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Abstract—With widespread modernization, digitization and
transformations of most of industries, Artificial Intelligence (AI)
has become the key enabler in that modernization journey.
AI offers substantial capabilities to solve new problems and
optimise existing solutions specialising on specific problems and
learning from different domains. AI solutions can be either
explainable or black box ones with the latter being urged to
improve since they cannot trust. Case-based Reasoning (CBR)
is an explainable AI approach where solutions are provided
along with relevant explanations in terms of why a solution was
selected. However, CBR, like most other explainable approaches,
has several limitations in terms of scalability, large data volumes,
domain complexity, that reduce its ability to scale any CBR
system in industrial applications. In this paper, we provide a
heterogeneous CBR framework - DeepKAF where we combine
CBR paradigm with Deep Learning architectures to solve compli-
cated Natural Language Processing (NLP) problems (eg. mixed
language and grammatically incorrect text).DeepKAF is built
based on continuous research in the area of Deep Learning and
CBR. DeepKAF has been implemented and used across different
domains, test use cases and research models as an ensemble deep
learning and CBR Architecture.

Index Terms—Deep Learning, Case-based Reasoning, Natural
Language Processing

I. INTRODUCTION

Decisions under pressure is a common characteristic of
modern processes and real time applications. With a constant
flow of valuable data points, processes are called to perform
better and faster whilst the decision time remains the same
if not shorter. Over the past years we have seen impressive
work in the areas of Neural Networks and Deep Learning
enabling faster reasoning over constantly working data flows,
however there is little work in the areas of reasoning under

fuzziness, incomplete information and uncertainty. Decision
Support Systems that deal with customers based on text infor-
mation have a high degree of fuzziness and uncertainty.This
situation becomes even more challenging when their available
text contains abbreviations, missing sentences or is multilin-
gual. Motivated from the above challenges this work presents
Deep Knowledge Acquisition Framework (DeepKAF) a Case-
based Reasoning Framework for rapid application prototyp-
ing on Natural Language Processing Workflows. DeepKAF
presents an end-to-end natural language framework and it
has remarkable applicability and acceptance in industrial ap-
plications that share multi-languages, mixed notations and
content fuzziness. The key idea behind its inception was the
observation that processes can be represented as workflows
and workflow states can be inferred from text flows (signals)
using historical knowledge (cases). Workflow signals can be
inferred to workflow processes [21], [22] and processes to
experiences leading to appropriate mitigation policies. This
work has been evolved over a number of real applications [5],
[6], [4] and this work presents its core concepts, architecture
and implementation using deep learning models and similarity
metrics. Our contributions in this work are:

1) DeepKAF Framework as an NLP workflow representa-
tion framework using CBR

2) Its architecture and Implementation
3) An Evaluation using real time NLP workflow data

The structure of this paper is as follows: Section II presents
DeepKAF at high level, its architecture and its modelling
and encoding components, Section II covers Feedback and
Modelling Retraining, focusing on its recent novelties in terms
of Word embeddings and the addition of Siamese Networks,978-1-7281-6799-2/20/$31.00 ©2020 IEEE



Section IV presents its evaluation so far using Historical data
and a variety of methods to provide results. Finally, Section
V concludes this work and presents the forthcoming additions
and upcoming improvements to this framework.

II. DEEP KNOWLEDGE ACQUISITION FRAMEWORK
(DEEPKAF)

DeepKAF framework has been designed and implemented
to leverage Case-based Reasoning as an explainable AI ap-
proach by using various Deep Learning models to overcome
and mitigate the limitations of CBR implementations. Accord-
ing to the yearly survey about what’s hot in CBR domain [2],
Case acquisition from raw data, including text and diagrams is
on the top of the list along with implementing CBR approaches
that can deal with high velocity and veracity data volumes.
DeepKAF is defining the procedure of implementing a CBR
system and inject Deep Learning models while still being able
to provide adequate level of explainability (See Figure 1).
Within specific industrial domains where tacit knowledge is
present, deep learning approaches do not suffice and specialist
input is required to mitigate specialised needs. DeepKAF
amplifies case-based reasoning with deep learning methods
to cope with specialist domain challenges pertaining to large
text corpuses, multi language content and mixed data types
e.g. numeric, catecorigal, etc..

DeepKAF is mainly improving two key elements of CBR
components, these of: 1. Similarity Measures 2. Retrieval

In the next sections, we will explain DeepKAF in detail
by showing the different similarity measures and retrieval
components.

A. Building Similarity Measures using Deep Learning Models
Components

DeepKAF similarity measures component comprise three
key models: 1. Autoencoders 2. Word Embeddings 3. Siamese
Networks Within any CBR system, building similarity mea-
sures are considered one of the most tedious and complicated
task [12] [10] [13]. Similarity measures are based on spe-
cialised domain knowledge and can identify how close cases
are to each other. To decode domain knowledge and describe
how cases and attributes are related to each other, intensive
domain expertise is required. In DeepKAF, the main goal is
to semi-automate the building of similarity measures in Textual
Case-based Systems.

Figure 2 depicts the process of building similarity measures
with CBR systems using Autoencoders, Word Embeddings,
and Siamese Neural Network.

Step 1: Use denoising and dimentiality reduction
autoencoders on the input data.
Step 2: Build Word Embeddings for the text.
Step 3: Split the dataset into Training/Test Data.
Step 4: Train the Siamese Neural Networks.
Step 5: Check the accuracy with the test data.
Step 6: If the accuracy is not high, do some hyper-parameters
tuning and re-run the entire process.

a) Autoencoders: Autoencoders are self-supervised neu-
ral networks designed primarily for dimensionality reduction
purposes [14]. Autoencoders can unify content in isometric
vector representations and reduce and represent input with
fewer features. DeepKAF uses Autoencoders to reduce man-
ual tagging from domain experts and accelerate the creation of
traditional CBR cases. In DeepKAF [8], Autoencoders have
been used successfully to denoise and summarize input text
prior feeding it to a novel Siamese network for similarity
calculations during DeepKAF′s training phase as well as find
similarities during the retrieval phase.

b) Word Embeddings: For more clarification, word em-
bedding is the method of translating the text into a numeri-
cal representation (Vectorization). In DeepKAF architecture,
the Word Embeddings concept is used intensively. Mitolov
et al in 2013 have brought the NLP group to Word2Vec
[16]. Word2vec comprises two language models in the neural
network: a Continuous Bag of Words (CBOW) and Skip-
gram(SG). For both CBOW and SG, a predefined-length text
window is moved around the corpus and the network is trained
in an iterative way with the words within the window. While
the CBOW model is trained to predict a word based on the
corresponding terms in the centre of a pre-defined window,
the Skip-gram model training aims to predict meanings based
on the concept of the main phrase. The model learns a linear
transformation which is the hidden layer and is considered as
the word representation. DeepKaf uses SG since it is superior
performance-wise in the recognition of semantic tasks [9].

c) Siamese Networks: Siamese Neural Networks (SNNs)
usually contain several sub neural-networks that share the
same parameter and weight configuration. SNNs are known for
their ability to distinguish correlations or associations among
distinct objects. Usually distinct sub-networks are used to
handle related inputs, while the meta-processing node must
merges their outputs into a decisive one network [15]. Deep-
KAF uses SNNs since they have the following characteristics:

1) SNNs are more solid compared to Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Networks
(RNNs) whilst appying them to advanced text tasks

2) SNNs provide robust and more meaningful text repre-
sentation (embeddings)

3) Sub-networks have collocated weights, having as a result
a reduction in the number of learning parameters, thus
reduced data requirements and less propensity to over-
fit.

B. Retrieval Component

In the retrieval component, the models that have been built
and trained are going to be used in order to clean the input text
first and then retrieve the most similar cases via the trained
Siamese Network. The siamese network gives a range between
0 (no similarity) and 1 (identical) to how similar the cases are.
Then according to the domain the CBR system is working in,
the retrieved results should be sorted based on the global and
local similarity measures.



Fig. 1. DeepKAF Architecture

Fig. 2. Building Similarity Measures Process

Fig. 3. Retrieval Process

Figure 3 shows the retrieval process within the CBR
paradigm combined with the trained deep learning models.
Traditional CBR uses similarity knowledge for retrievals
(similarity-based retrievals-SBR) [7]. In DeepKAF, the tradi-
tional similarity matrix is replaced by the trained models that
can give degrees of similarities between two distinctive textual
cases.

The Retrieval Process is as the following:

Step 1: Use denoising and dimentiality reduction
autoencoders on the input data (exactly as in the building
similarity measures phase).
Step 2: Use the trained siamese network to retrieve the nearest
neighbours.
Step 3: Rank the neighbour cases according to the domain
preferences.
Step 4: Get the end user feedback on the retrieved results.
Step 5: Retrain the models according to the methodologies
described in ”Section III”
Step 6: Store new case in the knowledge base along with its
associated potential solutions.

III. FEEDBACK AND MODELS RETRAINING

A mean to provide feedback and ”back-input” is an essential
process for any industrial CBR system. Withing a traditional
CBR cycle, constant user feedback is used for this purpose.
Typically a new case and its solution are added to the Knowl-
edge Base as part of the ”lazy” learning process that CBR
systems use to improve. For DeepKAF the feedback process
leads to ongoing deep learning model retraining that extends
the used vector space. This is being used respectively to
measure similarities more accurately and increase the coverage
of word embeddings model by increasing its vocabulary.

In this section, we will describe the available re-training
approaches that can be used within DeepKAF.

A. Word Embeddings Model

DeepKAF uses a word embedding constructed during its
training phase, which is provided from the available case
content, vocabulary and metadata. Any new case provides
acts as feedback input, having as a result the retraining of
the existing word embeddings model on new terms, available
words and sentences. Several word embeddings models have
been used throughout DeepKAF’s [6], with no specific model



prevailing and thus recommended over another other. An
observation from the authors is that embeddings are affected
from the type of text, the training which should be based on
high coverage of available words and sentences for a highly
relevant embeddings model to be selected. There are two main
retraining approaches on this:

a) : Incremental training techniques differ based on the
model to be retrained. DeepKAF has tested several word
embedding models among which word2vec [16] and its de-
scendants (eg. sentence2vec, sentence2sentence etc...)seemed
most applicable. Word2vec models do not offer an option for
direct, incremental training. They have to be re-implemented
extensively and heavily modified -from source code- to be able
to build a model that can be retrained.

b) : Transfer learning is the higher degree of improved
learning related to a new task. Transfer learning is achieved
through existing knowledge acquisition from a similar or
historical tasks that have already contributed to knowledge
acquisition [19]. In DeepKAF, transfer learning has been used
in retraining a word2vec model with new words deriving from
the new cases. Word Embeddings have been a key component
in the success of the entire approach because they are used
by a full range of the neural network topologies to measure
similarities like LSTMs and MaLSTM that will be presented
in the following sections. DeepKAF delegates the training to a
new model by propagating back to word vectors (word vector
inputs can be fixed in which case the issue below does not
apply) If the LSTM training corpus is sufficiently large such as
that the vocabulary in training phase retrains all the word2vec
vectors, this is regarded as successful retraining phase. If the
training corpus does not retrain all vectors, and we get a word
in testing phase, that has a word that was not retrained, there is
a risk of lowering the model accuracy, since untrained vectors
will be mixed along with the ones that were trained. This
specific case requires extra attention. In summary, if word
vectors are chosen for transfer learning, and the word vectors
are retrained in the new space, the framework needs to ensure
the training moves all the words in the original vector space -
that is the new corpus should have all the words in the original
word2vec vector output.

B. Siamese Networks
Unlike other Neural Networs that learn to predict over

different classes, Siamese Neural Networks (SNNs) can learn
how similar or dissimilar two objects are. Hence, with every
new case, the SNN model needs to be retrained on the whole
dataset which is an exhaustive task in terms of time and
processing power. Based on several experiments to establish
the most appropriate similarity degree it was observed that
the top 10 retrieved results (See section ”IV Experimental
Results”) can be used in data augmentation techniques to
reproduce a small dataset that consists of similar objects and
use transfer learning for the retraining process.

IV. EXPERIMENTAL RESULTS

DeepKAF is a result of a ongoing research throughout a
period of four years and the work progress has been published

Fig. 4. Technical DeepTMS Architecture

in several conferences [6] [5] [4] [8]. DeepKAF has showed
very promising results when applied in the industrial domain.
This section presents, explains and evaluates the key use case
we have implemented. The results shown below are the final
results with the best fitting models and hyper-parameters.

A. DeepTMS - Ticket Management System Use Case

For the evaluation purposes we used a ticket manage-
ment system (TMS) using an ensemble CBR approach based
on combining CBR with Deep Neural Networks and Data
Streaming Technologies. The aim was to increase the accuracy
and ”response time” to ”incoming” support tickets. This was
achieved by identifying and supplying the most relevant cases
and their solutions from closed, neighbour issues using a
historical knowledge-base. Any retrieved cases/solutions were
identified and proposed to a Help/ Support engineer in real-
time support cases. The research on DeepKAF has been
thoroughly carried on using different DL models to enhance
the consistency as well as the functionality of the framework
while still minimizing the efforts to acquire new knowledge [5]
[4] [6] [3] [8]. The provided application is evaluated based on
its capability to provide better solutions to human judgement.
A further metric to its capability is to be able to provide several
options even to cases that no solutions would be suggested
from human agents. The application and any data used for
this work were based on collaborative efforts between the
German Research Center for Artificial Intelligence (DFKI)
and a Private purpose high tech engineering stakeholder.

Cases Representation: Past scenarios / cases were de-
fined as: Problem Definition, Used Solution, Relevant Sec-
tion/Department, Case Ranking/Classification and relevant In-
terest Tags/Keywords. A deep dive analysis into the historical
cases showed a variety of difficulties, such as: cases were
written in multi languages, there were several phrases with
substantial grammar, syntax and semantic errors, and a large
number of technical abbreviations and domain jargon. The
evaluated system reflected the most common problems asso-
ciated with help-desk management systems that are:



Fig. 5. DeepTMS - Ticket Management System Block Diagram

1) High velocity of requests in a variety of formats, multi
channels and different regions

2) Sensitive and restrictive Service Level Agreements
(SLAs) that restrict support units to mitigate requests
in a limited amount of time conforming to the company
commitments

3) Restrictive ticket resolution workflows that may lead to
SLA infringement

4) Considerable variations in finding an effective solu-
tion, by usually ignoring or finding difficult to utilise
historical knowledge. Throughout the implementation,
several support practitioners were interviewed and ac-
knowledged difficulty for cases to converge and prove
useful to currently investigated cases.

The primary objective of the evaluation is to prove the
efficiency of the framework using text denoising based on
work previously introduced in DeepKAF [6]. In this work,
A Skip-thought autoencoder was used as a distributed sen-
tence encoder-decoder to create a vectorized low-dimensional
representation of sentences. The encoded sentences were then
analyzed by the pre-trained Manhattan LSTM (MaLSTM)
[11] siamese neural networks were then used to compare and
identify the most related cases in order to be able to suggest
more correct solutions (see Figure 5).

1) Training:
Throughout the training process, three models have been

used. Each model applied different learning approach varied
from Supervised, semi-supervised and unsupervised.

1) Skip-thought Autoencoder: An Autoencoder was
trained using more than 300,000 support Tickets. The
aim of this step was to identify sufficient low-level
representation for any used text corpus in the form of
support tickets.

2) Word2Vec: The Word2Vec low lebel text representation
model was trained using unsupervised learning. This
step created sufficient word relevance and relationships
among the existing word corpus [6].

3) Siamese MaLSTM: The last step involved the training
of a fully supervised network using sentence pairs. This
step was used correlate and identify semantic similarities

among different sentences [4]. This step was particularly
useful since it provided a numerical degree of similarity
as an output.

Optimizing a deep learning model is highly demanding when
training and improving a NN model. This task is usually
referred as hyper-parameter parameterisation defining the
structure of the network, how it is built and trained. After
several iterations of hyper-parameters combination settings and
based on previous research on DeepKAF the optimal hyper-
parameters configurations that led to best performance are
described and shown in Table I:

TABLE I
MODELS HYPER-PARAMETERS

Word2Vec MaLSTM Skip-thought
Autoencoder

Vector
Dimensionality =
150
Window = 10
Min Word Freq =
10
Epochs = 34
Learning Rate =
0.0001
Activ Function =
SOFTMAX

Neuron Activation
Function = Relu
Learning Rate =
0.0001
Regularization = L2
(.001)
LSTM Layer Size =
200
Batch Size = 64
Epochs = 47
Output Layer Loss
Function =
MCXENT
Activation Function
= SOFTMAX

Embedding
Dimension = 150
Latent Dimension
= 128
Batch Size = 64
Epochs= 76
Optimizer = Nadam
Learning Rate =
0.0001
Decoder Activation
Function =
SOFTMAX

2) Results: Evaluation success was defined by offering the
capability to provide better solutions against human engineers
across a range of the top ten suggested solutions. Similarly
the system was evaluated on the possibility to offer possible
solutions in cases where no obvious solution was present. To
evaluate this appropriately streams of potential support cases
were simulated based on historical data and similarly to the
original cases they required an appropriate case handling aca
solution. Table II shows comparative columns of the obtained
results between the original approach (MaLSTM) and the
newly proposed approach Skip-thought + MaLSTM. The
final evaluation was conducting using industry domain experts
support specialists and domain skilled engineers. DeepKAF
proposed several solutions for each ticket that were also
presented to the experts to rank and evaluate the suggested
outcome.

From the evaluation it can be seen that Skip-thought
increased DeepKAF’s overall accuracy by selecting the best
ticket solutions among a range of several solutions as well as
reduced the number of not listed solutions. The evaluation
stakeholders have stated that the proposed solutions were
appropriate since a human support agent is also expected to
find a solution within the first 10 suggested ones. Nonetheless,
the key benefit of using Autoencoder models to reduce the
noise across data led to a reduction in training effort compared



TABLE II
DEEPTMS - TICKET MANAGEMENT SYSTEM RETRIEVAL RESULTS

MaLSTM Skip-thought + MaLSTM
Level Cases Percentage Cases Percentage
Very Rel-
evant

8354 83.54% 8832 88.32%

Relevant 1510 15.1% 942 9.42%
Slightly
Relevant

30 0.3% 215 2.15%

Not
Listed

106 1.06% 11 0.11%

to literature approaches using LSTM models. An LSTM model
requires substantial text training , with with both relevant and
irrelevant text sections to obtain the best text representation
for any given text content. Contrary to LSTM the AE training
process did not require such training or similar effort since
it requires training across any relevant text corpus via a self-
supervised learning process. As a result AE reduce substan-
tially the required time for overall model training.

V. CONCLUSION & FUTURE WORK

While DeepKAF is mainly built and experimented on tex-
tual data, we beilive that it can be applied to more complicated
hetergenous data sources, like mixed textual and images data.
With DeepKAF, CBR systems can touch new grounds when it
comes to industrial implementations where data is unstructured
and heterogeneous.

In this paper we wrapped up the entire processes that
construct DeepKAF and showed how Deep Learning models
could be injected within the CBR paradigm without hiding the
explainability advantage of any CBR system. DeepKAF has
been applied on a ticketing management system and was able
to achieve a significant improvement of the retrieved results
as per the domain experts along with minimizing the required
efforts to build such a system. We have demonstrated different
deep learning models that are being used and experimented
that they give the best results (word2vec + Skip-Thought +
MaLSTM).

One of the drawbacks of traditional word vectors is that
they presume the meaning of a word is fairly constant across
sentences, whereas it is common for the same word to have
different meanings depending on where it is used. Hence, Deep
Bidirectional Transformers should be experimented against
and benchmarked against the word embedding model as a
future work.

Transformers (Attention) can be used in building the word
embeddings and siamese network. Transformers are a deep
learning model that do vector transformation of type A into
vector of type B. Transformers do not use any recurrent net-
works (GRU, LSTM, etc) [17]. They depend on the attention
mechanism which allows each processed word at each step to
have information about the other words around it. The power
of transformers is that they allow parallel training of the input
sequence which is very valuable.

The key strength of Transformer models is actually that
they allow shorter training time compared to conventional em-
bedding models. Bidirectional Encoder Representations BERT
[20] transformers is an innovative technique for NLP prob-
lems. BERT uses bidirectional attention transformer system
which can have a major impact on the lack of training data or
database servers.
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