

FPGA ACCELERATION OF A QUANTIZED NEURAL NETWORK FOR REMOTE-

SENSED CLOUD DETECTION

Philippe Reiter(1)(2), Philipp Karagiannakis(1), Murray Ireland(1), Steve Greenland(1), Louise Crockett(2)

(1)Craft Prospect Ltd, Fairfield, 1048 Govan Road, Glasgow, UK, G51 4XS, Email:phil2@craftprospect.com
(2)University of Strathclyde, 16 Richmond St, Glasgow, UK, G1 1XQ, Email:philippe.reiter.2019@uni.strath.ac.uk

ABSTRACT

The capture and transmission of remote-sensed imagery

for Earth observation is both computationally and

bandwidth expensive. In the analyses of remote-sensed

imagery in the visual band, atmospheric cloud cover can

obstruct up to two-thirds of observations, resulting in

costly imagery being discarded. Mission objectives and

satellite operational details vary; however, assuming a

cloud-free observation requirement, a doubling of useful

data downlinked with an associated halving of delivery

cost is possible through effective cloud detection. A

minimal-resource, real-time inference neural network is

ideally suited to perform automatic cloud detection,

both for pre-processing captured images prior to

transmission and preventing unnecessary images being

taken by larger payload sensors.

Much of the hardware complexity of modern neural

network implementations resides in high-precision

floating-point calculation pipelines. In recent years,

research has been conducted in identifying quantized, or

low-integer precision equivalents to known deep

learning models, which do not require the extensive

resources of their floating-point, full-precision

counterparts. Our work leverages existing research on

binary and quantized neural networks to develop a real-

time, remote-sensed cloud detection solution using a

commodity field-programmable gate array. This follows

on developments of the Forwards Looking Imager for

predictive cloud detection developed by Craft Prospect,

a space engineering practice based in Glasgow, UK.

The synthesized cloud detection accelerator

achieved an inference throughput of 358.1 images per

second with a maximum power consumption of 2.4 W.

This throughput is an order of magnitude faster than

alternate algorithmic options for the Forwards Looking

Imager at around one third reduction in classification

accuracy, and approximately two orders of magnitude

faster than the CloudScout deep neural network,

deployed with HyperScout 2 on the European Space

Agency PhiSat-1 mission. Strategies for incorporating

fault tolerance mechanisms are expounded.

1. INTRODUCTION

Artificial intelligence (AI), specifically machine

learning and deep learning neural networks (NNs) have

revolutionized numerous domains of technology during

the last decade. From fully autonomous platforms and

computer vision to recommender systems and financial

forecasting, NNs now form the foundations of numerous

computing applications. These algorithms are often

heavily resource-consuming, with their applications

requiring high-performance computing and datacentre

deployments rather than small and low-power devices.

In Earth Observation (EO) analyses and

atmospheric cloud detection, real-time inference is

required to rapidly identify cloud cover posing an

obstruction to visual captures of the planet surface

below. With cloud cover possibly enveloping up to two-

thirds of the Earth’s atmosphere at a given instant, over

60% of remote-sensed imagery may be corrupted by

cloud opacity [1]. It ensues that the bandwidth and costs

associated with satellite transmissions to ground stations

can similarly be reduced by potentially over 60%

through the application of an on-board NN for real-time

cloud detection. This on-board AI could both prevent

obstructed imagery from being transmitted and avoid

costly usage of payload instrumentation by anticipating

upcoming clouds.

The objective of this work was developing a real-

time cloud detector through an NN trained on an EO

dataset and implemented on a Commodity Off-The-

Shelf (COTS) Field-Programmable Gate Array (FPGA)

device. A comparison with existing cloud detection

mechanisms is provided in Sec. 2.

1.1. Quantization Versus Full Precision

It was once assumed that full-precision calculations

were required to obtain accurate results with Deep NNs

(DNNs). More recently, researchers have determined

that lower-precision, quantized, and even ternary or

binary variants of these models can achieve suitable

accuracy levels using a fraction of the computing

resources. These Quantized NNs (QNNs) can now be

implemented using lower power, minimal-resource,

embedded System-on-Chips (SoCs) and FPGAs. Sec. 3

captures core learnings, gaps, and opportunities for

further innovation from the QNN literature reviewed.

 Pattern recognition algorithms implemented

using Convolutional NNs (CNNs) are well suited to

space exploration and unmanned aerial vehicles and can

be used by these applications to identify and classify

objects based on captured images [2]. Due to their low-

cost, low-power consumption and flexibility, FPGAs

offer an attractive solution to efficiently implement NNs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/334595153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[3]. The performance benefits and flexibility of FPGAs

provide a scalable solution and, in recent years, there

has been an increased use of these devices in harsh

environments, such as space [4].

The end-to-end methodology undertaken for

synthesizing a trained cloud detection QNN and

implementing it onto an FPGA is covered in Sec. 5.

1.2. Implementation Robustness

FPGAs, particularly those based on Static Random-

Access Memory (SRAM) technology, have been shown

to be sensitive to radiation [5]. They may experience

Single Event Upsets (SEU) in the configuration memory

that can change the configuration of a routing

connection, Look-Up Table (LUT) or Block RAM

(BRAM). Therefore, design techniques to mitigate such

radiation effects must be applied to these devices [6]. In

most cases, the decision on the use of a particular

technique will be based on a trade-off between power,

area and performance overheads as well as achievable

system availability.

Sec. 7 investigates selective hardening [7]

mitigation techniques aimed at increasing the robustness

of the NN implemented on the FPGA fabric.

1.3. AI at the Edge of Outer Space

A summary of results can be referenced in Sec. 6, along

with details on the achievement of a low-power, high-

throughput solution.

Concluding the paper is a comparison between our

obtained results and those of two alternative solutions:

The Forwards Looking Imager (FLI) from Craft

Prospect, and CloudScout on the European Space

Agency (ESA) PhiSat-1 mission.

The FLI uses onboard algorithms for feature

detection in the upcoming or near satellite environment,

allowing onboard behaviours to be modified to provide

a more responsive space asset. The system is highly

adaptable to different use-cases for feature detection;

however, a common scenario is in providing cloud

detection for efficient tasking of a primary payload.

Our accelerator’s throughput advantage is

explained, alongside recommendations for improving its

accuracy and fault tolerance.

2. EO AND CLOUD DETECTION

Remote-sensed imagery for the purposes of cloud

detection are typically obtained from satellites in Low-

Earth Orbit (LEO) using either visual frequency,

infrared, or multi-spectral capture sensors. For the

analyses of remote-sensed imagery focused on ground

details, cloud cover, even in cases of haze or incomplete

opacity, can obstruct the precise study of surface-level

topologies, objects and structures. As such, rapidly

identifying occurrences of cloud cover, preferably

before an image is captured, reduces resource and

transmission bandwidth usage along with associated

costs. With cost savings often proportional to

transmission bandwidth reductions, there are significant

gains in time and monetary resources to be gained by

avoiding the capture and transmission of unnecessary

images containing clouds.

The focus of our research was on visual-band,

remote-sensed imagery impacted by clouds. Satellites

with synthetic aperture radar (SAR) sensors have

wavelengths that can pierce through cloud cover and

capture ground data [8], but the reconstructed imagery

is of often of lower resolution and targeted for the

monitoring of temperature, moisture, and other land

metrics rather than visual inspection of land details.

Multi-spectral sensors fitted on an increasing

number of satellites can provide upper-atmosphere

moisture and temperature readings, which can be used

in the differentiation of clouds from ground and sea

effects with similar spectra – such as ice, snow, or

white-coloured, human-made objects [1][8]. Since

remote-sensed captures using Red, Green, Blue (RGB)

and near-infrared sensors remain a prominent use-case

with a number of properly annotated datasets, the visual

band was the focus for this research – similar to [1] and

[9]. For these latter research undertakings, the infrared

channel was also considered, whereas this was outside

the scope of the strictly RGB observations used in our

research.

2.1. Conventional Cloud Detection Techniques

A conventional method of cloud detection with RGB

imagery is to perform per-pixel analyses. This involves

marking each pixel as either cloud-containing or not

using classical machine learning algorithms, such as

decision trees or support vector machines [10]. These

processes, which include Function of Mask and

Automated Cloud Cover Assessment, rely on a specific

transmission band from a satellite to inform the post-

processing analysis of the intensity spectra required to

make the cloud / no-cloud decision. While being

lightweight detection algorithms, research has shown

these approaches to be prone to erroneously classifying

snow and ice cover, or white-coloured land or sea

objects as clouds [8].

In lieu of the manual specification of features for

clouds, research has been conducted in devising deep

learning solutions for the task [8][11][12]. A primary

advantage of DNNs over classical machine learning

functions and shallow Artificial NNs (ANNs) is their

ability to automatically derive detection features of

interest as part of their training and optimization [9]. A

couple of DNN approaches that informed the network

architecture used for this research are examined in the

following subsection.

2.2. Deep Learning for Cloud Detection

Neural networks require training on sufficiently large

datasets to calibrate their weights between neural nodes.

The objective of training is to minimize the loss in

prediction or classification against either manually or

automatically generated expected results. Deep models

compared to their ANN counterparts have multiple

layers of neurons and increasingly feature novel

functionality, including the convolutional layers and

non-linear activation functions found in CNNs.

When the data inputted into a learning model is pre-

annotated, the training process is said to be supervised.

Networks requiring no prior labelling of data are trained

in an unsupervised manner. A semi-supervised

intermediate case exists for specific training instances.

A supervised approach was undertaken for our research.

2.3. Ground Truths

To perform loss minimization during supervised DNN

training, the backpropagation process requires expected

prediction or classification results. These ground truths

for the data are the labels, or annotations previously

mentioned.

Per-pixel cloud masks were employed by [1] and

[9] to gauge the accuracy of cloud detections. These

cloud masks represented the presence or absence of

cloud cover in a pixel using binary values – 1 for some

cloud, or 0 otherwise. The satellite data used by this

former research permitted the availability or generation

of these per-pixel prediction maps.

As the datasets used for this research included per-

image cloud cover classifications, and not per-pixel

granularity, the NNs investigated were required to learn

from each image what features constituted clouds or

ground topologies. This approach reduced the

computational requirements for the network, as

detection was performed per 32x32 tile of atmospheric

sky capture and categorized into one of initially three

classes.

Per-pixel and per-region, or “superpixel” [9],

detection accuracies are needed for DNNs featuring

image segmentation capabilities. These networks are

capable of individually identifying areas of an image

with or without cloud cover. While such networks with

added architectural complexity were investigated, they

were not required for our cloud detection use-case and

are mentioned for further study.

3. NEURAL NETWORK ARCHITECTURE

The rapid rise of interest by research and industry for

DNNs in the last decade was predicated on the

relatively low-cost availability of high-performance

matrix computation hardware. Specifically, the deep,

parallel pipeline architectures of Graphics Processing

Units (GPUs), with their specialized matrix and vector

multiplication functions, resulted in the almost-

exclusive use of GPUs as accelerators in the

advancement of DNNs since the pivotal publication of

the AlexNet framework by Krizhevsky, Sutskever and

Hinton in 2012. AlexNet was trained with the ImageNet

dataset of over one million annotated images [13] using

Figure 1. CNV architectural layer diagram illustrating the progression of data from image input into

convolutional feature extraction and through linear fully-connected classification to produce a two-

class prediction vector. The dimension of features entering a convolutional or fully-connected layer is

specified as the “In” value, while the resulting dimension is labelled “Out.”

two Nvidia GTX 580 GPUs [14]. The astounding

improvement in ImageNet classification by AlexNet,

demonstrating an over ten-percent reduction in

classification loss compared to its closest NN

competitor, spotlighted the use of off-the-shelf GPU

hardware for DNN training and inference acceleration.

These devices had previously been targeted towards

computer image rendering and video gaming, but were

now aptly positioned to accelerate research in AI and

compute applications in the datacentre.

The Multiply-Accumulate (MAC) units on GPUs

rapidly perform high-precision, floating-point matrix

and vector computations, and each unit can be regarded

as an artificial neuron in a DNN [15].

3.1. Binarized and Quantized Neural Networks

CNNs require the storage and processing of thousands

to millions of parameters, learned through numerous

epochs of training on large datasets. These dictate the

convolutional behaviour that leads to accurate

inferences of a variety of classification types. Research

into CNN kernels, or filters, have determined that a

significant percentage of the convolutional kernel

parameters are duplicated, and there is efficiency to be

gained in sparse matrix layouts for CNNs [15].

Moreover, novel NN architectures, using smaller but

deeper convolutional layers, such as SqueezeNet, have

demonstrated close to parity with AlexNet performance,

but with over five-hundred times fewer parameters [16].

The precision of each parameter contributes to the

computational load of a network. Even reduced

architectures store hundreds of thousands of weights

and activation parameters, typically with 16- or 32-bit

Floating Point (FP) precision. Quantization of weight

and activation values can be employed to reduce

parameter precision while maintaining a consistent NN

architecture. Common quantization levels include 4-

and 8-bit fixed-integer (INT4 and INT8, respectively),

as well as ternary (2-bit) and binary (1-bit)

representations. Full-precision values can also be

gradually quantized through a series of thresholding

steps [17].

By quantizing down to the binary values of 1 or -1,

Courbariaux et al created a Binary NN (BNN). In their

BNN, weight values above or equal to zero are set to 1,

while all negative weights are set to -1. This single-bit,

switch-like implementation decreases storage

requirements and reduces hardware demands [15].

Given the binary nature of the weights, the

multiplications performed by high-precision MAC units

on GPUs can be completed using simple XNOR gates

or bitwise shifts. Furthermore, accumulation operations

can be performed through bit count functions that are

fundamental to most microprocessors. Therefore, a 32-

bit FP MAC unit, which can consume hundreds of

FPGA slices, can be replaced with a single or two-slice

XNOR-plus-bit count structure. This reduction in

computing resources also leads to a corresponding

decrease in the number of required memory accesses

and overall power consumption of the implementation.

Moreover, through the definition of a custom instruction

set on an FPGA, a specific XNOR-plus-bit count

instruction can be created. This special instruction has

the advantage of computing in a single passthrough

what would typically consume upwards of a MAC cycle

on a GPU. Further optimizing the design, the 32-bit

registers previously used to store full-precision weights

can be repurposed for 32, one-bit operations in Single

Instruction, Multiple Data (SIMD) execution [15].

3.2. Convolutional BNN

The BNN selected for our research was based on a

classical CNN layout and used the 1-bit weight and

activation, CNV-W1A1, fully convolutional CNV

architecture from the open-source Xilinx Brevitas

libraries [18]. Fig. 1 diagrams the feature extraction and

classification stages of the CNV architecture. The input

dimensions, (32, 32, 3) specified correspond to 32x32

RGB, or 3-channel images.

The feature extraction stage of the network consists

of a sequence of convolution functional blocks. Each

grouping of functions consists of a 2D quantized

Figure 2. High-level diagram depicting Brevitas export to the FINN framework followed by ONNX

graph processing, synthesis, driver creation, and board deployment. Diagram inspired from [17].

convolution operation, QuantConv2d, which applies a

3x3 filter to its input with a stride of 1. The dimensions

of the resulting feature matrix from a QuantConv2d

layer is either maintained or doubled every other

convolution. According to research conducted by [19],

performing batch normalization following a

convolution, and prior to applying an activation

function, is preferable for QNNs. As such, each

QuantConv2d function is immediately followed by a 2D

batch normalization, BatchNorm2d, that then outputs to

a hard tanh activation function, QuantHardTanh.

Max pooling layers, MaxPool2d, are inserted as

downsamplers to restrain the number of features

between convolutional groupings and introduce noise.

Average pooling is not supported for binarized networks

[19], so this layer type was not considered.

Feature classification is performed through linear,

fully-connected layers, QuantLinear, in the latter stage

of the CNV architecture. Similar to the convolution

functional groupings, fully-connected groupings

comprise of a QuantLinear layer followed by vector

batch normalization and the same QuantHardTanh

activation used for convolutions. At the output of the

classification stage, a final QuantLinear layer

compresses a vector of 512 features to one of two

prediction values corresponding to the two classification

labels on which the final network was trained.

4. NEURAL NETWORK SYNTHESIS

Once trained, a BNN or QNN can be translated from

software language implementation to hardware modules

through specialized mapping and synthesis. The open-

source Xilinx FINN framework was applied for this

project to facilitate QNN-to-hardware mapping,

synthesis and deployment.

FINN accepts networks in ONNX format and

assigns each layer of a QNN to a compute engine. A

high degree of parallelism is applied between and within

each compute engine of a QNN. These compute units

consist of Processing Elements (PEs) operating in

parallel, as well as register-level parallelism through

SIMD instructions.

NN downscaling strategies are also employed by

FINN, including weight reduction through redundancy

elimination and thresholding; sparse matrix

calculations; and, fixed-integer, ternary and binary

quantization [19]. It applies the custom instruction and

parallelism optimisations described in [15] to the

translation of a QNN to an efficient FPGA

implementation.

In order to minimize memory access latencies,

QNN weight and activation values are closely coupled

with associated logic elements through FPGA BRAM

and LUT RAM [17]. A high-level diagram of the FINN

end-to-end flow is diagramed in Fig. 2.

5. METHODOLOGY

The datasets, and hardware and software tools used to

design, implement, train and test BNN and QNNs on an

FPGA platform are detailed in the following

subsections.

5.1. Development Platform

The target development board for this research was a

Diligent Arty Z7-20 with Xilinx Zynq-7000 SoC. The

SoC, an XC7Z020-1CLG400C device, is equipped with

dual ARM Cortex-A9 Central Processing Unit (CPU)

cores operating at 650 MHz, coupled with a Xilinx

Artix-7 FPGA. It features 512 MB of DDR3 off-chip

memory, and 630 KB of FPGA BRAM.

For on-board operations, the open-source PYNQ

software platform [20] from Xilinx supports the Python

programming language and the interactive Python

notebook application, Jupyter. PYNQ-Z1 version 2.5

was loaded onto the Arty-Z7 board for this research.

5.2. Frameworks and Libraries

The BNN and QNNs trained and tested were

implemented using version 1.1.0 of the PyTorch

framework and version 0.2.0 of the Xilinx Brevitas

libraries. Network synthesis was performed using Xilinx

FINN version 0.3b and the Xilinx Vivado 2019.1 high-

level synthesis tool.

5.3. Datasets

The datasets used for training were a custom ESA

Copernicus Sentinel-2 image-set, in JPEG format,

provided by Craft Prospect (CPL), and the “Planet:

Understanding the Amazon from Space” dataset

obtained via Kaggle [21].

The Sentinel-2 cloud detection image-set comprised

a total of 30,918 images post rebalancing, which were

initially categorized into three classes – cloudy, partly

cloudy, and clear. Each sample had a resolution of

47x47 pixels with RGB colour channels (47x47x3).

During the latter phase of our research, the classification

scheme was updated to a binary use-case – cloudy,

which included partly cloudy, and clear.

Planet’s dataset contained 24,094 images, following

rebalancing between clear and cloud-containing classes,

with a per-sample resolution of 256x256x3. These

images were similarly annotated to those from the

Sentinel-2 set.

To test for greater network generalization, a

combined Sentinel-2 and Planet dataset, containing a

total of 52,315 images, was created.

A 70:20:10 training, validation, and test split was

selected for all datasets. This ensured a sufficient

number of training and validation samples. No image

augmentation was performed; image scaling and

normalization were the only transforms applied.

5.4. Performance Benchmark

The FLI was developed by Craft Prospect using a Zynq-

7000 SoC similar to that used for this research.

According to [11], the device can achieve an inference

throughput of 5.3 images per second (images/sec). The

training accuracy for the deep learning model is stated

as 98%, with a cloud-cover inference accuracy of 93%.

A duty cycle power consumption of 0.9 W is quoted,

with a maximum instantaneous power consumption of

approximately 2.2 W.

While the FLI is the most directly comparable

accelerator to that implemented during this research, the

ESA PhiSat-1 mission, which launched on September

3rd, 2020, includes the HyperScout 2 multi-spectral

vision module with CloudScout cloud detection

accelerator [22][23]. The objective of the PhiSat-1

endeavour is to demonstrate the advantages of using

DNN technology to increase the efficiency and

effectiveness of Earth observations. As such, the PhiSat-

1 mission is of significant interest when considering the

applicability of our research to future satellite missions.

The CloudScout DNN is implemented on an Intel

Movidius Myriad 2 Vector Processing Unit (VPU).

Unlike the FPGA logic on the Zynq-7000 SoC, which

can be reprogrammed to implement a custom NN

architecture, the VPU is an Application-Specific

Integrated Circuit (ASIC) tailored to accelerate general

NN applications.

While the FPGA accelerator implemented for our

research architecturally differed from CloudScout, the

latter provided a current baseline on which to compare

performance, power consumption and accuracy. Based

on the results in [23], CloudScout has an inference

throughput of 3.1 images/sec, consuming 1.8 W of

power per inference cycle. An on-board test accuracy of

92% is quoted.

6. RESULTS

After experimenting with varying batch sizes, learning

rates, optimizers and loss functions, the hyperparameter

configuration that yielded the best inference results for

the CNV-W1A1 model employed an Adam optimizer,

with an initial learning rate of 0.001 and momentum of

0.0001, along with the multi-margin loss function from

PyTorch. The latter was used in lieu of a hinge loss,

which was found to be effective in prior BNN research

[11]. The best validation accuracy achieved for CNV-

W1A1 was 91.9% using a batch size of 50 and trained

for 190 epochs.

Training and inference results were obtained using

a binary classification use-case of either clear or cloudy

– the latter of which encompassed both partly cloudy

and over-90% obscured images. Since no current

mission requirement for the network generalization

afforded from a combined, cross-geography dataset was

found, training and inference trials used solely Sentinel-

2 images without the set from Planet.

6.1. Inference and Throughput

Inference comparisons between CPU (Intel Xeon E5-

2686 v4, 2.30GHz), GPU (Nvidia Tesla M60, 8GB

GDDR5) and FPGA (Xilinx Zynq-7000 XC7Z020-

1CLG400C) implementations demonstrated a marked

accuracy difference, as listed in Tab. 1. While both the

CPU and GPU achieved over 91% accuracy on the

Sentinel-2 test set, the FPGA scored 64.0%. This

disparity in results is primarily attributed to the

quantization pre-processing required to load the image

data onto the FPGA, but which was not similarly

performed for software-based inference.

Table 1. Inference accuracies using the Sentinel-2 test

set and FPGA, GPU and CPU accelerators.

Inference

Accuracy

Total

(%)

Clear

(%)

Cloudy

(%)

FPGA 64.0 74.6 53.4

GPU 91.9 93.0 95.4

CPU 91.8 90.7 85.3

The FPGA accelerator excelled in inference

throughput, processing 358.1, 32x32 images per second

using a maximum power consumption of 2.4 W at a 100

MHz target frequency.

Table 2. Runtime and throughput performance for each

of the accelerator platforms.

Throughput

(images/sec)

Runtime

(millisec)

FPGA 358.1 2.8

GPU 45.5 22.0

CPU 35.6 28.1

For comparison, as shown in Tab. 2, the throughput

performance achieved by the synthesized CNV-W1A1

was 7.9-times faster and consumed approximately 120

times less power [24] than what was recorded using the

GPU, which is the conventional datacentre inference

accelerator of choice.

6.2. Resource Utilization

The CNV-W1A1 implementation consumed a little over

half of the available LUTs, 36% of the flip-flops (FFs),

and 98.6% of the BRAM on the FPGA, as summarized

in Tab 3.

To ensure minimal inference latency, the FINN

synthesis process constrained the network to the on-chip

BRAM and LUTRAM. Off-chip DRAM memory

accesses had a bandwidth of only 1.1 Mb/s inbound and

4.3 kb/s outbound, so storing all network parameters in

FPGA memory was advantageous.

Table 3. Resource utilization summary (from Vivado

2019.1) for the CNV-W1A1 network on the FPGA.

Resource Utilization (%)

LUT 52.1

LUTRAM 21.8

FF 33.9

BRAM 98.6

BUFG 3.1

7. FAULT TOLERANCE AND HARDENING

The preceding results have demonstrated the

effectiveness of an FPGA for implementing an NN.

However, these types of programmable devices are

susceptible to radiation effects and require special fault

mitigation techniques targeting the configuration

memory, user logic, and embedded RAM blocks. The

decision on the use of a particular technique is based on

a trade-off between power, area and performance

overheads as well as achievable system availability.

This section focuses on mitigation techniques

specifically aimed at increasing the robustness of the

NN implemented on the FPGA fabric, as well as the

results that implementing such techniques have on

power consumption and resource availability.

Triple Modular Redundancy (TMR) is one of the

most common and effective methods of implementing

SEU mitigation in an SRAM-based FPGA. It can be

implemented at different granularities – register level,

block level, or device level –, and involves triplication

of a design portion with added voting logic to filter out

incorrect results in one of the three signal paths

[25][26][27]. Although full TMR leads to the best

possible system for mitigating effects of radiation, the

increased resource usage has a direct impact on power

consumption and heat generation – both unwanted in the

context of satellite systems. If a design is too large to

apply full TMR, alternatives include partial TMR and

Reduced Precision Redundancy.

Understanding the impact of radiation on the

outcomes of an NN offers an opportunity to customise

TMR-based mitigation techniques to the implemented

model. Libano et al showed that radiation can induce

errors that modify the output of the network with or

without affecting the NN’s functionality [7]. Discerning

if an error had a critical effect on the NN functionality

permitted the identification of its most vulnerable

layers, along with a selective hardening strategy that

triplicated only those layers likely to influence the

outcome. Applying this technique, Libano et al were

able to achieve almost 70% fault masking with a 45%

increase in resource utilisation. This is an impressive

performance gain when compared to a full TMR

solution, which would outperform the selective

configuration in terms of reliability, but would require a

200% increase in area to reach a nearly 100% rate of

fault masking.

As listed in Tab. 3, with 98.6% of the FPGA

BRAM used for the CNV-W1A1 implementation, there

was no opportunity to apply even partial TMR to

improve the output of the network. Possible solutions

include using a larger device or trimming the network to

free resources and ensure that it is robust to radiation.

Further work is needed to assess these techniques for

the implemented network and their effects and

efficiency at mitigating faults.

8. CONCLUSION

The binarized CNN, CNV-W1A1, implemented on a

Xilinx Zynq-7000 SoC demonstrated the rapid cloud

detection throughput possible from using a custom-

synthesized NN logic on an FPGA accelerator. An

inference throughput of 358.1 images/sec was achieved

using the implemented CNV-W1A1 accelerator. This

throughput is over 162 times faster than the minimum

2.2 images/sec required for effective cloud detection, as

specified in [11]. Moreover, the throughput of the CNV-

W1A1 deployment was nearly 68 times greater than the

FLI, with 5.3 images/sec. It was also 115 times faster

than the in-orbit CloudScout DNN with 3.1 images/sec.

The CNV-W1A1 throughput exceeded that of even a

high-performance GPU accelerator by completing the

same inference testing in 7.9-fold less time.

The impressive throughput of the CNV-W1A1

implementation was contrasted with an inference

accuracy lagging that of the FLI and CloudScout –

64.0% compared to 93.0% and 92.0%, respectively. The

CloudScout implementation, however, used FP16

precision for its network, compared to the binary

weights and activations of the CNV-W1A1 model.

With increasingly more stringent and competitive

restrictions on the footprint, power consumption and

heat dissipation of orbital space technology, greater

efficiency is required to both augment the value of

results and decrease associated operational costs. LEO

missions equipped with embedded AI devices are

demonstrating the cost-savings, performance boosts,

and end-result advantages afforded by NN-powered

automation and on-board deep learning in outer space.

Deployments in this domain are still nascent, with

extensive potential for AI and deep learning in

enumerable facets of space technology. The critical

factors remain those of maintaining a compact,

performant, fault-tolerant and accurate solution that

reliably functions within a low-power envelope.

Our research has demonstrated the inference

throughput advantage of an FPGA accelerator for real-

time cloud detection using a synthesized BNN. This

work will go on to feed further enhancements and

development of the Craft Prospect FLI. Such custom-

configured FPGA implementations showcase the

potential for low-power, high-throughput AI

accelerators not only at the edge of global networks, but

that of outer space.

REFERENCES

[1] Mohajerani, Sorour, Thomas A. Krammer, and Parvaneh

Saeedi. "A Cloud Detection Algorithm for Remote Sensing

Images Using Fully Convolutional Neural Networks." In

2018 IEEE 20th International Workshop on Multimedia

Signal Processing (MMSP), pp. 1-5. IEEE, 2018.

[2] Campbell, Tanner S. "A Deep Learning Approach to

Autonomous Relative Terrain Navigation." PhD diss., The

University of Arizona, 2017.

[3] Lentaris, George, Konstantinos Maragos, Ioannis Stratakos,

Lazaros Papadopoulos, Odysseas Papanikolaou, Dimitrios

Soudris, Manolis Lourakis, Xenophon Zabulis, David

Gonzalez-Arjona, and Gianluca Furano. "High-performance

embedded computing in space: Evaluation of platforms for

vision-based navigation." Journal of Aerospace Information

Systems 15, no. 4 (2018): 178-192.

[4] Caffrey, Michael, Manuel Echave, Charles Fite, Tony

Nelson, Anthony Salazar, and Steven Storms. "A space-

based reconfigurable radio." In Proceedings of the

international conference on engineering of reconfigurable

systems and algorithms (ERSA), pp. 49-53. CSREA Press,

2002.

[5] Wirthlin, Michael. "High-reliability FPGA-based systems:

space, high-energy physics, and beyond." Proceedings of the

IEEE 103, no. 3 (2015): 379-389.

[6] Siegle, Felix, Tanya Vladimirova, Jørgen Ilstad, and Omar

Emam. "Mitigation of radiation effects in SRAM-based

FPGAs for space applications." ACM Computing Surveys

(CSUR) 47, no. 2 (2015): 1-34.

[7] Libano, F., B. Wilson, J. Anderson, M. J. Wirthlin, C.

Cazzaniga, C. Frost, and P. Rech. "Selective hardening for

neural networks in FPGAs." IEEE Transactions on Nuclear

Science 66, no. 1 (2018): 216-222.

[8] Xie, Fengying, Mengyun Shi, Zhenwei Shi, Jihao Yin, and

Danpei Zhao. “Multilevel cloud detection in remote sensing

images based on deep learning.” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing

10, no. 8 (2017): 3631-3640.

[9] Le Goff, M., J-Y. Tourneret, H. Wendt, M. Ortner, and M.

Spigai. "Deep learning for cloud detection." In 8th

International Conference of Pattern Recognition Systems

(ICPRS 2017), pp. 1-6. IET, 2017.

[10] Latry, Ch, Ch Panem, and Ph Dejean. "Cloud detection with

SVM technique." In 2007 IEEE International Geoscience

and Remote Sensing Symposium, pp. 448-451. IEEE, 2007.

[11] Greenland, Steve, Murray Ireland, Chisato Kobayashi, Peter

Mendham, Mark Post, and David White. "Development of a

minaturised forwards looking imager using deep learning for

responsive operations." In 4S Symposium 2018: The

Symposium on Small Satellites for Earth Observation. 2018.

[12] Dev, Soumyabrata, Atul Nautiyal, Yee Hui Lee, and Stefan

Winkler. "Cloudsegnet: A deep network for nychthemeron

cloud image segmentation." IEEE Geoscience and Remote

Sensing Letters 16, no. 12 (2019): 1814-1818.

[13] Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and

Li Fei-Fei. “Imagenet: A large-scale hierarchical image

database.” In 2009 IEEE conference on computer vision and

pattern recognition, pp. 248-255. IEEE, 2009.

[14] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton.

“Imagenet classification with deep convolutional neural

networks.” In Advances in neural information processing

systems, pp. 1097-1105. 2012.

[15] Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. "Binarized neural networks:

Training deep neural networks with weights and activations

constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830

(2016).

[16] Iandola, Forrest N., Song Han, Matthew W. Moskewicz,

Khalid Ashraf, William J. Dally, and Kurt Keutzer.

"SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and < 0.5 MB model size." arXiv preprint

arXiv:1602.07360 (2016).

[17] Umuroglu, Yaman, Nicholas J. Fraser, Giulio Gambardella,

Michaela Blott, Philip Leong, Magnus Jahre, and Kees

Vissers. "FINN: A framework for fast, scalable binarized

neural network inference." In Proceedings of the 2017

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 65-74. 2017.

[18] Xilinx Research Labs. “Brevitas: quantization-aware training

in Pytorch.” Retrieved May 26, 2020 from

<https://github.com/Xilinx/brevitas>.

[19] Blott, Michaela, Thomas B. Preußer, Nicholas J. Fraser,

Giulio Gambardella, Kenneth O’brien, Yaman Umuroglu,

Miriam Leeser, and Kees Vissers. "FINN-R: An end-to-end

deep-learning framework for fast exploration of quantized

neural networks." ACM Transactions on Reconfigurable

Technology and Systems (TRETS) 11, no. 3 (2018): 1-23.

[20] Xilinx. “PYNQ: Python Productivity for ZYNQ.” Retrieved

May 18, 2020 from <http://www.pynq.io>.

[21] Planet (2017). “Planet: Understanding the Amazon from

Space.” Retrieved from Kaggle on May 26 2020 from

<https://www.kaggle.com/c/planet-understanding-the-

amazon-from-space>.

[22] eoPortal Directory (2020). “PhiSat-1 Nanosatellite Mission.”

Retrieved August 18, 2020 from:

<https://directory.eoportal.org/web/eoportal/satellite-

missions/p/phisat-1>.

[23] Giuffrida, Gianluca, Lorenzo Diana, Francesco de Gioia,

Gionata Benelli, Gabriele Meoni, Massimiliano Donati, and

Luca Fanucci. “CloudScout: A Deep Neural Network for

On-Board Cloud Detection on Hyperspectral Images.”

Remote Sensing 12, no. 14 (2020): 2205.

[24] Nvidia, “NVIDIA® Tesla® M60 GPU Accelerator”

datasheet. Retrieved August 18, 2020 from

<https://images.nvidia.com/content/tesla/pdf/188417-Tesla-

M60-DS-A4-fnl-Web.pdf>.

[25] Pratt, Brian, Michael Caffrey, James F. Carroll, Paul

Graham, Keith Morgan, and Michael Wirthlin. “Fine-grain

SEU mitigation for FPGAs using partial TMR.” IEEE

Transactions on Nuclear Science 55, no. 4 (2008): 2274-

2280.

[26] Kastensmidt, F. Lima, Luca Sterpone, Luigi Carro, and M.

Sonza Reorda. “On the optimal design of triple modular

redundancy logic for SRAM-based FPGAs.” In Design,

Automation and Test in Europe, pp. 1290-1295. IEEE, 2005.

[27] Bolchini, Cristiana, Antonio Miele, and Marco D.

Santambrogio. “TMR and Partial Dynamic Reconfiguration

to mitigate SEU faults in FPGAs.” In 22nd IEEE

International Symposium on Defect and Fault-Tolerance in

VLSI Systems (DFT 2007), pp. 87-95. IEEE, 2007.

