
© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd 1
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Task-based structures in open
source software: revisiting the
onion model

Jose Christian1,* and Anh N. Vu2,*

1 CENTRIM, Brighton Business School, University of Brighton, Brighton, UK. j.christian@brighton.
ac.uk
2 University of Sussex Business School, University of Sussex, Brighton, UK. A.Vu@sussex.ac.uk

Studies on Open Source Software (OSS) developer communities have long stated that there
is a relationship between community structure and tasks carried out by project members.
This relationship has been exemplified by the onion model, which has been instrumental
in understanding self-coordination in OSS projects. Despite its ubiquity, there is a lack of
empirical evidence to validate the relative position of each task cluster within the onion
model. In this study, we map out the community structure of a large open source project
and observe its bug-fixing patterns to explore the relationship between tasks and structure.
Our study makes three significant contributions. First, we find no empirical evidence to
support the structural location of bug-fixing tasks in the onion structure. Second, we find
empirical evidence to support the core-periphery continuum model linking an actor’s core-
ness to problem-solving ability. Third, our results suggest that the importance and location
of each task within the core-periphery structure evolve over time. These findings add clarity
to the community structure and their implications for the management and coordination of
collaborative innovation projects.

1. Introduction

A key strength of the Open Source Software (OSS)
development approach is its large group of vol-

unteer contributors. An OSS community can provide
project owners with new ideas, access to resources and
help with the dissemination and adoption of the soft-
ware (Chu and Chan, 2009). Since these communities
are made up of an informal volunteer workforce, one
of the key challenges remains its management and co-
ordination. To address these challenges, it is important
to know more about the structure of the community to
understand the key social processes that make OSS
development possible (Crowston and Howison, 2005).

From the early academic studies on OSS commu-
nities, a persistent link has been made between tasks

and observed patterns of behaviour from its contrib-
utors. Empirical studies have observed significant
differences in the level of commitment and program-
ming skills from community members leading to a
de facto core-periphery structure (Wei et al., 2017).
Specific software development activities have been
associated with each subgroup, placing important
managerial tasks at the core and supporting tasks such
as bug fixing at the periphery (Rullani and Haefliger,
2013). Due to the duality of roles, project success is
contingent on the strategic management of the core
and periphery subgroups (Hossain and Zhu, 2009;
Rullani and Haefliger, 2013; Daniel and Stewart,
2016). To function effectively, OSS projects require
an identifiable core and an active periphery working
around the core’s activities (Singh et al., 2007). The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/334594873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
mailto:
https://orcid.org/0000-0001-6380-0038
mailto:

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Jose Christian and Anh Vu

2 R&D Management 2020

function of OSS community structure models is to
understand the characteristics of the core-periphery
subgroups and their role in the development process.

The onion model is a widely used task-based
structure emphasising differences in participation,
skill and importance between subgroups conduct-
ing specific tasks. Through the onion model, studies
have been able to explain and understand commu-
nity dynamics in OSS development (Crowston and
Howison, 2005; Jensen and Scacchi, 2007; Jergensen
et al., 2011; Nakakoji et al., 2002; Wei et al., 2017).
Empirical studies have used the onion model as
a framework for identifying developers’ progres-
sion within and between open source communities
(Jensen and Scacchi, 2007; Jergensen et al., 2011).
This progression has helped to explain how individ-
uals join projects and specialise in tasks, shedding
light on our understanding of coordination and gov-
ernance in self-organising communities (Madey et
al., 2004; de Laat, 2007; Dahlander and O’Mahony,
2011). These studies consider the onion model as a
symbolic representation of the decentralised Bazaar
style of governance proposed by Raymond (1998)
where each ‘layer’ of the onion represents both a
group of individuals carrying out a given task and the
importance of each task in the development process.

Despite the onion model’s ubiquity in OSS com-
munity studies, there is a lack of empirical evidence
to validate the position of each task cluster within
the onion model. What has yet to be identified, is
whether there is a relationship between community
structure and tasks. This study seeks to address this
gap by answering the following three research ques-
tions: (1) Do peripheral developers specialise in bug
fixing? (2) Is there a relationship between centrality
and bug fixing? and (3) Do tasks-based structures
change over time?

To address these questions, we map out the com-
munity structure of the LLVM open source project

and observe its bug-fixing patterns to identify the
relationship between structure and tasks. First, unlike
the onion model’s implied boundaries between task
clusters, we find that developers, regardless of their
position within the community, engage in bug fixing
activities. Second, our results validate previous stud-
ies that found a relationship between an individual’s
centrality and their ability to carry out problem-solv-
ing tasks. Third, we observed a change in bug-fix-
ing patterns over time, suggesting that task-related
structures and patterns of contributions evolve over a
project’s life cycle.

2. Conceptual background and
hypothesis development

While the underlying principle of the onion model is
based on the concept of a core-periphery structure,
it is important to first be clear about its definition
and scope. There are two dominant approaches for
identifying core-periphery structures in OSS com-
munities, one that focuses on discussions around
the management of the project, and the second that
focuses on technical contributions made to the proj-
ect (see Table 1). These approaches emerge from the
sources of data utilised, mailing lists and reposito-
ries, and often result in different sets of tasks (Sack
et al., 2006; Crowston et al., 2012; Christian, 2016).
When obtaining data from discussion spaces, such as
mailing lists and forums, the emphasis is on man-
agerial and coordination tasks. On the contrary for
obtaining data from technical spaces, such as repos-
itories and bug trackers, the emphasis is on software
development tasks.

The dominant approach in the study of OSS com-
munities is to focus on technical contributions, with
the rationale being that without software produc-
tion there would be nothing to study (Crowston and

Table 1. Approaches to the study of open source

Interaction Code development

Social group construct Social network, user
community

Community of practice, team, technical
community

Information space Mailing list or forum Repository

Scope of tasks Related to governance and
management

Related to Software development (such as bug
fixer or active developer)

Centrality attainment Repeated interaction in
discussions

Quality and quantity of technical contributions

Representative studies Lakhani and von Hippel
(2003), Glass (2003),
Lehmann (2004), Monteiro
et al. (2004), Crowston and
Howison (2005), Lin (2005)

Fielding (1999), Franck and Jungwirth (2003),
Yamauchi et al. (2000), Nakakoji et al.
(2002), Lee and Cole (2003), O’Mahony and
Ferraro (2007)

Adapted from Christian (2016).

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Task-based structures in open source software

R&D Management 2020 3

Howison, 2005; Crowston et al., 2012). Through this
approach, an actor’s position in the core-periphery
structure is defined by both quantity and quality of
technical contributions made to the project (Fielding,
1999; Yamauchi et al., 2000). OSS communities con-
sist of a small group of highly skilled programmers at
its core and a much larger group of average program-
mers at its periphery (Cox, 1998; Raymond, 1998;
von Krogh et al., 2003). The difference in skill lev-
els can lead to task specialisation, where those in the
core will typically carry out tasks requiring higher
levels of skill, while the majority will contribute
through low-skilled tasks (Lakhani and von Hippel,
2003). This core-periphery structure has been instru-
mental in explaining self-coordination in OSS proj-
ects, where 80% of activities are carried out by a
small number of individuals (Mockus et al., 2002),
therefore, reducing coordination cost (Crowston et
al., 2006).

In this section, we discuss three concepts that
can help explain the relationship between tasks and
community structure in OSS development. Frist, we
discuss the intuitive onion-like structure widely used
in the open source literature, where the community
is divided into task-related groups with different lev-
els of commitment, skills and importance. We then
discuss the core-periphery as a continuum where an
actor’s level of centrality determines their ability to
carry out specific tasks. Finally, we look at the evolu-
tion of tasks in relation to a project’s life cycle. From
these areas we develop three hypotheses.

2.1. The onion model and OSS tasks

The onion model remains the dominant interpreta-
tion of the link between task and community struc-
ture in open source development (Jergensen et al.,
2011). Nakakoji et al. (2002) first created an onion-
like structure by placing eight development tasks
within the core-periphery structure. The onion model
has since been extended to include a wider range of
tasks such as documentation (Rullani and Haefliger,
2013), design (Bach and Twidale, 2010) and infra-
structure maintenance (Christian, 2016). The list
of tasks are often identified at the project level and
include tasks from both discussion and implemen-
tation spaces (Barcellini et al., 2014). The order in
which the tasks are arranged is based on a number
of factors such as technical complexity of the task
(Lakhani and von Hippel, 2003), relative size of the
group carrying out that task (Mockus et al., 2002)
and a group’s influence in the project (Crowston and
Howison, 2006; Kilamo et al., 2012). Table 2 pro-
vides a list of these activities, their implied structural
position, and their space of action. Core-periphery

clusters, and their related tasks, are often regarded
as mutually exclusive due to their distinct levels of
commitment, technical skill, knowledge and access
to resources (Mockus et al., 2002; Nakakoji et al.,
2002; Lee and Cole, 2003; Jergensen et al., 2011;
Scacchi, 2004). Unlike those listed in Table 1, this
list includes activities from both information and
implementation areas.

When focusing on technical contributions, the
onion model is useful for understanding how OSS
development communities function (Nakakoji et al.,
2002; Crowston et al., 2006; Jergensen et al., 2011;
Kilamo et al., 2012). The onion model provides a
useful road map for a developers’ progression from
the peripheral contributor to core member as they get
recognition within the community (Ye and Kishida,
2003; Kilamo et al., 2012). The onion model places
managerial roles at the core of the structure, showing
that coordination of a large volunteer workforce is
achieved by centralising decision-making (Scacchi,
2004). The bug fixing process in particular uses the
onion model to exemplify the required coordination
between most development tasks in order to succeed
(Crowston and Scozzi, 2008). It is these tasks and
processes that set it apart from traditional closed
source development, and therefore, help highlight the
key strengths of the OSS development model.

Through the use of the onion model, empirical
studies have observed co-dependency between tasks,
where core and peripheral groups have complemen-
tary roles (Cox, 1998; Raymond, 1998; Rullani and
Haefliger, 2013). For instance, while those in the
core have both the skill and influence to implement
new software features, they rely on a large diverse
group of peripheral developers for minor improve-
ments to the software (Crowston and Howison, 2005;
Crowston et al., 2006; Jensen and Scacchi, 2007;
Jergensen et al., 2011; Wei et al., 2017). From the
early literature on OSS development, studies have
consistently associated peripheral contributors with
bug-fixing tasks for a number of reasons, from lever-
aging economies of scale and scope (Hienerth et al.,
2014) to the relatively low complexity of solutions
(Lakhani and von Hippel, 2003). This leads to our
first hypothesis:

H1: Peripheral developers contribute more bug fixes
than core developers.

This first hypothesis is developed based on the estab-
lished relevant literature and may appear intuitive
without additional information. Nevertheless, it con-
stitutes an important part of our study, a main aim of
which is to provide empirical evidence on the theo-
retical literature. To the best of our knowledge, our
study is the first to do so.

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Jose Christian and Anh Vu

4 R&D Management 2020

2.2. The core-periphery continuum

A second approach to the study of task-based com-
munity structure utilises social network theory to
measure the relationship between centrality and
problem-solving ability. As with the onion model,
the social network approach acknowledges the
division of labour between the core and periphery,
highlighting differences in influence and access to
information needed to carry out specific tasks. For
instance, core actors have the highest level of influ-
ence in a network and can mobilise resources (Uzzi,
1997; Wasserman and Faust, 1999; Perry-Smith and
Shalley, 2003), but often exhibit low levels of infor-
mation heterophily which limits their ability to solve
problems (Granovetter, 1973; McPherson et al.,
2001; Burt, 2004; Schilling, 2005; Hargadon, 2006).
In contrast, peripheral actors have access to external
sources of information and are more likely to intro-
duce novel ideas (Becker, 1970; Perry-Smith and
Shalley, 2003; Lakhani, 2006) but lack the influence
to implement these solutions (Cattani and Ferriani,
2008; Dahlander et al., 2008). The differences in
characteristics create a duality of core and periph-
eral roles, where the core relies on the periphery for
novel ideas and the periphery relies on the core for
implementation.

With the duality of the core and periphery being
critical for OSS project success and survival, it is
important to distinguish one form the other to man-
age each group accordingly (Crowston et al., 2006;
Rullani and Haefliger, 2013). A key challenge

emerges, however, when trying to empirically iden-
tify where one group ends and the other begins.
Citing similar measurement limitations in network
theory, Borgatti and Everett (1999) propose a con-
tinuous model which sees the core-periphery struc-
ture as a continuum rather than a dichotomy. In their
continuous model, each actor is given a ‘coreness’
level between 0 and 1 as a measurement of a node’s
proximity to the core, with 1 being the closest and 0
being furthest away.

Utilising the continuous model, studies have
explored the relationship between coreness and
problem-solving ability in online communities.
These studies confirm that while access to external
knowledge has a singificant impact on innovative-
ness (Dahlander and Frederiksen, 2012), peripheral
developers still rely on core members to have their
contributions approved and implement (Crowston
and Scozzi, 2008). While these studies echo the find-
ings made with the onion model, the core-periphery
continuum can provide further detail about the rela-
tionship between tasks and structure by focusing on
an actor’s relative position in a network rather than
generalising at the task cluster level. Removing the
task clusters makes it possible to explore the balance
between core and peripheral characteristics needed
to facilitate problem solving.

Indeed, Cattani and Ferriani (2008), found that
individuals located between the core and periphery
(semi-peripheral actors) are often more innovative
due to their proximity to both core and peripheral
actors. Dahlander and Frederiksen (2012) find an

Table 2. Task-oriented roles in OSS development (Nakakoji et al., 2002; Jensen and Scacchi, 2007; Jergensen et al.,
2011; Barcellini et al., 2014; Christian, 2016)

Structural position Role Description
Primary area of
interaction

Core Project leader Includes project owners, initiators, commu-
nity administrators and project managers

Private communication
channels

Core member Guiding and coordinating development
efforts

Private communication
channels

Active Developers Regular contributors to the project through
new features and bug fixes

Repository

Periphery Peripheral developers Casual contributors to the project through
new features and bug fixes

Repository

Bug fixers Specialised in bug fixes Repository and bug track-
ing tools

Bug reporters Specialised in reporting bug fixes Bug tracking tools

Active users Users of software who may contribute
through low-skilled activities such
as documentation and user-to-user
assistance

Social media, official and
unofficial forums and
wikis

Passive users Users of the software who do not contribute
to the project

Reading list, blogs, social
media, official project
website

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Task-based structures in open source software

R&D Management 2020 5

inverted U-shaped relationship between coreness and
innovation, noting that semi-peripheral actors have
access to external sources of information and have
the social capital to mobilise resources internally.
Figure 1 explains the relationship between an actor’s
coreness and their innovativeness. Problem-solving
tasks such as bug fixing may, therefore, be best car-
ried out by individuals located in the semi-periphery
and not the periphery as the onion model suggests.
We therefore argue that bug fixing activities, as with
other innovative activities, will exhibit the same
inverted U-shaped relationship between coreness and
innateness as shown in Figure 1. This leads to our
second hypothesis:

H2: There is an inverted U-shaped relationship be-
tween an individual’s ‘coreness’ and bug fixing
contributions.

2.3. Task and structure evolution in OSS
development

The third approach looks at the evolution of OSS
tasks and structure over time, focusing on changes
in an individual’s position within the community’s
structure. For instance, empirical studies have out-
lined a ‘joining script’ where individuals move from
the periphery to the core through their contributions
to the project (Jergensen et al., 2011; von Krogh et al.,
2003). The joining script emphasises the attainment
of centrality by individuals as they develop new skills
and knowledge through participation (Barcellini et
al., 2014). The change in roles is based on the learn-
ing process of each individual and the current under-
standing of legitimate peripheral participation and
situated learning (Lave and Wenger, 1991). These
observations, however, rely on a static view of OSS

community structure, where task-related clusters are
permanent while individuals move between them.

It is important to take into account the stage at
which an OSS project is, and the effect this may have
on the tasks required. For instance, OSS projects often
begin with an initiation stage where an individual is
typically motivated by a ‘personal itch’ (Wu and Lin,
2001), leading to the creation of a working prototype
(Mockus et al., 2002), and then, to its public release
(Jergensen, 2001). Collaborative development will
only begin once the working code is released to the
public, leading to the emergence of a number of dif-
ferent tasks, such as general development, software
testing and bug fixing (Saini and Kaur, 2014). It is
after the public release of the software, and the com-
munity of users reaches critical mass, that the proj-
ect moves from a centralised ‘cathedral’ structure
to a decentralised ‘bazaar’ structure (Capiluppi and
Michlmayr, 2007). A project’s onion-like structure,
and the tasks in them, may, therefore, change over
time as the project progresses through each stage in
its life cycle.

While each OSS project will have its own devel-
opment methodology and life cycle (Tiwari, 2011;
Saini and Kaur, 2014), there is a general agreement
that some tasks become critical at different stages
(Jergensen, 2001; Wu and Lin, 2001). When compar-
ing OSS project life-cycles, a significant number of
these studies place bug fixing activities later on in
the process (Saini and Kaur, 2014). What this means
is that, once the project enters a decentralised model
and more people participate, these new entrants will
begin to contribute as bug fixers. It is in this last step
that we see that bug fixing happens at a much later
time than the general commits. This therefore leads
us to our third hypothesis:

H3a: Bug fixing activities will increase over time.

H3b: Bug fixing contributions by the peripheral clus-
ter will increase over time.

It is worth noting that as we are using data from a
single project, the generalisability of our results will
be limited. Our findings, thus, should be interpreted
within the context of LLVM to gain insights about
our data. Caution is needed if they are applied to
other OSS projects.1

3. Methods

3.1. Research design

The objective of this study is to improve our under-
standing of the relationship between community
structure and tasks by addressing the following

Figure 1. The relationship between coreness, heterophily,
community influence and innovativeness. The closer a node is
from the core (1), the higher the level of influence and the lower
their access to multiple sources of information (heterophily). The
further a node is from the core (0), the lower the level of influence
and higher level of heterophily. Innovativeness increases as nodes
achieve a balance of influence and heterophily.

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Jose Christian and Anh Vu

6 R&D Management 2020

research questions: (1) Do peripheral developers
specialise in bug fixing? (2) Is there a relationship
between centrality and bug fixing and (3) Do tasks-
based structures change over time?

To address these questions, we employ a Type 1
single case study approach, utilising a critical case
to challenge current dominant understanding (Yin,
2018). In selecting a single case study approach, our
research follows the dominant approach in OSS com-
munity studies (Crowston et al., 2012). Due to their
online nature, OSS projects provide the researcher
with rich contextual and historical data (von Hippel,
2005; Yin, 2018). We rely on technical contributions
as the primary data source for calculating community
structure and identifying bug fixing contributions.
This is because, as Jergensen et al. (2011) found,
there is a significantly small incidence of develop-
ers progressing from the social to the technical areas.
Hence, for the purpose of this study, the boundaries
of the community structure set around the repository
as previously explained in Section 2.

3.2. Case selection

We selected the LLVM open source project as our
critical case due to its wide adoption, the high lev-
els of firm involvement, and the rich availability of
data. As with the Linux project, the LLVM receives
a large percentage of technical contributions from
large firms such as Apple and IBM (Bieneman and
Barton, 2019). The project was classified as one of
the most popular projects on GitHub in 2018 and its
repository log consists of 163,726 commits spanning
a period from May 2003 to April 2018, when the data
were collected.

LLVM is a compiler infrastructure project that
provides a set of tools to turn high level code into
machine code. It began as a Post Graduate project
by Chris Lattner, along with his supervisor Vikram
Adve, with the first working version being released
on October 2003 under the University of Illinois at
Urbana-Champaign’s open source licence. While
Lattner originally did not expect the project to be
popular in the OSS community (LLVM, 2007a),
it received significant commercial interest from
the start, with representatives from Apple, Google,
Adobe, HP and Cisco attending the first LLVM
developers’ conference in 2007 (LLVM, 2007b).
Lattner has since gone on to work at Apple, focusing
exclusively on integrating LLVM into their internal
compilers, leading to its current use on all of Apple’s
operating systems.2

The project implements a new approach in the
design of software compilers by applying the inter-
media representation (IR) technique in produc-
tion level compiling (Lattner, 2008). The structure
of an LLVM-based compiler can be divided into
three key sections, the front, middle and back end
(Figure 2). The frontend generates the IR. Second,
the middle part analyses and optimises the code in
the IR file. Third, the backend transforms the IR
into machine code (Chisnall, 2017). Since the end
result relies on an IR file, this approach provides
developers with the flexibility to use any frontend
programming language. Given this level of flexibil-
ity, firms have implemented the LLVM tools to cre-
ate their own compilers. Some of its users include
SONY for their PlayStation 4 games, Adobe for their
Hydra Language and Intel for the Open Computing
Language (LLVM, n.d.).

Figure 2. LLVM schema, adapted from Lattner (2008). Frontend language-specific inputs represent separate open source projects.

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Task-based structures in open source software

R&D Management 2020 7

3.3. Data collection and data sets

The Git software tool was used to download the repos-
itory and extract the project’s log. For the purpose of
this study, the metadata extracted from the project’s log
was limited to the date of the commit, its author’s email
address and its description. During the extraction of
the log, data cleaning was required in order to remove
double entries and maintenance activities such as code
merges. This resulted in a total of 163,726 submission
to the repository by a total of 998 unique developers.

From the cleaned project log, two data sets were
created. The first one is a contribution data set contain-
ing a list of all 163,726 changes to the repository, along
with the date, title and classification (general contribu-
tion or bug fix). The second one is a user data set con-
taining a list of all 998 developers along with their total
number of general contributions and bug fixes.

A supervised machine learning decision tree
(Zhang, 2004) algorithm was used to classify each
contribution as either a general contribution or a bug
fix. Our approach was inspired by that of Sandusky
et al. (2004), where we use regular expressions to
identify bug fixes by searching for generic term like
‘fix*’ and ‘bug*’ in the commit description. The first
set of results was checked manually for accuracy
and an initial training set was created. A wider set of
keywords was extracted from the training set and the
search process was repeated once more. The process
of identifying new key words, expanding the dictio-
nary, and conducting the search was repeated several
times until no new entries were identified. A sample
of new search results was manually inspected after
each search to ensure accuracy of results. Within the
search, a decision tree was used to identify descrip-
tions that would result in false positives, such as
‘Do not fix’ or ‘this is a bug free implementation’.
Our algorithms were written in Python and utilised
NTLK (Bird et al., 2009) for language analysis.

3.4. Data analysis

Utilising the user data set, we created two conceptu-
alisations of the core-periphery structure. First, using
Bradford’s Law of Scatter (Bradford, 1934; Crowston
et al., 2006; Wei et al., 2017), we classify all developers
into three main clusters: the periphery (here referred to
as bl1), the semi-periphery (bl2) and the core (bl3).
Second, we then calculated each developer’s coreness
index (CI) (Borgatti and Everett, 1999) by applying the
Lorenz Curve calculation to the total number of con-
tributions (general contributions and bug fixes) made
to the project. The Lorenz curve plots income distri-
bution in a given population (Gastwirth, 1971) and is
used to calculate the GINI coefficient which measures

inequality (Gastwirth, 1972). Both the Lorenz curve
and the GINI index have been used to measure par-
ticipation inequality in open source projectors and
determine its core-periphery structure (Lakhani and
von Hippel, 2003; Crowston and Howison, 2005; Kuk,
2006). An example of its application to calculate the
coreness index is presented in Table 3.

To test hypotheses 1 and 2, we performed an OLS
regression analysis of the functional form below on
the data set of 998 users:

where fixes is the natural logarithm of the number
of fixes, CI and CI2 are the coreness index and its
squared term, length is the natural logarithm of the
number of days the user is active. We include the
squared term of the coreness index to allow for its
non-linear relationship with the number of fixes. For
robustness check, we replace CI with DC, a dummy
variable for each cluster, with k = 2.

To test hypothesis 3, we performed a panel data
analysis of the functional form below on the contri-
bution data set. To obtain this data set, we collate the
number of contributions submitted by each user at
the different time (days) of submission.

where DC is a dummy variable for each cluster, with
k = 2, t is a time trend, and subscripts i and t indi-
cate user i at time t. A random effect generalised least
squares regression technique is employed.

4. Results and analysis

4.1. The periphery and bug fixes

The first set of results addresses our first research
question on whether peripheral developers specialise

(1)fixes=�+�1CI+�2CI2
+�length+�

(2)fixesi,t =�+

K
∑

k= 1

�kDCk,i,t+�2t+

K
∑

k= 1

�kDCk,i,tt+�

Table 3. Example application of the Lorenz curve
calculation to get the coreness index

c pc cpc (coreness)

Node 1 24 0.024 0.024
Node 2 34 0.034 0.058

Node 3 345 0.347 0.405

Node 4 236 0.237 0.642

Node 5 356 0.358 1.000

Where c is the number of contributions made by the developer, pc
is the percentage out of all contributions and cpc is the cumulative
percentage. We use the cpc value as the coreness index. In our ex-
ample, node 1 is in the periphery and node 5 is in the core.

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Jose Christian and Anh Vu

8 R&D Management 2020

in bug fixing activities at the cluster level. Table 4
shows the number of developers, the total number of
contributions, and the number of fixes for the periph-
ery (bl1), semi-periphery (bl2) and the core (bl3). As
with previous studies (Crowston et al., 2006), contri-
butions to the repository are highly centralised, with
the eight developers classified as core submitting
54,248 contributions to the repository. The results
show that 20.8% of all contributions were classified
as being bug fixes. In addition, when looking at bug
fixes in general, we see that all clusters engage in bug
fixing to a similar extent, between 20% and 25% of
their respective contributions.

Due to the way in which the clusters were iden-
tified we expected the level of contributions to be
similar; roughly 1/3 of the total for each cluster.
Based on the literature (Wei et al., 2017), how-
ever, there should be a significant difference in
bug fixing contributions between the core and the
periphery, as core developers may focus on general
contributions to the repository while the peripheral
developers are set to contribute significantly higher
levels of bug fixes. While peripheral developers
(cluster bl1) did submit a higher number of fixes
both in real terms and as a percentage of contribu-
tions, all clusters submitted similar proportion of
fixes, accounting for around 20% of all contribu-
tions. From this first set of results, the difference
in bug-fixing patterns between each cluster is not
large enough to suggest specialisation.

4.2. Coreness and bug fixing

For the second set of results reported in Table 5, we
can identify whether our data support the first two
hypotheses. We used non-linear regression to esti-
mate the relationship between coreness (CI) and
bug fixing contributions. The parameter estimated of
coreness is positive and statistically significant at the
1% level, denoting a positive relationship between
coreness and the number of fixes. Therefore, at this
point, we can infer that for LLVM, core developers
appear to contribute more to the number of fixes,

which does not support hypothesis 1. This finding
reinforces our initial data analysis in Section 5.1,
where there seems to be no sharp distinction between
the developer groups. This is an interesting result as
it shows that it is not always the case that periphery
developers are more active in bug fixing compared to
their core peers.

Notwithstanding, as the relationship between
the two could be non-linear, we need to look at the
parameter of CI2 as well. As in hypothesis 2, we
are interested in determining if there is an inverted
U-shaped relationship between an individual’s ‘core-
ness’ and bug fixing contributions. Our results con-
firm that there is an inverted U-shaped relationship
between CI and the number of bug fixes, with the
vertex of the parabola being at 0.6 (Figure 3). In
the main regression analysis (reported in Table 5),
we include the squared term of the coreness index
to account for this non-linear relationship. The core-
ness threshold which reflects a change in this rela-
tionship is 0.654 (see Table 5, column 1). Below this
threshold, the higher the index, the larger the number
of fixes. Beyond this threshold, the number of fixes
decreases corresponding to greater degree of central-
ity. At this stage, we can confirm that our data support
hypothesis 2, and complement the finding related to
hypothesis 1. Testing hypothesis 1 alone may not be
able to paint the whole picture of the relationship, as

Table 4. Descriptive statistics of the LLMV project, with
the number of active users, total contributions and fixes
for each cluster

Cluster Users Contributions Fixes

bl3 8 54,247 9,280 (0.206)
bl2 39 54,604 8,818 (0.193)

bl1 951 54,875 10,088 (0.225)

Total 998 163,726 28,186 (0.208)

Where bl1 is the periphery, bl2 is the semi-periphery and bl3 the
core.

Table 5. This table reports the OLS regression results of
the relationship between coreness and fixes

Variables 1 2

CI 15.2092***
(0.413)

CI2 –11.6264***
(0.640)

lnlength 0.1575*** 0.3415***

(0.009) (0.013)

bl2 2.8442***

(0.162)

bl3 4.0670***

(0.326)

_cons 0.1078** –0.1898***

(0.045) (0.072)

N 998 998

R2 84.63% 59.71%

User data are used in this analysis. The dependent variable is the
log of the number of fixes. Column 1 shows the results with CI.
Column 2 shows the results with clusters. CI is the coreness index,
CI2 is the squared value of CI, lnlength is the log of the number of
days the user is active in this project, _cons is a constant term. Dc2
and dc3 are dummies for users in cluster 2 and 3, respectively, with
cluster 3 being at the core. N is the number of observation, R2 is
the adjusted R-squared, standard errors in parentheses, *,**,***:
significant at the 10%, 5% and 1% levels.

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Task-based structures in open source software

R&D Management 2020 9

at least in LLVM, the non-linear relationship shows
that hypothesis 1 is partly supported.

For robustness check, we replace CI in model 1
with DC, a dummy variable for each cluster, with
k = 2. We obtain the functional form as follows.

In column 2 of Table 5, the positive relationship
between coreness and fixes is confirmed in this
model, once again not supporting hypothesis 1. The
positive parameters of the cluster dummies reveal
that core developers actually contribute more to bug
fixing. It is worth noting that, with the dummy vari-
ables, we are unable to test for the non-linear rela-
tionship in hypothesis 2. Hence, the results should
be interpreted together with the coreness index in
column 1.

The second set of results is in line with previous
studies looking at the relationship between coreness
and problem solving (Perry-Smith and Shalley, 2003;
Cattani and Ferriani, 2008). Our findings suggest
there is also an optimal level of coreness that facil-
itates bug fixing, located within Bradford’s semi-pe-
ripheral cluster. There may be two interpretations of
this results. The first is that those in the semi-periph-
ery are in an ideal location to be able to understand
the software and also have access to novel ideas in
order to fix the software, similar to the cosmopolitan
cluster as described by Dahlander and Frederiksen
(2012). A second interpretation, however, can also
be that there is an attainment of centrality, where
those in the semi-periphery have been contributing
longer to the project, and therefore, have gained

their coreness as a result of their bug fixing activities
(Barcellini et al., 2014).

4.3. Bug fixes over time

For the final set of results, we explore the relation-
ship between the age of the project and the number of
fixes being submitted to the repository to see whether
tasks evolve over time. While the first set of results
focused on a snapshot of the project, here, we explore
changes in the number of bug fixes over time. We
do this by first investigating whether there are any
changes in the total number of bug fixes being sub-
mitted to the project over time. Second, we look at
changes in bug-fixing patterns at the cluster level
to identify whether the prominence of bug fixing
changes between clusters.

At the project level, we see that the number of
fixes submitted to the project have increased over
time in real terms (Figure 4). This increase is in line
with both an increase in general contributions and
an increase in developers contributing to the project.
When taking the number of bug fixes as a percentage
of all contributions to the repository, however, we
find an increase during the first half of the project’s
life cycle, and a decrease thereafter. The second half
of LLVM’s life cycle may have dominated the first
one, as Table 6 also reports that overall, the number
of fixes decreases over time. The result is statistically
significant at the 1% level, although the economic
impact is rather trivial. Hence, hypothesis 3a is not
supported by LLVM’s data. These results suggest
that the project may have entered a different stage
in its life cycle which may require fewer bug fixes.
This change in stage may also signal a change in the
prominence of bug fixing activities.

(3)fixes=�+

K
∑

k= 1

�kDCk+�length+�

Figure 3. Fitted quadratic regression line of the log of the number of fixes on the CI.

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Jose Christian and Anh Vu

10 R&D Management 2020

In Table 6, we can observe whether there are
changes to the number of fixes being submitted to

the project at the cluster level. Our analysis shows
this to be the case. In particular, relative to bl1 (the
periphery), we observe a larger decrease in fixes
over time for users in bl3 (core). A similar finding
is reported for users in bl2 (semi-periphery). The
results are statistically significant, however, with a
small magnitude, which is to be expected due to
the data being measured at daily frequency. To this
end, in LLVM, hypothesis 3b is also not supported
by the data.

To a certain extent, this last set of results sup-
ports findings from studies on the duality of the
core and periphery, where bug fixing activity
moves to the peripheral cluster as the project pro-
gresses, (Capiluppi and Michlmayr, 2007). This
set of results therefore implies that specialisation
of bug fixing activities by the peripheral cluster
emerges over time as the project moves through its
life cycle.

5. Discussion and conclusion

In this study, we investigate the link between tasks
and community structure by looking at bug-fixing
patterns in the LLVM OSS project. The extant liter-
ature on OSS developer communities has stated that

Figure 4. Total number of fixes submitted to the repository over time for each month (above) and as a percentage of total contributions
(below).

Table 6. This table reports the panel regression results of
the relationship between coreness and fixes over time

Variables Parameters

t −0.00004***
0.000

dc2 0.46801***

(0.123)

dc3 4.94703***

(0.127)

dc2*t −0.00002***

(0.000)

dc3*t −0.00024***

(0.000)

_cons 1.13001***

(0.082)

N 59,527

R2 10.11%

Contribution data are used in this analysis. The dependent vari-
able is the number of fixes, t is a time variable, dc2 and dc3 are
dummies for users in cluster 2 and 3, respectively, with cluster 3
being at the core. N is the number of observation, R2 is the over-
all R-squared, standard errors in parentheses, _cons is a constant
term, *,**,***: significant at the 10%, 5% and 1% levels.

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Task-based structures in open source software

R&D Management 2020 11

there is a long-standing relationship between com-
munity structure and the roles that individuals carry
out within the project. This has been exemplified by
the core-periphery and onion model that give specific
roles or functions depending on an individual’s posi-
tion within the structure. Despite the ubiquity of these
models, there is little empirical evidence to support
many of the inferences being made. To address this,
we used a most common form of development task,
bug fixing, to identify its relationship to community
structure.

This study makes three significant findings. First,
it finds that bug fixing activities are carried out by
most individuals in the OSS community irrespective
of their structural position. Second, we find, how-
ever, that there is an inverse U-shaped relationship
between ‘coreness’ and bug fixes, where the number
of fixes submitted increases with centrality but then
tapers off as it gets closer to the core. Finally, we find
evidence to suggest that bug-fixing patterns evolve
over time, with those in the core and semi-periphery
carrying out fewer bug fixes over time when com-
pared to those in the periphery. These results provide
a deeper understanding of the relationship between
tasks and community structure.

Our first research question focuses on whether
peripheral developers specialise in bug fixing as
suggested in the onion model. The onion model has
emerged as an important tool for understanding how
OSS communities work, with each layer visually rep-
resenting task groups, their size and their impact on
the development process. Linking bug fixing activi-
ties to peripheral developers has been one of the con-
sistent characteristics of the onion model. Our study,
however, finds no empirical evidence to support this
assumption. When looking at all contributions made
to the repository, irrespective of time, we find that
both core and peripheral subgroups contribute to bug
fixing activities in roughly equal measures. Our find-
ings do not support the link between bug-fixing tasks
and structure as presented in the onion model.

Given that the intuitive model offered no clear
evidence of tasks specialisation, we then utilised the
continuous model to address our second research
question on the relationship between centrality and
bug fixing activities. Our study finds that the con-
tinuous model proposed by Borgatti and Everett
(1999) provides a more accurate link between an
individual’s position within the community and their
ability to carry out certain tasks. Our study provides
empirical evidence that there is an optimal level of
‘coreness’ that leads to a higher level of bug fixing
contributions. In doing so, our study supports pre-
vious findings in social network theory linking net-
work structure to problem-solving ability (Dahlander

and Frederiksen, 2012). As a task-related structure,
therefore, our study provides empirical evidence to
support the continuous model linking ‘coreness’ with
bug fixing.

Finally, both the intuitive and continuous core-pe-
riphery models used are a static representation of
structure. For our third research question, we assess
if these structures change over time. Our study pro-
vides empirical evidence suggesting that project
structures and tasks may evolve over time. Studies
have long acknowledged the different stages in OSS
development processes (Capiluppi and Michlmayr,
2007), but these have not been taken into account
when looking at their implication of task-related
structures. Our findings show that, while bug fix-
ing activities decreased over time, those carried out
by peripheral developers decreased at a lower rate
than those closer to the core. Our findings add to the
dynamic view of task-related structures by opening
up the idea that the prominence of tasks evolves over
time. When relating this to the onion model, there-
fore, it could be that the model symbolises the com-
munity structure at a specific point in time towards
the later stages of the project’s life cycle. A different
onion model could potentially emerge when looking
at earlier stages, such as the initial prototype stage
before the software is released to the general public.

5.1. Managerial implications

The findings from this study have implications for
both project owner and core developers. First, the
results in this study provide project owners with
insights on how to manage participation in specific
tasks within the development process. A significant
portion of the literature on open source member-
ship management focuses on the process of gain-
ing access and increasing authority within a project
as contributors progress through the onion model
(Dahlander and O’Mahony, 2011; Jergensen et al.,
2011). Our findings provide an additional trajectory
which emphasises access to knowledge and influence
required to carry out specific development tasks. To
this point project leaders should recognise the impor-
tance of facilitating the transition from periphery to
semi-periphery. This could be done by curating and
providing simpler tasks for newcomers in order to
help them gain the required knowledge and skills
to contribute with more critical submission in the
future.

A second managerial implication involves the
change in roles for project leaders. Past studies
have focused on how an individual’s role in the
project changes as they gain centrality (von Krogh
et al., 2003; Dahlander and O’Mahony, 2011). The

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Jose Christian and Anh Vu

12 R&D Management 2020

findings in this study suggest that, while an indi-
vidual’s position within the community structure
may remain the same, their role in the project may
change over time. This was particularly evident in
the observed decrease in bug fixing contributions
by the core, implying that core developer and proj-
ect leaders may shift from a technical to manage-
rial roles over time as the number of contributors
increases. Project leaders and core developers
should, therefore, be aware of the need to acquire
non-technical skills to manage the project through
its life cycle.

5.2. Limitations

This study is not without its limitations. The two main
limitations are its level of analysis and its focus on
community structure. Our study focuses on bug fix-
ing activities within a singular community (software
developers) active within one production area (the
repository). Our specific focus does not take into
account other tasks included in the onion structure,
such as community manager or passive user. This
therefore presents a limitation in that the core-periph-
ery structure is measured within narrow boundaries.
Extending these boundaries to include project level
tasks may provide different results. The second limita-
tion is that it does not take into account the socio-tech-
nical structure of complex open source projects
(Amrit, 2008). This is to say, some of the projects are
highly modular and developers often limit their con-
tributions to specific modules. Future studies could,
therefore, aim to observe similar patterns in both the
core section of the code and how these differ from the
peripheral modules. Taking the socio-technical struc-
ture into account, specifically at modularity, may pro-
vide further insights into task-related structures.

References

Amrit, C. (2008) Improving Coordination in Software
Development through Social and Technical Network
Analysis. Enschede: University of Twente. https://resea
rch.utwen te.nl/en/publi catio ns/impro ving-coord inati
on-in-softw are-devel opmen t-throu gh-socia l-and

Bach, P. and Twidale, M. (2010) Social participation in
open source: what it means for designers. Interactions,
17, 3, 70–74. Available at: http://dl.acm.org/citat ion.
cfm?id=1744177.

Barcellini, F., Détienne, F., and Burkhardt, J.M. (2014)
A situated approach of roles and participation in open
source software communities. Human-Computer
Interaction, 29, 3, 205–255.

Becker, M.H. (1970) Sociometric location and innova-
tiveness: reformulation and extension of the diffusion

model. American Sociological Review, 35, 2, 267–282.
https://doi.org/10.2307/2093205.

Bieneman, C. and Barton, K. (2019) How to Contribute
to LLVM. Available at: https://youtu.be/C5Y977rLqpw
(accessed 30 March 2020).

Bird, S., Klein, E., and Loper, E. (2009). Natural Language
Processing with Python: Analysing Text with the Natural
Language Toolkit. Sebastopol, CA: O’Reilly Media.

Borgatti, S.P. and Everett, M.G. (1999) Models of core/
periphery structures. Social Networks, 21, 375–395.

Bradford, S.C. (1934) Sources of information on specific
sources. Engineering: An Illustrated Weekly Journal,
137, 3550, 176–180.

Burt, R.S. (2004) Structural holes and good ideas.
American Journal of Sociology, 110, 2, 349–399. https://
doi.org/10.1086/421787.

Capiluppi, A. and Michlmayr, M. (2007) From the cathe-
dral to the bazaar: an empirical study of the lifecycle
of volunteer community projects. IFIP International
Federation for Information Processing, 234, 31–44.
https://doi.org/10.1007/978-0-387-72486 -7_3.

Cattani, G. and Ferriani, S. (2008). A core/periphery per-
spective on individual creative performance: social net-
works and cinematic achievements in the hollywood
film industry. Organization Science, 19, 6, 824–844.
https://doi.org/10.1287/orsc.1070.0350.

Chisnall, D. (2017) Modern Intermediate Representations
(IR). In: LLVM Summer School, Paris.

Christian, J. (2016) The User Organisation: Governance
and Structure in an Open Source Project. University
of Brighton. Available at: http://eprin ts.brigh ton.
ac.uk/15449/.

Chu, K.M. and Chan, H.C. (2009) Community based inno-
vation: its antecedents and its impact on innovation suc-
cess. Internet Research, 19, 5, 496–516.

Cox, A. (1998) Cathedrals, Bazaars and the Town Council.
Slashdot.org, pp. 12–14. Available at: https://news.slash
dot.org/story/ 98/10/13/14232 53/featu recat hedra ls-ba-
zaa rs-and-the-town-council.

Crowston, K. and Howison, J. (2005) The social structure
of free and open source software development. First
Monday. http://dx.doi.org/10.5210/fm.v10i2.1207

Crowston, K. and Howison, J. (2006) Hierarchy and cen-
tralization in free and open source software team com-
munications. Knowledge, Technology & Policy, 18, 4,
65–85. https://doi.org/10.1007/s1213 0-006-1004-8.

Crowston, K. and Scozzi, B. (2008) Bug fixing practices
within free/libre open source software development
teams. Journal of Database Management, 19, 2, 1–30.
https://doi.org/10.4018/jdm.20080 40101.

Crowston, K., Wei, K., Li, Q., and Howison, J. (2006)
Core and periphery in Free/Libre and open source soft-
ware team communications. In: Proceedings of the 39th
Hawaii International Conference on System Sciences,
Kauia, HI. pp. 65–85.

Crowston, K., Wei, K., Howison, J., and Wiggins, A. (2012)
Free/Libre open-source software development: what
we know and what we do not know. ACM Computing
Surveys. 44, 2, 1–35. https://doi.org/10.1145/20891
25.2089127.

https://research.utwente.nl/en/publications/improving-coordination-in-software-development-through-social-and
https://research.utwente.nl/en/publications/improving-coordination-in-software-development-through-social-and
https://research.utwente.nl/en/publications/improving-coordination-in-software-development-through-social-and
http://dl.acm.org/citation.cfm?id=1744177
http://dl.acm.org/citation.cfm?id=1744177
https://doi.org/10.2307/2093205
https://doi.org/10.1086/421787
https://doi.org/10.1086/421787
https://doi.org/10.1007/978-0-387-72486-7_3
https://doi.org/10.1287/orsc.1070.0350
http://eprints.brighton.ac.uk/15449/
http://eprints.brighton.ac.uk/15449/
https://news.slashdot.org/story/98/10/13/1423253/featurecathedrals-bazaars-and-the-town-council
https://news.slashdot.org/story/98/10/13/1423253/featurecathedrals-bazaars-and-the-town-council
https://news.slashdot.org/story/98/10/13/1423253/featurecathedrals-bazaars-and-the-town-council
http://dx.doi.org/10.5210/fm.v10i2.1207
https://doi.org/10.1007/s12130-006-1004-8
https://doi.org/10.4018/jdm.2008040101
https://doi.org/10.1145/2089125.2089127
https://doi.org/10.1145/2089125.2089127

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Task-based structures in open source software

R&D Management 2020 13

Dahlander, L. and Frederiksen, L. (2012) The core and
cosmopolitans: a relational view of innovation in user
communities. Organization Science, 23, 4, 988–1007.
https://doi.org/10.1287/orsc.1110.0673.

Dahlander, L. and O’Mahony, S. (2011) Progressing to
the center: coordinating project work. Organization
Science, 22, 4, 961–979.

Dahlander, L., Frederiksen, L., and Rullani, F. (2008)
Online communities and open innovation: governance
and symbolic value creation. Industry and Innovation,
15, 2, 115–123. https://doi.org/10.1080/13662 71080
1970076.

Daniel, S. and Stewart, K. (2016) Open source project suc-
cess: resource access, flow, and integration. Journal of
Strategic Information Systems, 25(3), 159–176. https://
doi.org/10.1016/j.jsis.2016.02.006.

Fielding, R.T. (1999) Shared leadership in the Apache
Project. Communications of the ACM, 42, 4, 42–43.
https://doi.org/10.4135/97814 83349 107.n9.

Franck, E. and Jungwirth, C. (2003) Reconciling rent-seek-
ers and donators - the governance structure of open
source. Journal of Management and Governance, 7, 4,
401–421. https://doi.org/10.1023/A:10262 61005092.

Gastwirth, J.L. (1971) A general definition of the Lorenz
Curve. Econometrica, 39, 6, 1037–1039. https://doi.
org/10.1090/ulect/ 038/03.

Gastwirth, J.L. (1972) The estimation of the Lorenz Curve
and Gini Index. The Review of Economics and Statistics,
54, 3, 306. https://doi.org/10.2307/1937992.

Glass, R. (2003) A sociopolitical look at Open Source.
Communications of the ACM, 46, 11, 21–23. https://doi.
org/10.1109/MC.2004.38.

Granovetter, M.S. (1973) The strength of weak ties.
American Journal of Sociology, 78, 6, 1360–1380.
https://doi.org/10.4324/97804 29499 821-43.

Hargadon, A.B. (2006) Bridging old world and building
new ones: towards a microsociology of creativity. In:
Creativity and Innovation in Organizational Teams.
Brighton, UK: Psychology Press. pp. 199–216.

Hienerth, C., Von Hippel, E., and Berg Jensen, M. (2014)
User community vs. producer innovation development
efficiency: a first empirical study. Research Policy, 43, 1,
190–201. https://doi.org/10.1016/j.respol.2013.07.010.

Hossain, L. and Zhu, D. (2009) Social networks and coordi-
nation performance of distributed software development
teams. The Journal of High Technology Management
Research, 20, 1, 52–61.

Jensen, C. and Scacchi, W. (2007) Role migration and
advancement processes in OSSD projects. In: 29th IEEE/
ACM International Conference on Software Engineering
(ICSE’07), Minneapolis, MN. pp. 364–374.

Jergensen, C., Sarma, A., and Wagstrom, P. (2011) The
onion patch: migration in open source ecosystems. In:
Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of soft-
ware engineering - SIGSOFT/FSE ’11, p. 70. https://doi.
org/10.1145/20251 13.2025127.

Jergensen, N. (2001) Putting it all in the trunk: incremen-
tal software devevolpment in the FreeBSD open source
project. Information Systems Journal, 11, 321–336.

Kilamo, T., Hammouda, I., Mikkonen, T., and Aaltonen,
T. (2012) From proprietary to open source – growing
an open source ecosystem. Journal of Systems and
Software, 85, 7, 1467–1478. https://doi.org/10.1016/j.
jss.2011.06.071.

Kuk, G. (2006) Strategic interaction and knowledge shar-
ing in the KDE developer mailing list. Management
Science, 52, 7, 1031–1042. https://doi.org/10.1287/
mnsc.1060.0551.

Lakhani, K.R. (2006) The Core and the Periphery in
Distributed and Self-Organizing Innovation Systems.
Cambridge, MA: Massachusetts Institute of Technology.
https://dspace.mit.edu/handl e/1721.1/34144

de Laat, P.B. (2007) Governance of open source soft-
ware: state of the art. Journal of Management and
Governance, 11(2), 165–177. https://doi.org/10.1007/
s1099 7-007-9022-9.

Lakhani, K.R. and von Hippel, E. (2003) How open source
software works: user-to-user assistance. Research
Policy, 32, 6, 923–943.

Lattner, C. (2008) LLVM and Clang: Next generation com-
piler technology LLVM: low level virtual machine. The
BSD Conference, Ottawa, Canada.

Lave, J. and Wenger, E. (1991) Situated Learning:
Legitimate Peripheral Participation. Cambridge:
Cambridge University Press.

Lee, G.K. and Cole, R.E. (2003) From a firm-based to a
community-based model of knowledge creation: the
case of the Linux Kernel development. Organization
Science, 14, 6, 633–649.

Lehmann, F. (2004) FLOSS developers as a social for-
mation. First Monday. http://dx.doi.org/10.5210/
fm.v9i11.1186

Lin, Y. (2005) The future of sociology of FLOSS. First
Monday, 2, 1–5.

LLVM. (2007a) 2007 LLVM Developers’ Meeting: V. Adve
& C. Lattner, “A brief history of LLVM”. Available at:
https://youtu.be/FNtme myeEHY.

LLVM. (2007b) LLVM Developers’ Meeting Proceedings.
Available at: https://llvm.org/devmt g/2007-05/ (accessed
30 March 2020).

LLVM. (n.d.) LLVM Users. Available at: http://llvm.org/
Users.html (accessed 31 March 2020).

Madey, G., Freeh, V., and Tynan, R. (2004) Modeling the
Free/Open source software community: a quantitative
investigation. FreeOpen Source Software Development,
203–220. Available at: http://www.amazon.com/Free-
Open-Sourc e-Softw are-Devel opmen t/dp/15914 03693.

McPherson, M., Smith-Lovin, L., and Cook, J.M. (2001)
Birds of a feather: homophily in social networks. Annual
Review of Sociology, 21, 7, 415–444.

Mockus, A., Fielding, R., and Herbsleb, J. (2002) Two
case studies of open source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11, 3, 309–
346. https://doi.org/10.1145/567793.567795.

Monteiro, E., Østerlie, T., Rolland, K.H., and Røyrvik,
E. (2004) Keeping It Going: The Everyday Practices
of Open Source Software. Working paper. Trondheim,
Norway: Department of Computer and Information

https://doi.org/10.1287/orsc.1110.0673
https://doi.org/10.1080/13662710801970076
https://doi.org/10.1080/13662710801970076
https://doi.org/10.1016/j.jsis.2016.02.006
https://doi.org/10.1016/j.jsis.2016.02.006
https://doi.org/10.4135/9781483349107.n9
https://doi.org/10.1023/A:1026261005092
https://doi.org/10.1090/ulect/038/03
https://doi.org/10.1090/ulect/038/03
https://doi.org/10.2307/1937992
https://doi.org/10.1109/MC.2004.38
https://doi.org/10.1109/MC.2004.38
https://doi.org/10.4324/9780429499821-43
https://doi.org/10.1016/j.respol.2013.07.010
https://doi.org/10.1145/2025113.2025127
https://doi.org/10.1145/2025113.2025127
https://doi.org/10.1016/j.jss.2011.06.071
https://doi.org/10.1016/j.jss.2011.06.071
https://doi.org/10.1287/mnsc.1060.0551
https://doi.org/10.1287/mnsc.1060.0551
https://dspace.mit.edu/handle/1721.1/34144
https://doi.org/10.1007/s10997-007-9022-9
https://doi.org/10.1007/s10997-007-9022-9
http://dx.doi.org/10.5210/fm.v9i11.1186
http://dx.doi.org/10.5210/fm.v9i11.1186
https://youtu.be/FNtmemyeEHY
https://llvm.org/devmtg/2007-05/
http://llvm.org/Users.html
http://llvm.org/Users.html
http://www.amazon.com/Free-Open-Source-Software-Development/dp/1591403693
http://www.amazon.com/Free-Open-Source-Software-Development/dp/1591403693
https://doi.org/10.1145/567793.567795

© 2020 The Authors. R&D Management published by RADMA and John Wiley & Sons Ltd

Jose Christian and Anh Vu

14 R&D Management 2020

Science, Norwegian University of Science and
Technology, pp. 1–32.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., and Ye, Y.
(2002) Evolution patterns of open-source software sys-
tems and communities. In: Proceedings of the interna-
tional workshop on Principles of software evolution
- IWPSE ’02 (January), 76–85.

O’Mahony, S. and Ferraro, F. (2007) The emergence of
a governance structure in an open source community.
Academy of Management Journal, 50, 5, 1079–1106.

Perry-Smith, J. and Shalley, C. (2003) The social side
of creativity: a static and dynamic social perspective.
Academy of Management Review, 28, 1, 89–106.

Raymond, E.S. (1998) The cathedral and the bazaar. First
Monday, 3(2), 1–45.

Rullani, F. and Haefliger, S. (2013) The periphery on stage:
the intra-organizational dynamics in online communities
of creation. Research Policy, 42, 4, 941–953. https://doi.
org/10.1016/j.respol.2012.10.008.

Sack, W., Détienne, F., Ducheneaut, N., Burkhardt, J.-
M., Mahendran, D., and Barcellini, F. (2006) A meth-
odological framework for socio-cognitive analyses of
collaborative design of open source software. Computer
Supported Cooperative Work (CSCW), 15, 2–3, 229–250.

Saini, M. and Kaur, K. (2014) A review of open source
software development life cycle models. International
Journal of Software Engineering and its Applications, 8,
3, 417–434. https://doi.org/10.14257/ ijseia.2014.8.3.38.

Sandusky, R.J., Gasser, L., and Ripoche, G. (2004) Bug
report networks: varieties, strategies, and impacts in a
F/OSS development community. In: Paper Presented
at the Proceedings of the ICSE Workshop on Mining
Software Repositories, Edinburgh, Scotland. pp. 80–84.
https://doi.org/10.1049/ic:20040481.

Scacchi, W. (2004) Free and open source development
practices in the game community. IEEE Software, 21,
1, 59–66.

Schilling, M.A. (2005) A ‘small world’ network model
of cognitive Insight. Creativity Research Journal,
17, 2–3, 131–154. https://doi.org/10.1080/10400
419.2005.9651475.

Singh, P.V., Fan, M., and Tan, Y. (2007) An empirical
investigation of code contribution, communication par-
ticipation, and release strategy in open source software
development: a conditional hazard model approach.
FLOSS Working Paper. Available from: http://floss
papers.org/327(i).

Tiwari, V. (2011) Software engineering issues in devel-
opment models of open source software. International
Journal of Computer Science and Technology, 2, 2, 38–44.

Uzzi, B. (1997) Social structure and competition in
interfirm networks: the paradox of embeddedness.
Administrative Science Quarterly, 42, 1, 35–67.

von Hippel, E. (2005) Democratizing Innovation.
Cambridge, MA: MIT Press.

von Krogh, G., Spaeth, S., and Lakhani, K.R. (2003)
Community, joining, and specialization in open source
software innovation: a case study. Research Policy, 32,
7, 1217–1241.

Wasserman, S. and Faust, K. (1999) Social Network
Analysis: Methods and Applications. Cambridge, UK.:
Cambridge University Press.

Wei, K., Crowston, K., Eseryel, U.Y., and Heckman, R.
(2017) Roles and politeness behavior in communi-
ty-based free/libre open source software development.
Information and Management, 54, 5, 573–582. https://
doi.org/10.1016/j.im.2016.11.006.

Wu, M. and Lin, Y. (2001) Open source software develop-
ment: an overview. Computing Practices, 34, 6, 33–38.

Yamauchi, Y., Yokozawa, M., Shinohara, T., and Ishida,
T. (2000) Collaboration with Lean Media: how open
source software succeeds. In: Proceedings of the
2000 ACM conference on Computer supported coop-
erative work - CSCW’00. pp. 329–338. https://doi.
org/10.1145/358916.359004.

Ye, Y. and Kishida, K. (2003) Toward an understanding of
the motivation of open source software developers. In:
Proceedings of the 25th International Conference on
Software Engineering, Portland, OR. pp. 1–11.

Yin, R.K. (2018) Case Study Researcha and Applications:
Design and Methods, 6th edn. London, UK: SAGE
Publications. https://doi.org/10.1017/CBO97 81107
415324.004.

Zhang, H. (2004) The optimality of Naive Bayes. In:
Proceedings of the Seventeenth International Florida
Artificial Intelligence Research Society Conference
FLAIRS, 1, 2. pp. 1–6. https://doi.org/10.1016/j.
patrec.2005.12.001.

Notes

1 We thank an anonymous referee for this suggestion.
2 We thank an anonymous referee for their suggestion of

firms involvement.

Jose Christian is a lecturer in Innovation and
Entrepreneurship at CENTRIM, University of
Brighton. His research interests inlcude collaborative
open user innovation, online innovation communities
and open source goverance.

Anh N. Vu is a lecturer in Finance at the University
of Sussex Business School. Her research interests in-
clude efficiency and risk management in crowdfund-
ing platforms and cryptocurrencies.

https://doi.org/10.1016/j.respol.2012.10.008
https://doi.org/10.1016/j.respol.2012.10.008
https://doi.org/10.14257/ijseia.2014.8.3.38
https://doi.org/10.1049/ic:20040481
https://doi.org/10.1080/10400419.2005.9651475
https://doi.org/10.1080/10400419.2005.9651475
http://flosspapers.org/327(i)
http://flosspapers.org/327(i)
https://doi.org/10.1016/j.im.2016.11.006
https://doi.org/10.1016/j.im.2016.11.006
https://doi.org/10.1145/358916.359004
https://doi.org/10.1145/358916.359004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1016/j.patrec.2005.12.001
https://doi.org/10.1016/j.patrec.2005.12.001

