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Abstract: Mechanical damage is recognized as a problem that reduces the performance of oil and 

gas pipelines and has been the subject of continuous research. The artificial neural network in the 

spotlight recently is expected to be another solution to solve the problems relating to the pipelines. 

The deep neural network, which is on the basis of artificial neural network algorithm and is a 

method amongst various machine learning methods, is applied in this study. The applicability of 

machine learning techniques such as deep neural network for the prediction of burst pressure has 

been investigated for dented API 5L X‐grade pipelines. To this end, supervised learning is 

employed, and the deep neural network model has four layers with three hidden layers, and the 

neural network uses the fully connected layer. The burst pressure computed by deep neural 

network model has been compared with the results of finite element analysis based parametric 

study, and the burst pressure calculated by the experimental results. According to the comparison 

results, it showed good agreement. Therefore, it is concluded that deep neural networks can be 

another solution for predicting the burst pressure of API 5L X‐grade dented pipelines. 

Keywords: artificial neural network; deep neural network; burst pressure; pipeline; dent; ocean and 

shore technology (OST) 

 

1. Introduction 

Rapid industrialization and population growth have made the oil and gas industry one of the 

most closely associated industries with modern life and the survival of humankind, and the need to 

reliably supply the oil and gas to even more remote areas has emerged. Accordingly, some means to 

transport the oil and gas products, such as rail, truck and pipelines, have been developed. Amongst 

them, pipeline is known as the most efficient, cost‐effective and safest method [1]. In this perspective, 

the accurate prediction of the burst pressure of pipelines at the design stage is critical for the safe 

operation [2].  

In the meantime, artificial intelligence (AI) has a role as a key technology of the industry 4.0 and 

this state‐of‐the‐art technology is used as a very popular and useful method in many areas. In 

addition, this phenomenon leads the robust growth of interest towards artificial neural network 

(ANN), which is an idea inspired from neural networks in the human brain and are one of the 

methods in machine learning. Particularly, deep neural network (DNN) is defined as the neural 

networks that have two or more hidden layers [3]. Furthermore, DNN is designed on the basis of 

ANN algorithm and is a method amongst various machine learning methods. 
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Tracing the application of this method, limited research has been conducted on the burst 

pressure of pipelines with defects using ANN, and, to date, there are no studies on the burst pressure 

prediction of pipelines with a dent using ANN. Xu et al. [4] applied an ANN to predict the burst 

pressure of corroded API X80 subsea pipelines. They concluded that the ANN predicted the burst 

pressure of corroded pipelines more accurately than two of the codified corrosion assessment 

methodologies from ASME B31G [5] and DNV‐RP‐F101 [6]. Liu et al. [7] also investigated the 

application of ANN for the prediction of the failure pressure of API X80 pipes with corrosion defects. 

They also concluded that the ANN model predicted more accurate results than ASME B31G [5], 

DNV‐RP‐F101 [6] and API 579 [8]. Wong et al. [9] suggested an ANN model that can predict the 

fatigue damage caused by the short‐term vortex‐induced vibration acting on the top tensioned riser. 

In this study, it was concluded that the ANN model could predict the fatigue damage with high 

accuracy and low error. Chung et al. [10] proposed a DNN model to detect a defected mooring line 

in tension‐leg platform (TLP). From the results of this study, it was concluded that this DNN‐based 

detection model can be used for the health monitoring of the TLP structure. Shin et al. [11] 

investigated the application of DNN to predict the maximum stress of a pipeline, which took actions 

such as pressure, wind and temperature into account. According to the results, the maximum stress 

of pipeline showed good agreement with the stress calculated by the numerical method. 

As a result of the literature review, to date, there have been no studies on the structural integrity 

assessment of recessed pipelines using DNN. Therefore, it is worth developing a DNN model to 

predict the burst pressure of the dented pipeline. In addition, using the developed DNN model, oil 

and gas pipeline operators and field engineers can predict the burst pressure of API 5L X grade 

pipelines with an unconstrained, hemispherical, plain dent using parameters readily available in the 

field without conducting finite element analysis (FEA). 

2. FEA Based Parametric Study 

Datasets for the development of DNN model were obtained by carrying out the non‐linear FEA 

for API 5L X52, X65 and X80 grade pipelines with a dent. The sort of dent considered in the parametric 

studies is an unconstrained, hemispherical, plain dent with no pipeline thickness reduction in the 

dent region. As the dent is unconstrained, the dent can recover elastically or rebound, after indenter 

removal. The FEA based parametric study (I) and (II) results were used for “training and validation” 

and “test”. In addition, the subscripts PS(I) and PS(II) indicated hereafter denote parametric study (I) 

and (II), respectively. 

2.1. Material Properties and Geometric Information 

The used pipeline material properties for the FEA based parametric studies are listed in Table 1. 

The pipeline information in API 1156 [12] was used for the convenience of the validation of the FEA 

and DNN model, and the experimental results in API 1156 [12] were used for the test dataset. For the 

material properties not mentioned in API 1156 [12], the minimum values of API 5L: Specification for 

line pipe [13] were used.  

Table 1. Material properties and geometric information for finite element analysis (FEA) based 

parametric study (I) [12] and (II) [13]. 

Heading X52_PS(I) X52_PS(II) X65_PS(II) X80_PS(II) 

Outer 

Diameter 

(mm)  

Thickne

ss (mm)  

Poisson’s ratio 0.3 

323.85 4.7752 

Young’s modulus 

(MPa)  
207,000 

Yield strength  

(������, ���) 
371.60 358.53 448.16 551.58 
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Ultimate tensile 

strength 

(����, ���) 

529.50 455.05 530.90 620.53 

2.2. Material Model 

The elastic‐perfectly plastic material model was used in the FEA. In the material model, tangent 

modulus, which represents the plastic region, has been estimated from the formula proposed by Oh 

et al. [2]. 

2.3. Definition of Finite Element Type 

In order to improve the accuracy of FEA, more accurate analysis results can be obtained when 

the discrete error of the FEA model geometry is minimized. For this purpose, SOLID186, a high‐order 

3D 20 node solid element, was applied. In addition, contact elements, Targe 170 and Conta 174, were 

applied to the areas between the outer surface of an indenter that was an object to form a dent and 

pipeline outer surface. To this end, surface‐to‐surface contact, bonded contact behavior, augmented 

Lagrange formulation was recommended for general frictionless or frictional contact in large 

deformation problems are employed.  

2.4. Applied Loading and Boundary Condition 

For the FEA based parametric studies, the loading condition consisted of three steps: indentation 

without internal pressure (Step 1), removal of the indenter (Step 2) and application of internal 

pressure (Step 3) is shown in Figure 1.   

 

Figure 1. Loading condition of FEA. 

The definition of each step is as follows;  

Step 1: The pipeline is indented to the depth specified as a ratio of the pipeline outer diameter 

to a dent depth. 

Step 2: The dented location is rebounding due to the characteristic of material, elasticity, after 

the removal of the indenter. 

Step 3: The burst pressure of the pipeline is calculated under the condition that the internal 

pressure acts on the inner surface of the pipeline.  

The boundary conditions were defined based on the loading condition and described in Table 2 

and Figure 2. A ¼‐symmetry model was employed to reduce the computational time. Therefore, Y‐Z 

plane symmetry (Ux = 0) and X‐Y plane symmetry (Uz = 0) at center of model was applied. In 

addition, due to the effect of the backfill at step 1 and 2, there is no displacement at the end of the 

pipeline (Ux = Uy = Uz = 0). In addition, it was expected that there was no displacement at the bottom 
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of the pipeline due to the resistance of the soil (Uy = 0). In step 3, it was assumed that the end of the 

pipeline could be expanded into the outward (Uz = 0) due to the globally applied internal pressure. 

Table 2. Boundary condition according to the loading condition. 

Loading condition End Top, Center Bottom 

Step 1 
All fixed 

(Ux = Uy = Uz = 0) 

Symmetry 

(Ux = 0, Uz = 0) 

UY fixed + Symmetry 

(Ux = Uy = 0) 

Step 2 
All fixed 

(Ux = Uy = Uz = 0) 

Symmetry 

(Ux = 0, Uz = 0) 

UY fixed + Symmetry 

(Ux = Uy = 0) 

Step 3 
Symmetry 

(Uz = 0) 

Symmetry 

(Ux = 0, Uz = 0) 

UY fixed + Symmetry 

(Ux = Uy = 0) 

 

Figure 2. FEA model to describe boundary conditions. 

2.5. Mesh Size and Model Length 

To define the optimum mesh size and model length for the nonlinear FEA for pipelines with a 

dent, convergence studies were conducted and verified by comparison with FEA result and test result 

in API 1156 [12]. A hemispherical indenter with a diameter of 219.075 mm was used to construct an 

initial dent depth of 12% of the pipeline outer diameter. The number of elements and model length 

under consideration were from one to eight in the thickness direction of the FEA model and from 1.0 

to 5.5 times of the pipeline diameter, respectively.  

As with the results of convergence studies for the mesh size, the dent depth after removal of the 

indenter was almost the same regardless of the number of elements through the wall thickness 

between four and eight, so four was selected as the number of elements, as shown in Figure 3 below. 

In addition, 5.5 times of the pipeline outer diameter was selected as the model length for FEA. 

  

(a) (b) 

Figure 3. Convergence study results: (a) the mesh size, (b) model length. 
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Using the mesh size and FE model length defined above, the dent shape results from this study 

(Applied FEA) were compared with FEA results (API 1156 FEA) and test results (API 1156 TEST) 

from API 1156 [12]. From comparison of results, the maximum dent depth after indenter removal 

was 19.05 mm for API 1156 FEA and API 1156 TEST and 20.75 mm for Applied FEA. The dent depth 

from API 1156 FEA and TEST was 91.8% of the Applied FEA. From this result, it can be confirmed 

that the Applied FEA showed conservative results. In addition, it can be said that the selected loading 

and boundary conditions are appropriate for this research.  

2.6. Variables for FEA Based Parametric Study 

For the parametric studies, initial dent depth (Db), initial dent length (Lb) and pipeline outer 

diameter (D) are considered for the variables of FEA based parametric study, and the bounding cases 

of variables are defined in Table 3.  

Table 3. Variables for the FEA based parametric study. 

Design 

Variables 
Bounding Cases 

Material X52_PS(I) X52_PS(II) X65_PS(II) and X80_PS(II) 

Db/D (%) 1‐20 2.5, 5, 10, 15 and 20 

Db/Lb (%) 
2.5, 5, 7.5, 10, 12.5, 25, 

37.5, 50, 75 and 100 
2.5, 5, 7.5, 10, 12.5 and 25 5, 7.5, 10, 12.5 and 25 

Where Db and Lb are the initial indentation values of the dent before the rebound and these values 

are used for creating the dent shape on the pipelines. 

2.7. Implementation 

In this research, the commercial software ANSYS Mechanical APDL versions 17.1 was employed 

to carry out the pre‐processing, solving and post‐processing of nonlinear FEA for the pipelines with 

a dent. 

3. DNN Model 

The aim of this study was to develop a method that can predict the burst pressure of pipelines 

with a dent, and the aim of this study can be achieved and validated by conducting the investigation 

of the applicability of DNN to predict the burst pressure of dented pipelines. 

As mentioned above, ANN is in the spotlight in all fields including engineering, and it is 

expected to be another solution to solve the problems relating to the pipelines. In particular, the 

application of DNN to the pipeline industry as a new solution to evaluate the structural integrity of 

pipelines with a dent seems to be a worthwhile subject to review.  

In this research, a DNN model has been developed and validated to predict the burst pressure 

of pipelines with a dent using dataset including the FEA based parametric study results and the 

experimental results. The FEA based parametric study results and the experimental results for the 

pipelines with a hemispherical dent are listed in from Table A1 to A4 and Table A5 in the Appendix, 

respectively. The datasets from Table A1 to A5 are used for “training and validation” and “test”.  

3.1. Development of DNN 

An ANN architecture, as shown in Figure 4, is composed of an input layer, hidden layers and 

output layer. In particular, when there are two or more hidden layers, the neural network is termed 

a DNN. In here, the input layer is where the data comes in and the output layer is where the model 

infers. The hidden layer is located between input and output layers, because the output of one layer 

is to be the input of the next layer. In the hidden layer, a net input is calculated, and the net input 

produces the actual output through an activation function, then the output transfers to the next layer. 

In addition, the neural network has a form connected to each neuron by the weighted link, and the 
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multi‐layer perceptron that has multi‐hidden layers between input layer and output layer is used 

widely. 

 

Figure 4. Diagram of the artificial neural networks. 

In particular, the purpose of the use of activation functions is to calculate the weight (w) and bias 

(b) to minimize the errors in the output and decides the activation of the neuron based on the 

calculated weight and bias. The use of activation function (f(Z)) can impart nonlinearity to the output 

of neurons (Po), and the relationship between the output of the neuron and the activation function is 

given in Equation (1).  

�� = �(�(�)) = � �� ���� + �

�

���

� (1) 

where �(�) = ∑ ���� + ��
��� , xi is input and N is the number of neurons in layer. 

3.2. DNN Architecture 

Machine learning can be divided into supervised learning, unsupervised learning and 

reinforcement learning. In this study, supervised learning was applied. In particular, it focused on 

the DNN amongst supervised learning algorithms, and the neural network used the batch gradient 

descent algorithm and fully connected layer.  

3.2.1. Activation Function 

One of the most important factors in a neural network to obtain the best results is the selection 

of a suitable activation function. An activation function is used to determine whether the sum of the 

input causes activation or not. According to the researchers [14,15], there are many activation 

functions and amongst them, rectified linear unit (ReLU) is one of the best activation functions to 

carry out the DNN. Especially, Pedamonti [14] mentioned that ReLU is a better neuron replacing 

sigmoid function, and Cent et al. [15] concluded that ReLU is the best activation function after 

reviewing 10 activation functions. Therefore, the widely used ReLU activation function in recent 

years is adopted as an activation function due to the benefits of this function like faster computation 

and avoiding the vanishing gradient problem [14–16]. The ReLU activation function is expressed as 

an Equation (2) and plotted as shown in Figure 5.  

����(�) = �
��� (0, �), � ≥ 0

0, � < 0
 (2) 

where, x is the input to the neuron. 

 

Figure 5. Rectified linear unit (ReLU) activation function. 
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3.2.2. Optimization 

Furthermore, the broadly adopted and known as an alternative solution of the classical 

stochastic gradient descent method, Adam optimization algorithm [17] was selected for the 

optimization of the weight and bias.  

3.2.3. Weight Initialization 

In addition, for the initiation of the weight, He initialization [18] was chosen, and this 

initialization method is widely known to be specialized for the ReLU function, and is the most 

popular method recently. 

3.2.4. Cost Function 

The cost function is used to measure the error of learning, that is, how well the neural network 

has learned the training dataset. In this study, the mean absolute percentage error (MAPE) that is 

commonly used to evaluate the accuracy of forecasting [19,20] is employed as the cost function. The 

MAPE Equation (3) is given by as follows:  

���� =
100%

�∗
� �

�� − ��

��
�

�∗

���

 (3) 

where xi is the burst pressure calculated by learning, yi is the burst pressure from the learning data 

and n* is the number of observations. 

The MAPE results are interpreted based on the evaluation method proposed by Lewis [21], and 

is explained in Table 4.  

Table 4. The guidance for the interpreting of mean absolute percentage error (MAPE) results by 

Lewis [21]. 

MAPE  Interpretation  

Less than 10% Highly accurate 

Between 10% and 20% Good 

Between 20% and 50% Reasonable 

Greater than 50% Inaccurate 

In addition, Lewis [21] guideline was employed to interpret MAPE results in engineering studies 

[22,23]. Therefore, the Lewis [21] guideline was applied to qualitatively evaluate the MAPE results 

for the burst pressure prediction of pipelines with a dent.  

3.2.5. Feature Normalization 

The scale of all features is necessary to be transformed into the same scale, and normalization is 

the method to make all features to be the same scale. In this study, MinMaxScaler has been adopted 

to normalize the features and this scaler would transform the features into the values between 0 and 

1 using Equation (4). 

����� =
� − ����

���� − ����

 (4) 

where x is a raw data (before normalization) from a feature and xnorm, xmin and xmax are the normalized 

data, maximum and minimum value of the feature, respectively. 

3.3. Application to Burst Pressure Prediction for Dented Pipelines 

The FEA based parametric study results in from Table A1 to A4 and the experimental results in 

Table A5 in the Appendix were used to build DNN models to predict the burst pressure for dented 

pipelines. In addition, the considered parameters to develop the DNN model is described as follows: 
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3.3.1. Input and Output Parameters  

(a) for input outer diameter (D), thickness (t), dent depth (d), the ratio of dent depth to 

diameter, dent length after removal of indenter (La), the ratio of dent length 

after removal of indenter to diameter and ultimate tensile strength (UTS).  

(b) output the ratio of the burst pressure (Pburst) to UTS of the pipeline material. 

3.3.2. Selection of Hyper‐Parameters 

Next, it needed to define hyper‐parameters for the DNN model. In this study, the number of 

hidden layers and neurons, size of epoch and learning rate were taken into account and the values 

were defined through the trade‐off studies as listed in Table 5.  

Table 5. Subject to trade‐off studies for defining hyperparameters for pipelines with a dent. 

Hyper-Parameters Sample 

Number of hidden layers 2, 3, and 4 

Number of neurons 

Epoch size 

8×4×2, 27×9×3, 64×16×4 and 125×25×5 

10, 100, 1000, 2000, 3000 and 4000 

Learning rate (10‐3) 50, 10, 5, 1, 0.9, 0.8, 0.7, 0.6, 0.5 and 0.1 

Number of Hidden Layers 

The number of hidden layers of the DNN model were examined for two, three and four. In the 

results of trade‐off study shown in Figure 6, the MAPE according to the number of hidden layers, 

two, three and four, are 0.12%, 0.027% and 0.048%, respectively. According to Table 4, the MAPEs for 

all cases indicate high accuracy, therefore, whichever one amongst the three cases is selected, it is 

expected not to effect on the output. Finally, three hidden layers with the lowest MAPE were 

observed and employed in the DNN model. 

 

Figure 6. Selection of the number of hidden layers for the deep neural network (DNN) model. 

Number of Neurons 

According to Panchal et al. [24], the number of neurons in hidden layers might have an effect on 

the overfitting or underfitting problem. There are some ways to handle the overfitting problem, like 

controlling the number of layers or neurons, regularization and dropout. In this research, to 

determine the number of neurons in the hidden layer of the DNN model, a trade‐off study was 

performed considering the cases of 8×4×2, 27×9×3, 64×16×4 and 125×25×5, and the results are shown 

in Figure 7a,b. From the result depicted in Figure 7a, the overfitting or underfitting problem was not 

found in all cases and the results of MAPEs seen in Figure 7b are 1.39%, 0.34%, 0.33% and 0.35%, 

respectively. Finally, 64×16×4, the lowest MAPE result, was selected as the number of neurons in the 

hidden layer. 
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 (a)  

 

 (b)  

Figure 7. Selection of the number of neurons for the DNN model: (a) accuracy of DNN model with 

training and validation in terms of MAPE. (b) accuracy of DNN model with test in terms of MAPE. . 

Size of Epoch 

Epoch is defined as the status that the learning has completed through the forward propagation 

and backward propagation over the entire training dataset, and the selection of the proper size of 

epochs is critical against preventing the under‐fitting or over‐fitting problems. Therefore, for the 

DNN model epoch sized of 10, 100, 1000, 2000, 3000 and 4000 were considered. The findings of the 

trade‐off studies are shown in Figure 8, the MAPE was observed to converge 0% from epoch size 

1000. The lowest MAPE (=0.03%) was observed at epoch size 1000, 3000 and 4000. According to Table 

4, MAPEs for all cases indicate high accuracy, and finally epoch size 1000 was employed for the DNN 

model.  

 

Figure 8. Selection of the epoch size for the DNN model. 
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Learning Rate 

The learning rate is related to the determination of the update of weight. If the learning rate is 

too small, it may lead to long learning times. On the other hand, a too high learning rate may result 

in non‐convergence. Therefore, the learning rate needs to be appropriately adjusted according to the 

DNN model. In total, ten different learning rates as illustrated in Table 5 were considered to 

determine the learning rate. The resultant MAPE, according to the learning rate, is presented in 

Figure 9, and this can be interpreted as highly accurate based on Table 4. According to the results, 

the selected learning rate with the lowest MAPE (=0.08%) is 0.001. 

 

Figure 9. Selection of the learning rate for the DNN model. 

The summary of the hyper‐parameters for DNN model is described in Table 6 and the defined 

DNN diagram is depicted in Figure 10. 

Table 6. Summary of the defined hyper‐parameters for deep neural network model. 

 Number of Hidden Layer Size of epoch Learning rate 

Pipelines with a dent 3 1000 0.001 

 

Figure 10. Defined DNN diagram 

3.4. Implementation 

Selection of the programming language for the best use of AI is important, and especially for the 

DNN implementation. In this research, Python was used as a programming language to develop the 

DNN model to predict the burst pressure of pipelines with or without a dent. In addition, 

TensorFlow, which provides an open‐source library for neural networks, was adopted as the 

framework. For the last, Jupyter notebook, which is an integrated development and learning 

environment in Python, was selected as an interface.  
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4. Results 

In the case of pipelines with a hemispherical dent, the DNN model has been developed based 

on the 150 data from the FEA based parametric study (I) results as listed in Table A1 in the Appendix. 

In addition, the FEA based parametric study (II) and experimental test results as listed in Table A2 to 

A5 in the Appendix were used to validate the applicability of the developed DNN model to predict 

the burst pressure. The proportion of “training and validation dataset” and “test dataset” in the total 

data is 83% and 17%, respectively. In here, “training and validation dataset” is randomly split at a 

ratio of 80% to 20%. 

As shown in Figure 11, the accuracy of DNN model for the pipelines with a hemispherical dent 

with training and validation in terms of MAPE is visualized across the epoch. 

 

Figure 11. Accuracy of DNN model with training and validation in terms of MAPE. 

In fact, the MAPE of training shows the convergency at about 400 epochs, however, the DNN 

model has kept the training up to 1,000 epochs to investigate the overfitting. If the difference between 

the validation MAPE and the training MAPE is getting bigger and bigger even though the training 

MAPE is converging to the minimum, this means overfitting occurred [10]. According to the accuracy 

of DNN model, the MAPEs of training and validation are congregated 0.08% and 0.17%, respectively, 

and it shows the converging and stabilizing of the DNN model. In addition, the resultant MAPEs 

from the training and validation stages can be interpreted as highly accurate based on Table 4. 

4.1. Comparison with FEA Based Parametric Study Results 

For the validation of the DNN model for the pipeline with a hemispherical dent, the burst 

pressure computed by the DNN model has been compared with the burst pressure determined by 

the FEA. The comparison of results has been performed by correlation analysis to examine the 

relationship as well as by statistical analysis to determine the accuracy of prediction, and Pearson’s 

product‐moment correlation coefficient (PPMCC) and MAPE were used, respectively. The PPMCC 

is commonly used as a measure of the linear relationship between two quantitative variables and is 

calculated by the following Equation (5): 

����� (�) =
∑(� − �̅)(� − ��)

�∑(� − �̅)� ∑(� − ��)�
 (5) 

where x and y are the burst pressure calculated by the FEA or experiments and by the DNN model, 

respectively, and �̅ and �� are the average values of x and y groups of values, respectively.  

As indicated by the correlation analysis result as shown in Figure 12, the PPMCC depending on 

the pipeline material is distributed between 0.959 and 1.0.  
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Figure 12. Pearson’s product‐moment correlation coefficient (PPMCC) between the burst pressure 

computed by the DNN model and the FEA based parametric study results for the pipeline with a 

hemispherical dent. 

Based on the Evans guidance listed in Table 7, these values indicate a very strong positive 

relationship between the burst pressure calculated by the DNN model and by the FEA. Evans [25] 

proposed guidance for the strength of the correlation expressed by the limit of the absolute r‐value 

(PPMCC) as shown in Table 7. 

Table 7. The guidance for the strength of the correlation by Evans [25]. 

PPMCC (r) Strength 

0.00–0.19 very weak 

0.20–0.39 weak 

0.40–0.59 moderate 

0.60–0.79 strong 

0.80–1.00 very strong 

The prediction accuracy (measured using MAPE) of the burst pressure from the DNN model 

and FEA for the X52_PS(I), X52_PS(II), X65_PS(II) and X80_PS(II) dataset is 0.33%, 2.17%, 2.81% and 5.55%, 

respectively. The obtained MAPEs can be interpreted as highly accurate based on Table 4. According 

to the results, it can be said that DNN is able to reliably estimate the burst pressure of the pipeline 

with a hemispherical dent.   

4.2. Comparison with Experimental Results 

The reliability of the DNN model was validated by performing correlation and statistical 

analysis between the burst pressure calculated by the DNN model and the three results of the 

experiment from the published papers [12,26]. The detailed information is as listed in Table A5 in the 

Appendix. In accordance with the correlation analysis results between the DNN model and 

experiments as shown in Figure 13, the PPMCC is 1.000 and the MAPE is 1.52%. The PPMCC 
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interpreted by the Evans guidance listed in Table 7 and MAPE interpreted by the Lewis guidance 

listed in Table 4 indicates a very strong positive, highly accurate relationship between the burst 

pressure computed by the DNN model and the experimental test results.  

 

Figure 13. PPMCC between the burst pressure computed by the DNN model and the experimental 

results for the pipeline with a hemispherical dent. 

From the above results in Section 4.1 to 4.2, the predicted burst pressure by the DNN model 

corresponded well with the results of the FEA and the experimental test.  

5. Discussion 

The aim of this research is to develop a method to predict the burst pressure of API 5L X grade 

pipelines with an unconstrained, hemispherical, plain dent using parameters readily available in the 

field without conducting FEA.  

To date, the structural integrity of pipelines with a dent has been used for the allowance of the 

dent depth according to the codes and regulations like ASME B31.8 [27], the American Petroleum 

Institute API 1156 [12], the European Pipeline Research Group (EPRG) [28] and the Pipeline Defect 

Assessment Manual (PDAM) [29] applies predominantly 6% or 7% of pipeline diameter. However, 

the mentioned above defect assessment methodologies currently in use focuses on the dent depth 

and are recognized as conservative methods. This means that these methodologies are not reasonable 

from an economic perspective.  

Woo et al. [30] conducted a study to examine the structural integrity of a dented pipeline using 

ANN. They have estimated the maximum equivalent plastic strain and the maximum difference in 

the stress component in the pipe (in the respective direction; hoop and axial). In addition, they have 

conducted the prediction of the longitudinal and circumferential radii. Especially, the maximum 

equivalent plastic strain estimated by ANN has been compared with the strain calculated by ASME 

B31.8 [27]. According to the comparison result, the maximum equivalent plastic strain estimated by 

ANN has a good agreement with the FEA analysis results than the strain calculated by ASME B31.8 

[27]. 

However, above mentioned codes, regulations and the ANN model cannot estimate the burst 

pressure of pipelines with a dent.  

Therefore, to achieve the aim, DNN model has been developed to estimate the burst pressure 

for API 5L X grade pipelines with an unconstrained, plain dent. The developed DNN models used 
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the FEA based Parametric Study results and validated by comparison with the FEA based Parametric 

Study results and the experimental results. The reliability of the DNN models has been investigated 

by performing the correlation and statistical analysis between the burst pressure computed by the 

DNN model and the FEA based parametric study results and by the experimental results.  

According to the validation results, it can be seen that the MAPE value for each test increases 

slightly as the yield and ultimate tensile strength of the pipeline material increase. The reason is that 

because the developed DNN model was trained using X52 pipeline dataset, it could not learn the 

effect of the different material properties, and it can be inferred that this affected the results. 

Nevertheless, the results of burst pressure computed by the DNN model corresponded well with 

the nonlinear FEA based parametric study results and the burst pressure results of the experiment. 

Consequently, using the DNN model, operators and field engineers can not only calculate the 

capacity of the dented pipelines without carrying out the expensive FEA on every dent but also can 

make efficient repair decisions.  

6. Conclusion 

From the research findings the following conclusions can be drawn: 

1) The applicability of the DNN as a new solution to predict the burst pressure of pipelines 

with a dent has been studied.  

2) The FEA based parametric study results and the experimental results for the pipelines with 

a hemispherical dent, and the pipelines with a spheroidal dent have been used to develop 

the DNN model.  

3) The reliability of the DNN model was investigated by performing the correlation (PPMCC) 

and statistical (MAPE) analysis of the burst pressure computed using the DNN model and 

using the nonlinear FEA and the experimental test results.  

4) According to the PPMCC and MAPE as summarized in Table 8, all figures indicate that the 

results of burst pressure computed by the DNN model corresponded well with the nonlinear 

FEA based parametric study results and the burst pressure results of the experiment. 

Table 8. Summary of PPMCCs and MAPEs based on the burst pressure predicted by FEA and 

DNN. 

Dent Shape (A) (B) 
Between (A) and (B) 

Remarks 
PPMCC MAPE (%) 

Hemi-Spherical 

FEA DNN 1.000 0.33 X52_PS(I) 

FEA DNN 0.999 2.17 X52_PS(II) 

FEA DNN 0.999 2.81 X65_PS(II) 

FEA DNN 0.959 5.55 X80_PS(II) 

Experiment DNN 1.000 1.52 X52 (1)~(3) 
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Appendix 

Table A1. La, La/D, Da, Da/D and burst pressure for the FEA based parametric study (I). 

No. 
Da/D 
(%) 

La 

(mm) 
La/D 
(%) 

Burst 
pressure 
(MPa) 

No. 
Da/D 
(%) 

La 

(mm) 
La/D 
(%) 

Burst 
pressure 
(MPa) 

1 1 152.06 46.95 15.84 51 6 180.85 55.84 15.48 
2 1 83.44 25.76 15.87 52 6 114.59 35.39 15.49 
3 1 58.91 18.19 15.90 53 6 94.79 29.27 15.37 
4 1 48.15 14.87 15.83 54 6 85.91 26.53 14.64 
5 1 42.68 13.18 15.90 55 6 80.97 25.00 14.01 
6 1 32.67 10.09 15.81 56 6 73.15 22.59 12.32 
7 1 28.42 8.78 14.08 57 6 71.10 21.95 12.29 
8 1 25.69 7.93 14.21 58 6 70.74 21.84 12.34 
9 1 22.88 7.07 14.39 59 6 70.18 21.67 12.33 
10 1 21.47 6.63 14.46 60 6 69.97 21.61 12.33 
11 2 158.29 48.88 15.70 61 7 186.35 57.54 15.44 
12 2 88.35 27.28 15.74 62 7 121.83 37.62 15.45 
13 2 64.95 20.06 15.74 63 7 102.92 31.78 15.30 
14 2 54.25 16.75 15.60 64 7 94.74 29.25 14.40 
15 2 48.55 14.99 15.48 65 7 90.24 27.86 13.67 
16 2 38.77 11.97 14.40 66 7 83.12 25.67 12.29 
17 2 35.12 10.84 13.37 67 7 81.37 25.12 12.26 
18 2 33.39 10.31 13.45 68 7 80.98 25.01 12.33 
19 2 31.40 9.69 13.55 69 7 80.53 24.87 12.32 
20 2 30.43 9.40 13.59 70 7 80.37 24.82 12.32 
21 3 164.34 50.75 15.59 71 8 194.78 60.14 15.43 
22 3 93.27 28.80 15.62 72 8 130.93 40.43 15.43 
23 3 70.98 21.92 15.59 73 8 112.65 34.78 15.24 
24 3 60.34 18.63 15.36 74 8 104.85 32.38 14.29 
25 3 54.42 16.80 15.06 75 8 100.63 31.07 13.47 
26 3 44.86 13.85 12.98 76 8 93.97 29.02 12.28 
27 3 41.82 12.91 12.66 77 8 92.41 28.53 12.25 
28 3 41.10 12.69 12.69 78 8 92.01 28.41 12.34 
29 3 39.91 12.32 12.72 79 8 91.60 28.29 12.35 
30 3 39.39 12.16 12.72 80 8 91.47 28.24 12.35 
31 4 169.84 52.44 15.55 81 9 203.71 62.90 15.43 
32 4 100.13 30.92 15.57 82 9 141.21 43.60 15.43 
33 4 78.53 24.25 15.50 83 9 123.61 38.17 15.18 
34 4 68.25 21.08 15.12 84 9 116.07 35.84 14.28 
35 4 62.44 19.28 14.69 85 9 112.05 34.60 13.40 
36 4 53.22 16.43 12.38 86 9 105.70 32.64 12.30 
37 4 50.56 15.61 12.35 87 9 104.23 32.18 12.27 
38 4 50.25 15.52 12.36 88 9 103.82 32.06 12.38 
39 4 49.47 15.28 12.35 89 9 103.41 31.93 12.42 
40 4 49.17 15.18 12.34 90 9 103.28 31.89 12.42 
41 5 175.35 54.14 15.51 91 10 212.64 65.66 15.42 
42 5 107.36 33.15 15.53 92 10 151.48 46.78 15.42 
43 5 86.66 26.76 15.44 93 10 134.56 41.55 15.11 
44 5 77.08 23.80 14.88 94 10 127.29 39.31 14.28 
45 5 71.70 22.14 14.35 95 10 123.46 38.12 13.34 
46 5 63.19 19.51 12.35 96 10 117.43 36.26 12.31 
47 5 60.83 18.78 12.32 97 10 116.05 35.83 12.30 
48 5 60.49 18.68 12.35 98 10 115.63 35.71 12.42 
49 5 59.83 18.47 12.34 99 10 115.22 35.58 12.48 
50 5 59.57 18.39 12.33 100 10 115.10 35.54 12.49 
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Table A1. (Cont.) La, La/D, Da, Da/D and burst pressure for the FEA based parametric study (I). 

No. 
Da/D 
(%) 

La 

(mm) 
La/D 
(%) 

Burst 
pressure 
(MPa) 

No. 
Da/D 
(%) 

La 

(mm) 
La/D 
(%) 

Burst 
pressure 
(MPa) 

101 11 221.57 68.42 15.41 126 13 154.11 47.59 12.37 
102 11 161.75 49.95 15.42 127 13 152.95 47.23 12.36 
103 11 145.52 44.93 15.05 128 13 152.54 47.10 12.45 
104 11 138.51 42.77 14.28 129 13 152.16 46.99 12.53 
105 11 134.88 41.65 13.27 130 13 152.07 46.96 12.54 
106 11 129.15 39.88 12.33 131 14 262.09 80.93 15.37 
107 11 127.86 39.48 12.32 132 14 197.81 61.08 15.37 
108 11 127.44 39.35 12.45 133 14 182.42 56.33 14.72 
109 11 127.02 39.22 12.55 134 14 175.71 54.26 14.06 
110 11 126.91 39.19 12.56 135 14 172.26 53.19 13.11 
111 12 234.04 72.27 15.40 136 14 166.99 51.56 12.39 
112 12 172.96 53.41 15.41 137 14 165.87 51.22 12.37 
113 12 157.09 48.51 14.97 138 14 165.49 51.10 12.43 
114 12 150.23 46.39 14.24 139 14 165.15 51.00 12.48 
115 12 146.72 45.31 13.21 140 14 165.06 50.97 12.48 
116 12 141.23 43.61 12.35 141 15 276.11 85.26 15.35 
117 12 140.02 43.23 12.34 142 15 210.24 64.92 15.35 
118 12 139.59 43.10 12.47 143 15 195.09 60.24 14.60 
119 12 139.17 42.97 12.58 144 15 188.45 58.19 13.96 
120 12 139.07 42.94 12.59 145 15 185.02 57.13 13.07 
121 13 248.06 76.60 15.38 146 15 179.87 55.54 12.42 
122 13 185.39 57.24 15.39 147 15 178.80 55.21 12.39 
123 13 169.75 52.42 14.84 148 15 178.44 55.10 12.41 
124 13 162.97 50.32 14.15 149 15 178.14 55.01 12.43 
125 13 159.49 49.25 13.16 150 15 178.05 54.98 12.43 

Table A2. La, La/D, Da, Da/D and burst pressure for the FEA based parametric study (II) for X52 

material pipelines with a hemispherical dent. 

No. 
La  

(mm) 
La/D 
(%) 

Da 

(mm) 
Da/D 
(%) 

Burst 
pressu

re 
(MPa) 

No. 
La  

(mm) 
La/D 
(%) 

Da 

(mm) 
Da/D 
(%) 

Burst 
pressu

re 
(MPa) 

1 
166.98

4 
51.56 2.248 0.69 14.172 16 97.068 29.97 24.236 7.48 11.509 

2 84.334 26.04 3.076 0.95 14.071 17 94.224 29.09 24.179 7.47 10.794 

3 59.644 18.42 3.654 1.13 14.067 18 87.176 26.92 24.235 7.48 10.963 

4 49.274 15.22 3.946 1.22 14.025 19 
226.61

8 
69.98 37.061 11.44 13.643 

5 43.692 13.49 4.133 1.28 14.022 20 
167.12

0 
51.60 37.575 11.60 13.271 

6 32.306 9.98 4.447 1.37 12.769 21 
151.08

0 
46.65 37.780 11.67 11.388 

7 
160.55

6 
49.58 9.159 2.83 14.113 22 

142.54
2 

44.01 37.777 11.66 11.016 

8 93.538 28.88 10.352 3.20 14.036 23 
138.96

0 
42.91 37.836 11.68 10.982 

9 72.252 22.31 10.678 3.30 14.02 24 
133.50

4 
41.22 37.915 11.71 10.994 

10 61.582 19.02 10.792 3.33 12.584 25 
271.87

0 
83.95 50.396 15.56 13.635 

11 55.898 17.26 10.894 3.36 11.722 26 
220.31

8 
68.03 51.352 15.86 10.645 

12 45.600 14.08 11.016 3.40 11.148 27 
202.90

2 
62.65 51.520 15.91 10.442 

13 
188.40

0 
58.18 23.611 7.29 13.952 28 

193.31
0 

59.69 51.592 15.93 10.461 

14 
124.72

8 
38.51 23.883 7.37 13.902 29 

190.79
0 

58.91 51.616 15.94 10.444 

15 
105.54

8 
32.59 24.150 7.46 12.935 30 

181.87
2 

56.16 51.740 15.98 10.439 
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Table A3. La, La/D, Da, Da/D and burst pressure for the FEA based parametric study (II) for X65 

material pipelines with a hemispherical dent. 

No. 
La  

(mm) 
La/D 
(%) 

Da 

(mm) 
Da/D 
(%) 

Burst 
pressure 
(MPa) 

No. 
La  

(mm) 
La/D 
(%) 

Da 

(mm) 
Da/D 
(%) 

Burst 
pressure 
(MPa) 

1 82.094 25.35 2.497 0.77 16.177 14 90.004 27.79 22.877 7.06 13.147 

2 57.694 17.82 3.014 0.93 16.175 15 82.112 25.35 22.980 7.10 13.196 

3 47.812 14.76 3.321 1.03 16.164 16 162.912 50.30 35.670 11.01 13.684 

4 42.462 13.11 3.525 1.09 16.159 17 147.470 45.54 35.943 11.10 12.841 

5 30.982 9.57 3.835 1.18 15.688 18 139.186 42.98 35.958 11.10 12.367 

6 90.044 27.80 9.220 2.85 16.175 19 135.394 41.81 36.027 11.12 12.510 

7 69.532 21.47 9.723 3.00 16.161 20 127.718 39.44 36.105 11.15 12.620 

8 59.322 18.32 9.924 3.06 15.866 21 215.576 66.57 49.110 15.16 11.824 

9 53.734 16.59 10.070 3.11 15.214 22 198.768 61.38 49.322 15.23 11.804 

10 43.190 13.34 10.267 3.17 13.954 23 189.740 58.59 49.390 15.25 11.643 

11 120.920 37.34 22.533 6.96 15.067 24 184.762 57.05 49.430 15.26 11.707 

12 102.568 31.67 22.708 7.01 14.819 25 182.062 56.22 49.536 15.30 11.814 

13 94.104 29.06 22.814 7.04 13.435       

Table A4. La, La/D, Da, Da/D and burst pressure for the FEA based parametric study (II) for X80 

material pipelines with a hemispherical dent. 

No. 
La  

(mm) 
La/D 
(%) 

Da 

(mm) 
Da/D 
(%) 

Burst 
pressure 
(MPa) 

No. 
La  

(mm) 
La/D 
(%) 

Da 

(mm) 
Da/D 
(%) 

Burst 
pressure 
(MPa) 

1 80.120 24.74 2.024 0.62 19.251 14 86.702 26.77 21.372 6.60 15.434 

2 56.824 17.55 2.463 0.76 19.251 15 78.958 24.38 21.499 6.64 15.705 

3 46.910 14.49 2.738 0.85 19.186 16 158.490 48.94 33.651 10.39 15.697 

4 41.728 12.88 2.936 0.91 19.184 17 142.794 44.09 33.948 10.48 14.734 

5 32.042 9.89 3.305 1.02 19.261 18 135.372 41.80 34.001 10.50 14.885 

6 86.732 26.78 7.901 2.44 19.261 19 131.820 40.70 34.091 10.53 14.767 

7 66.800 20.63 8.605 2.66 18.925 20 126.242 38.98 34.201 10.56 14.861 

8 57.222 17.67 8.902 2.75 18.472 21 209.458 64.68 46.638 14.40 13.543 

9 51.904 16.03 9.100 2.81 17.048 22 193.632 59.79 46.953 14.50 13.575 

10 41.518 12.82 9.373 2.89 13.954 23 189.740 58.59 49.390 15.25 13.560 

11 117.008 36.13 20.949 6.47 17.479 24 184.762 57.05 49.430 15.26 13.546 

12 99.282 30.66 21.153 6.53 16.914 25 182.062 56.22 49.536 15.30 11.133 

13 90.790 28.03 21.280 6.57 15.489       

Table A5. Validation information from the experimental result of the hemispherical dent [12,26]. 

Characteristics X52 (1) X52 (2) X52 (3) 

Outer diameter (mm) 323.85 323.85 720 

Thickness (mm) 4.7752 4.7752 8.1 

Dent depth (mm) 34.773 25.654 48.68 

Dent length (mm) 171.06 147.72 271.15 

Yield strength (MPa) 371.6 371.6 375 

Ultimate tensile strength (MPa) 529.5 529.5 468 

Burst pressure, Experiment (MPa) 15.81 15.95 10.72 
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