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ABSTRACT 

The capture and transmission of remote-sensed imagery 

for Earth observation is both computationally and 

bandwidth expensive. In the analyses of remote-sensed 

imagery in the visual band, atmospheric cloud cover can 

obstruct up to two-thirds of observations, resulting in 

costly imagery being discarded. Mission objectives and 

satellite operational details vary; however, assuming a 

cloud-free observation requirement, a doubling of useful 

data downlinked with an associated halving of delivery 

cost is possible through effective cloud detection. A 

minimal-resource, real-time inference neural network is 

ideally suited to perform automatic cloud detection, 

both for pre-processing captured images prior to 

transmission and preventing unnecessary images being 

taken by larger payload sensors. 

Much of the hardware complexity of modern neural 

network implementations resides in high-precision 

floating-point calculation pipelines. In recent years, 

research has been conducted in identifying quantized, or 

low-integer precision equivalents to known deep 

learning models, which do not require the extensive 

resources of their floating-point, full-precision 

counterparts. Our work leverages existing research on 

binary and quantized neural networks to develop a real-

time, remote-sensed cloud detection solution using a 

commodity field-programmable gate array. This follows 

on developments of the Forwards Looking Imager for 

predictive cloud detection developed by Craft Prospect, 

a space engineering practice based in Glasgow, UK. 

The synthesized cloud detection accelerator 

achieved an inference throughput of 358.1 images per 

second with a maximum power consumption of 2.4 W. 

This throughput is an order of magnitude faster than 

alternate algorithmic options for the Forwards Looking 

Imager at around one third reduction in classification 

accuracy, and approximately two orders of magnitude 

faster than the CloudScout deep neural network, 

deployed with HyperScout 2 on the European Space 

Agency PhiSat-1 mission. Strategies for incorporating 

fault tolerance mechanisms are expounded.  

 

1. INTRODUCTION 

Artificial intelligence (AI), specifically machine 

learning and deep learning neural networks (NNs) have 

revolutionized numerous domains of technology during 

the last decade. From fully autonomous platforms and 

computer vision to recommender systems and financial 

forecasting, NNs now form the foundations of numerous 

computing applications. These algorithms are often 

heavily resource-consuming, with their applications 

requiring high-performance computing and datacentre 

deployments rather than small and low-power devices.  

In Earth Observation (EO) analyses and 

atmospheric cloud detection, real-time inference is 

required to rapidly identify cloud cover posing an 

obstruction to visual captures of the planet surface 

below. With cloud cover possibly enveloping up to two-

thirds of the Earth’s atmosphere at a given instant, over 

60% of remote-sensed imagery may be corrupted by 

cloud opacity [1]. It ensues that the bandwidth and costs 

associated with satellite transmissions to ground stations 

can similarly be reduced by potentially over 60% 

through the application of an on-board NN for real-time 

cloud detection. This on-board AI could both prevent 

obstructed imagery from being transmitted and avoid 

costly usage of payload instrumentation by anticipating 

upcoming clouds.  

The objective of this work was developing a real-

time cloud detector through an NN trained on an EO 

dataset and implemented on a Commodity Off-The-

Shelf (COTS) Field-Programmable Gate Array (FPGA) 

device. A comparison with existing cloud detection 

mechanisms is provided in Sec. 2. 

 

1.1. Quantization Versus Full Precision 

It was once assumed that full-precision calculations 

were required to obtain accurate results with Deep NNs 

(DNNs). More recently, researchers have determined 

that lower-precision, quantized, and even ternary or 

binary variants of these models can achieve suitable 

accuracy levels using a fraction of the computing 

resources. These Quantized NNs (QNNs) can now be 

implemented using lower power, minimal-resource, 

embedded System-on-Chips (SoCs) and FPGAs. Sec. 3 

captures core learnings, gaps, and opportunities for 

further innovation from the QNN literature reviewed. 

 Pattern recognition algorithms implemented 

using Convolutional NNs (CNNs) are well suited to 

space exploration and unmanned aerial vehicles and can 

be used by these applications to identify and classify 

objects based on captured images [2]. Due to their low-

cost, low-power consumption and flexibility, FPGAs 

offer an attractive solution to efficiently implement NNs 
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[3]. The performance benefits and flexibility of FPGAs 

provide a scalable solution and, in recent years, there 

has been an increased use of these devices in harsh 

environments, such as space [4].  

The end-to-end methodology undertaken for 

synthesizing a trained cloud detection QNN and 

implementing it onto an FPGA is covered in Sec. 5. 

 

1.2. Implementation Robustness  

FPGAs, particularly those based on Static Random-

Access Memory (SRAM) technology, have been shown 

to be sensitive to radiation [5]. They may experience 

Single Event Upsets (SEU) in the configuration memory 

that can change the configuration of a routing 

connection, Look-Up Table (LUT) or Block RAM 

(BRAM). Therefore, design techniques to mitigate such 

radiation effects must be applied to these devices [6]. In 

most cases, the decision on the use of a particular 

technique will be based on a trade-off between power, 

area and performance overheads as well as achievable 

system availability.  

Sec. 7 investigates selective hardening [7] 

mitigation techniques aimed at increasing the robustness 

of the NN implemented on the FPGA fabric. 

 

1.3. AI at the Edge of Outer Space 

A summary of results can be referenced in Sec. 6, along 

with details on the achievement of a low-power, high-

throughput solution.  

Concluding the paper is a comparison between our 

obtained results and those of two alternative solutions: 

The Forwards Looking Imager (FLI) from Craft 

Prospect, and CloudScout on the European Space 

Agency (ESA) PhiSat-1 mission.  

The FLI uses onboard algorithms for feature 

detection in the upcoming or near satellite environment, 

allowing onboard behaviours to be modified to provide 

a more responsive space asset. The system is highly 

adaptable to different use-cases for feature detection; 

however, a common scenario is in providing cloud 

detection for efficient tasking of a primary payload. 

Our accelerator’s throughput advantage is 

explained, alongside recommendations for improving its 

accuracy and fault tolerance. 

 

2. EO AND CLOUD DETECTION 

Remote-sensed imagery for the purposes of cloud 

detection are typically obtained from satellites in Low-

Earth Orbit (LEO) using either visual frequency, 

infrared, or multi-spectral capture sensors. For the 

analyses of remote-sensed imagery focused on ground 

details, cloud cover, even in cases of haze or incomplete 

opacity, can obstruct the precise study of surface-level 

topologies, objects and structures. As such, rapidly 

identifying occurrences of cloud cover, preferably 

before an image is captured, reduces resource and 

transmission bandwidth usage along with associated 

costs. With cost savings often proportional to 

transmission bandwidth reductions, there are significant 

gains in time and monetary resources to be gained by 

avoiding the capture and transmission of unnecessary 

images containing clouds. 

The focus of our research was on visual-band, 

remote-sensed imagery impacted by clouds. Satellites 

with synthetic aperture radar (SAR) sensors have 

wavelengths that can pierce through cloud cover and 

capture ground data [8], but the reconstructed imagery 

is of often of lower resolution and targeted for the 

monitoring of temperature, moisture, and other land 

metrics rather than visual inspection of land details.  

Multi-spectral sensors fitted on an increasing 

number of satellites can provide upper-atmosphere 

moisture and temperature readings, which can be used 

in the differentiation of clouds from ground and sea 

effects with similar spectra – such as ice, snow, or 

white-coloured, human-made objects [1][8]. Since 

remote-sensed captures using Red, Green, Blue (RGB) 

and near-infrared sensors remain a prominent use-case 

with a number of properly annotated datasets, the visual 

band was the focus for this research – similar to [1] and 

[9]. For these latter research undertakings, the infrared 

channel was also considered, whereas this was outside 

the scope of the strictly RGB observations used in our 

research. 

 

2.1. Conventional Cloud Detection Techniques 

A conventional method of cloud detection with RGB 

imagery is to perform per-pixel analyses. This involves 

marking each pixel as either cloud-containing or not 

using classical machine learning algorithms, such as 

decision trees or support vector machines [10]. These 

processes, which include Function of Mask and 

Automated Cloud Cover Assessment, rely on a specific 

transmission band from a satellite to inform the post-

processing analysis of the intensity spectra required to 

make the cloud / no-cloud decision. While being 

lightweight detection algorithms, research has shown 

these approaches to be prone to erroneously classifying 

snow and ice cover, or white-coloured land or sea 

objects as clouds [8].  

In lieu of the manual specification of features for 

clouds, research has been conducted in devising deep 

learning solutions for the task [8][11][12]. A primary 

advantage of DNNs over classical machine learning 

functions and shallow Artificial NNs (ANNs) is their 

ability to automatically derive detection features of 

interest as part of their training and optimization [9]. A 

couple of DNN approaches that informed the network 

architecture used for this research are examined in the 

following subsection. 

 



 

2.2. Deep Learning for Cloud Detection 

Neural networks require training on sufficiently large 

datasets to calibrate their weights between neural nodes. 

The objective of training is to minimize the loss in 

prediction or classification against either manually or 

automatically generated expected results. Deep models 

compared to their ANN counterparts have multiple 

layers of neurons and increasingly feature novel 

functionality, including the convolutional layers and 

non-linear activation functions found in CNNs.  

When the data inputted into a learning model is pre-

annotated, the training process is said to be supervised. 

Networks requiring no prior labelling of data are trained 

in an unsupervised manner. A semi-supervised 

intermediate case exists for specific training instances. 

A supervised approach was undertaken for our research.  

 

2.3. Ground Truths 

To perform loss minimization during supervised DNN 

training, the backpropagation process requires expected 

prediction or classification results. These ground truths 

for the data are the labels, or annotations previously 

mentioned.  

Per-pixel cloud masks were employed by [1] and 

[9] to gauge the accuracy of cloud detections. These 

cloud masks represented the presence or absence of 

cloud cover in a pixel using binary values – 1 for some 

cloud, or 0 otherwise. The satellite data used by this 

former research permitted the availability or generation 

of these per-pixel prediction maps.  

As the datasets used for this research included per-

image cloud cover classifications, and not per-pixel 

granularity, the NNs investigated were required to learn 

from each image what features constituted clouds or 

ground topologies. This approach reduced the 

computational requirements for the network, as 

detection was performed per 32x32 tile of atmospheric 

sky capture and categorized into one of initially three 

classes.  

Per-pixel and per-region, or “superpixel” [9], 

detection accuracies are needed for DNNs featuring 

image segmentation capabilities. These networks are 

capable of individually identifying areas of an image 

with or without cloud cover. While such networks with 

added architectural complexity were investigated, they 

were not required for our cloud detection use-case and 

are mentioned for further study.  

 

3. NEURAL NETWORK ARCHITECTURE  

The rapid rise of interest by research and industry for 

DNNs in the last decade was predicated on the 

relatively low-cost availability of high-performance 

matrix computation hardware. Specifically, the deep, 

parallel pipeline architectures of Graphics Processing 

Units (GPUs), with their specialized matrix and vector 

multiplication functions, resulted in the almost-

exclusive use of GPUs as accelerators in the 

advancement of DNNs since the pivotal publication of 

the AlexNet framework by Krizhevsky, Sutskever and 

Hinton in 2012. AlexNet was trained with the ImageNet 

dataset of over one million annotated images [13] using 

Figure 1. CNV architectural layer diagram illustrating the progression of data from image input into 

convolutional feature extraction and through linear fully-connected classification to produce a two-

class prediction vector. The dimension of features entering a convolutional or fully-connected layer is 

specified as the “In” value, while the resulting dimension is labelled “Out.” 



 

two Nvidia GTX 580 GPUs [14]. The astounding 

improvement in ImageNet classification by AlexNet, 

demonstrating an over ten-percent reduction in 

classification loss compared to its closest NN 

competitor, spotlighted the use of off-the-shelf GPU 

hardware for DNN training and inference acceleration. 

These devices had previously been targeted towards 

computer image rendering and video gaming, but were 

now aptly positioned to accelerate research in AI and 

compute applications in the datacentre. 

The Multiply-Accumulate (MAC) units on GPUs 

rapidly perform high-precision, floating-point matrix 

and vector computations, and each unit can be regarded 

as an artificial neuron in a DNN [15].  

 

3.1. Binarized and Quantized Neural Networks 

CNNs require the storage and processing of thousands 

to millions of parameters, learned through numerous 

epochs of training on large datasets. These dictate the 

convolutional behaviour that leads to accurate 

inferences of a variety of classification types. Research 

into CNN kernels, or filters, have determined that a 

significant percentage of the convolutional kernel 

parameters are duplicated, and there is efficiency to be 

gained in sparse matrix layouts for CNNs [15]. 

Moreover, novel NN architectures, using smaller but 

deeper convolutional layers, such as SqueezeNet, have 

demonstrated close to parity with AlexNet performance, 

but with over five-hundred times fewer parameters [16]. 

The precision of each parameter contributes to the 

computational load of a network. Even reduced 

architectures store hundreds of thousands of weights 

and activation parameters, typically with 16- or 32-bit 

Floating Point (FP) precision. Quantization of weight 

and activation values can be employed to reduce 

parameter precision while maintaining a consistent NN 

architecture. Common quantization levels include 4- 

and 8-bit fixed-integer (INT4 and INT8, respectively), 

as well as ternary (2-bit) and binary (1-bit) 

representations. Full-precision values can also be 

gradually quantized through a series of thresholding 

steps [17]. 

By quantizing down to the binary values of 1 or -1, 

Courbariaux et al created a Binary NN (BNN). In their 

BNN, weight values above or equal to zero are set to 1, 

while all negative weights are set to -1. This single-bit, 

switch-like implementation decreases storage 

requirements and reduces hardware demands [15]. 

Given the binary nature of the weights, the 

multiplications performed by high-precision MAC units 

on GPUs can be completed using simple XNOR gates 

or bitwise shifts. Furthermore, accumulation operations 

can be performed through bit count functions that are 

fundamental to most microprocessors. Therefore, a 32-

bit FP MAC unit, which can consume hundreds of 

FPGA slices, can be replaced with a single or two-slice 

XNOR-plus-bit count structure. This reduction in 

computing resources also leads to a corresponding 

decrease in the number of required memory accesses 

and overall power consumption of the implementation. 

Moreover, through the definition of a custom instruction 

set on an FPGA, a specific XNOR-plus-bit count 

instruction can be created. This special instruction has 

the advantage of computing in a single passthrough 

what would typically consume upwards of a MAC cycle 

on a GPU. Further optimizing the design, the 32-bit 

registers previously used to store full-precision weights 

can be repurposed for 32, one-bit operations in Single 

Instruction, Multiple Data (SIMD) execution [15]. 

 

3.2. Convolutional BNN 

The BNN selected for our research was based on a 

classical CNN layout and used the 1-bit weight and 

activation, CNV-W1A1, fully convolutional CNV 

architecture from the open-source Xilinx Brevitas 

libraries [18]. Fig. 1 diagrams the feature extraction and 

classification stages of the CNV architecture. The input 

dimensions, (32, 32, 3) specified correspond to 32x32 

RGB, or 3-channel images.  

The feature extraction stage of the network consists 

of a sequence of convolution functional blocks. Each 

grouping of functions consists of a 2D quantized 

Figure 2. High-level diagram depicting Brevitas export to the FINN framework followed by ONNX 

graph processing, synthesis, driver creation, and board deployment. Diagram inspired from [17]. 



 

convolution operation, QuantConv2d, which applies a 

3x3 filter to its input with a stride of 1. The dimensions 

of the resulting feature matrix from a QuantConv2d 

layer is either maintained or doubled every other 

convolution. According to research conducted by [19], 

performing batch normalization following a 

convolution, and prior to applying an activation 

function, is preferable for QNNs. As such, each 

QuantConv2d function is immediately followed by a 2D 

batch normalization, BatchNorm2d, that then outputs to 

a hard tanh activation function, QuantHardTanh.  

Max pooling layers, MaxPool2d, are inserted as 

downsamplers to restrain the number of features 

between convolutional groupings and introduce noise. 

Average pooling is not supported for binarized networks 

[19], so this layer type was not considered. 

Feature classification is performed through linear, 

fully-connected layers, QuantLinear, in the latter stage 

of the CNV architecture. Similar to the convolution 

functional groupings, fully-connected groupings 

comprise of a QuantLinear layer followed by vector 

batch normalization and the same QuantHardTanh 

activation used for convolutions. At the output of the 

classification stage, a final QuantLinear layer 

compresses a vector of 512 features to one of two 

prediction values corresponding to the two classification 

labels on which the final network was trained.  

 

4. NEURAL NETWORK SYNTHESIS 

Once trained, a BNN or QNN can be translated from 

software language implementation to hardware modules 

through specialized mapping and synthesis. The open-

source Xilinx FINN framework was applied for this 

project to facilitate QNN-to-hardware mapping, 

synthesis and deployment.  

FINN accepts networks in ONNX format and 

assigns each layer of a QNN to a compute engine. A 

high degree of parallelism is applied between and within 

each compute engine of a QNN. These compute units 

consist of Processing Elements (PEs) operating in 

parallel, as well as register-level parallelism through 

SIMD instructions.  

NN downscaling strategies are also employed by 

FINN, including weight reduction through redundancy 

elimination and thresholding; sparse matrix 

calculations; and, fixed-integer, ternary and binary 

quantization [19]. It applies the custom instruction and 

parallelism optimisations described in [15] to the 

translation of a QNN to an efficient FPGA 

implementation.  

In order to minimize memory access latencies, 

QNN weight and activation values are closely coupled 

with associated logic elements through FPGA BRAM 

and LUT RAM [17]. A high-level diagram of the FINN 

end-to-end flow is diagramed in Fig. 2. 

5. METHODOLOGY 

The datasets, and hardware and software tools used to 

design, implement, train and test BNN and QNNs on an 

FPGA platform are detailed in the following 

subsections. 

  

5.1. Development Platform 

The target development board for this research was a 

Diligent Arty Z7-20 with Xilinx Zynq-7000 SoC. The 

SoC, an XC7Z020-1CLG400C device, is equipped with 

dual ARM Cortex-A9 Central Processing Unit (CPU) 

cores operating at 650 MHz, coupled with a Xilinx 

Artix-7 FPGA. It features 512 MB of DDR3 off-chip 

memory, and 630 KB of FPGA BRAM. 

For on-board operations, the open-source PYNQ 

software platform [20] from Xilinx supports the Python 

programming language and the interactive Python 

notebook application, Jupyter. PYNQ-Z1 version 2.5 

was loaded onto the Arty-Z7 board for this research. 

 

5.2. Frameworks and Libraries 

The BNN and QNNs trained and tested were 

implemented using version 1.1.0 of the PyTorch 

framework and version 0.2.0 of the Xilinx Brevitas 

libraries. Network synthesis was performed using Xilinx 

FINN version 0.3b and the Xilinx Vivado 2019.1 high-

level synthesis tool.   

 

5.3. Datasets 

The datasets used for training were a custom ESA 

Copernicus Sentinel-2 image-set, in JPEG format, 

provided by Craft Prospect (CPL), and the “Planet: 

Understanding the Amazon from Space” dataset 

obtained via Kaggle [21]. 

The Sentinel-2 cloud detection image-set comprised 

a total of 30,918 images post rebalancing, which were 

initially categorized into three classes – cloudy, partly 

cloudy, and clear. Each sample had a resolution of 

47x47 pixels with RGB colour channels (47x47x3). 

During the latter phase of our research, the classification 

scheme was updated to a binary use-case – cloudy, 

which included partly cloudy, and clear. 

Planet’s dataset contained 24,094 images, following 

rebalancing between clear and cloud-containing classes, 

with a per-sample resolution of 256x256x3. These 

images were similarly annotated to those from the 

Sentinel-2 set. 

To test for greater network generalization, a 

combined Sentinel-2 and Planet dataset, containing a 

total of 52,315 images, was created. 

A 70:20:10 training, validation, and test split was 

selected for all datasets. This ensured a sufficient 

number of training and validation samples. No image 

augmentation was performed; image scaling and 

normalization were the only transforms applied. 



 

5.4. Performance Benchmark 

The FLI was developed by Craft Prospect using a Zynq-

7000 SoC similar to that used for this research. 

According to [11], the device can achieve an inference 

throughput of 5.3 images per second (images/sec). The 

training accuracy for the deep learning model is stated 

as 98%, with a cloud-cover inference accuracy of 93%. 

A duty cycle power consumption of 0.9 W is quoted, 

with a maximum instantaneous power consumption of 

approximately 2.2 W.  

While the FLI is the most directly comparable 

accelerator to that implemented during this research, the 

ESA PhiSat-1 mission, which launched on September 

3rd, 2020, includes the HyperScout 2 multi-spectral 

vision module with CloudScout cloud detection 

accelerator [22][23]. The objective of the PhiSat-1 

endeavour is to demonstrate the advantages of using 

DNN technology to increase the efficiency and 

effectiveness of Earth observations. As such, the PhiSat-

1 mission is of significant interest when considering the 

applicability of our research to future satellite missions.  

The CloudScout DNN is implemented on an Intel 

Movidius Myriad 2 Vector Processing Unit (VPU). 

Unlike the FPGA logic on the Zynq-7000 SoC, which 

can be reprogrammed to implement a custom NN 

architecture, the VPU is an Application-Specific 

Integrated Circuit (ASIC) tailored to accelerate general 

NN applications.  

While the FPGA accelerator implemented for our 

research architecturally differed from CloudScout, the 

latter provided a current baseline on which to compare 

performance, power consumption and accuracy. Based 

on the results in [23], CloudScout has an inference 

throughput of 3.1 images/sec, consuming 1.8 W of 

power per inference cycle. An on-board test accuracy of 

92% is quoted.  

 

6. RESULTS 

After experimenting with varying batch sizes, learning 

rates, optimizers and loss functions, the hyperparameter 

configuration that yielded the best inference results for 

the CNV-W1A1 model employed an Adam optimizer, 

with an initial learning rate of 0.001 and momentum of 

0.0001, along with the multi-margin loss function from 

PyTorch. The latter was used in lieu of a hinge loss, 

which was found to be effective in prior BNN research 

[11]. The best validation accuracy achieved for CNV-

W1A1 was 91.9% using a batch size of 50 and trained 

for 190 epochs. 

Training and inference results were obtained using 

a binary classification use-case of either clear or cloudy 

– the latter of which encompassed both partly cloudy 

and over-90% obscured images. Since no current 

mission requirement for the network generalization 

afforded from a combined, cross-geography dataset was 

found, training and inference trials used solely Sentinel-

2 images without the set from Planet.  

 

6.1. Inference and Throughput 

Inference comparisons between CPU (Intel Xeon E5-

2686 v4, 2.30GHz), GPU (Nvidia Tesla M60, 8GB 

GDDR5) and FPGA (Xilinx Zynq-7000 XC7Z020-

1CLG400C) implementations demonstrated a marked 

accuracy difference, as listed in Tab. 1. While both the 

CPU and GPU achieved over 91% accuracy on the 

Sentinel-2 test set, the FPGA scored 64.0%. This 

disparity in results is primarily attributed to the 

quantization pre-processing required to load the image 

data onto the FPGA, but which was not similarly 

performed for software-based inference.  

 

Table 1. Inference accuracies using the Sentinel-2 test 

set and FPGA, GPU and CPU accelerators. 

Inference 

Accuracy 

Total  

(%) 

Clear  

(%) 

Cloudy  

(%) 

FPGA 64.0 74.6 53.4 

GPU 91.9 93.0 95.4 

CPU 91.8 90.7 85.3 

 

The FPGA accelerator excelled in inference 

throughput, processing 358.1, 32x32 images per second 

using a maximum power consumption of 2.4 W at a 100 

MHz target frequency.  

 

Table 2. Runtime and throughput performance for each 

of the accelerator platforms. 

 
Throughput 

(images/sec) 

Runtime 

(millisec) 

FPGA 358.1 2.8 

GPU 45.5 22.0 

CPU 35.6 28.1 

 

For comparison, as shown in Tab. 2, the throughput 

performance achieved by the synthesized CNV-W1A1 

was 7.9-times faster and consumed approximately 120 

times less power [24] than what was recorded using the 

GPU, which is the conventional datacentre inference 

accelerator of choice.  

 

6.2. Resource Utilization 

The CNV-W1A1 implementation consumed a little over 

half of the available LUTs, 36% of the flip-flops (FFs), 

and 98.6% of the BRAM on the FPGA, as summarized 

in Tab 3. 

To ensure minimal inference latency, the FINN 

synthesis process constrained the network to the on-chip 

BRAM and LUTRAM. Off-chip DRAM memory 

accesses had a bandwidth of only 1.1 Mb/s inbound and 

4.3 kb/s outbound, so storing all network parameters in 

FPGA memory was advantageous. 

 



 

Table 3. Resource utilization summary (from Vivado 

2019.1) for the CNV-W1A1 network on the FPGA. 

Resource Utilization (%) 

LUT 52.1 

LUTRAM 21.8 

FF 33.9 

BRAM 98.6 

BUFG 3.1 

 

7. FAULT TOLERANCE AND HARDENING 

The preceding results have demonstrated the 

effectiveness of an FPGA for implementing an NN. 

However, these types of programmable devices are 

susceptible to radiation effects and require special fault 

mitigation techniques targeting the configuration 

memory, user logic, and embedded RAM blocks. The 

decision on the use of a particular technique is based on 

a trade-off between power, area and performance 

overheads as well as achievable system availability. 

This section focuses on mitigation techniques 

specifically aimed at increasing the robustness of the 

NN implemented on the FPGA fabric, as well as the 

results that implementing such techniques have on 

power consumption and resource availability. 

Triple Modular Redundancy (TMR) is one of the 

most common and effective methods of implementing 

SEU mitigation in an SRAM-based FPGA. It can be 

implemented at different granularities – register level, 

block level, or device level –, and involves triplication 

of a design portion with added voting logic to filter out 

incorrect results in one of the three signal paths 

[25][26][27]. Although full TMR leads to the best 

possible system for mitigating effects of radiation, the 

increased resource usage has a direct impact on power 

consumption and heat generation – both unwanted in the 

context of satellite systems. If a design is too large to 

apply full TMR, alternatives include partial TMR and 

Reduced Precision Redundancy. 

Understanding the impact of radiation on the 

outcomes of an NN offers an opportunity to customise 

TMR-based mitigation techniques to the implemented 

model. Libano et al showed that radiation can induce 

errors that modify the output of the network with or 

without affecting the NN’s functionality [7]. Discerning 

if an error had a critical effect on the NN functionality 

permitted the identification of its most vulnerable 

layers, along with a selective hardening strategy that 

triplicated only those layers likely to influence the 

outcome. Applying this technique, Libano et al were 

able to achieve almost 70% fault masking with a 45% 

increase in resource utilisation. This is an impressive 

performance gain when compared to a full TMR 

solution, which would outperform the selective 

configuration in terms of reliability, but would require a 

200% increase in area to reach a nearly 100% rate of 

fault masking. 

As listed in Tab. 3, with 98.6% of the FPGA 

BRAM used for the CNV-W1A1 implementation, there 

was no opportunity to apply even partial TMR to 

improve the output of the network. Possible solutions 

include using a larger device or trimming the network to 

free resources and ensure that it is robust to radiation. 

Further work is needed to assess these techniques for 

the implemented network and their effects and 

efficiency at mitigating faults.   

 

8. CONCLUSION 

The binarized CNN, CNV-W1A1, implemented on a 

Xilinx Zynq-7000 SoC demonstrated the rapid cloud 

detection throughput possible from using a custom-

synthesized NN logic on an FPGA accelerator. An 

inference throughput of 358.1 images/sec was achieved 

using the implemented CNV-W1A1 accelerator. This 

throughput is over 162 times faster than the minimum 

2.2 images/sec required for effective cloud detection, as 

specified in [11]. Moreover, the throughput of the CNV-

W1A1 deployment was nearly 68 times greater than the 

FLI, with 5.3 images/sec. It was also 115 times faster 

than the in-orbit CloudScout DNN with 3.1 images/sec. 

The CNV-W1A1 throughput exceeded that of even a 

high-performance GPU accelerator by completing the 

same inference testing in 7.9-fold less time. 

The impressive throughput of the CNV-W1A1 

implementation was contrasted with an inference 

accuracy lagging that of the FLI and CloudScout – 

64.0% compared to 93.0% and 92.0%, respectively. The 

CloudScout implementation, however, used FP16 

precision for its network, compared to the binary 

weights and activations of the CNV-W1A1 model. 

With increasingly more stringent and competitive 

restrictions on the footprint, power consumption and 

heat dissipation of orbital space technology, greater 

efficiency is required to both augment the value of 

results and decrease associated operational costs. LEO 

missions equipped with embedded AI devices are 

demonstrating the cost-savings, performance boosts, 

and end-result advantages afforded by NN-powered 

automation and on-board deep learning in outer space.  

Deployments in this domain are still nascent, with 

extensive potential for AI and deep learning in 

enumerable facets of space technology. The critical 

factors remain those of maintaining a compact, 

performant, fault-tolerant and accurate solution that 

reliably functions within a low-power envelope. 

Our research has demonstrated the inference 

throughput advantage of an FPGA accelerator for real-

time cloud detection using a synthesized BNN. This 

work will go on to feed further enhancements and 

development of the Craft Prospect FLI. Such custom-

configured FPGA implementations showcase the 

potential for low-power, high-throughput AI 

accelerators not only at the edge of global networks, but 

that of outer space.  
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