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Abstract
Deep learning has emerged as a state-of-the-art learning technique across a wide range
of applications, including image recognition, object detection and localisation, natural
language processing, prediction and forecasting systems. With significant applicabil-
ity, deep learning could be used in new and broader areas of applications, including
remanufacturing. Remanufacturing is a process of taking used products through disas-
sembly, inspection, cleaning, reconditioning, reassembly and testing to ascertain that
their condition meets new products conditions with warranty. This process is complex
and requires a good understanding of the respective stages for proper analysis. Inspec-
tion is a critical process in remanufacturing, which guarantees the quality of the
remanufactured products. It is currently an expensive manual operation in the
remanufacturing process that depends on operator expertise, in most cases. This
research investigates the application of deep learning algorithms to inspection in
remanufacturing, towards automating the inspection process. This paper presents a
novel vision-based inspection system based on deep convolution neural network
(DCNN) for eight types of defects, namely pitting, rust, cracks and other combination
faults. The materials used for this feasibility study were 100 cm × 150 cm mild steel
plate material, purchased locally, and captured using a USBwebcam of 0.3 megapixels.
The performance of this preliminary study indicates that the DCNN can classify with up
to 100% accuracy on validation data and above 96% accuracy on a live video feed, by
using 80% of the sample dataset for training and the remaining 20% for testing.
Therefore, in the remanufacturing parts inspection, the DCNN approach has high
potential as a method that could surpass the current technologies used in the design
of inspection systems. This research is the first to apply deep learning techniques in
remanufacturing inspection. The proposed method offers the potential to eliminate
expert judgement in inspection, save cost, increase throughput and improve precision.
This preliminary study demonstrates that deep learning techniques have the potential to
revolutionise inspection in remanufacturing. This research offers valuable insight into
these opportunities, serving as a starting point for future applications of deep learning
algorithms to remanufacturing.
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Introduction

Remanufacturing is a crucial strategy for achieving environmental conscious manufacturing
and product recovery [1, 22], which brings about sustainable development through product
reuse and associated energy and material savings [30, 31]. It is an industrial process by which
used products and their sub-units known as cores are brought to an ‘as good as new’ functional
condition with matching or better warranty [32, 51]. According to the US Institute for Trade
and Commerce, major products currently being remanufactured include automobile parts,
heavy-duty equipment, industrial machines, aerospace equipment, electrical and electronic
products, photocopiers, tyres, IT and medical equipment [63].

As an industrial process, remanufacturing is made up of the following three independent
operations [43]:

& Disassembly
& Processing which includes processes such as cleaning, inspection, testing and other

operations that takes the used products to an ‘as new’ condition.
& Reassembly.

Remanufacturing is ultimately a product recovery technique, and it differs from other end-of-
life approaches as it returns products that are as good as new ones; while creating new business
opportunities, jobs, and increasing product affordability [18, 59]. Moreover, remanufactured
products typically save up to 90% of materials compared to newly manufactured ones and
consume just about one-sixth of energy compared to new products [48, 59].

In the developed world, remanufacturing helps businesses to keep up with regulations such
as End-of-life vehicle (ELV) Directive and the Waste Electrical and Electrical Equipment
(WEEE) Directive [14, 66] that are aimed at controlling environmental pollution and wasteful
consumption habits. Under the ELV legislation, the original equipment manufacturer (OEM)
becomes responsible for the cost incurred by the end-of-life (EOL) treatment of cars. This
allows the last owner to take the vehicle to dispose of it at an authorised EOL treatment facility
at no expense. The legislation further requires OEMs to make their products more amenable to
dismantling, increase reuse and minimise the use of hazardous materials. Similarly, the WEEE
directive requires users to discard their WEEE at no cost, at a central collection centre provided
either by the OEM or in conjunction with the local council. Again, the OEM has a price to bear
in this arrangement. However, by implementing remanufacturing, manufacturers can poten-
tially make profits while keeping with the requirements of these regulations [9, 14].

Although the value of remanufacturing is unknown, a recent report has put the actual cost
of the automotive remanufacturing industry alone to worth $138billion by 2020 [42]. Other
vast remanufacturing industry sectors, including the aerospace and electronics industries, add
to the immense potentials in remanufacturing while recognising that it still has great potential
to grow further. However, much of the anticipated growth is hindered by critical issues,
including the very complicating nature of the remanufacturing process. Crucial matters
outlined in the literature include [23, 48]:

& Difficulties in achieving the adequate supply of used products or cores as well as new parts
to serve as a replacement.

& Challenges in developing efficient and effective remanufacturing process tools and tech-
niques to carry out efficient disassembly, inspection and cleaning and without difficulty.
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& Mistrust and poor customer perception of remanufactured products, usually because of
lack of knowledge and awareness of the capabilities of remanufacturing.

This study focuses on the aforementioned second class of issue and specifically, inspection
tools and techniques. It examines eight common types of faults that are found in the
automotive remanufacturing industry, which includes combinations of crack, rust, and pitting
surface faults. We trained a deep neural network using the obtained fault datasets, which are
made up of 28,800 image samples. The sample split of training and validation was performed,
where the training sample was used to train the network and evaluated based on the validation
dataset and live video feed.

The remaining parts of this paper are structured in sections, where section 2 presents an
overview of inspection in remanufacturing. Section 3 presents the general deep learning-based
systems and highlights the architectures of deep neural networks; most importantly, the
convolutional neural networks used in the design. Section 4 outlines the design approach for
the deep learning vision inspection system including the data collection, pre-processing, choice
of model, training and evaluation of the model. Section 5 details the implementation of the
developed model alongside the setup. Section 6 outlines the performance evaluation results
with section 7, presenting the conclusion and future works.

Inspection in remanufacturing

In remanufacturing, inspection is a necessary process used to guarantee quality and reliability
[35]. Consequently, inspection cells are often integrated into a functional remanufacturing
workshop floor [1] to facilitate core classification and to determine the extent of deterioration
and quality [13]. Inspection reduces the risk of economic loss associated with carrying out
early stages of the remanufacturing process on cores that are to be discarded eventually for not
being of acceptable quality. Effective inspection techniques have been found to increase the
remanufacturer’s profit, satisfy customers [21] and mitigate risks associated with uncertainty in
core supply and quality [56].

A minimum of three primary stages of inspection is usually carried out in a typical
remanufacturing process: pre-disassembly (core) inspection, post disassembly inspection of com-
ponents and final inspection of the whole system following reassembly. The main objective of core
inspection is to determine the economic and feasibility of remanufacturing a core as well as
information required for planning the remanufacturing process, including inventory planning [33,
60]. For instance, this may be aimed at determining the core’s designmodel, quality or identification
of some indicators that point to its remanufacturability [70]. Post disassembly inspection, on the
other hand, is conducted on components or sub-assemblies after disassembly to determine whether
they could be reused or not. This inspection also includes other forms of examination performed
during the remanufacturing process alongside after reassembly process of the whole product before
the final testing before putting the matching warranty. The stages of inspection in remanufacturing
are shown in Fig. 1, with the focus areas specified by the grey clouds.

Efficient information management is vital to remanufacturing inspection; scholars [17, 39]
demonstrate the value of information management in inspection and in addressing the uncer-
tainty in remanufacturing. They show that information relevant to core inspection may be
managed by radio frequency identity (RFID) tagging and by keeping an accurate record of
other information gathered manually about cores.
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The use of T method-3 pattern recognition technique to identify features capable of
enhancing the pre-processing inspection of the automotive crankshaft has been demonstrated
[67] as one of the first inspection approaches. Similarly, Zhang et al. [69] proposed a metal
magnetic memory (MMM) inspection technique for predicting the residual life of structural
cores. The authors demonstrate the potential of MMM in detecting macro and micro-crack as
well as in predicting the residual useful life of a core, which is necessary to ensure that reused
cores do not have inherent faults that would cause premature product failure. However, this
method detects only crack defects, which makes it limited to achieve automated inspection
alone without incorporating other techniques to identify different types of faults.

A recent inspection approach using FUZZY Technique for Order Preference by Similarity to
Ideal Situation (FUZZY TOPSIS) has been proposed by [46]. The TOPSIS approach is
amongst the useful techniques for ranking and selecting several possible alternatives using
Euclidean distance measurement. Its principle is based on the assumption that the chosen option
will have the shortest distance from the ideal positive solution and the longest distance from the
perfect negative solution. The inspection model uses part dimensions such as length, surface
roughness, height, groove thickness, diameter and other parameters to optimise the selection of
used engine piston for remanufacturing. However, this approach is complicated, as most of the
returned product information is not available by default, which makes it challenging to adopt in
the remanufacturing industry where there are various products of different dimensions.

The requirements of existing inspection technologies potentially complicate the inspection
process; making a new and more effective solution expedient. Hence, the development of new
systems and algorithms that could similarly view the world, as humans perceive it, becomes a
research approach for improving inspection in remanufacturing. These fields often referred to
as computer vision and machine learning has been applied in numerous areas with state-of-the-
art results in image analysis, classification, recognition, video analysis, natural language
processing and even recommender systems and many others.

Gibbons et al., (2018) recently attempted the use of image data for modelling remanufacturing
inspection, to achieve automated visual inspection for remanufacturing. They proposed the use of
the Gaussian mixture model to train a machine learning-based inspection model for visual
corrosion inspection of high-value components [16]. Though this method was successful in
categorising corroded and non-corroded areas of tested engines, it was only able to detect

Fig. 1 Remanufacturing process block diagram showing the focus inspection stages
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corrosion faults, which makes it unsuitable for holistic inspection in remanufacturing; thereby
calling for more robust approaches that could detect multiple defect types at the same time.

Perhaps, recent advances in computer vision research have opened new frontiers of the
capabilities of emerging technologies with deep learning, making the headlines in almost all
fields of applications. The use of deep learning algorithms has opened new areas of research,
focussing on the implementation of deep learning to a different problem. Among the applica-
tions is the use of deep learning for remanufacturing inspection, which we explore in the study.
It proposes a vision-based inspection system, which can contribute to a real-time, non-contact,
reliable, faster, cost-effective remanufacturing inspection, thereby automating the inspection
process. Conversely, the deep learning-based inspection system can be applied at the pre-
disassembly inspection stage, to sort Eol products into remanufacturable and scraps, as well as
to the post-disassembly stage where Eol products are inspected during any of the stages of the
remanufacturing process which include cleaning, reconditioning or even final testing stage.

However, this research focuses mainly on the post-disassembly inspection stage, where
most often, disassembled products are merged during the cleaning process, thereby prompting
the need for automated inspection and sorting process. The developed deep learning-based
inspection system becomes a handy technology to automatically check the Eol product
conditions and classifies them into similar products.

Deep learning based systems

The deep learning-based inspection systems are computational models that use multi-layered
neural networks, stacked together with additional layers to extract features used to describe
patterns in data. These stacked neural networks are characterised by their makeup as architec-
tures of deep learning found in different deep learning research.

There are many architectures of deep learning which include the recurrent neural networks
[12], the deep belief networks [49], the deep autoencoders [65] and the convolutional neural
networks [19]. These architectures are developed and tested against challenging problems
using the standard datasets of ImageNet, MNIST, CIFAR10 and COCO datasets [34, 36, 45,
64], to obtain the automatic deep learning-based features used to ascertain the performance of
the architectures including the convolutional neural networks.

These deep learning architectures have unique properties, which are highly related to the
type of data they work on. The architectures include the deep belief networks, which are used
to describe statistical models and techniques, represent sets of variables and their conditional
dependencies [26, 49]. Also, the deep autoencoder architectures are mostly used to copy inputs
to outputs [61, 65]. In contrast, the recurrent neural networks are useful for modelling
sequential data [12, 40], as well as the CNN for modelling recognition and classification
problems because they perform well especially in processing grid of values [19, 52]. This
property of the convolutional architectures makes them suitable for analysing image data from
the computer vision inspection problems.

Convolutional neural networks

The convolutional neural networks (CNNs) is one of the vital architectures used in deep
learning research. This architecture is inspired by the natural mechanism of visual perception
of living creatures [29] and has been successfully applied in image recognition, object
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detection and localisation [24, 40, 62]. The CNN is a type of feed-forward neural network, that
consist of three main layers, which include the convolutional layers, pooling layers, and fully
connected layers. They are arranged by multiple alternating convolutional and pooling layers,
followed by the fully connected layers. The CNN architectures use the convolution and
pooling operations to extract low to higher levels of features in the input data. The CNN has
been used mostly for image-based analysis [54, 57] although the CNN has found other
application areas which include biological, health, face and finger recognition systems[15,
44, 55]. These layers are explained as follows.

The CNN comprises of the input layer, which accepts the input to the network. It takes the
presented images and performs some pre-processing of the input, especially resizing the input
images, before passing them to the subsequent layers for feature extraction.

The convolutional layers are used to obtain feature maps of a given input image by applying
some filters across a given local region. For a given network, with k number of filters, Wias
weights for i filters, and filter bias bi, activation function σ, a small image patch xs and input
image size of M x N, the convolution of filter i and input xs is given by

f i s ¼ σ Wixs þ bi
� � ð1Þ

By sliding the patch of size a x b across the image, and using a stride of size s, we obtain a
convolution output given by [54]

k x
M−aþ 1ð Þ

s

� �
x

N−bþ 1ð Þ
s

� �
ð2Þ

Where ⌈.⌉ is a ceiling function.
Furthermore, the activation functions are generally applied to the output of the layer to

convert the learned linear mappings to non-linear mappings for further propagation of the
parameters of the networks. Examples of the common activation functions used in deep
learning applications include the softmax, sigmoid, rectified linear units (ReLU), exponential
linear units (ELU), and softplus [50]. The function tries to keep the CNN computation stable
by ensuring that the learned parameter values do not overshoot towards infinity or get stuck
around 0, thereby maintaining the specific desired range of values.

The pooling layers accepts the high-dimensional input images and down-samples their
spatial dimensions. Pooling is applied conventionally after the convolution layers to reduce the
learned features dimensionality and avoid overfitting of the network. The pooling operations
can be either average pooling, sum pooling, max-pooling or global average pooling. However,
most DCNN architectures use the max-pooling used in their design where the maximum value
of each block is used as the corresponding pixel value on the output image. The max-pooling
operation is given by [54].

Maxpool ¼ max xsð Þ ð3Þ
Besides, max-pooling a M x N input image with a patch size of a x b, we obtain an output,
given by

x
M−1ð Þ
a

� �
N−1ð Þ
b

� �
ð4Þ

The fully connected layers make up the last layers of most CNN architectures, used to compute
class scores using the softmax activation function [50]. It accepts the high-level filtered images
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and transforms them into categorical labels. More recently, the convolutional layers have also
been used in the last layers of the network architectures, to learn the feature maps in the data,
end–to–end thereby removing the need to resize the input images as the network can learn
from any size of image [47].

The first CNN used for recognition task was named LeNet5, developed and used for digit
recognition [41] with just five layers. However, after the LeNet5 architecture, other architec-
tures of CNN have evolved and increased in depth. The CNN breakthrough came with the
development of the AlexNet architecture, which is composed of eight convolutional layers,
with the pooling and other layers in the architectures [38]. Other CNN based architectures for
object recognition include VggNet [58], SegNet [4], ResNet [25], and SeNet [27] model etc.

ResNet architecture

The ResNet architecture is a CNN architecture that uses identity shortcut connection to skip
one or more layers during the training of the network. The ResNet allows stacked layers of the
network to fit a residual mapping rather than fit the desired mapping directly [25]. The basic
idea of the building block of the ResNet architecture is shown in Fig. 2.

The ResNet architecture emerged as the best, and first architecture for image recognition
and image localisation applications in ILSVRC 2015 challenge and the architecture was very
deep, surpassing a hundred layers deep in its design [25]. The ResNet architecture attained
remarkable results of the top-5 error rate of 3.57%. The significant advantage provided by the
identity shortcut connections is that they do not add any further parameters to the network as
well as additional computational complexity. Besides, the deep residual networks proved that
increased depth of the network provided higher accuracy.

The CNN architecture used for the development of this inspection system is the ResNet
architecture. The choice of ResNet architecture is based on the need to achieve very high
accuracy when we test the network. The ResNet has multiple architecture variants which
include the ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152 architectures [25].
These architectures have a different number of layers with the increasing number implying that
the depth of the network is increasing, and the greater layers lead to improved recognition
accuracy.

The first traditional vision-based inspection systems explored hand-crafted algorithms to
extract the points of interest in data such as edges [8, 20] and corner detectors [2, 3], scale-
invariant feature transform [11], speeded-up robust features [5], the histogram of oriented

F(x) + x

F(x)

x

X iden�tyReLU

Weight layer

Weight layer

ReLU

Fig. 2 ResNet residual learning
building block
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gradients [10], and many other techniques. However, some other vital features considered
when quantifying these component features of image data include shape, colour, and texture
[6]. The deep learning approach of image classification is a unique contrast to the traditional
image classification approach because it automatically learns features in data and quantifies the
content of the data thereby saving us much time, needed to manually compute the features of
the given image sample.

Model design approach

The deep learning-based vision inspection system for remanufacturing is an inspection
technique that explores the use of neural networks to achieve inspection. The design and
implementation of the deep learning-based vision inspection system are based on the
real-time application of surface fault inspection. In this paper, we demonstrate the
feasibility of classifying surface faults using the deep convolutional neural network
approach. Also, the training of the designed network to achieve the DL vision-based
inspection system was a crucial factor in the techniques used for data acquisition and
processing.

The deep learning-based inspection system is formulated as a supervised learning problem
where the dataset of images of faulty components are captured, and their corresponding class
labels are used to teach the deep learning classifier what each category looks like. If the
classifier makes an incorrect prediction, we can apply other methods to correct the mistakes by
telling it what the correct label is and this process continues until the specified stopping
criterion is met. These criteria are set to monitor the performance of the network, which
includes accuracy, the number of epochs that represents the total number of iterations of the
input data and other inherent, considered factors. The process flow diagram for the model is
shown in Fig. 3.

The model flow chart for the deep learning based classification problem can be categorised
into key process component stages which include; data collection where the video of the
defected parts are recorded. The pre-processing stage involves converting the recorded videos
of the parts to images, useful for training and testing the model. The chose and design model
stage involves selecting the appropriate computational model and modifying it to suit the
proposed remanufacturing inspection application. Also, the training stage involves passing the
training images of the parts to the model, with proper weights, biases and optimisation for
effective feature extraction. The model evaluation stage entails passing the test set images to
the model for classification. The performance of the designed system is obtained by recording
the accuracy of the model’s respective prediction on the presented image samples. The detailed
procedure and explanations about the model development are outlined in the following
sections.

Data collection

The data collection involved the use of a webcam USB camera of 0.3 megapixels, with lens
F/2.0 and f = 4 mm, programmed to record three minutes of video data of the samples in a
controlled lighting conditions. The video data was augmented to reflect some of the challenges
of computer vision systems, which includes objects at different orientations, scale, differing
lighting conditions.
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The videos consist of different fault conditions, with one good part without defect, and
others comprising of various defects including pitting, rusting and crack defects. Also, the
combination defects include rust and crack defects, pitting and crack defects, rust and pitting
defects as well as rust, crack and pitting defects. The pitting defects are formed as a result of
localised corrosion confined within a small area on the metal surface [53]. Besides, rusting is
another surface defect that occurs when metals are exposed to air and moisture, thereby
forming oxide of iron. Finally, the crack defect is another form of a severe flaw that commonly
originate at the surface and grows with increasing stress [7]. These faults and their combina-
tions form part of the majority of the typical surface faults that the visual inspection systems
can detect, especially without very sophisticated camera devices. A total of seven defected
parts and one good part making up the eight video samples recorded (Fig. 4).

Preprocess Data

Collect Data

Start

End

Chose and 
Design Model

Train ModelEvaluate and 
Deploy Model

Fig. 3 Model Development
approach for the DL based vision
inspection system

Fig. 4 Images of some defected samples used in the model
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Data preprocessing

This stage involves converting the videos into images, resizing and labelling each of the
associated images. The categories require the seven identified types of defect that the algorithm
will classify. The defect labels include; pitting surface faults (PF), crack surface faults (CF),
rust surfaces faults (RF), pitting and crack surface faults (PnC), rust and crack surface faults
(RnC), rust and pitting surface faults (RnP) and pitting, crack and rust surface faults (PnRnC)
alongside sample non-defected surfaces (Nodef). Besides, the images were afterwards resized
to suit the image size of the ResNet model.

The output of the pre-processing stage produced images, which consist of some 3600
images of each part and the eight classes produced the 28,800 images used to train and test the
model. The data was split into 80% training, and 20% for testing and evaluate the deep
learning-based vision inspection system. A total of 23,040 images were used to train the
ResNet model, as well as 5760 images, for the model’s performance evaluation.

Chose and design model

The stage involves choosing the right computational model that can perform the desired
inspection task. There are several deep learning-based computational models, which have
performed reasonably well on object recognition and detection problems. To select the
appropriate model, a critical consideration was the accuracy of the model on recognition tasks
and the ResNet architecture was chosen, based on the high accuracy of the model. ResNet was
the first deep CNN architecture that surpassed human-level performance on image recognition
problem [25]. The output of this model was modified to suit the number of classes in the data
for training and inference.

Another design consideration is the inference speed, which is a concern, especially when
there is a need to deploy these models on lower performance systems. After deployment, the
model inference is performed on central processing units (CPU’s), embedded systems and
even mobile devices, thereby making the computational cost, a concern in the development of
this system.

Train model

The training of the network is the most complicated stage of the deep learning-based vision
inspection system. The training process involves multiple iterations over the training set to
obtain the optimal parameters of the classifier. In the training stage, we are concerned about
tuning the parameters that make our algorithm efficient. These parameters include setting the
learning rate, number of epochs, decay rate, regularisation, dropout and many other parameters
of the network. These parameters are referred to as hyperparameters, and they must be
appropriately set for the adequate performance of the classifier.

In the training stage, the model obtains the appropriate features from the data by optimising
the weights and biases, which is usually saved for future inference purposes. The training is
performed using the algorithm of stochastic gradient descent optimiser where the algorithm
tries to estimate the gradients using some single randomly picked group of training examples;
thus, the parameters of the CNN are obtained. The learning process involves the forward pass
and backpropagation of the gradients obtained from the connected model weights. A signif-
icant issue avoided during the gathering of these data is the class imbalance where there are
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more examples of a type of fault, and this biases the algorithms during training, thereby
causing overfitting. This problem was avoided by using the same number of training examples
in all classes. However, researchers have outlined specific techniques to manage imbalanced
dataset, including resampling the training set, k-fold cross-validation, quintuplet sampling,
among others [28].

In our model, we have eight sample categories which imply that the output layer must
match the total number of eight samples. The appropriate and suitable values of the
hyperparameters of the network were determined through experience and experimentation.
The hyperparameters set include learning rate, dropout, and mini-batch size, and drop factor.
The hyperparameters of the systems were carefully chosen such that the model converges
correctly during training as Krizhevsky, et al., (2012) highlighted that enormous batch sizes
affects the quality of the final solution [37]. The total number of epochs, which is the number
of times that the entire dataset samples are presented to the model, usually referred to as epoch,
and other parameters were set. The optimised model parameters used to train the deep CNN
model used in this research is shown in Table 1, highlighting the parameters used in the study.

Evaluate and deploy model

The evaluation stage involves presenting the separated test set images to the developed
classifier and making predictions on the label of the image. The predicted models are
compared against the ground-truth labels from our test set, with the ground-truth representing
the actual image categories, and the number of correct predictions compiled. The performance
of our network is quantified using standard performance metrics including the probability
output and the confusion matrix to visualise the results.

The confusion matrix is a table used to describe the performance of a classification model
on some specific test set for which their actual values are known. The matrix shows the
comparison of the ground truth and the models’ predictions as output.

Implementation of the system

The design of the DL vision inspection system is based on ResNet18 architecture. This design
is a MATLAB based ResNet CNN architecture requires RGB input images of size [224, 224,
3] and consist of five each of sizes 64, 128, 256 and 512 filters, making up the 20

Table 1 shows the parameters of the designed model used in the research

Parameter Name Parameter Values

Minibatch size 20
Learning rate 1e-3
Dropout 50%
Optimiser Stochastic gradient descent with momentum
Loss function Categorical cross-entropy
Number of epochs 4
Number of classes 8
Train/Test split ratio 7:3
Learning rate drop period 2
Learning rate drop factor 1e-4
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convolutional layers found in the ResNet18 architecture, alongside one fully connected layer
and a classification layer. The ResNet18 implementation has batch normalisation after each of
the convolutional layers, alongside the ReLU activation function, which converts the linear
weights to non-linear for further propagation. Also, the pooling layers specifically Max and
Average pooling were used in the architecture with the Max pooling used at the first layer and
Average pooling at the last convolutional layer, just before the fully connected layer. The
standard mathematical addition function was also used to add the two branches of the
architecture for each of the filter sizes used in the architecture. A softmax function was used
to provide a probability output, for the classification layer, to give the results of the designed
system [25].

Implementation setup

The block diagram of the DL based-vision inspection system is shown in Fig. 5, which
highlights the three critical stages of the proposed method.

The input represents the set of videos and images captured from the connected cameras.
The DCNN algorithm is the ResNet based CNN classifier, used to perform the inspection on
the given objects. The output is a set of predictions made by the DCNN algorithm, which is the
obtained deep learning vision-based inspection results. These output labels and the prediction
probability scores are displayed as results of the developed system. The entirety of these blocks
makes up the developed deep learning-based vision inspection system for remanufacturing
application. Depending on the configurations, these outputs can be sorted into fault types,
scraps, recondition and reuse, which are determined, depending on the nature of the Eol
products, as well as the actuators used to sort the Eol products are they are conveyed.

The setup was achieved using a 2.7GHz, 8GB RAM computer with a GT740 graphics card
and a web webcam USB high definition camera of 0.3 megapixels. The material 100 cm ×
150 cm mild steel plate with different defects was recorded as videos at about 0.5 m distance
from the camera. The camera was moved about to capture the data such that it reflects some of
the critical issues facing computer vision systems which include scale, rotation invariance,
poor lighting conditions, to mention a few. The movement of the camera reflects the
augmentation needed for the designed system.

Performance evaluation and discussion

The ResNet architecture was chosen because of the accuracy of the architecture with Yosinki
et al., outlining that if we have a small dataset, transfer learning is the best approach to best
fine-tune the network for efficient learning [68]. To achieve this, the weights were frozen
during the network training, achieved using transfer learning. The classification layers were
also modified to suit the vision inspection dataset.

Furthermore, the training and evaluation of the designed system were performed in three
stages, which include; training the model, evaluation using the validation data and using live

Input DCNN 

algorithm 

Output 

Fig. 5 Block diagram of the system implementation
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camera feed. Training and validation accuracies of 100% and 99.65% respectively were
obtained on the designed system after training and testing of the model, with the results
depicting almost an ideal model conditions. These ideal conditions are classification accuracy
of 100% and loss of approximately zero. The Matlab based display of the training progress
response of the design is shown in Fig. 6, showing the models accuracy and loss response.

The developed model confusion matrix is an 8 × 8 matrix, which represents the ground
truth and the predicted output as the labels of the axes of the response. The validation data of
5760 images were used to test the system as shown in the confusion matrix results, which

Fig. 6 Results of the training progress showing model prediction accuracy and loss

Fig. 7 Confusion matrix visualisation of the evaluation results of the DL based vision system
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outlined that three pitting and crack defects (PnC) were misclassified as pitting defects (PF)
and the one PnC defect misclassified as rust and crack (RnC) defect. This result means that out
of the 5760 predicts, 5756 were correctly predicted with four incorrect predictions. These
results validate the high accuracy performance of the system, and it is shown in Fig. 7.

Conversely, the second stage of the testing involved the use of the video feed, which is the
USB camera that captures the surfaces for inspection. The system processes the captured
picture frames from the live camera video stream and performs the desired inspection, with the
results displayed within a fraction of a second as shown in Fig. 8.

From the Fig. 8, the video preview of the inspection camera is shown on the right image
with the model prediction of PnC (pitting and crack fault) with 96% accuracy on top-1
prediction, shown on the left-hand side of the figure.

Conclusion

In this paper, a DL vision-based inspection system is presented. The system adopted
feature transfer from a pre-trained ResNet18 where we modified the network architecture
to suit our dataset. This system takes one second to recognise and perform a vision-based
inspection on a 2.7GHz CPU with NVIDIA GT 740 GPU. The results obtained from the
MATLAB Deep Learning toolbox show that the proposed method performed exception-
ally well at approximately 100% accuracy on the validation data shown in the confusion
matrix. The high performance was sustained on testing with a live video feed from a
USB camera.

By adopting this model, we can achieve automated inspection in remanufacturing espe-
cially to identify defected Eol product and sort them into predefined Eol options. It would
enhance throughput, speed and reduce incidents of an industrial accident in remanufacturing,
especially working with contaminated surfaces. This model aims to eliminate the sole depen-
dence on operator judgment, which most remanufacturing companies depend on, to achieve
precise inspection results.

The future work would be to implement the vision-based inspection with the most current
state of the art deep learning architecture, to improve the accuracy of the results and compare
the CNN architecture on industry-based datasets.

Fig. 8 Video Inspection results showing video preview and inspection results
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