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ABSTRACT   
 

Composite structures have been increasingly used in marine industries 

because of their high performance. During their service time, they may 

be exposed to extreme loading conditions such as underwater explosions. 

Both thermal loading effects on deformation and deformation effects on 

temperature need to be taken into consideration in the numerical 

simulations. Therefore, a thermomechanical analysis is conducted in a 

fully coupled manner, in order to investigate the thermal and mechanical 

responses of composite materials under explosion loads. In this study, 

the peridynamics theory is used for failure analyses of composite 

structures 
 

KEY WORDS:  Peridynamics; thermomechanical; composites; 

shock load.  
 

INTRODUCTION 

 

In recent years, composites have been employed in a variety of 

applications in marine structures. Their high performances such as high 

strength-to-weight ratios and reduced maintenance requirements give 

them a bright future in marine industries. In addition, these 

characteristics have garnered them recent attention as effective materials 

in military applications (LiVolsi, 2014). Military structures are 

frequently exposed to extreme loads in the field or at sea, thus the 

extreme loading conditions need to be considered in their design state 

without any compromises from their weights (Diyaroglu, 2016). In the 

realm of varies types of extreme loadings, the explosive loading or blast 

loading is a typical and critical one, which draws a lot of attentions in 

marine composites research. However, different types of material, i.e. 

fibre and matrix, are involved in the construction process of composites, 

making the properties of composites materials being rather complex. 

What’s more, the highly nonlinear response of composites under 

explosion loads makes the analysis being more challenging. Therefore, 

various studies concentrate on this issue with the increasing abilities of 

modern computers.  

 

In the safety analysis of composite marine structures, the failure 

mechanism study, or more specifically speaking, the crack propagation 

prediction is a critical factor. The investigation of this type of problem 

generally falls into three categories: analytical method, experimental 

study, and numerical simulation. Analytical method could provide 

relatively faster solutions compared to the other two methodologies. 

Hence, it is generally utilized in the initial design state of the composite 

marine structures without any computational cost. Librescu and Nosier 

(1990) developed a composite model which incorporated transverse 

shear deformation and transverse normal stress. Later on, Librescu et al. 

(2004) addressed the problem of the dynamic response of sandwich flat 

panels exposed to blast loadings analytically. Compared to the analytical 

method, the experimental studies may provide more information and 

give more intuitive senses. There are mainly two types of blast tests, i.e. 

in air and underwater. In comparison with the underwater tests on full-

scale structures, laboratory tests have many advantages, for example, 

lower cost and easier implementation (Hall, 1989). In addition, scaling 

techniques are necessary to extend the damage parameters from the 

specimen level can be extended to the structural level (Rajendran, 2008; 

Rajendran et al., 2007). As to the third method, the numerical simulation 

method develops rapidly in recent years because of the increasing 

computer computing abilities. Dobyns (1981) conducted an analysis of 

simply-supported orthotropic plates subjected to static and dynamic 

loads. Batra and Hassan (2008) adopted the finite element method (FEM) 

to analyse the mechanical responses of several fibre-reinforced 

composite layers under explosion loading conditions. Leblanc and 

Shukla (2010) investigated the damage evolution and dynamic response 

of an E-Glass/Epoxy composite material with an underwater explosive 

loading condition. Numerical simulation was implemented by utilizing 

the commercially available LS-DYNA finite element code. And the 

simulation results were compared with the ones obtained from the 

experiments. Kazancı (2016) conducted a review on the response of blast 

loaded laminated composite plates.       

 

An explosion is defined as a rapid release of energy in a short period 

(Langdon et al., 2017). Therefore, the composite materials may 

experience high strain rates once the explosive loads are imposed. 

Consequently, because of the high strain rates, high temperature changes 

can be induced within a short period through the coupling effects. When 
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smart composite materials are employed for condition monitoring of 

critical systems in a ship (Ramakrishnan et al., 2016), the effect of 

temperature change is unneglectable. Thus, fully coupled analyses which 

include the bidirectional coupling effects between thermal and 

mechanical fields are required in these situations. There are many 

academic achievements in published literatures regarding the fully 

coupled analyses of composite materials. Rao and Sinha (1997) dealt 

with the coupled thermo-structural analysis of composites beams using 

finite element method (FEM), presenting different results from 

uncoupled analyses. Moreover, the coupled thermoelastic response of a 

composite plate subjected to thermal shocks was studied by Mukherjee 

and Sinha (1996) using FEM. Khan et al. (2011) compared the 

temperature profiles from different FE models in the thermomechanical 

analyses of composites. Comparatively, boundary element method 

(BEM) was adopted by Kögl and Gaul (2003) to investigate the coupling 

effect of composites. In conclusion, the grid-based methods have been 

widely adopted and deeply studied in the realm of thermoelasticity for 

composites.  

 

Considering the fact that explosive loadings generally give rise to high 

level failures and fractures in marine composite structures, classical 

mechanics which are generally utilized by grid-based methods meets 

some challenges. The classical theory of solid mechanics relies on partial 

differential equations. Hence, singular stress and strain are created which 

are not physical. Therefore, the classical continuum mechanics (CCM) 

contains inherent limitations for the problems involving discontinuities. 

Some remedies have been provided within the realm of CCM, i.e. 

Cohesive Zone Elements (CZE) and eXtended Finite Element Method 

(XFEM). However, these special techniques are not always satisfactory 

because of the need for supplemental relations related with crack growth  

(Silling and Bobaru, 2005). On the other hand, Peridynamics (PD), an 

alternative approach for failure analyses, is proposed (Silling and 

Bobaru, 2005) and developed (Silling et al., 2007) quickly in recent 

years. PD falls into the category of non-local theory. And it utilizes the 

integration form of equation of motion instead of the differential form 

adopted in CCM. Consequently, it remains valid even at the places where 

discontinuities emerge, making damages initiate and propagate 

spontaneously (Oterkus and Madenci, 2011). In this aspect, the PD 

theory overcomes the weakness of the CCM. PD has been successfully 

applied on the issue of thermoelasticity. Oterkus et al. (2014b) applied 

the PD theory on thermal diffusion problems. Good agreements were 

obtained between PD predictions and analytical solutions. Then Oterkus 

et al. (2014a) generalized their thermal model in a fully coupled 

thermomechanical manner. The coupling effects both on thermal and 

deformation fields were taken into consideration. Further, the fully 

coupled thermomechanical PD model was developed from isotropic 

materials into composite materials (Oterkus and Madenci, 2014).  

 

In this study, a fully coupled thermomechanical analysis is conducted for 

the problem of composite materials subjected to an underwater explosive 

load. Firstly, the approach for composites materials modelled by the PD 

theory is briefly explained. Subsequently, a numerical simulation of a 

laminated composite under an explosive loading is implemented in a 

fully coupled manner. Then the damage evolutions of the composite are 

predicted and compared with experimental results. In addition, the 

temperature distributions predictions are also investigated.  

 

PERIDYNAMIC THEORY 
 

In this section, some basic aspects of the PD theory which is proposed 

by Silling and Askari (2005) are briefly explained. As shown in Fig. 1, 

in the body of R , the material points, x , only interacts with other 

material points within the region H  through prescribed response 

functions. The radius of H  is called horizon and denoted by  . The 

other material points within H  denoted as y  are called the family 

members of point x . The relative position vector in the reference 

configuration from x  to y  is called a bond, denoted  ξ y x . In the 

deformed configuration, the relative displacement is set as 

    η u y u x , where u  represents the displacement vector. If the 

stretch between two points is defined as 

s
 


η ξ ξ

ξ
  (1) 

then the equation of motion in PD theory is 

       , , , ,
H

t t dV t  x u x f ξ η b x   (2) 

In the above equation,   x  is the density of point x .  ,tu x  is the 

acceleration of x  at time t .  , , tf ξ η  is the corresponding PD force 

between x   and y .  , tb x  is body force in the collective 

configuration. The definition of PD force is 

   , , avgt c s T


 


ξ η
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in which   is the linear thermal expansion coefficient of the material, 

avgT  is the average temperature of point x  and y . c  is the PD constant 

parameter.  

 
Fig. 1 PD illustration sketch 

 

The locality of interactions depends on the horizon; thus the classical 

elastic mechanics could be considered as a limiting case of PD theory 

when the horizon approaches zero. The PD theory is well suited for 

modelling cracks because of its intrinsic non-local property and the 

integration form of equations (Silling et al., 2010). As the bond between 

two points ceases, a crack is initiated and the crack surface is created. At 

the same time, the integral equation still remains valid. The breakage of 

a bond is triggered once the stretch exceeds a critical stretch value, 
0s . 

Therefore, a history dependent function,  , t ξ , is introduced to 

indicate the status of a bond, as 
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Local damage parameter is introduced in order to represent the damage 

level as  

 
 ,

, 1 H

H

t dV
t

dV


  





ξ
x    (5) 

 

PD Mechanical Laminate Model 
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Later on, Oterkus and Madenci (Madenci and Oterkus, 2014; Oterkus 

and Madenci, 2012) extended the PD theory to be applied in laminate 

modelling. A composite lamina can modelled as a two-dimensional 

structure, as shown Fig. 2. The directional dependence property can be 

taken into consideration by considering two bonds: the fibre bonds 

(shown in dashed line) and the matrix bonds (shown in straight line). In 

addition, the fibre direction is denoted by  .  

 
Fig. 2 PD lamina model 

The bond constants for fibre and matrix bonds are denoted as fc  and 
mc  

, respectively. The PD bond constants are expressed as (Oterkus and 

Madenci, 2012) 
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where 
1E  and 

2E  represent the elastic modulus of a lamina in fibre and 

transverse directions, h  represents the thickness of the lamina. V  

represents the volume of the material point and q  represents the family 

member of node i . PD force is expressed as (Oterkus and Madenci, 

2012) 
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In the above definition,   represents the bond direction. Because of the 

directional dependency of the material property, the thermal expansion 

coefficient in different directions varies with the bond angle. 
1  is the 

thermal expansion coefficient in the fibre direction, 
  is the thermal 

expansion coefficient in other directions (Oterkus, 2010).  

       

Peridynamic formulation of a composite lamina is further extended to a 

composite laminate (Oterkus, 2010). A laminate constitutes of multi-

layer lamina with different material properties and particular stacking 

sequences. As a result, two types of interlayer bonds are added in the 

laminate model, as illustrated in Fig. 3. It is assumed that one point 

interacts with other points only in adjacent plies through interlayer 

normal bonds and interlayer shear bonds. Therefore, the horizon for 

interlayer normal bonds, 
n , is the thickness of a lamina. The horizon of 

interlayer shear bonds, 
s , is defined as  2 2

s n    .  

 
Fig. 3 PD laminate model 

Interlayer normal and shear bonds are denoted as 
nc  and 

sc , 

respectively. The relationships between the interlayer PD parameters and 

the engineering material constants are provided as (Oterkus and 

Madenci, 2012) 
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where 
mE  is the elastic modulus and 

mG  is the shear modulus of the 

matrix material. The force-stretch relationship for interlayer normal and 

shear bonds are presented as 

 n n mc s T
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where   represents shear angle of the diagonal shear bonds (Oterkus 

and Madenci, 2012). x  is the spacing between material points on the 

plane of the lamina. 

 

PD Thermal Laminate Model 

 
In regard of the thermal field, the fully coupled thermomechanical PD 

model developed (Oterkus et al., 2014a) and extended into lamina by 

Oterkus and Madenci (2014) is adopted here. The heat conduction 

equation for a lamina is expressed as 

 
   

 0

, ,
, ,v b

H

t t
c T t k e dV q t  

  
    

 


x x
x x

ξ
   (13) 

where 
vc  is the specific heat capacity.   is the temperature and 

0  is 

the reference temperature.  ,T tx  is the temperature change of point 

x  with     0, ,T t t x x . Hence,  ,T tx  is the rate of 

temperature change of point x . k  is called micro-conductivity.   is 

the PD thermal modulus. 
bq  is the volumetric heat source. e  is the time 

rate of the change of stretch and its definition is shown as 

e


 


η ξ
η

η ξ
   (14) 

 

The determinations of in-plane micro conductivity are given as (Oterkus 

et al., 2012) 
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where fk  and 
mk  represent the micro-conductivity in fibre and other 

directions. 
1  and 

2  are the thermal conductivities for fibre and 

transverse directions in the realm of classical mechanics. The heat 

conduction in the interlayer directions can also be represented by using 

Eq. 13. The interlayer thermal bond including the bonds in interlayer 

normal directions and interlayer shear directions can be represented as; 

 32

m
pk

h h



 



   (18)

where 
m  is the thermal conductivity of the matrix material.  

 

PD thermal moduli associated with the in-plane bonds can be expressed 

as  
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For the interlayer normal and shear directions, the determinations can be 

expressed as 

1

2
n n mc    (20) 

1

2
s s mc    (21)       

where 
m  is the thermal expansion coefficient of the matrix material. 

 

Failure Criteria   
 

Because of the existing of four kinds of PD bonds in the mechanical 

laminate model, different critical stretch values are necessary in the 

following simulations. The definitions of these critical stretch values are 

listed as (Diyaroglu, 2016; Oterkus and Madenci, 2012; Silling and 

Askari, 2005) 
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In the above equations, 
ICG  and 

IICG  are the critical energy release rate 

for first and second failure modes, respectively. 
mK , 

mE , 
mG  are the 

bulk, elastic and shear modulus of the matrix material, respectively. h  

is the thickness of a single ply. 
1E  is the longitudinal elastic modulus of 

a single ply. 
1t  and 

1c  are longitudinal tension and compression 

strength properties of the lamina. fts  and fcs  are the critical stretch 

values for fibre failure in tension and compression. 
ms  is critical stretch 

related with the matrix failure in tension, indicating that the matrix bonds 

are only allowed to fail in tension. 
ns  and 

ss  are critical stretch values 

for interlayer normal bonds and interlayer shear bonds.  

 

In conclusion, the three-dimensional laminate model formulated by PD 

theory is explained and will be applied in the numerical simulation in 

next section. 

 

NUMERICAL SIMULATION 
 

Problem Description 

 
In this section, a numerical analysis is conducted for a 13-ply laminate 

under underwater explosive loading condition. The test plate used by 

LeBlanc (2011) is utilized in the simulations, illustrated in Fig. 4. The 

boundary region, shown in yellow colour in the figure, is clamped by six 

bolts. The outer radius of the plate, 
outR , is 13.2715 cm. And the inner 

radius, 
inR , is 11.43 cm. The radius of a bolt, r , is 4 mm. The plies in 

this laminate have the same thickness, i.e. h  is 0.254 mm.  

 
Fig. 4 Composite test plate 

 

The material property of the laminated composite is listed in Table 1. 

The PD discretization of a single lamina is illustrated in Fig. 5. Each 

lamina has a single layer of material points with a gird sized of 
32.6543 10 mx    . The horizon is chosen as 3.015 x   . The time 

step size for an explicit time integration is 
87.69 10 st    .  The total 

simulation time is set as 
30.3641 10 s . As to the bond failures, the 

related material properties provided by Diyaroglu (2016) is adopted. The 

critical energy release rate for matrix failure is 
311.85 10 MPaICG  

, thus the 
ms  is computed as 

21.47 10ms   . The tension and 

compression strength properties are 
1 965 MPat   and 

1 883 MPac   . The critical stretch value for fibre failure in tension 
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is 
22.46 10fts    and the critical stretch for the fibre bond is 

22.25 10fcs    . As to the interlayer bonds, the critical stretch values 

are calculated as 
27.015 10ns    with 

ICG  being 
32.73 10 MPa  and 

0.14ss   with 
IICG  being 

37.11 10 MPa .    

 

 

Table 1 Material property of the test plate  

Mechanical Properties Thermal Properties 

 1 GPaE   39.3  1 μm/m/K   8.6 

 2 GPaE  9.7  2 μm/m/K  22.1 

 12 GPaG  3.32  1 W/mKk  10.4 

Poisson’s ratio 
12   0.33  2 W/mKk  0.89 

 3kg/m   1850   J/ kg Kvc    879 

 GPamE  3.792  μm/m/Km  63 

 GPamG  1.422  W/mKmk   0.34 

Poisson’s ratio 
m   0.33  0 K   285 

 
Fig. 5 PD discretization of a lamina 

 

In respect of the determination of the shock loads, the formulation of the 

explosion load adopted by Diyaroglu (2016) is applied. According to the 

experiment conducted by LeBlanc and Shukla (2011), when the shock 

wave reaches the laminate, the time is set as 0t  . Then the pressure load 

increases linearly to its peak value, 
maxP , during the time period 

30 0.04 10 st    . Subsequently, the pressure load retains its 

maximum value until 
30.08 10 s . The pressure decays in an 

exponential form until the end of the simulation is given in Eq. 27. The 

peak value, 
maxP , is set to be 10.3765 MPa  when the charge is located 

at a location of distance being 5.25 m . 
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Fig. 6 Pressure load file at the test plate 

 

The pressure distribution derived by Turken and Mecitoglu (1999) is 

adopted as 

  4 3 20.0005 0.01 0.0586 0.001 1P r r r r r        (28) 

where r  represents the distance from the collective node to the centre 

of the test plate. Consequently, the final explosion load is defined as  

    4 3 2, 0.0005 0.01 0.0586 0.001 1P r t P t r r r r         (29) 

 
Fig. 7 Non-uniform pressure distribution over the top ply 

 

It should be noted that only the first impact of the explosion is considered 

in the above load definition. 

 

Numerical Results  
 

First, numerical simulation without allowing failure is conducted. 

Uniform pressure load is applied and the supported region (shown in 

yellow colour) of all plies are constrained in vertical direction. All plies 

in the laminate experience the similar vertical  z  displacement 

distribution. The variation of vertical displacement of the central point in 

the middle ply is plotted in Fig. 8. The vertical displacement distribution 

of the middle ply at 
30.26915 10 s  is shown in Fig. 9. 
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Fig. 8 Variation of the displacement in z direction of the central point 

 

Fig. 9 Vertical displacement of the middle ply at 
30.26915 10 s   

 

Then a simulation with allowing failure is carried out under the non-

uniform pressure load,  ,P r t . The matrix damages and temperature 

distributions of all plies are plotted at 
30.26915 10 st    and 

30.3461 10 st    in Figs. 10~11. 

 

It can be observed that the damage patterns are different for each ply. 

The top ply experiences compression while the bottom ply is under 

tension, so the matrix damage at the bottom ply is larger than the top ply 

(Figs. 10~11). At the bottom ply, the regions near the holes are 

fragmented because of the boundary constraints. In addition, the cracks 

occur and propagate in the middle region due to the highest level of the 

non-uniform distributed pressure shock load. The cracks in the middle 

region mainly grow in vertical direction, which is also observed in the 

experiment shown in Fig. 15.  

 

Temperature changes induced by the applied pressure shock loading, are 

presented for different ply locations (Figs. 10~11). Furthermore, as the 

time increases, the values of the temperature change increase for all 13 

plies. The temperature change profiles have similar patterns with the 

crack damage patterns. As the top ply is under compression, temperature 

increases, on the other hand when the bottom ply is under tension, 

temperature decreases. Besides, the crack growth pattern also influences 

the temperature distribution. The temperature increases near the crack 

surfaces and decreases near the crack region. Therefore, the distribution 

of temperature presents a similar pattern compared with the crack 

pattern.              

 

 

  
                 (a)                                                    (b) 

Fig. 10 Matrix damage (a) and temperature distributions (b) at 
30.26915 10 s   

 

  
                 (a)                                                     (b) 

Fig. 11 Matrix damage (a) and temperature distributions (b) at 
30.3461 10 s   

 

In addition to the coupled thermomechanical simulation, damage 

patterns for uncoupled case is also considered for comparison purposes. 

The comparison of the damages of the top, middle and bottom plies at 
30.3461 10 st    are provided in Figs. 12~14. Different crack paths are 

observed from these two simulation cases, indicating the temperature 

effect on the damage evolution process. The region near the y  axis 

experiences more damage in the fully coupled simulation case than the 

uncoupled case.  

0 1000 2000 3000 4000 5000

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

 

 

z-
d

is
p

la
ce

m
en

t 
(m

)

time step

447



 

 
(a)                                            (b) 

Fig. 12 Matrix damage plots of top ply from uncoupled case (a) and 

coupled case (b) at 
30.3461 10 s   

 
(a)                                            (b) 

Fig. 13 Matrix damage plots of middle (7 th) ply from uncoupled case 

(a) and coupled case (b) at 
30.3461 10 s   

 
(a)                                            (b) 

Fig. 14 Matrix damage plots of bottom ply from uncoupled case (a) and 

coupled case (b) at 
30.3461 10 s   

 
Fig. 15 Material damage during test (LeBlanc and Shukla, 2010) 

 

CONCLUSIONS 
 

In this paper, a numerical analysis of a composite laminate exposed to an 

underwater explosion is simulated using a fully coupled peridynamic 

theory. A pressure shock generated by an underwater explosion is 

applied on the top surface of the laminate. Both the deformation and 

temperature change responses of the laminate are simulated. The crack 

propagation predictions from peridynamic theory correlate well with the 

experimental results, validating the capability of peridynamic theory for 

investigating explosion impact response of composite materials. In 

addition, the temperature coupling effects are studied through the 

comparison of the crack propagation predictions from both the 

uncoupled and coupled simulation cases. 
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