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ABSTRACT

In long range imagery, the atmosphere along the line of sight can result in unwanted visual effects. Random
variations in the refractive index of the air causes light to shift and distort. When captured by a camera, this
randomly induced variation results in blurred and spatially distorted images. The removal of such effects is
greatly desired. Many traditional methods are able to reduce the effects of turbulence within images, however
they require complex optimisation procedures or have large computational complexity. The use of deep learning
for image processing has now become commonplace, with neural networks being able to outperform traditional
methods in many fields. This paper presents an evaluation of various deep learning architectures on the task of
turbulence mitigation. The core disadvantage of deep learning is the dependence on a large quantity of relevant
data. For the task of turbulence mitigation, real life data is difficult to obtain, as a clean undistorted image is
not always obtainable. Turbulent images were therefore generated with the use of a turbulence simulator. This
was able to accurately represent atmospheric conditions and apply the resulting spatial distortions onto clean
images. This paper provides a comparison between current state of the art image reconstruction convolutional
neural networks. Each network is trained on simulated turbulence data. They are then assessed on a series of
test images. It is shown that the networks are unable to provide high quality output images. However, they are
shown to be able to reduce the effects of spatial warping within the test images. This paper provides critical
analysis into the effectiveness of the application of deep learning. It is shown that deep learning has potential in
this field, and can be used to make further improvements in the future.
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1. INTRODUCTION

The quality of optical imaging systems is constantly improving. This is especially true in the case of long distance
imagery. Modern lenses are able to capture high quality images from very large distances. This is extremely
useful in certain applications such as air to ground imagery or long distance object identification. In long
range imaging, however, problems still occur: mainly that of diffraction limitations and turbulent atmospheres.
Diffraction is an effect caused by the camera system’s aperture. In order to ensure a suitable depth of field, the
camera aperture must be small. This can cause the light to diffract within the camera and introduce blurring.

The effects of a turbulent atmosphere are more severe, and less controllable. A turbulent atmosphere can be
caused by temperature and pressure changes, which lead to random changes in the refractive index of air1. In
the case of optical turbulence, light that is propagating through the atmosphere can become severely distorted.
This can result in imagery that contains a significant amount of spatial blur as well as spatial warping (or ‘image
dancing’). Due to the loss of information caused by such a turbulent atmosphere, it is highly desired that such
effects could be reduced. This is the motivation for this work.

Turbulence mitigation in images can be approached in two ways. The first is the use of adaptive optics, which
aim to reduce turbulence at the time of image capture. The second being to use post-acquisition processing,
which aims to recover the lost high frequency details of the captured image. The field of turbulence mitigation in
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imagery is a well researched field2–8, where common techniques make use of temporally varying video sequences
to obtain either a single high resolution image or a sequence of clean images.

Such techniques are well established and are able to mitigate turbulence within images to a high standard.
However, it has been shown in recent years that the use of deep learning (DL) for image processing applications
has resulted in higher performance, when compared to traditional image processing techniques. Examples of such
fields are object classification, image segmentation, pose estimation and super resolution. This paper presents a
review of the use of DL for turbulence mitigation. It is an investigation into the applicability of DL for removing
complex turbulence within single images.

Such an application of DL to turbulence mitigation has been considered before9–12; however, this paper aims
to assess the capabilities of several DL architectures that were not originally designed for turbulence mitigation.
The motivation for this assessment is to evaluate which network will best adapt to the problem of turbulence
mitigation. The networks under review were originally designed for tasks such as image denoising, super resolution
or image deblurring. They are BRDNet13, RDN14, SuperSR15, CAE-Unet-CAE9, RCAN16 and DnCNN17. Of
these networks, CAE-Unet-CAE is the only architecture that was originally designed for the task of turbulence
mitigation. The DnCNN architecture has however been applied to this task in various publications10,12.

The most prevalent issue with most DL applications is the access to suitable data. Not only is suitably
varied data required, but in order to accurately train a convolutional neural network (CNN), the amount of data
required is great. In the case of image processing, each distorted image must have a high resolution, clean ground
truth counterpart. For the case of turbulent imagery, this is a near impossible task, as it is extremely difficult
to obtain a high resolution image without some form of control over the atmosphere. It is for this reason that
the training of a CNN for turbulence mitigation is a difficult task. For the networks in this paper, the training
data is simulated with an accurate turbulence simulator based on previous works in the literature18,19. This has
allowed a large dataset to be generated, with both distorted and ground truth images.

The structure of the paper is as follows. Section 2 describes traditional techniques used for image restoration
as well as common deep learning techniques. Section 3 describes the operation of the turbulence simulator
developed for this work as well as the dataset generation process. Section 4 then presents the details of the
chosen deep learning architectures. Section 5 describes the testing procedure that the networks are put through
and presents the results. Section 6 presents a discussion of the effectiveness of deep learning to the field of
turbulence mitigation. Section 7 finally concludes the paper.

2. RELATED WORK

2.1 Turbulence Mitigation

The degradation of images is commonly described with the following equation20–24:

y = Ax+ n (1)

where x is a clean image and y is the observed, degraded image. A is a matrix that denotes the degradation
present within the image and n is additive noise. This model can describe a number of different imaging problems.
For example, in the task of denoising, the matrix A is simply an identity matrix. In the case of deblurring, A
represents a blurring matrix. In the case of turbulent interference, the matrix A represents the random spatial
warping and blurring of the clean image x. The task of undoing the effects of A and n is extremely difficult, as
the process is irreversible, unless the two parameters are accurately known. This results in an ill-posed problem,
whereby, for a given an image y, an extremely large number of possible solutions for x can exist.

A technique that is widely used to attempt to solve (1) for the problem of turbulence mitigation is the use
of multiple frames of the same turbulent scene. This allows methods to utilise the added information provided
by subsequent frames to gain a better understanding of the clean latent image2. These methods can be loosely
described by the diagram in Figure 1, where different approaches will follow different paths and will use different
operations for each block. Common operations for each block are listed.

Image Selection refers to an analysis of each frame, to determine which frames are of the best quality. These
frames are selected with the use of an image quality metric. These ’High Quality’ frames are then passed on to the



Figure 1. Flow of operations for traditional turbulence removal techniques2

Figure 2. Example of densely connected layers25

next stage of the model. Image alignment and registration is responsible for overcoming the spatial distortions
in the video sequence. This block attempts to align the input frames to compensate for spatial inconsistencies
between each frame. The image fusion block takes in a sequence of frames as an input and combines them
together to form a single image. The purpose of this block is to reconstruct a latent image of the input frames.
This is desirable as, by combining the distorted frames, the temporal difference between the frames is reduced,
leaving a single image that represents the average distortion. This single image can then be fed into the image
deblurring block. The task of this block is to remove any final blur present within the image. This block can
also operate on individual frames if necessary. The output is then a clean image or a sequence of clean images.

2.2 Deep Learning

The task of image reconstruction is an extremely difficult task. This is due to the fact that a degraded image
has already lost much of the high frequency content that is characteristic of high spatial resolution. It is then
the task of the restoration algorithm to estimate these high frequency details. However, due to the ill-posed
nature of this task, algorithms can struggle to recover these sharp details. The use of deep learning aims to
approach the problem as a data driven learning problem. This can come in many different forms, as different
image restoration tasks require different approaches. Areas of image reconstruction include denoising, super
resolution, JPEG image deblocking and deblurring. Each of which has deep learning approaches in literature.

Denoising is a fundamental operation in image processing. The nature of image capture is extremely prone to
additive noise, and commonly requires noise reduction. The use of of deep learning in this field is well established26

and has been proven to outperform traditional techniques. Super resolution aims to accurately resize images,
whilst also increasing high frequency detail. This field has seen many applications of deep learning. The most
pertinent increase in quality was introduced by Dong et al.27, who were the first authors to use CNNs for super
resolution. In the years since, the use of deep learning has become the norm for super resolution, with an annual
competition to assess super resolution networks on the same data28–30. Deblurring is another common problem
in image processing. During image capture, each pixel on the sensor is exposed to a point spread function (PSF).
If this PSF is larger than the pixel size on the sensor, blurring can take place. The aim of deblurring is to
estimate this PSF and undo its effects. This can be achieved with methods such as deconvolution. However it
can become challenging if the blurring in the image is spatially varying. In this case, deep learning provides a
promising alternative approach.

It is common that any one deep learning architecture is trained on different datasets, allowing a single network
architecture to provide multiple different image restoration tasks. For example, some authors use their networks



Example Phase Screen
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Figure 3. Example of a Modified Von Karman Phase Screen and generated Point Spread Function after simulation: (a)
example of a single phase screen; (b) resulting Point Spread Function after simulation.

on denoising, super resolution and deblurring14,17. These can be applied to different tasks, as the architecture
of the networks is able to adapt to new data.

Most of networks in this paper make use of a number of commonly used CNN architecture designs. The first
of which is residual learning, which is the inclusion of a skip connection that allows the input to the network to
be combined with the output. Let the input to the network be a noisy/degraded image y:

y = x+ n (2)

where x is the ideal, sharp image and n is the noise/degredation applied to the image. The inclusion of a
skip connection allows the network to simply learn n, which can then be subtracted from the original input x.
This allows the network to gain a better understanding of the degradation process without any bias from the
image contents. As an improvement on residual learning, networks can also employ residual ’blocks’31, where
the residual learning is performed over smaller blocks in the overall architecture. This allows the network to be
far deeper, as the connections allow a ‘highway’ for the backpropagation of the loss. Inspired by the success of
residual learning, another common practice in deep learning architecture is the use of densely connected layers
first introduced by Huang et al.25. This type of architecture sees the output of each layer being fed as an input
to each subsequent layer. This is illustrated in Figure 2. As with residual blocks, this aids backpropagation and
also allows each layer to gain a better understanding of the layers preceding it.

2.3 Turbulence Simulation

In order to train the proposed CNN architectures, suitable data is required. In practice, it is extremely difficult
to obtain a suitable dataset of turbulence affected imagery, as the high resolution, clean image, is unavailable.
To obtain a suitable dataset, the conditions in which images are taken need to be controlled. Such as in Ref. 21,
where turbulence is induced with gas hobs, allowing high resolution images to be captured when the hobs are
switched off.

Another method of obtaining suitable data is that of data generation, whereby clean data is deliberately
degraded to mimic effects of turbulence. In order to achieve this, an accurate model of how light propagates
through turbulence is therefore needed.

In order to derive such a model, a number of methods have been proposed. These methods can be separated
into 3 dimensional (3D) and 2 dimensional (2D) approaches. 3D approaches aim to fully simulate the propagation
of light from one point to another, introducing the random distortions of turbulence during propagation. 2D
approaches aim to avoid the computationally expense of a 3D simulation and apply the effects of turbulence onto



a 2D image. These 2D approaches are based on empirical data, from which they can extract suitable statistics.
This allows the effects of turbulence to be reduced to a 2D representation which can then be applied to clean
images32,33.

More recently, deep learning has also been applied to turbulent data generation34, where a Generative Ad-
versarial Network (GAN) has been used to generate new turbulent data, providing a method of data generation
that takes a fraction of the time of a statistical model.

In this paper, the turbulent imagery is simulated using a 3D propagation based turbulence simulator. This
process simulates the full path of light from source to camera. The simulator is based on the works from Hardie
et al.35, as well as the MATLAB code provided in Schmidt18.

3. DATA SIMULATION

The effect of turbulence is a strictly non-linear random phenomena. This makes the solving of the Navier-Stokes
equations extremely challenging36. In order to simplify the process, Kolmogarov37 developed a statistical model
of turbulence which relies on certain assumptions.

A key idea used to model turbulent media is that of energy cascade. This states that in a turbulent medium,
eddies form due to an injection of energy. These eddies then proceed to break up into smaller eddies and continue
to reduce until the eddies dissipate completely as heat. This cascade of energy begins at a size L0 and reduces
in size to l0. These two values are known as the inner and outer scales of turbulence. The group of eddies that
lie between these two scales is known as the ‘inertial subrange’.

It is within this inertial subrange that the assumptions of Kolmogarov are made. It is assumed that the eddies
within the subrange are statistically homogeneous and isotropic. By using these assumptions and dimensional
analysis, Kolmogarov was able to derive a power spectral density (PSD) for the changes in refractive index in
air:

Φn(κ) = 0.033C2
nκ

−11/3, 1/L0 � κ� 1/l0 (3)

where κ is the angular spatial frequency in rad/m and C2
n is the refractive index structure parameter. It is a

measure of the strength of the fluctuations of the refractive index in air. Typical values range from 1 × 10−16

(weak) to 1× 10−13 (strong). Since the introduction of the Kolmogarov PSD, other models have been proposed.
These introduce more flexibility in the choice of the inner and outer scale. Mainly, the modified Von Karman
PSD given as:

SmvKφi (ρ) =
0.023e−ρ

2/ρ2m

r
5/3
0i

(ρ2 + ρ20)
11/6

(4)

where ρm = 5.92
2πl0

and ρ0 = 1
L0

. r0i is the Fried parameter of the ith phase screen and ρ is the radial spatial
frequency. It can be noted, that by setting l0 = 0 and Lo = ∞, the modified Von Karman PSD reduces to the
Kolmogarov PSD.

The turbulence simulator model developed for this work is based off the works of Schmidt18 and Hardie et
al.19. These works develop turbulence models that make use of the modified Von Karman PSD to simulate the
propagation of light through a turbulent atmosphere. The extended area of turbulent atmosphere is represented
by a discrete number of phase screens. These phase screens are generated using the methods described in Ref. 18.
An example of such a phase screen is shown in Figure 3a.

In order to simulate the propagation of light through these phase screens, a 2D Gaussian windowed sinc
function is used as a point source. This point source is then propagated through each screen with the Fresnel
diffraction equation, defined as:

U (rn) =Q
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Figure 4. Illustration of application of isoplanatic imaging.

whereQ[·] andQ2[·] are quadratic phase factors and F [·] and F−1[·] are the forward and inverse Fourier transforms
respectively. T [zi+1] is the phase induced by the phase screens. U (r1) is the complex point source at the source
plane and U (rn) is the resulting complex plane at the observation plane.

Further processing to the final complex plane is then performed to obtain a point spread function of the
imaging system. This is mainly the multiplication of a camera aperture mask, a(x, y) and a collimation operation
that allows the focusing of the image on the focal point. These operations are given as:

p(x, y) = a(x, y)U (rn) exp

[
−jπ

(
x2 + y2

)
λL

]
(5)

The PSF can then be calculated according to Fourier optics38 as:

h(x, y) =
(
|FT{p(x, y)}|2

)∣∣
u= x

λl ,v=
y
λl

(6)

An example of such a PSF is shown in Figure 3b. In order to gain a more accurate simulation of real
turbulence, the work in Ref. 19 is recreated, whereby the phase screens are generated to an extended size. This
allows the optical path of each pixel to be traced through the atmosphere. Each pixel is then simulated separately.
This is known as anisoplanatic imaging, and is the cause of image dancing. An illustration of this technique is
shown in Figure 4.

This results in each pixel in the image to have its own bespoke PSF, dependant on its path through the
extended phase screens. The simulator does include a ‘skip’ parameter that allows pixels in the simulation not
to be processed. The missing PSFs are then interpolated from the surrounding pixels. This does not introduce
any errors into the simulation, as pixels close together lie within the same isoplanatic angle. This angle denotes
that any two sources within a certain angle propagate through the same patches of turbulent atmosphere. The
skip parameter allows the computation of the simulation simulation to be greatly reduced.

Given these details, the simulator is able to accurately simulate anisoplanatic turbulent in a number of
different situations. The inputs to the system allow a large number of scenarios to be simulated. These inputs
are detailed in Table 1.

3.1 Dataset Generation

In order to train the CNN architectures with appropriate scenarios, the training data was to be suitable for the
task at hand. This required a dataset of scenes that could potentially be corrupted by turbulent atmosphere.
Given this, the places dataset39 was to be used.

This dataset contains a total of 1,469,737 scene images within 205 different categories. Of these 205 categories,
31 were chosen as categories that could be prone to turbulent interference, where categories were excluded if
the contents within the scenes were unlikely to be affected in a real scenario, such as indoor scenes or scenes at



Table 1. Turbulence Simulator Settings.

Setting Description
C2
n Atmospheric structure parameter

D2 Diameter of the camera system
L Propagation Distance

nscr Number of phase screens
L0, l0 Inner and outer scale of turbulence
Skip The number of pixels to be skipped in each simulation
λ Wavelength of light

close ranges. The remaining categories contained images of outside scenes at varying ranges and environments.
Although the dataset provides RGB colour images, the images used in this work were converted into greyscale,
in order for their use in the turbulence simulator.

In order to fully test the trained networks, a three stage testing procedure was used, where each stage
introduced more turbulent imagery. To facilitate this, three levels of distortion were defined as Low, Medium
and High turbulence. In each case, the level of turbulence within the images directly relates to the Cn2 value of
the simulator.

The value of Cn2 can vary from severe turbulence at a value of 1 × 10−13m−2/3, to weak turbulence at a
value of 1× 10−161. Therefore, the three levels of distortion are defined as:

• Low: 0.001× 10−13m−2/3 −> 0.334× 10−13m−2/3

• Medium: 0.334× 10−13m−2/3 −> 0.667× 10−13m−2/3

• High: 0.667× 10−13m−2/3 −> 1× 10−13m−2/3

Using these turbulence levels, four datasets were generated. These were labelled as ’Low’, ’Medium’, ’High’
and ’Mixed’. Where the values of C2

n for ’Low’, ’Medium’ and ’High’ corresponded to the definitions above. The
fourth dataset, ’Mixed’, was to be used to train the networks, and contained an even distribution of images from
each of the levels of distortion. The other parameters needed for the simulation are describes in Table 2.

Table 2. Chosen Turbulence Simulator Settings.

Setting Value
D2 0.1m
L 5km

nscr 5
l0 0.01m
L0 300m

Skip 4
λ 525nm



Figure 5. The CNN architecture of the BRDNet13

4. DEEP LEARNING ARCHITECTURES

4.1 BRDNet

Initially designed for the task of denoising, the architecture from Tian et al.13 makes use of a combination of
batch renormalisation and dilated convolutions in its design. Their overall network (Figure 5) consists of two
subnetworks that run in parallel. The outputs of each subnetwork are then concatenated and processed further
to provide the final output image. This network contains two main types of layer: ‘Conv+BRN+ReLU’ and
‘Dilated Conv+ReLU’. The first of which contains a Convolutional layer with a kernel size of 3 × 3 × 64. This
is followed by a batch renormalisation layer followed by a ReLU activation function. The ‘Dilated Conv+ReLU’
layer consists of a dilated convolution layer with a kernel size of 3×3×64 with a dilation factor of 2. This is then
followed by a ReLU activation function. The top network consists of 16 ‘Conv+BRN+ReLU’ layers, with a final
convolutional layer with a kernel size of 3 × 3 × c, where c is the depth of the image input. The output of this
layer is then summed with the original image input. The lower network consists of a single ‘Conv+BRN+ReLU’
layer followed by 7 ‘Dilated Conv+ReLU’ layers. These are then followed by another ‘Conv+BRN+ReLU’ and
6 more ‘Dilated Conv+ReLU’ layers. A final ‘Conv+BRN+ReLU’ layer then leads into a single convolutional
layer that also uses a kernel size of 3× 3× c. As with the top network, the output of this layer is summed with
the image input. The output of the two summations are then concatenated together and passed through a final
convolutional layer. This output can be summed with the original image to produce a clean output image. The
use of the two networks in parallel allows a greater width to be obtained, and the use of dilated convolutions allow
a greater receptive field to be captured, whilst keeping computational cost low. The use of batch renormalisation
avoids potential issues with small batch size and internal covariate shift.

4.2 RDN

The Residual Dense Network from Zhang et al.14 present the use of Residual Dense Blocks (RDB) within their
network. These blocks (Figure 7) employ both local residual learning (LRL) and densely connected convolutional
layers. The combination of these techniques as well as local feature fusion (LFF) leads to a contiguous memory
(CM) mechanism. As can be seen, the output of each layer is fed on as an input to each subsequent layer. This
concatenation of feature maps can quickly lead to a significant number of parameters. The LFF mitigates this
by reducing the large number of concatenated feature maps with the use of a 1× 1 kernel. The output of which
is then summed with the input of the current RDB block as local residual learning.

Within the main network, RDB blocks are stacked together as seen in Figure 6, where the output of each
RDB block is fed to a concatenation block. This is known as Global Feature Fusion (GFF). As well as GFF, the
main network consists of two skip connections, providing global residual learning.

Within this network, the number of convolutional layers per RDB is denoted as C, the number of RDB blocks
within the main network is denoted as D and the number of feature maps per convolution layer is denoted by G.
The authors show that for each of these variables, larger values leads to better performance. The authors also
show that the use of CM, LFF, and FF provide performance increases with an ablation investigation.



Figure 6. Architecture of RDN14

Figure 7. Residual Dense Block used in the RDN architecture14

4.3 CAE-Unet-CAE

The architecture from Chen et al.9 is the only architecture in this work that was initially designed to perform
turbulence mitigation. It consists of three networks, the first of which is a Convolutional Autoencoder (CAE).
This is followed by a U-net structure, which is then followed by a second CAE, as seen in Figure 8. The U-net
is utilised to remove the noise within images, and the pair of CAEs are used for feature extraction and image
reconstruction respectively. In order to train their network, the authors use the theoretical PSF for atmospheric
turbulence, given as:

h (u, v) = e

{
−3.44

(
λfU
r0

) 5
3

[
1−β

(
λfU
r0

) 1
3

]}
(7)

For each of the layers within the network a kernel size of 3 × 3 is used. In each of the CAEs, the number
of feature maps for each layer is 64. Within the U-net, after each pooling layer, the number of feature maps
is doubled. Given a total of 3 pooling layers, the number of feature maps follows the pattern: 64-128-256-512-
256-128-64, where the upsample operations were achieved with transpose convolutions. The CAE-Unet-CAE
architecture also employs residual learning within the U-net as well as symmetric skip connections between the
two CAEs.

4.4 SuperSR

The model proposed by Feng et al.15 was initially designed for the task of super resolution and was runner
up in the 2019 NTIRE super resolution challenge30. As can be seen in Figure 9, their network consists of a
U-net type structure, whereby the input resolutions is downsampled for processing, and then upsampled for
image reconstruction. Within the main network, after downsampling, several ‘Cascading blocks’ are connected
together, where the output of each cascade block is fed forward as an input to all proceeding blocks. Each of
these cascade blocks contain a similar structure, this time with RCAB blocks. The RCAB block was initially
introduced in the work by Zhang et al.16. They are designed such that the network is able to focus on more
informative features. The original RCAB block is shown in Figure 11. For the SuperSR network, each of the
kernels are of size 3× 3 (with the exception of the 1× 1 convolutions).

4.5 RCAN

The first network to introduce Channel Attention blocks, the architecture from Zhang et al.16 was designed for
the task of super resolution. It consists of residual in residual (RIR) structure, as can be seen in Figure 10. The
main network originally consists of 10 residual groups, each containing 20 RCAB blocks (Figure 11). Before
passing into the RIR structure, the input to the network is first passed through a single convolutional layer. In
the original paper, the output of the RIR structure is upscaled with the use of ESPCNN (or Pixel Shuffle)40.
This is omitted in this investigation, as the goal of the retrained network would be to remove turbulence from



Figure 8. Architecture of CAE-Unet-CAE9

Figure 9. Architecture of SuperSR15

an image, without changing the spatial dimensions. Instead the output of the RIR is passed through a single
convolutional layer. As with SuperSR, each of the kernels has a size of 3×3 with the exception of the downscaling
and upscaling layers, which have a kernel size of 1× 1.

4.6 DnCNN

The DnCNN architecture from Zhang et al.17 is the oldest network in this investigation. It is commonly used
as a comparison for newer networks20,26,41,42.

It has been applied to the task of turbulence mitigation before. In Ref. 12, DnCNN is used within a traditional
turbulence mitigation technique, where it is employed to replace traditional blur estimation and unsharp masking
operations. In Ref. 10 the task of turbulence mitigation is completed solely with the use of DnCNN. Within this
paper, they alter the kernel size of the network from 3× 3 to 5× 5 in order to capture the full receptive field of
the turbulent image.

The network architecture is shown in Figure 12. The input is first passed through a convolutional layer with
ReLU activation. This is then followed by 17 ’Conv+BN+ReLU’ layers, where BN is Batch normalisation. The
final residual image is then constructed with a final convolutional layer. This residual can then be subtracted
from the original input to provide a clean output image.



Figure 10. Architecture of RCAN16

Figure 11. Architecture of the RCAB Block used in both RCAN and SuperSR16

5. ARCHITECTURE COMPARISON

5.1 Training Procedure

The construction of the networks was achieved by following the details provided in the corresponding papers.
To our knowledge, each network has been faithfully recreated according to the original works. For each of the
models under investigation, the basic architecture structure remained unaltered with the exception of the RDN
and RCAN architectures. For the case of RDN, the feature size of each layer was reduced from 64 to 32 due
to memory limitations. Within RCAN, the original model contained 10 Residual Groups (RG) and 20 RCAB
blocks per RG. This was reduced to 5 RGs and 10 RCAB blocks per RG, also due to memory limitations. For
the DnCNN model, a kernel size of 5× 5 and network depth of 17 was used, as in Ref. 10.

The loss function for each network was kept as intended in the source papers and the ADAM optimiser was
used in each network, with B1 = 0.9, B2 = 0.999 and δ = 10e−8.

To identify a suitable learning rate for each network, each was tested at different rates. The best learning
rate for each network was then used for training. A similar process was performed for the batch size for each
network. As well as the training settings, the training length was bespoke to each network. This was necessary,
as different networks would train faster than others. Therefore, the epoch count was changed for each network.
The final learning rates, loss functions, optimisers, batch sizes and epoch counts can be seen in Table 3.

Table 3. Network Training Settings.

Network Learning Rate Loss Optimiser Batch Size Epoch Count
BRDNet 0.00001 L2 ADAM 16 10

RDN 0.0001 L1 ADAM 10 15
SuperSR 0.00001 L1 ADAM 16 10

CAE-Unet-CAE 0.001 L2 ADAM 16 15
RCAN 0.0001 L1 ADAM 10 15

DnCNN 0.00001 L2 ADAM 10 10

For the networks with 10 epochs of training, the learning rate was halved after the 5th and 8th epochs. For
the networks with 15 epochs of training, the learning rate was halved after the 9th and 12th epochs.



Figure 12. Architecture of DnCNN17

Each model was trained using the ’Mixed’ turbulence dataset described in section 3.1, This consists of 3995
turbulent images. For training, 20 patches of size 80x80 were extracted from each image, providing a total
dataset size of 79900 patches. This was then further split into training and validation sets with a ratio of 0.8.
Resulting in 63920 training patches and 15980 validation patches.

5.2 Results

In order to gain a full understanding of the networks performances, a suitable testing procedure was required.
As detailed in section 3.1, four datasets were generated. The models were trained on the ’Mixed’ data. For
testing, each of the networks were given the same 1000 images from the ’Low’, ’Medium’ and ’High’ datasets
respectively. For each image, the Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index43 (SSIM)
metrics were used to measure performance. The average of each metric was then taken. These results are shown
in Table 4.

Table 4. Average PSNR and SSIM results of each network. Each test dataset contained 1000 images. (PSNR/SSIM).

Network Low Medium High

Low Resolution Inputs 23.36/0.669 20.90/0.544 20.19/0.504

BRDNet 19.08/0.598 18.39/0.491 17.87/0.451
RDN 23.77/0.704 20.66/0.568 20.13/0.534

SuperSR 22.74/0.685 20.51/0.547 19.93/0.508
CAE-Unet-CAE 22.55/0.676 20.55/0.551 19.97/0.513

RCAN 22.14/0.688 19.75/0.545 19.21/0.503
DnCNN 23.35/0.669 20.89 /0.545 20.19 /0.505

It can be seen that, of the deep learning architectures, RDN provided the highest PSNR value for the ’Low’
level of turbulence and DnCNN provided the highest PSNR for ’Medium’ and ’High’ turbulence. For all levels
of turbulence, RDN provided the highest SSIM score. It can also be seen that, with the exception of the ’Low’
level turbulence, none of the networks were able to produce images of better quality than the turbulent input.
Figures 13-18 provide example outputs of each network. For each level of turbulence, two cases are presented.
The first being an image that has successfully been improved by one or more networks. The second case is an
image that the networks struggle to improve.



Figure 13. Successful outputs of ’Low’ level turbulence. (PSNR/SSIM)

Figure 14. Unsuccessful outputs of ’Low’ level turbulence. (PSNR/SSIM)



Figure 15. Successful outputs of ’Medium’ level turbulence. (PSNR/SSIM)

Figure 16. Unsuccessful outputs of ’Medium’ level turbulence. (PSNR/SSIM)



Figure 17. Successful outputs of ’High’ level turbulence. (PSNR/SSIM)

Figure 18. Unsuccessful outputs of ’High’ level turbulence. (PSNR/SSIM)



6. DISCUSSION

The results in Table 4 suggest that the networks are unable to fully mitigate the effects of turbulence in images.
Especially in the case of high turbulence levels. This is further shown by the analysis of individual images, where
the only cases of success occur at very low turbulence levels. This shows that the task of turbulence mitigation is
indeed a complex one. With the exception of CAE-Unet-CAE, the networks used in this review were not initially
designed for turbulence mitigation. The fact that CAE-Unet-CAE was outperformed in this review shows that
network architectures designed for other tasks, can indeed be retrained on different datasets to good effect.

It is believed that the cause of the results shown is due to two main factors. Firstly, the turbulence present
within any two images is never the same. This means that the network has to understand the underlying effects
of the turbulence, as opposed to simply learning the degradation process and undoing it. The second factor is the
fact that the networks in this review were trained on single images. This increases the difficulty in restoration, as
the high level of distortion is extremely difficult to remove with only one example of each scene. A method that
is adopted by traditional turbulence mitigation techniques is the use of video sequences. This allows multiple
variations of a single scene, allowing methods to make use of the additional temporal information in order to
gain a better understanding of the clean latent image. Given the results of single image turbulence mitigation,
it can be seen that in the case of turbulent imagery, a great deal can be gained from temporally related data.

This is not to say, however, that the use of deep learning for single image turbulence mitigation is unachievable.
By analysis of individual images, it can be seen that the networks are able to provide a slight visual improvement
in some cases. Such a case can be seen in Figure 15, where the RDN network is mostly able to remove the
spatial distortions in the image. It is however unable to recover the high frequency textures. A similar result can
be seen in Figure 17, where both RDN and SuperSR are able to significantly reduce the spatial warping. Even
within the cases where the PSNR is reduced, as in Figure 18, the warp present on the building has been reduced.
This shows that, although the networks are unable to recover high frequency detail, they are able to reduce the
effects of image dancing. This is promising, as it denotes that, if the networks were retrained on lower levels of
turbulence, they might be able to provide better, sharper results.

Another point of interest is the effect that can be seen in Figures 18, 16 and 14, where the background of
the image suffers from a type of ‘clipping’. This shows that the networks struggle to cope with very bright areas
in the images, which has resulted in the significant decrease in the PSNR value. However, it seems that the
foreground of these effected images can show positive improvements over the input image. This may indicate an
issue in the training procedure, whereby these areas of ‘clipping’ have introduced an unexpected error.

Overall, the results of this review has allowed a foothold in the field of single image turbulence mitigation
using deep learning, and has highlighted the challenges of such a task. Future research into this field can build
upon these findings and provide better results. Such as the use of temporally relevant video sequences or building
a single image architecture that is better suited to the complex nature of turbulent data.

7. CONCLUSION

This paper has provided a review of the use of deep learning for turbulence mitigation in long range imagery. A
detailed simulator has been developed for this process, to allow the proposed networks to train on a sufficient
amount of data. The networks were then trained on data containing multiple different levels of turbulent imagery.
Each network was then tested on a series of datasets to ascertain their ability to remove the effects of three levels
of turbulence within images. It was discovered, that the networks in question were not able to produce a
considerable improvement in each of the turbulent levels. It is believed that this is due to the complex nature of
the turbulence. However, it was observed that in some cases, the architectures were able to provide some form of
improvement in image structure, but are unable to recover high frequency information. Of the chosen networks
under review, the RDN architecture was able to produce the best results.
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