed iterative algorithm
for the 3D beamforming of MAMP arrays, i.e., AO-S3DBA
in Alg. 1, is based on alternating optimization between its two
parameters, xS2 and w.

Algorithm 1 Alternating Optimization - Stochastic 3D Beam-
forming Algorithm (AO-S3DBA)
1: procedure AO-S3DBA(B, S, Z, �, g, #<, )4A , n , 11, 12)
2: <← 0, xS2 = 0, w← [1) , 0) ])
3: while < < " do
4: <← < + 1, =← 0, : ← 0, �= = = = 0,
5: �: =  : = 0, 4AAG ← 1/n , 4AAF ← 1/n
6: while = < #< and 4AAG ≥ )4A do
7: =← = + 1, x>;3 ← xS2
8: Create: �G ∼ B(1, 1/2) with values ±1
9: x+S2 = xS2 + V<�G , x−S2 = xS2 − V<�G

10: !+G = !
(
x+S2 ,w

)
, !−G = !

(
x−S2 ,w

)
11: �G =

(
!+G − !−G

)
1 � �G/(2V<)

12: �= = 11�=−1 + (1 − 11)�G ,
13: = = 12=−1 + (1 − 12)�G � �G ,
14: xS2 = xS2 − g�=/(

√
= + n ) ,

15: 4AAG = ‖xS2 − x>;3 ‖2 /( ‖x>;3 ‖2 + n )
16: while : < #< and 4AAF ≥ )4A do
17: : ← : + 1, w>;3 ← w
18: Create: �F ∼ B(1, 1/2) with values ±1
19: w+ = w + V<�F ,w− = w − V<�F
20: !+E = ! (xS2 ,w+) , !−E = ! (xS2 ,w−)
21: �F =

(
!+E − !−E

)
1 � �F/(2V<)

22: �: = 11�:−1 + (1 − 11)�F ,
23:  : = 12 :−1 + (1 − 12)�F � �F ,
24: w = w − g�:/(

√
 : + n ) ,

25: 4AAF = ‖w − w>;3 ‖2 /( ‖w>;3 ‖2 + n )
26: �A (<) ← ! (xS2 ,w)
27: Output: Er1:" , xS2 , w

After their initialization, we use an iterative process for
the update of the loads xS2 , while keeping the weights fixed.
Randomness arises from the fact that the � vector is drawn
from the Bernoulli distribution, B(1,1/2), taking values ±1
(steps 8 & 18). For the update part (steps 12-14 & 22-24)
Adam is used, whereas for the gradient approximation (since
the cost function is not differential) we use a two-sided finite-
difference method (FDM) [16], [17] (steps 9-11 & 19-21).
Once the optimization of the loads is carried out, their values
are fixed and the optimization of the weights is performed in a
similar manner using Adam. For the latter algorithm, we used
the original set of parameters proposed in [13] and only fine-
tuned the initial learning rate g, as specified in Section IV
(we did not use the bias-corrected first and second moment
estimates-see [13] for more details). The process is repeated
over " values using a sequence � = [V1, . . . , V" ] with
decreasing values. The latter process is known as smoothing.
The symbols �, � denote element-wise multiplication and
division, respectively, while the square root of a vector

√
x

is also considered element-wise.

IV. SIMULATION RESULTS

For the evaluation of the model we employ a 4A-24P
element R-MAMP (#0 = 4 AEs and #? = 6 PEs per AE)
array and attempt to match the radiation pattern of a 4 × 2
URA (dipoles spaced at _/2) at various azimuth and elevation
angles. The center frequency is at 3 GHz, '0 = 50 Ω,
whereas the spacing of the MAMP array’s elements along the
H-axis is _/5. The parameters of the proposed AO-S3DBA
are: V< = V<−1/2, V0 = 5, " = 13; g = 1.2; #< = 1000,
)4A = 10−4, n = 10−8; 11 = 0.9, 12 = 0.999 (see [13]). In
all figures, we have plotted the 3D beam patterns (normalized
power), as well as the azimuth and elevation cut planes of
both the URA and the MAMP array with the optimized loads-
weights.

First, we evaluate the performance of AO-S3DBA at various
rotation angles in the azimuth and elevation. In Fig. 1, we
observe the successful rotation of the MAMP’s beam at
(q, \) = (60◦, 90◦). Fig. 1 (a) demonstrates the 3D normalized
power of the 4×2 URA and the R-MAMP. Furthermore, finer
details on the controlled steering of the beam can be observed
in the azimuth and elevation cut planes, which are shown in
Fig. 1 (b) and 1 (c), respectively. Next, we attempt to reproduce
the beam of the 4× 2 URA, which is steered in both azimuth
and elevation angles, 45◦ and 120◦, respectively. Fig. 2 (a),
demonstrates the resulting 3D normalized powers of the URA
and the MAMP array, while in Fig. 2 (b) and 2 (c), we observe
a very accurate matching at both azimuth and elevation cut
planes. Moreover, in Fig. 3, we present results with no rotation
of the beam, i.e., at direction (q, \) = (90◦, 90◦). We should
note that at this direction only (without rotation) the best
approach is not to optimize the weights at all (we came to
this conclusion after extensive simulations). Therefore, we
omitted the second part of the Alg. 1, i.e., the optimization
of its weights (steps 16-25) for this case only, and used the
fixed initial weights instead. In Fig. 3 (a), we compare the 3D
normalized powers of the MAMP array to the URA and in
3 (b), (c) we compare their azimuth and elevation cut planes.
Finally, we calculate the total mismatch error as well as the
error in the azimuth and elevation cut planes between the beam
patterns. The error values are given in Tab. I. It is clear that the
overall performance of the proposed algorithm is remarkable.

From all the experiments (and more that we performed but
are not presented here due to space limitations), it is evident
that: a) we can reproduce the performance of a URA beam
with a R-MAMP array while saving 50% of AEs (compared
to the URA), and b) the existence of the PEs produces a beam

TABLE I: Mismatch error (%) of the 4A-24P R-MAMP beam
pattern emulating the beam of a 4 × 2 URA.

3D direction Total error Azimuth error Elevation error
(60◦, 90◦) 3.72 5.11 0.64
(45◦, 120◦) 5.01 6.17 0.33
(90◦, 90◦) 1.66 2.34 0.39
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Fig. 1: Comparison of the: (a) 3D normalized powers, (b)
azimuth cut plane and (c) elevation cut plane for a 4A-24P
R-MAMP with optimized loads matched to a 4 × 2 URA at
(60◦, 90◦).
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Fig. 2: Comparison of the: (a) 3D normalized power, (b)
azimuth cut plane and (c) elevation cut plane for a 4A-24P
R-MAMP with optimized loads matched to a 4 × 2 URA at
(45◦, 120◦).
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Fig. 3: Comparison of the: (a) 3D normalized power, (b)
azimuth cut plane and (c) elevation cut plane for a 4A-24P
R-MAMP with optimized loads matched to a 4 × 2 URA at
(90◦, 90◦).

that even outperforms that of the URA in some cases (reduced
side-lobes or thinner beam).

V. SUMMARY AND CONCLUSIONS

In this work, we demonstrated, for the first time, the 3D
beamforming and steering of MAMP arrays. We proposed a
stochastic optimization based algorithm, AO-S3DBA, which
controls the MAMP array’s radiation pattern in both the
azimuth and elevation directions by alternating between the
load and weight optimization. Moreover, we employed Adam,
which is a popular stochastic accelerator, and managed to im-
prove the convergence of AO-S3DBA without any compromise
in the estimation accuracy. Simulated results show that we can
successfully emulate the radiation pattern of a URA using a
rectangular MAMP design with 50% less active elements, thus,
reducing the cost and complexity of the array significantly.
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