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Halogenases for biosynthetic pathway engineering: Toward 
new routes to naturals and non-naturals
Binuraj R. K. Menon , Daniel Richmond, and Navya Menon

Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, 
Coventry, UK

ABSTRACT
Nature’s repertoire of bio-halogenase enzymes is intriguing with 
halogenases from various natural product biosynthetic clusters 
that carry out site and region-specific halogenation of diverse 
bioactive precursors and molecules. Currently, we have 
a comprehensive catalogue of cryptic and non-cryptic halo
genases that act on simple to complex aliphatic and aromatic 
molecular scaffolds. This will open up further synthetic and 
biosynthetic opportunities for C-H activation, ring formation 
and functionalization of different molecular structures. In fact, 
halogenases were exploited over the years for these potential 
applications, to replace traditional chemical halogenation che
mistries toward creating economical and environmentally 
benign methodologies and also for biosynthetic pathways. 
This review will discuss our advances in utilizing bio- 
halogenases to generate both in vivo and in vitro biosynthetic 
pathways; summarizing all naturals and non-naturals that are 
synthesized with a direct bio-halogenase incorporation.
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1. Introduction

The carbon-halogen bonds (C-F, C-Cl, C-Br and C-I) in biomolecules and 
pharmaceutical compounds have a profound role in improving their potency, 
efficacy, reaction selectivity, biophysical properties and molecular bonding 
interactions via halogen-bonds.[1–3] As a direct consequence, the last 
50 years have witnessed a rapid increase in identifying new halogenated 
biomolecules from secondary metabolites and natural product discovery 
world.[4–6] A major proportion of all pharmaceuticals, therapeutic peptides, 
agrochemicals, detergents, pigments and polymers that are used in our mod
ern life are halogenated.[7–10] In organic synthesis, C-H activation via halo
genation followed by metalation of carbon-halogen bonds is of particular 
importance for selective chemical modification via metal-catalyzed cross- 
coupling reactions.[11–13]

Though halogenated compounds are widely used in many sectors, the 
chemical processes for site specific halogenation of small as well as complex 
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organic molecular backbones often remains challenging.[14] The traditional 
halogenation reactions are via noxious, environmentally hazardous processes, 
harsh reaction conditions and rely on toxic reagents and solvents.[15,16] The 
chemical halogenation routes also encounter poor regioselectivity, lower 
space-time yields and formation of unwanted side products that requires 
tedious chemical separation methods.[17,18] Enzymatic halogenation offers 
a more effective and ecological route to circumvent these problems, with 
a potential advantage of regio and stereoselectivity; eliminating the need for 
protecting or activating groups and biproduct separation.[5,19] Thus, the cur
rent synthetic developments and endeavors of halogenation chemistries are to 
a large extent inspired by nature.[20] In parallel, there is a growing interest in 
identifying, exploring and exploiting biohalogenases to create biosynthetic 
pathways of diverse molecular structures, including metabolites, complex 
natural products or natural product analogues.

Halogenation chemistry in nature is diverse with halogenases from biosyn
thetic gene clusters jointly responsible for halogenating more than 5000 halo
genated biomolecules. It was half a century ago, the first report of an enzymatic 
halogenation – a heme-dependent haloperoxidase isolated from Caldariomyces 
fumago – was published.[21,22] Since then, many halogenases are discovered 
from different biosynthetic pathways that fall under one of the four main 
classes: 1) haloperoxidases (heme-dependent and vanadium-dependent), 2) fla
vin-dependent halogenases, 3) Fe (II)/2-(oxo)-glutarate-dependent halogenases 
and 4) S-adenosyl-L-methionine (SAM) dependent halogenases. The halogena
tion chemistry of these enzymes either follow electrophilic, nucleophilic or 
radical reaction mechanisms (Figure 1).[23] Most reported biohalogenation 
reactions are with chlorine and bromine whereas halide preference for fluorine 
is limited to SAM fluorinases. The homologous enzymes of chlorinases present 
in marine organisms often display a higher bromide preference over 
chloride.[24] Iodination reactions are reported from all class of halogenases 
except for Fe (II)/2-(oxo)-glutarate-dependent halogenases.[25–27]

The halogenase enzymes from the above classes have a wider interest owing to 
its biocatalytic applications and potential utility for chemical and bio- 
manufacturing industries. Reflecting the critical importance, for the last many 
years, a veritable explosion has been observed in research articles that are dealing 
either with identification, engineering or developing potential applications with 
bio-halogenase enzymes (Table 1). There are several excellent reviews on 
mechanism and classification, engineering biohalogenases, halogenases from 
natural product pathways, application and development of halogenases 
etc.[20,23,60–64] However, the use of halogenase enzymes for targeted installation 
of halogen moiety into both natural and synthetic scaffolds via pathway genera
tion is rarely discussed. This is an attractive prospect for many specific synthetic 
biology applications and for the creation of bio-renewable routes to both 
naturals and non-naturals. Combined with the newest trend of heavy-metal- 
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based chemo-enzymatic cross-coupling chemistries, this opens up new ways of 
chemo-bio integrated synthetic exploitation of halogen handles for bio- 
orthogonal molecular derivatization and in designing larger molecular screening 
libraries. Here, we provide an overview of synthetic biology and biosynthetic 
applications of halogenases that are reported to date, highlighting the engineer
ing efforts to incorporate halogenases in natural product and recreated biosyn
thetic pathways either in vivo or in vitro. The goal of this review is not to 

Figure 1. The reaction mechanism and classification of bio-halogenase enzymes discussed. (*Metal 
and cofactor free haloperoxidases are included in the figure merely for the classification purpose).
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comprehensively summarize all halogenated natural products or mutasyntheti
cally generated halogenated molecules; but to focus on naturals and non- 
naturals that are synthesized with a direct bio-halogenase incorporation in 
modified pathways.

2. Haloperoxidases

Haloperoxidases are the earliest class of enzymes identified with a halogenation 
activity (Figure 1). They utilize hydrogen peroxide produced within the active 
site to react with halides forming hypohalides. Hypohalides subsequently react 
with substrate and transfer halide moiety. In our environment, haloperoxidases 
often play a key role in biogenic organohalogen production. Haloperoxidases are 
widely used in organic synthesis for various bio-chemo synthetic applications. 
Reactions such as halohydroxylation, oxidative decarboxylation, halolactonisa
tion using haloperoxidases were reported. The two main types of haloperox
idases currently known are heme-iron dependent and vanadium-dependent 
haloperoxidases (Figure 2). A class of haloperoxidases initially known as metal 
and cofactor-free haloperoxidases were reported previously by several 
groups.[59,65] The structural studies reveal that this specific class of enzymes 
carry a catalytic triad (Ser-His-Asp) and an α/ß hydrolase fold found usually in 
either lipases, esterases, and serine proteases enzymes.[66,67] Metal and cofactor- 
free haloperoxidases display brominase activity on mono-chlorodimedone 1 in 
the presence of acetate, hydrogen peroxidase and bromide. This haloperoxidase 
activity was later questioned by other groups and was proposed as a common- 
unfavored side reaction of hydrolases enzymes.[68] Hence, further discussion on 

Figure 2. Structural comparison of vanadium and heme dependent haloperoxidases. a) Vanadium 
dependent haloperoxidases from Acaryochloris marina (PDB ID: 5LPC), b) heme dependent Canine 
myeloperoxidase (PDB ID:1MYP). Active site residues that interact with vanadium and heme 
cofactors are shown in the inset.
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artifact halogenase activity with the third class of haloperoxidase enzymes are 
not included in this review. Many focused reviews on haloperoxidases and its 
applications in organic synthesis, structure, sources, mechanisms, enzymology 
etc are available for further reading.[69–75]

2.1. Heme-iron-dependent haloperoxidases (HPOs)

The heme-iron dependent haloperoxidases (HPOs) utilize free hypohalous 
acid released via halide oxidation of Fe (IV) oxo species generated during 
catalysis (Figure 1). Electron-rich substrates that are directly accessible to the 
heme centre or to the diffused hypohalous acid could undergo nonspecific 
halogenation. Thus, HPOs are halogenating catalysts without any substrate 
specificity or regioselectivity. The rapid enzyme inactivation is a common 
drawback for HPO reaction as the diffused hypohalous acid reacts with its 
own amino acids. The heme-dependent chloroperoxidases (HCPOs) could 
oxidize all halide ions except fluoride ions for halogenation.

HCPO has structural similarity to other heme proteins such as cytochrome 
P450s and heme peroxidases, enabling it to perform different oxidative hemo
proteins reactions and ability to catalyze multiple oxidative functions. The 
proximal heme ligand of HCPO is either a cysteine thiolate or a histidine as in 
P450s and other hemoproteins, whereas the distal side contains polar amino acid 
residues including a glutamate (and/or asprate) as in peroxidases (Figure 2).[76] 

This distal ligand provides ‘peroxidase-like’ activity that can cleave heme per
oxide O–O bonds during catalysis.[56] Organic substrates interact via the distal 
face and it is the P450 and peroxidase-like structural features that provide 
peroxidase, catalase and P450-like reactivities to HCPO enzymes, along with 
the actual halogenation capabilities. HCPO reactions prefer low pH conditions, 
and halogenation is possible with a range of substrates including phenols, 
aromatic acids, flavonoids, hydrocarbons, lignins, biphenyls, steroids etc.[77] 

The HPOs are widely distributed in nature, present in bacteria, fungi and even 
in higher organisms. The known mammalian haloperoxidases such as myelo
peroxidase (MPO), lactoperoxidase (LPO) and eosinophil peroxidase (EPO) are 
also HPOs.[78–80]

2.1.1. Heme-iron-dependent haloperoxidases from natural product pathways
The HCPO from the caldariomycin biosynthesis pathway in fungus 
Caldariomyces fumago was the first identified HPO involved in 
a halometabolite biosynthesis.[22,81] C. fumago HCPO catalyzes the chlorina
tion of β-ketoadipic acid to δ-chlorolevulinic acid during the formation of 
antibiotic caldariomycin 2.[22] C. fumago HCPO could also dihalogenate 
1,3-cyclopentandione 3, which is an intermediate in caldariomycin synthesis. 
The difference in halide preference of HPOs are normally related to the halide 
binding site than the halide oxidizing ability. It is also suggested that HCPOs 
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have specific chloride binding sites.[82] The second fungal haloperoxidase 
discovered was from agaric mushroom Agrocybe aegerita. This enzyme has 
a strong brominating activity and was also shown to be a potential catalyst for 
different oxy-functionalization reactions. A. aegerita HPO could catalyze 
cyclohexane hydroxylation, which is a reaction that has never been observed 
with other HCPOs. Though there are several biosynthetic HCPOs such as 
bromoperoxidases from Pseudomonas aureofaciens and Penicillus capitatus 
that are known, no bioengineering or genomic engineering strategies were 
investigated with HCPOs. This could be due to the fact that these enzymes are 
prone to fast enzyme inactivation, along with other known issues such as no 
substrate specificity and non-regioselectivity.[83–85]

2.2. Vanadium-dependent haloperoxidases (vHPO)

Vanadium-dependent haloperoxidases (vHPO) enzymes contain a vanadate 
prosthetic group and oxidizes halide ions (X−) into a reactive hypohalite (–OX) 
intermediate by utilizing hydrogen peroxide (Figure 1). vHPOs are classified 
into vanadium-dependent chloroperoxidase (vCPO), vanadium-dependent 
bromoperoxidase (vBPO) and vanadium-dependent iodoperoxidase (vIPO), 
depending on the oxidation ability of halogen ions involved. vCPO oxidizes 
chloride, bromide and iodide. vBPO oxidizes bromide and iodide whereas 
vIPO only oxidizes iodide ions. vHPO and homologous metalloenzymes are 
widely distributed in nature and are present in algae, fungi, bacteria and in 
higher eukaryotes. They play a key role in the production of biogenic organo
halogens in Earth’s atmosphere and in oceans.[86,87] vBPOs present in marine 
micro algae are extracellular enzymes making it easily reactive to the hydrogen 
peroxide produced from marine plants during environmental stress. 
Hypobromic acid released from the active site of vBPO could halogenate the 
dissolved organic matter (mainly methane, halogenated methane and keto 
acids) in seawater. It is estimated that vBPOs from diatoms and algae are thus 
responsible for the production of over 2 million tons of bromoform and 56,000 
tons of bromomethane released to the atmosphere annually.[88]

The resolved crystal structure of vHPO exhibits striking similarities to each 
other with the arrangement of active site residues and co-ordination of 
vanadium in the active site (Figure 2). Vanadium is co-ordinated to 
a conserved histidine residue and the cofactor is in a trigonal bipyramidal 
geometry with bound oxygen atoms positioned in the equatorial 
direction.[89,90] The active site is at the bottom of a 15–20-Å deep funnel- 
shaped channel that anchors an extensive and conserved hydrogen-bonding 
network to stabilize negative charges.[91] Computational and spectroscopic 
studies have suggested the presence of a hydroxyl group or water molecule in 
the axial or apical position.[92] The hydroxyl and/or the water molecule is 
thought to be stabilized by active site hydrogen-bonding interactions. During 
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catalysis, the axial water/hydroxyl molecule and a conserved histidine residue 
play an important role in the hydrogen peroxide co-ordination, followed by 
the formation of a peroxo intermediate.[74] This generates the active hypoha
lous acid for the nonselective halogenation catalysis on nucleophilic substrates 
that are in the close proximity to the active site.

The major advantage of vHPO over heme-dependent haloperoxidases is its 
high robustness in the presence of hydrogen peroxide and ability to create 
clean reaction products. The oxidation state of vanadium centre is maintained 
throughout the catalytic cycle, which avoids oxidative inactivation often dis
played by heme-dependent haloperoxidases. vHPO shows excellent thermal 
stability as well as solvent and pH tolerance. In addition, few vHPOs are 
commercially available and it is also possible to recombinantly express the 
enzymes in industrial host cells such as E. coli and yeast. There are several 
important reviews already available on the role of vHPOs in natural product 
synthesis, organic synthesis as well as chemistry, mechanism and importance 
of vHPO enzymes.[69,73,,87,91]

2.2.1. Reconstructed biosynthetic and natural product pathways with vHPO
For a long time, vHPOs are considered to have limited regio, chemo and 
enantioselectivity due to their mechanisms based on free hypohalous acid 
dissipation. This was challenged initially by the biotransformation carried out 
by vHPOs isolated from marine red algae such as Corallina officinalis, Laurencia 
pacifica and Plocamium cartilagineum.[93] C. officinalis vHPO was found to be 
very selective and asymmetrically brominate and cyclize sesquiterpene mole
cules (E)-(+)-nerolidol 4 to bromo alcohols α-, β-, and γ-snyderol 5–7 (Figure 
3). No snyderol diastereoisomer are formed in the absence of vHPO, indicating 
that oxidation of bromide by a peroxo−vHPO complex is necessary for the 
bromination and the subsequent cyclization. Similar results were also observed 
with monoterpenes nerol 8 and geraniol 9, where bromo cyclized products were 
only produced in the presence of vHPOs.[94] Later, the identification of regios
pecific vHPOs and their homologous enzymes from natural product 

Figure 3. Substrates and products of non-regioselective vanadium dependent haloperoxidases.
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biosynthetic gene cluster for meroterpenoids paved the way for further details on 
stereo and regiospecific reactions that vHPO could perform.

Napyradiomycin and merochlorin are a group of intriguing molecules with 
a polyketide naphthoquinone–terpenoid hybrid scaffold, produced by different 
Streptomyces species through halo-functionalization and a followed ring closure 
involving alkene and arene units (Figure 4). The napyradiomycin biosynthetic 

Figure 4. The recreated biosynthetic pathways that include vanadium-dependent haloperoxidase 
(vHPO) enzymes. a) One pot chemo-enzymatic synthesis of napyradiomycin A1 and napyradio
mycin B1 using NapH1, NapH3, NapH4 vHPOs and PTase enzymes NapT8 andNapT9. b) Structure 
diversity between THN-derived meroterpenoids based on prenylation of THN scaffold. c) In vitro 
reconstituted merochlorin A and merochlorin B biosynthetic pathways using corresponding vHPOs 
and other merochlorin pathway enzymes.
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gene cluster in Streptomyces aculeolatus NRRL 18422 and Streptomyces sp. 
CNQ-525 contains three vHPO enzymes NapH1, H3, H4. For the first time, 
involvement of vHPO enzymes in this dedicated meroterpenoids biosynthetic 
pathway was investigated by studying the formation of a trichlorinated napyr
adiomycin molecules from napyradiomycin biosynthesis.[95,96] This has revealed 
that the napyradiomycin structure is derived from a symmetrical 1,3,6,8-tetra
hydroxynaphthalene (THN) 10 polyketide which is isoprenylated by the meva
lonate pathway. The initial terpenoid fragments undergo a stereospecific 
chloronium ion induced cyclization by vHPO enzymes. The nap locus from 
the native host was engineered into non-producer Streptomyces albus for its 
heterologous production.[55] The heterologous expression and assays in S. albus 
and E. coli cells indicated that NapH1 catalyzes the proposed halocyclization of 
a prenyl moiety to form a 7-methylated napyradiomycin A1 derivative in the 
presence of hydrogen peroxide. NapH1 is a dual acting enzyme which catalyzes 
chlorination and etherification (to cyclize the prenyl moiety) reactions at two 
distinct stages in the pathway.[97] Using a heterologous soluble expression of 
NapH4 in Streptomyces lividans TK23, it was shown that NapH4 is involved in 
the halogenation-induced cyclization of a geranyl moiety to form an exomethy
lene-containing chlorinated cyclohexane ring of napyradiomycin B1.[98] Though 
napH3 has above 50% sequence identity with NapH1 and napH4, the recombi
nant NapH3 enzyme exhibited no halogenation activity. Instead, it mediated the 
C4-to-C3 α-hydroxyketone rearrangement of the geranyl moiety with synthetic 
and pathway intermediate to form naphthomevalin 11. This indicates that 
though NapH3 shares homology with other two haloperoxidases, it has evolved 
into an exclusive and selective catalyst for the requisite isomerization reaction in 
the pathway; acting merely on a halogenated substrate.[97]

The detailed understanding and identification of the activities of vHPO 
enzymes and two additional Mg[2]+-dependent prenyltransferase (PTase) enzymes 
(NapT8 and T9) allowed to create a minimal engineered napyradiomycin biosyn
thetic pathway using recombinant and purified enzymes (Figure 4a). In this 
recreated pathway, the prenyltransferase NapT9 catalyzes the geranylation of 
1,3,6,8-tetrahydroxynaphthalene at the nucleophilic 4-position, which is further 
oxidatively dearomatized and monochlorinated by NapH1. NapT8 catalyzed 
prenylation with dimethylallyl pyrophosphate (DMAPP) 14 and a followed 
NapH3-catalyzed α-hydroxyketone rearrangement forms naphthomevalin 11 
molecule. The one pot chemo-enzymatic approaches using three vHPO and two 
PTase enzymes, in combination, produced napyradiomycin A1 and B1 12–13 up 
to a milligram scale. The total enantioselective chemical synthesis of these mole
cules is very challenging; often encountered with lower yields. The one pot chemo- 
enzymatic in vitro routes with minimal enzymes has greater advantage and it is 
highly likely that these methods could be engineered into a suitable host in near 
future for in vivo large-scale production.[99]
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Natural product merochlorin biosynthetic cluster, mcl, identified from 
marine-derived bacterium Streptomyces sp. CNH-189 contains two vCPO 
homologs (Mcl24 and Mcl40) and a PTase (Mcl23) (Figure 4c).[100] The 
heterologous expression studies showed that merochlorins were assembled 
by chloroetherification reaction on THN scaffold similar to that observed in 
napyradiomycin biosynthesis. Mcl23 attach an isosesquilavandulyl pyropho
sphate 15 to THN structure. Mcl22, a prenyl diphosphate synthase enzyme in 
the pathway initiate the coupling of DMAPP 14 and geranyl pyrophosphate 
(GPP) to form isosesquilavandulyl pyrophosphate 15. Mcl24 showed similar
ity to NapH1, which follows an intramolecular cyclization via a chloronium- 
induced oxidative dearomatization of the substrate pre-merochlorin 16 to 
create merochlorin A and B 17–18.[38,101,102] Mcl40 is proposed to be involved 
in the construction of merochlorin C 19, a 15-membered cyclic ether ring 
from merochlorin D, via one of the largest natural olefin halofunctionalization 
reaction (Figure 4b). Mcl24 displayed no activity toward simple terpene 
alcohols and phenolic and naphtholic substrate analogues, indicating that 
this halogenation is substrate as well as regiospecific. The merochlorin path
way was in vitro constituted using Mcl17 (THN polyketide synthases), Mcl22, 
Mcl23 and Mcl24 with external addition of DMAPP, GPP and malonyl CoA 
metabolites. This has produced both merochlorin A 17 and merochlorin B 18 
in analytical quantities along with premerochlorin through a one pot total 
enzymatic synthesis for the first time.[38]

Though not experimentally proven, the presence of a conserved lysine 
residue in the vicinity of vanadate cofactor that forms a chloramine type 
intermediate as in the case of Fl-Hals were speculated for site-specific halo
genation of merochlorin and napyradiomycin vHPOs. Identification and 
reconstruction of new vHPOs from other natural product biosynthetic gene 
clusters such as recently identified vHPOs from naphterpin and marinone 
biosynthetic cluster and from unexplored cyanobacterial species will shed 
more light in this direction.[103,104,105,106]

3. Flavin-dependent halogenases (Fl-Hals)

The discovery of flavin-dependent halogenase from pyrrolnitrin 19 biosynth
esis demonstrated the existence of an alternative regiospecific halogenation 
mechanism in nature for the first time.[107] Fl-Hals are evolved from 
a superfamily of flavin-dependent monooxygenases (FMOs) that activates 
molecular oxygen using reduced flavin (FADH2) to generate hydroperoxy 
flavin (FAD-OOH) (Figure 1). Fl-Hals based halogenation chemistry utilizes 
this initial activation mechanism, followed by the reaction of halide anion with 
hydroperoxy flavin to produce hypohalous acid.

The overall structural similarity of Fl-Hals to flavin-dependent mono
oxygenases (FMOs) and the existence of FMO like regions in Fl-Hals were 
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known from the earliest resolved crystal structures of Fl-Hal enzymes.[28] 

However, the resolved crystal structures of Fl-Hals showed that substrate 
and flavin-binding sites in Fl-Hals are spatially distinct and are separated 
by over 10 Å thus avoiding any direct substrate-flavin interaction as 
observed in FMOs (Figure 5).[28] The hypohalous acid produced from 
cofactor is thought to be guided inside a channel toward an active site 
lysine to form a long-lived enzyme-chloride adduct.[108] The chemical 
nature of this adduct is still under debate, which could either be 
a covalent chloramine species or a lysine-hypochlorous acid adduct 
formed via hydrogen bonding.[109] The substrate halogenation site is 
often oriented toward the active site lysine residue and it has a vital 
role in reaction chemistry and in deciding regioselectivity of the substrate 
halogenation position. A conserved glutamate residue in the active site is 
responsible for the abstraction of a proton from the Wheland intermediate 
formed by substrate interaction with electrophilic chlorine species. This 
evolved and finely controlled enzymatic halogenation mechanism for 
regioselectivity makes the Fl-Hals to differ from other halogenase 
enzymes, making it extremely useful for biocatalytic and biosynthetic 
applications.[20]

The specific roles played by structural dynamics and active site residues in 
the regio selective halogenation mechanism were being investigated by several 

Figure 5. Structural features of flavin dependent halogenases. a) Overall structural comparison of 
flavin dependent halogenases. The varied C- terminal regions and FAD atoms are shown in green 
cartoon and yellow spheres respectively. b) Halide ion reaction with C4a-(hydro)peroxyflavin, in 
the active site, generating the halogenating agent hypohalous acid. c) Substrate and FAD binding 
regions (separated over 10 Å distance) and the catalytic residues of tryptophan halogenase 
enzyme PrnA.

CATALYSIS REVIEWS 15



recent computational and spectroscopic studies.[19,110,111] The quantum 
mechanics (QM)/molecular mechanics (MM) approaches supported the key 
atomistic interactions in the reaction path confirming the respective proton 
acceptor and donor roles of active site lysine and glutamate residues. 
A structurally conserved and highly flexible ‘strap’ region, present in flavin- 
dependent tryptophan halogenases, links the FAD and substrate-binding 
domain and is also known to be involved in FAD interactions and catalysis. 
The computational studies also revealed the potential energy and free energy 
profiles along with geometric features by which lysine and glutamate residue 
activates the hypohalous acid.

The highly conserved nucleoside binding GxGxxG (of flavin binding) 
and a structural WxWxIP (which blocks monooxygenase-specific functions) 
signature motifs were used to identify putative Fl-Hals in genome mining 
from NRPS and PKS natural product biosynthetic clusters.[31,33,112] To date, 
many Fl-Hals from both bacterial and fungal species involved in complex 
biosynthetic pathways have been identified and characterized.[113,114,115] All 
Fl-Hals share a structurally similar flavin-binding domain region whereas 
the main difference arises from the substrate-binding end terminal 
domains. The recruitment of different substrate-binding regions contributes 
to the substrate diversity within Fl-Hals enzymes. Some Fl-Hals also require 
a substrate activation or tethering via specific carrier proteins leading to 
additional structural differences. For example, the crystal structure of myx
obacterial chondrochloren halogenase – CndH – has an unstructured 
C-terminal region with surface-exposed hydrophobic patches that are pre
dicted to be interacting with an acyl carrier protein (ACP) that bound to 
the substrate (Figure 5).[40] CndH also lack catalytically relevant Wheland 
glutamate base, which is thought to be supplemented by a surrogative 
residue from the carrier protein. A recently resolved structure of PltA 
halogenase – a carrier protein and flavin-dependent halogenase – also 
suggests large conformational changes within C-terminus regions for sub
strate positioning in Fl-Hal proteins.[37]

Different classes of Fl-Hals based on the substrate chemical scaffold, such 
as indolic, phenolic and pyrrolic halogenases are currently isolated from 
natural pathways and heterologously characterized.[31,109,116,117] Many Fl- 
Hals are known for halogenating complex biomolecular natural product 
structures either via an early stage halogenation of smaller starter units or 
by late stage tailoring activities of matured complex molecules.[118] Though 
most of the Fl-Hal substrates belong to the category of electron-rich aro
matic groups: regio and stereoselective aliphatic halogenation reactions are 
also reported.[119] In vitro activity studies and direct evolution approaches 
showed that the active site of Fl-Hals in general are easily modifiable to 
adapt and display a wider substrate activity toward small and complex non- 
natural substrates.[112,117,120]
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3.1. Integration of Fl-Hals into non-native biosynthetic pathways

There are several examples from the natural product world, in which Fl-Hals 
are incorporated and utilized in combinatorial biosynthesis of natural product 
analogues. Combinatorial biosynthesis of two indolocarbazole alkaloids, 
rebeccamycin and staurosporine in Streptomyces albus, are the seminal 
works in this area. Rebeccamycin and staurosporine scaffolds 20–21 are 
formed from two tryptophan-derived units via decarboxylative fusion, fol
lowed by the attachment of a sugar moiety (Figure 6). Earlier studies had 
shown that the genomic cluster of rebeccamycin and staurosporine could be 
heterologously cloned into non-producers like S. albus.[121] For the combina
torial biosynthesis of rebeccamycin in S. albus, a collection of rebeccamycin 
(reb) gene combinations were constructed using genes from different 

Figure 6. In vivo combinatorial biosynthesis of indolocarbazole alkaloids, rebeccamycin and 
staurosporine molecular analogues in S. albus. The tryptophan Fl-Hals, RebH, ThaI and PyrH 
used here to install regio selective halogen handles in these molecules.

CATALYSIS REVIEWS 17



rebeccamycin producers like Lechevalieria aerocolonigenes, Streptomyces long
isporoflavus, Streptomyces albogriseolus and Streptomyces rugosporus.[122]

The rebO (amino acid oxidase) and rebD (chromopyrrolic acid synthase) 
genes are responsible for producing 3,4- bis(indol-3-yl)pyrrole-2,5-dicar
boxylic acid or chromopyrrolic acid. Co-expression of two additional genes 
rebC (FAD-containing monooxygenase) and rebP (a P450 oxygenase) was 
required for producing indolopyrrolocarbazole core structure that is identical 
to arcyriaflavin A 22. Other combination involves rebG 
(N-glycosyltransferase) and rebM (sugar O-methyltransferase) which are 
responsible for glycosylation and methylation of arcyriaflavin A sugar moiety. 
The main structural difference of the indolopyrrolocarbazole core structure in 
rebeccamycin and staurosporine is the absence of a C-7 carbonyl function in 
staurosporine. This originates from the differential oxidative activity of rebC 
oxygenase compared to its counter-part staC in staurosporine cluster. In order 
to increase the size of combinatorial libraries via various gene combinations 
arising from all the aforementioned genes, the tryptophan 7-halogenase 
enzyme RebH present in this cluster was replaced with either a tryptophan 
6-halogenase (Thal from thienodolin biosynthesis in S. albogriseolus) or tryp
tophan 5-halogenase (PyrH from pyrroindomycin biosynthesis in 
S. rugosporus) yielding different site specifically mono or dihalogenated 
analogues.

The combinatorial biosynthesis by using halogenases that act on carrier 
protein tethered substrates in native host systems are explored with the 
antibiotic biosynthetic clusters of hormaomycin 23 and aminocoumarin anti
biotic clorobiocin 24.[123] Hormaomycin produced in Streptomyces griseofla
vus contains a 5-chloro 1-hydroxypyrrole moiety generated by the 
halogenation activity of hrmQ, a pyrrol Fl-Hal in the biosynthetic pathway. 

Figure 7. In vivo combinatorial biosynthesis of novoclorobiocin analogues in S. roseochromogenes 
using Fl-Hal that act on a carrier protein tethered substrate.
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On the other hand, clorobiocin produced by a Streptomyces roseochromogenes 
variant contains a 5-methyl pyrrol moiety. The heterologous expression of 
hrmQ gene in Streptomyces roseochromogenes after genetically inactivating 
pyrrole-5-methyl-transferase (CloN6) produced two halogenated clorobiocin 
derivatives 25–26 in quantifiable yields (Figure 7). Though the strategy worked 

Figure 8. Natural products that are biosynthesized by a flavin-dependent halogenase enzyme.
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for above-mentioned case, there are examples in which different substrate 
specificity of Fl-Hals hindered the halogenase replacement between different 
biosynthetic clusters. The effort to functionally replace Clo-hal which halo
genates position 8 in aminocoumarin of clorobiocin with a BhaA Fl-Hal from 
balhimycin 27 cluster did not produce the expected product (Figure 8).[124] 

Though both Fl-Hals could act on a carrier protein-bound β-hydroxytyrosine 
moiety, this indicates that the substrate specificity of Fl-Hals is an important 
factor that could contribute to additional levels of complexity for replacement 
strategies.

Incorporating free-standing Fl-Hals directly into existing biosynthetic path
ways where no natural halogenation biosynthetic machinery is present is an 
attractive strategy for non-naturals. This was attempted by Goss group in 
pacidamycin biosynthetic cluster. In this approach, chlorinated pacidamycin 
were produced from Streptomyces coeruleorubidus by genetically introducing 
a tryptophan-7-halogenase (PrnA) from the pyrrolnitrin biosynthetic 
pathway.[125] Incorporation of Fl-Hals into medicinal plant secondary metabo
lism for the de novo biosynthesis of halogenated natural products with improved 
bioactivities has many potential applications. Compared to biosynthetic gen
omes found as clusters in micro-organisms, plant biosynthetic gene clusters are 
more scattered, thereby making gene manipulations using halogenase an easy 
and viable approach for combinatorial biosynthesis. This was demonstrated in 
medicinal plant Catharanthus roseus by including PyrH (tryptophan 5-halogen
ase) and RebH (tryptophan 7-halogenase) to produce site specifically chlori
nated tryptophans, which was then shuttled into monoterpene indole alkaloid 

Figure 9. Introducing Fl-Hals into plant secondary metabolism. a) Modifying indole alkaloid 
biosynthesis in C. roseus by Fl-Hal PyrH (tryptophan 5- halogenase). b) Metabolic engineering of 
akuammicine scaffold with a variant of Fl-Hal enzyme RebH (tryptophan 7- halogenase) that act on 
tryptamine. c) Pd-based Suzuki-Miyaura cross coupling chemistries for further derivatization of 
akuammicin scaffold.
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metabolism to yield chlorinated alkaloids (10- chloroajmalicine 28, 15- 
chlorotabersonine 29, 12-chloro-19,20- dihydroakuammicine 30) from its root 
cultures (Figure 9a-b).[126] The inefficiency of tryptophan decarboxylase to act 
on chlorinated tryptophan to give required chlorotryptamine was found to be 
the metabolic bottle neck of this reaction which was addressed later by incor
porating a RebH-Y455W variant capable of selectively converting 7-chlorotryp
tophan to 7-chlorotryptamine.[127] The work was further extended to tobacco 
chloroplasts by using SttH (tryptophan 6-halogenase) and RebH in combina
tions to produce dihalogenated tryptamines.[128]

Like for like gene swap experiments were also reported with Fl-Hal genes in 
napthomycins 32 and ramoplanin 33 biosynthetic clusters (Figure 
8).[55,129,130,131,132] Napthalenic antibiotic napthomycin and ansamitocin 34 
has structural similarity, with both biosynthetic clusters possessing a free- 
standing phenolic Fl-Hal. The Asm12; an Fl-Hal from ansamitocin cluster of 
Actinosynnema pretiosum has over 78% sequence identity with Nat1 of 
napthomycins biosynthetic cluster present in Streptomyces sp. CS. 
Introduction and complementation of Asm12 in a Nat1 mutant strain restored 
the production of napthomycin indicating their functional similarity within 
the biosynthetic clusters.[131] The substrate-tethered halogenases that act on 
hydroxyphenylglycine (Hpg) residues of the lipopeptide antibiotics ramopla
nin and enduracidin 35 biosynthetic clusters present in soil bacterium 
Streptomyces fungicidicus were also studied for halogenase gene swap experi
ments (Figure 8).[133] End30 halogenase from enuracidin dichlorinates endur
acidin Hpg13 whereas Ram20 halogenase only monohalogenates the Hpg17 
residue of ramoplanin. Ram20 knockout strain when complemented with 
end30 resulted in monohalogenation of Hpg17. When ramoplanin mannosyl
transferase was knocked out in the complemented strain, a dihalogenation was 
restored on the Hpg13 residue in ramoplanin, indicating that both enzymes 
have different active site structure. A similar replacement of enduracidin 
halogenase End30 with Ram20 in knockout strain, produced dideschloroen
duracidins A. The site-specific halogenation of End30 and Ram20 also helped 
to synthesize new halogenated non-natural molecules in enduracidin wild- 
type producer when Ram20 is recombinantly expressed.[134] These proto-type 
examples of like for like gene swap and joint recombinant expression 
approaches indicate its potential applications not only for increasing the 
library of non-natural molecules, but also to improve the production titers.

3.2. Fl-Hals for non-native biosynthetic pathways in industrial hosts

Free-standing phenolic Fl-Hals from fungal species are potential targets for 
many biocatalytic and biosynthetic pathway applications. The halogenase Rdc2 
and RadH involved in the biosynthesis of resorcylic acid lactone (RCL) polyke
tides in fungus Pochonia chlamydosporia and Chaetomium chiversii respectively 
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were well exploited toward this direction.[113,135] Radicicol 36 production in 
P. chlamydosporia involves two iterative polyketide synthases (IPKs) Rdc5 and 
Rdc1. The complete reconstitution of the two IPKs in Saccharomyces cerevisiae 
(both in vitro and via in vivo routes) by Yi Tang group had displayed the 
formation of a resorcylic acid lactone intermediate, (R)-monocillin II 37 
(Figure 10a). Introducing Rdc2 Fl-Hal into the pathway produced site- 
specifically halogenated molecule pochonin D 38 (approx. 15 mg/L).[135] 

Utilizing industrial host strains such as E. coli and yeast for heterologous fungal 
biosynthetic genomes presents many major challenges, including the known 
inactivity of endogeneous 4′-phosphopantetheine (pPant) transferase to act up 
on fungal ACP domains that leave fungal iterative polyketide synthases as 
unmodified. This was addressed with a genetically modified S. cerevisiae BJ5464- 
NpgA strain that carry pPant transferase gene from Aspergillus nidulans which 
was previously used for fungal pathway reconstruction studies in yeast.[136,137] Yi 
Tang group had also introduced Rdc2 in S. cerevisiae along with other two IPKs 
(Hmp3 and Hmp8) that are present in the RCL hypothemycin 39 biosynthesis 
cluster of fungus Hypomyces subiculosus.[138] In the presence of Rdc2 halogen
ase, the reconstituted yeast strain produced 6-chloro 7,8-dehydrozearalenol 40, 
an RAL related to monocillin II, with a different stereochemistry for the lactone 
alcohol group (Figure 10b). The structural difference between monocillin and 
7,8-dehydrozearalenol arises from the strict stereospecificity of Hpm8 β- 
ketoreductase domain to form D-hydroxyl product which is reduced to form 
L-alcohol, whereas in Rdc5 an opposite stereochemistry is followed. In vitro 
studies with RadH Fl-Hal showed that although it halogenates monocillin II, it is 

Figure 10. Recreating fungal resorcylic acid lactone pathways in yeast S. cerevisiae. a) Radicicol 
pathway recreated with Rdc2 halogenase and minimal iterative PKS pathway. enzymes b) 
Hypothemycin pathway for the production chlorinated dehydrozearalenol in yeast.
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inactive toward zearalenone 41 or curvularin 42, suggesting a different active site 
structure despite having a high sequence similarity (Figure 10).[135] However, 
RadH is more promiscuous than Rdc2 with a potential scope to replace Rdc2 in 
reconstructed monocillin pathway toward many radicicol analogues via halo- 
specific chemical coupling reactions.[139]

The late-stage macrolactone scaffold halogenation and ability to halogenate 
different smaller phenolic compounds suggested that RadH and Rdc2 are ideal 
enzymes for recreating secondary metabolite biosynthetic pathways in E. coli. 
Rdc2 are used for recreating phenylpropanoid acid-based secondary metabolite 
biosynthetic pathways in E. coli.[140] Phenylpropanoid acids based pathways lead 
to variety of natural products in plants with some of the pathways previously 
reconstructed in E. coli. By the recombinant expression of TAL (Tryptophan 
Ammonia Lyase from Saccharothrix espanaensis), 4Cl (4-coumarate:CoA ligase 
from Arabidopsis thaliana) and STS (stilbene synthase from Arachis hypogaea) 
from different sources, bioactive natural stilbenoid molecule resveratrol 43 was 
combinatorially bio-synthesized in E. coli. Introducing Rdc2 into reconstituted 
resveratrol pathway affords the production of a new non-natural molecule, 
2-chlorinated resveratrol 44, with improved antimicrobial and antioxidant 
activity (Figure 11a).[140,141]In vitro studies with RadH showed that umbellifer
one 45, a central intermediate of coumarin-based natural molecules produced in 
plants, is one of the highly active non-native substrate for RadH enzyme.[113] 

This had led to the reconstruction of an umbelliferone pathway in E. coli with 
TAL and 4 Cl along with an additional enzyme feruloyl CoA 6′-hydroxylase (F6′ 

Figure 11. In vivo biosynthesis of halogenated molecules in E. coli. a) Biosynthesis of chloro- 
resveratrol and B) chloro umbelliferone by utilizing phenylpropanoid acid based biosynthetic 
pathways in E. coli. c) Chlorinated anthraquinone derivatives in E. coli with type II PKSs proteins 
from P. luminescens.
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H). The umbelliferone formed was then halogenated to non-natural molecule 
chloro umbelliferone 46 (approx. 1 mg/L) by incorporating RadH into this 
reconstructed pathway (Figure 11b).[113]

The wider substrate scope that Fl-Hals exhibit makes it possible to target 
complex polyketide biosynthetic pathways reconstructed in E. coli. The typical 
example is the anthraquinone pathway from Photorhabdus luminescens 
recombinantly expressed recently in E. coli.[142] Though type I modular poly
ketide synthases (PKSs) are expressed previously in E. coli, the incompatibility 
of type II PKSs with E. coli cell line makes it more elusive.[143,144] The soluble 
expression of a ketosynthase (KS) and chain length factor (CLF) pairs of 
P. luminescens from anthraquinone pathway had provided a minimal type II 
PKS genomic components to synthesize anthraquinone in E. coli (Figure 11c). 
The anthraquinone derivative AQ256 47 thus formed could be in vivo halo
genated with RadH to its monochlorinated AQ256 analogue neochaetomycin 
(or 1,3,8-trihydroxy-monochloroanthraquinone) 48 (approx. 1 mg/L). The 
chlorinated anthraquinone derivatives are well known for its ATP citrate 
lyase inhibiting activity and in modulating mammalian fatty acid synthesis. 
This implies that the biosynthetic approaches toward chloro anthraquinone 
molecules will have a wider application in the near future.[145,146]

For carrier protein substrate dependent Fl-Hals, heterologous expression of 
halogenase containing genomic clusters in industrial hosts could be challenging. 
The seminal example was reported with a tetrabromo pyrrole biosynthetic cluster 
(bmp) from marine bacteria Pseudoalteromonas and Marinomonas mediterranea 
MMB-1 genome. The bromopyrrol biosynthesis in Pseudoalteromonas starts from 
loading of L-proline 49 onto an ACP phosphopantetheine arm by an adenylation 
enzyme (bmp4), followed by oxidation of the prolyl ring to a pyrrole by 
a dehydrogenase enzyme (bmp3) (Figure 12a). The thio templated halopyrrole 
can further proceed down biosynthetic assembly lines toward complex marine 
natural products like marinopyrrole 50, chlorizidine 51 etc (Figure 12b). Bmp2 is 
the brominase enzyme that acts on a pyrroly-2- carboxylate substrate attached to 
the Bmp1 carrier protein via thioesterase link. Having found that Bmp1 to 4 
enzymes are key in the biosynthetic pathway to produce 2,3,4-tribromo pyrrole 52 
and 3,4,5-tribromo-pyrrole-2-carboxylic acid 53; bmp1 to bmp4 protein cluster 
was heterologously expressed in E. coli. The expected brominated molecules 
(2,3,4-tribromo pyrrole and 3,4,5-tribromo-pyrrole-2-carboxylic acid) were pro
duced in the culture when bromide was present. This was also confirmed by 
in vitro reconstitution of minimal pathway using bmp1 to bmp4 purified enzymes. 
The pyrrole 2-carboxylate moiety is suggested to be offloaded from the ACP by 
a non-enzymatic hydrolysis and a further decarboxylation of terminal bromide 
yields bromopyrrole. As there are several natural product molecules derived from 
L-proline starting units that follow a similar initial synthetic machinery, this 
example could provide further insights into future design of divergent and inter
esting molecular scaffolds in industrial hosts.
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3.3. Fl-Hals for biosynthetic pathways with integrated chemo-catalysts

The possibility to replace carbon-halogen bond with carbon-carbon, carbon- 
nitrogen, carbon-fluorine or carbon-oxygen bonds via transition metal-based 
complex chemo-catalysts are known for decades. Carbon-halogen bonds pre
sent in both natural and non-naturals created by biosynthetic and biotrans
formation protocols provide an opportunity to derivatize the molecular 
scaffolds using heavy metal-based cross coupling chemistries. The effective 
catalyst control for C-H activation with traditional chemical halogenation 
methods is often impossible and imposes many challenges. The existence of 
specific regioselective Fl-Hals that act on electron-rich aromatic substrates 
makes it logical to have enzymatic routes to create halogenated moieties for 
these approaches. Such methods are slowly gaining wider interest from syn
thetic chemists and chemical biologists, and as a result the past few years have 
seen several reports on the development of compatible chemo-enzymatic 
reaction platforms using Fl-Hals.

The first known example of an in vivo chemo-enzymatic approach from the 
natural product world was by Goss group using pacidamycin 54 biosynthetic 
cluster in S. coeruleorubidus.[125] The chloro pacidamycin 55 produced by the 

Figure 12. a) In vivo biosynthesis of bromo pyrrole derivatives in E. coli using bmp biosynthetic 
cluster from marine bacteria Pseudoalteromonas. A carrier protein dependent Fl-Hal enzyme bmp2 
carryout bromination of pyrrole moiety. b) Mode of formation of halo pyrrole natural product 
scaffolds in different microorganisms.
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introduction of Fl-Hal PrnA was selectively functionalized using Pd-mediated 
Suzuki-Miyaura cross-coupling reactions (Figure 13a). The synthetic derivatiza
tion of a complex molecule like pacidamycin is quite challenging with the 
presence of reactive functional groups, its insolubility in organic solvents and 
poor thermal stability. This was addressed by seeking and imposing milder cross 
coupling reaction conditions and via screening for efficient chemo-catalysts for 
biocompatibility and bio-orthogonality. Few pacidamycin analogues are thus 
created via cross-coupling using aromatic boronic acid substrates, Na2Cl4Pd- 
SPhos catalyst and K2CO3 as base in water-acetonitrile solvent system. The 
chemo coupling reactions were performed with aqueous extracts of the fermen
tation broth, or with semi-purified cultures by heating at 80°C in a microwave. 
Another notable early example was for synthesizing monoterpene indole alka
loid analogues from plant C. roseus.[147] 12-chloro 19,20-dihydroakuammicine 
and 12-bromo 19,20-dihydroakuammicine 30 are produced in C. roseus root 
cultures by introducing Fl-Hal RebH and its flavin reductase partner RebF via 
genetic engineering. The aryl and heteroaryl analogues of 19,20- 

Figure 13. Fl-Hals for biosynthetic pathways with integrated chemo-catalysts. a) In vivo chemo- 
enzymatic approaches toward the formation of pacidamycin analogous in S. coeruleorubidus 
biosynthetic growth cultures using Suzuki-Miyaura cross coupling. b) Bromine tolerant engineered 
S. coelicolor M1154 strain for ‘genochemetics’ approaches for Suzuki-Miyaura cross coupling in 
living cells and Heck coupling using crude cell culture extracts.
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dihydroakuammicine 31 was synthesized by a subsequent Pd-catalyzed Suzuki- 
Miyaura cross-coupling reaction (Figure 9c). In these approaches, lower activity 
of halogenases seems to be the limiting factor for large scale synthesis and scale- 
ups, which was often addressed by traditional mutasynthesis or precursor- 
directed biosynthesis (not discussed under the scope of this review).[148,149]

The development of a concurrent method in which bio-engineered halogen 
moieties are reactively coupled with Pd based chemo catalysis in a living 
system has many potential applications in in situ labeling, affinity tagging of 
proteins and biomolecules. This possibility was explored by Goss group with 
a living ‘GenoChemetics’ approach (Figure 13b).[150] The living cell culture of 
an engineered E. coli PHL644 strain that carry PrnA Fl-Hal to produce 
7-brominated tryptophan was used for the synchronized production and 
cross-coupling, after initial optimization of growth media and coupling con
ditions. Next, these approaches were extended to pacidamycin biosynthesis, 
using a bromide salt tolerant S. coelicolor M1154 strain and after genetically 
introducing S. coeruleorubidus pacidamycin cluster along with prnA. The cell 
culture grown in a defined media was capable of producing sufficient- 
brominated pacidamycin D 56 which was derivatized to desired cross coupling 
product p-tolyl-pacidamycin 57 using a corresponding aromatic boronic acid 
substrate (Figure 13b). The in vivo generated halo-metabolites could be poten
tially applied to other types of Pd or heavy metal-based cross coupling 
chemistries, especially for Heck coupling reactions. The earliest attempt in 
this direction was with the bromo pacidamycin D 56 engineered S. coelicolor 
M1154 strain. The crude culture extract containing brominated pacidamycin 
D was cross coupled with fluoro styrene to form fluoro-styrene pacidamycin 
D 58 in the presence of a tris(2,4-dimethyl-5-sulfophenyl)phosphine triso
dium (TXPTS) based palladium catalyst.[151] Though the brominated mole
cule was fully converted, scale up and separation of the product from cell 
culture wasn’t attained. These synchronized, continuous one-pot halo- 
metabolite production and a followed cross coupling approaches have many 
advantages, including improving the metabolite flux toward final products, 
absence of intermediate purification steps etc. Fluorogenic cross-coupling of 
halogenated natural products and bio-synthesized small molecules in living or 
culture supernatants could also be used as a potential tool for molecular 
identification and screening. This approach was already applied by other 
groups for high-throughput-directed evolution of halogenase enzymes to 
increase its reactivity and thermal stability.[152,153]

4. Nonheme Fe (II)-α-ketoglutarate-dependent halogenases (α-KG-Hals)

α-KG-Hals belong to the superfamily of α-ketoglutarate-dependent oxyge
nases (α-KGOs), a diverse family of enzymes that catalyzes hydroxylation, 
epoxidation, epimerization, demethylation, ring formation, C-C bond 
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cleavage and desaturation reactions.[154,155] α-KG-Hals are structurally and 
mechanistically related to α-KG-oxygenases, which follow a radical mechan
ism via formation of a high valent and short-lived FeIV = O ferryl inter
mediate (Figure 1).[156,157] This intermediate is a powerful oxidant that 
abstracts an hydrogen from un-activated carbon-hydrogen bond creating 
a substrate radical and another FeIII-hydroxyl (or Chloride) intermediate. 
The chloride then rebounds to substrate radical giving halogenated product 
in α-KG-Hals, whereas in hydroxylases, it is the hydroxyl species that 
rebounds.[157]

The main structural difference in the active site of hydroxylases and α-KG- 
Hal is within the HxG(A) motif, in which a glycine or an alanine residue is 
replaced by a carboxylate residue allowing direct coordination of a halide ion 
in α-KG-Hals.[44] The placement of substrate relative to active site FeIV = O 
ferryl intermediate has a major role in the halogenation mechanism including 
various other factors such as oxidative and dissociative properties of Fe 
center.[158159160161] The electronic structural properties and oxyl character of 
the reactive ferryl intermediate during the transition state formation in the α- 
KG-dependent enzymes were analyzed and reported by several computational 
and spectroscopic studies.[162163164] These studies also revealed the fine details 
in which the highly oxidative ferryl intermediate could also lead to other 
oxidative reaction environments within the active site. For example, in α-KG- 
Hals side reactions such as aliphatic hydroxylation, nitration and azidation 
reactions were also reported.[43,165]

An earlier observation on the aliphatic carbon centers of nonribosomal pep
tides barbamide 59 and syringomycin 60, which are halogenated without the 
presence of any known halogenases, led to the identification of α-KGOs depen
dent enzymatic halogenase machinery from these clusters. α-KG-Hals known as 
SyrB2 (from the syringomycin genome cluster) BarB1 and BarB2 (from barba
mide biosynthesis cluster) were subsequently identified (Figure 14).[166,167] The 
first α-KG-Hal enzyme characterized from a biosynthetic cluster was SyrB2 in 
2005.[168] Similar to most of the initially known α-KG-Hals, these enzymes utilize 
substrates that are covalently tethered to acyl or peptidyl carrier proteins with 
a phosphopantetheine arm. The carrier protein tethered L-threonine (L-Thr- 
S-SyrB1) 61 acts as a substrate for the SyrB2 reaction, whereas for BarB1 and 
BarB2-mediated chlorination reactions the substrate is L-leucine (L-Leu-S-BarA) 
62. Several carrier protein substrate -dependent α-KG-Hals are discovered over 
the years, including CytC3 (from γ,γ-dichloroaminobutyrate antibiotic producer), 
KtzD and KthP (from Kutzneride 63 biosynthetic cluster), HctB (from hecto
chlorin 64), CmaB (from coronamic acid 65 biosynthetic cluster) etc (Figures 14 
&15).[45,169,170,171,172]

The first free-standing α-KG-Hal known as WelO5 was discovered from the 
cyanobacterium Hapalosiphon welwitschii.[42] WelO5, present within the wel
witindoline biosynthetic cluster, could regioselectively monochlorinate 
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aliphatic carbon of 12-epi-fischerindole U 66 and 12-epi-hapalindole C 68 to 
afford 12-epi-Fischerindole G 67 and 12-epi-Hapalindol E 69 respectively, 
creating a new stereocenter in the molecules (Figures 14–15). Genome search
ing of similar late stage free-standing α-KG-Hals led to the discovery of 
AmbO5 from an ambiguine indole alkaloid producing cyanobacterium 

Figure 14. a & b) Natural products that are biosynthesized by α-KG-Hal enzymes. b) Natural 
products which are formed by the reaction of a cryptic α-KG-Hal in the pathway.
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Fischerella ambigua UTEX 1930.[173] Compared to limited substrate scope of 
WelO5, the identified AmbO5 enzyme exhibited a wider substrate scope by 
selectively modifying structurally distinct ambiguine 70, fischerindole 66 and 
hapalindole 68 alkaloids.[174]

The resolved crystal structures of carrier protein tethered and free standing 
α-KG-Hals revealed the existence of conformational dynamics that are 
coupled to the halogenation mechanism present in both class of α-KG-Hal 
enzymes. For example, the crystal structure of CurA halogenase was resolved 
in different ligand states that corresponds to open and closed conformations of 

Figure 15. Phylogeny of free-standing and carrier protein-dependent α-KG-Hals. The putative and 
known native substrates for α-KG-Hals are shown.
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the enzyme.[46] The substrate recognition and binding of 3-S-hydroxy- 
3-methylglutaryl-ACP in the presence of αKG and chloride leads to chlorina
tion in the closed form of CurA halogenase. It is also proposed from the crystal 
structures that for the carrier protein-dependent α-KG-Hals, substrates are 
positioned close to the ligand, whereas for free standing α-KG-Hals it is either 
on the same side or opposite to the putative oxygen-binding location 
(Figure 16).[42–44] The resolved crystal structure of WelO5 also provided 
more insights into a dynamic C-terminal sequence motif – an α-helix region- 
which plays an important role in substrate tolerance and specificity of these 
class of freestanding α-KG-Hals.[42] Henceforth, the C-terminal α-helical 
region in WelO5 was substituted and modified to be structurally similar to 
AmbO5, creating a WelO5- AmbO5 chimera protein, which regained broader 
substrate scope as of wild-type AmbO5.[42]

Recently Chang group published another class of freestanding α-KG-Hal 
called BesD that acts on amino acids. BesD is involved in the ß-ethylserine 
biosynthesis of Streptomyces cattleya and chlorinates β-carbon of L-lysine 71.[43] 

There are several additional α-KG-Hals with sequence similarity to BesD iden
tified and clustered into HalA to HalH groups.[43] The reaction profile of 
individual HalA-H enzymes catalogue them to different groups of regioselective 
halogenating catalysts for of L-lysine, L-ornithine 72, L-leucine 73, L-isoleucine 
74, L-norleucine 75 etc (Figures 14–16). The BesD class of α-KG-Hal has a low 
sequence similarity with WelO5 and AmbO5 and are more related to α-KGOs 
indicating that both these classes are evolved independently from oxygenases in 
two lineages. Recently, two additional-free standing α-KG-Hals were character
ized from the adechlorin 75 biosynthetic cluster from Actinomadura sp. ATCC 
39365 and from acutumine 77 biosynthetic cluster in Menispermaceae plants. 
AdeV halogenase from adechlorin cluster halogenates C2ʹ position of 2ʹ- 
deoxyadenosine monophosphate 78 and it is the first example of a α-KG-Hal 
that acts on nucleotides.[175] Dechloroacutumine halogenase (DAH) catalyzes 
the terminal chlorination step in the biosynthesis of acutumine by chlorinating 

Figure 16. Comparison of active site structures of carrier protein dependent and free standing α- 
KG-Hals. Active site of SyrB2, WelO5 and BesD are shown in figure A, B and C respectively. The 
figures are based on the deposited PDB structures of SyrB2 (PDB ID: 2FCT), WelO5(PDB ID: 5IQT) 
and BesD (PDB ID: 6NIE).
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dechloroacutumine 79 to acutumine 77.[176] Both the enzymes have a low 
sequence similarity with other α-KG-Hals which has potential utility in expand
ing chemo diversity of nucleotides and acutumine type scaffolds. There are some 
excellent reviews on the enzymology and halogenation mechanism of α-KG-Hal 
and α-KGO superfamily of enzymes for further reading.[154,155,177]

4.1. α-KG-Hals for generating non-naturals via in vitro and in vivo routes

The earlier attempts for in vitro characterization and biosynthetic engineering 
of α-KG-Hal was often hampered by its low activity and the pre-requisite of 
substrate tethering with specific carrier proteins. This was partly addressed by 
utilizing soluble compatible tethering units from adjacent biosynthetic clusters 
present within the same organism. For KthP halogenase, which is involved in 
kutzneride 63 biosynthesis in Kutzneria sp. 74, a stand-alone thiolation 
domain protein, KtzC, from a nearby cluster was used to tether the piperazate 
substrate 80 and to halogenate it (Figure 14b).[169] Previously, KtzC was 
known to act as a substrate for α-KG-Hal KtzD when tethered with an 
amino acid (Ile-S-pantetheinyl) prosthetic group in the same Kutzneria 
species.[178] Though KthP has a low sequence similarity to KtzD, the biosyn
thetic cluster units are interchangeable in relation to α-KG-Hals.

One of the available examples in which an α-KG-Hal including pathway was 
partly reconstructed in vitro is from curacin 81 and jamaicamide 82 biosyn
thetic clusters (Figure 17).[154,179] α-KG-Hals CurA from curacin and JamE 
from jamaicamide biosynthetic pathways in the cyanobacterium Lyngbya 

Figure 17. In vitro reconstructed α-KG-Hal including pathways. CurA and JamE are the respective 
α-KG-Hals from curacin and jamicamide A biosynthetic pathways.
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majuscule has over 92% sequence identity.[180] CurA is responsible for the 
production of β-branched cyclopropane, whereas JamE forms a vinyl chloride 
group, a distinct chemical motif.[46,181] It was shown that in these two biosyn
thetic assemblies, structural diversification occurs after the halogenation step 
as both halogenease utilize (S)-3-hydroxy-3-methylglutaryl-S-ACP (HMG- 
S-ACP) 83 as native substrate.[179] In curacin pathway, the halogenation is 
followed by a dehydratase (by ECH1 domain of CurE) and decarboxylase (by 
ECH2 domain of CurF) activities on the 4-chloro-3-methylcrotonyl-ACP 84 
halogneated molecule.[180] The final cyclopropane ring is formed by the enoyl 
reductase (ER) activity of CurF ER domain on 4-chloro-3-methylcrotonyl- 
ACP. Thus, the cryptic chlorination of CurA led to the cyclopropane building 
block of curacin A. In the jamaicamide pathway the ECH2 domain of JamJ 
produces a β,γ-enoyl thioester intermediate in contrary to α,β- enoyl thioester 
produced in curacin. The structural modification of HMG-S-ACP in both 
cases was proven by setting up one-pot in vitro assays using CurA- ECH1- 
ECH2, ECH1-ECH2-ER and CurA- ECH1-ECH2-ER combinations, where 
ECH1, ECH2, and ER were either from curacin or jamaicamide biosynthetic 
clusters (Figure 17). The proteins for the assay were purified via heterologous 
expression in E. coli cells. Though in vivo production of modified curacin or 
jamaicamide molecules were not carried out in E. coli expression system, the 
one-pot assays indicate that multienzyme pathways with α-KG-Hal could be 
reconstituted in heterologous hosts and non-producers for molecular 
diversification.

Many natural product biosynthetic gene clusters carry cryptic α-KG-Hals 
like CurA, that generates nonproteinogenic amino acids. The cyclopropyl 
amino acid ring structure of coronamic acid is formed by CmaABCDE 
enzymes in Pseudomonas syringae (Figure 14b).[171,178] L-allo-isoleucine, 
which is covalently attached to CmaD acts as a substrate for halogenation 
with CmaB. This is followed by the reaction of CmaC which catalyzes the 
formation of the cyclopropyl ring from γ-Cl-L-allo-isoleucine. Similar types of 
nonribosomal peptides clusters that contain allo coronamic acid cassettes were 
also found in biosynthetic pathways of other organisms.[171,178] In kutzneride 
63 biosynthesis, the gene cluster contains α-KG-Hal KtzD and a flavin- 
dependent acyl-CoA dehydrogenase-like protein KtzA. The other proteins in 
the ktzABCD gene cassette are an adenylating protein KtzB and a carrier 
protein KtzC. The in vitro reconstitution of ktzABCD with the substrate 
L-allo-Isoleucine tethered to KtzC showed that the γ-chloroisoleucyl inter
mediate formed by KtzD is cyclized by KtzA enzyme, forming the cyclopro
pane ring (Figure 14b).[178] The final product was identified as (1S, 2R)- 
allocoronamic acid bound in thioester linkage to KtzC, which is incorporated 
to kutzneride 63 by downstream enzymes. The sterically rigid cyclopropane 
amino acids are important synthetic intermediates that have been previously 
incorporated into therapeutic peptides, synthetic hormones, and enzyme 
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inhibitors to avoid enzymatic degradation and to improve the biophysical 
properties.[182] Thus, the reconstruction of allo coronamic acid-like gene 
cassettes in heterologous host systems have a commercially valuable proposi
tion in providing novel routes to highly demanding non-natural cyclo propane 
amino acid precursors and its derivatives.

The structural similarity between α-KG-Hals and α-KG-hydroxylases at the 
Fe-binding active site had provided more deducible information for functional 
switching within these two classes of enzymes using site-directed mutagenesis 
approaches. Initially, standalone hydroxylases were targeted to perform halo
genase activity via mutagenesis, with an obvious advantage to avoid the need 
of a tethered substrates. It was assumed that replacing Asp or Glu of HxD(E) 
with Gly or Ala will mimic halogenase HxG motif. When this was applied to 
taurine dioxygenase and prolyl-4-hydroxylase, the wildtype hydroxylase activ
ity was lost with no observable halogenation.[183,184] However, hydroxylase 
activity was switched to halogenase for N-succinyl-L-leucine hydroxylase 
enzyme SadA from Burkholderia ambifaria when HxG mutation was 
installed.[185,186] Similar approaches were also attempted to switch halogenase 
activity to hydroxylase activity in substrate tethered α-KG-Hal-SyrB2 and for 
free standing α-KG-Hal-WelO5.[42,44] HxA to HxD (and to HxE) mutants in 
SyrB2 inactivated the enzyme, whereas HxG to HxD mutant in WelO5 
displayed hydroxylase activity with annulated halogenation. It was later iden
tified that for hydroxylation, substrate positioning close to FeIV = O ferryl 
intermediate is necessary. L-norvaline which has an extended structure due to 
an additional methylene group than the native substrate L-threonine 85 was 
hydroxylated by SyrB2 due to its close proximity to oxo group.[167,185] 

Remodelling α-KG-hydroxylases to α-KG-Hals and vice versa with single- 
site substitutions in HxD motif at the native genome is one of the easiest 
approaches to introduce non-natural halogen or hydroxylase moiety to many 
natural product scaffolds. Though there are no proven examples currently 
available from natural product world in this direction, such a possibility still 
exists in several biosynthetic systems.

5. SAM-dependent halogenases

SAM-dependent halogenases were discovered from the initial efforts to iden
tify origin and biosynthetic route to the formation of fluoroacetate toxins in 
many plant and Streptomyces bacterial species.[187,188] 5′-fluoro-5′- 
deoxyfluoroadenosine (5′-FDA) 86, a molecule derived from 
S-adenosylmethionine (SAM) 87 cofactor, was found to be the fluorinated 
precursor in Streptomyces cattleya, which is further converted to fluoroacetate 
88 and 4-fluorothreonine 89 by downstream activity of an aldehyde dehydro
genase and transaldolase, respectively (Figure 18a-b).[189,190,191,192] Compared 
to other halogenases, the SAM-dependent fluorinase (FlA or FlA1) from 
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Figure 18. Fluorinated natural product pathways and other routes toward fluoro metabolites. a) 
Engineered halosalinosporamide biosynthetic pathway in S. tropica. b) The 4-fluorothreonine 
forming in vitro pathway reconstructed using fluorinase (FlA), purine nucleoside phosphorylase 
(FlB), fuculose aldolase and 4-fluoro threonine transaldolase enzymes. c) In vitro reconstituted 
pathway for 5-fluoro-2,3,4-trihydroxypentanoic acid (5- FHPA). d) Reported mutasynthetic 
approaches using fluoromalonyl-CoA and fluoroacetyl-CoA molecules.
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S. cattleya has a strong substrate preference for fluoride ion over chloride.[193] 

However, the equilibrium of this reversible halogenation is positioned toward 
the reactant side for chlorination reactions. Additional enzymes, such as 
amino acid oxidase which acts on L-methionine product is required to shift 
the equilibrium to the product side (5′-chloro-5′-deoxyadenosine (5ʹ-CIDA) 
and L-methionine) for chlorination reactions.

Later on, a homologous chlorinase enzyme (SalL) was identified from 
salinosporamide 90 biosynthetic pathway in Salinispora tropica which had 
shown chlorinase activity and low preference for fluoride as a nucleophile 
(Figure 18a).[194] A recent computational study indicated that the high pre
ference for chloride ion exhibited by SalL is also linked to the increased 
potential energy requirements to cross the transition states that can lead to 
catalytic inactivity in the presence of fluoride.[195] The natural product, 
Salinosporamide is produced by a hybrid polyketide synthase–nonribosomal 
peptide synthetase (PKS-NRPS) gene cluster in S. tropica. The chlorination 
units in salinosporamide are formed from a chloroethylmalonyl-CoA 91 PKS 
building block. 5′-CIDA formed via SalL halogenation acts as a precursor for 
downstream enzymes to produce chloroethylmalonyl-CoA. A few homolo
gous of FlA and SalL halogenases are known to date, which are either char
acterized or annotated in the genome depository.[196,197198199200]

The SAM-dependent halogenases have a higher sequence homology to 
a superfamily of proteins from the duf-62 gene, called SAM hydroxide adeno
syltransferase, that mediates hydrolytic cleavage of SAM to generate adenosine 
and L-methionine. The crystal structure of SAM-dependent halogenases also 
showed that these enzymes are structurally homologous to duf-62 proteins, 
essentially formed of an amino acid N-terminal and a carboxy terminal domain 
region joined by a long-extended loop region.[201] The active site of SAM- 
dependent halogenase and duf-62 enzymes are usually formed and confined at 
the interface of adjacent monomers. The SAM is also positioned at an interface 
of monomers, between C and N terminal domains originated from two adja
cent and interacting monomers (Figure 19). The crystal structures also pre
dicted that these protein-SAM contacts would drive the domain dynamics in 
SAM-dependent halogenases which are coupled to halogenation by forming 
a closed state, inferring the unique quarternary structure that play a crucial role 
in substrate binding and halogenation reaction chemistry. The main structural 
differences between SAM-dependent chorinase (SalL) and fluorinase (FlA) is 
the absence of a 23-residue loop at the N-terminal domain of chlorinases 
(Figure 19). This loop region is thought to decrease the surface area and 
interactions around the active site thus reducing the fluorine affinity in SalL.[194]

Duf-62 proteins utilize a conserved amino acid triad (Asp-Arg-His) which has 
a role in activating water to hydroxide ions. SAM-dependent halogenases operate 
with a very similar mechanism to the hydroxylases. However, in SAM-dependent 
halogenases, hydroxide replaces the halide ion via SN2 substitution reactions and 
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also the conserved catalytic triad is absent. Due to strong solvation energy of 
halide ions (especially for fluoride) in water, the SAM-dependent halogenases 
should overcome a higher kinetic energy barrier to convert halides into a potent 
nucleophile within the active site (Figure 1). As a consequence, SAM halogenases 
are sluggish enzymes in nature. Along with lower turnover rates, the substrate 
scope of SAM-dependent halogenases are also limited to substrates SAM analo
gues, mainly 2-deoxy analogues.[47,48,202] This is often considered as one of the 
main reasons for not having many biosynthetic pathway engineering works 
reported with SAM-dependent halogenases. The fluorination chemistry in nat
ural products, engineering fluorinases and applications of fluorinase enzymes are 
discussed elaborately in various recommended reviews.[203,204,205,206,207]

5.1. Engineering natural product pathways with SAM-dependent halogenases

In 2010, Moore group had reported the first example where a SAM-dependent 
halogenase gene could be genetically engineered into another biosynthetic 
genomic cluster in a different organism for a ‘like for like’ gene swap.[208] 

This was by incorporating he flA fluorinase gene into salinosporamide bio
synthetic cluster of Salinispora tropica CNB-44023 by replacing the native salL 
chlorinase. Low levels of fluorinated salinosporamide were formed when the 
fluoride ion donor was added at later stages of the small-scale fermentation 
protocol. The extreme sensitivity of S. tropica toward fluoride donors, and the 

Figure 19. Structural comparison of SAM dependent fluorinases and chlorinases. a) Overall 
homotrimeric structure of S. cattleya fluorinase FlA (PDB ID: 1RQP) b & c) Monomeric structure 
of fluorinase (FlA) and chlorinase (SalL) respectively. N and C terminal domains and the loop region 
that links both domains are shown (in blue). The extra loop with 23 amino acid residues that is 
absent in chlorinase is shown in cyan. d & e) Product (5′-fluoro-5′-deoxyfluoroadenosine and 
methionine) and substrate (S-adenosyl methionine) bound structures of fluorinase FlA enzyme 
with interacting residues. (PDB ID: 1RQR, 1RQP).
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lack of fluoride toxic mitigation mechanisms were found to hinder the fluoro 
metabolite formation in S. tropica, making large-scale production technically 
impossible. The fluoro tolerant S. cattleya has an evolved mechanism to 
dissipate toxic fluoroacetate and 4-fluorothreonine which is lacking in 
S. tropica. The fluoroacetyl-CoA hydrolase (FlK) and a trans acting fluoro
threonyl-tRNA deacylase (FthB) is part of this enzymatic machinery in 
S. cattleya.[209,210,211] FlK enzyme hydrolyze fluoroacetyl-CoA, whereas FthB 
removes the misacylation and incorporation of fluorothreonyl-tRNA instead 
of L-threonine into proteins during the synthesis.

This also means that in order to install new fluorination strategies and to 
maximize the targeted molecular production via SAM-dependent fluorinases; 
additional chemistries should be provided via complex engineering strategies 
to biosynthetic gene clusters in other organisms. As flourinated salinospor
amide was formed via fluoroethylmalonyl-CoA building blocks, adapting 
these complex engineering strategies could also be beneficial for producing 
many fluorinated non-natural molecules via other PKS systems where the 
extender unit is an ethylmalonyl-CoA.[212] The potential applications of this 
was already demonstrated by the mutasynthesis of tetraketides in E. coli cells 
via feeding synthetic fluoromalonyl-CoA 92 molecules (Figure 18d).[213] An 
earlier attempt to pathway intervention via fluoroacetyl-CoA 93 was also 
reported in the natural product world.[214] In vitro incubation of fluoroacetyl- 
CoA with reconstituted minimum components of the artinochodin PKS 
machinery has shown that fluorinated octaketide intermediate could be 
formed. Incubation of fluoroacetyl-CoA with phosphopantetheinyl transferase 
could convert holo-acyl carrier protein (ACP) to fluoroacetyl-ACP to act as 
a substrate for downstream enzyme in biosynthetic pathways. Here, this has 
led to the selective formation of final aromatic polyketide (Fluoro-SEK4b 94) 
using in vitro assays. In order to form fluoro-SEK4b molecule, an in vitro assay 
was performed using a purified keto synthase complexed to a chain length 
factor (KS–CLF) protein from artinochodin PKS cluster (Figure 18d).

5.2. SAM-dependent halogenases for in vivo and in vitro biosynthetic 
pathways

Engineering fluoro-metabolites production in industrial microorganisms via 
incorporating SAM-dependent fluorinase is often considered as a challenging 
task. Successful outcomes in this direction was reported only recently; via 
a rational multistage genetic engineering approach in E. coli cells.[215] For this, 
the crcB gene that encodes for a fluoride specific ion channel was deleted 
initially to increase the intracellular fluoride concentrations in E. coli. 
A second gene deletion was carried out to remove the deoD gene, which 
encodes a purine nucleoside phosphorylase (PNP) to avoid 5′-FDA degrada
tion. The 5′-FDA degradation was observed in S. cattleya via formation of 

38 B. R. K. MENON ET AL.



a 5-fluoro-5-deoxy-d-ribose 1-phosphate (5-FDRP) intermediate. An addi
tional modification was to include a transmembrane SAM transporter protein 
from Rickettsia prowazekii, to increase the pool of intracellular SAM concen
tration. The engineered E. coli cells were capable of catalyzing the in vivo 
reaction of FlA halogenase to produce 5ʹ-FDA from SAM.

Combining fluorinase with nucleoside-replacing enzymes like PNP, pyri
midine nucleoside phosphorylase (PyNP) and thymidine phosphorylase (TP) 
was used previously as an attractive strategy to synthesize fluorinated nucleo
sides and radio (18F) labelled nucleoside analogues.[216,217] The highly rever
sible reaction of 5ʹ-FDA with PNP that affords 5ʹ-FDRP formation could be 
used to base swap adenine with another purine or pyrimidine base. PyNP and 
TP display different nucleoside specificity that adds wider synthetic scope for 
base-swap methods. This was used by O’Hagan group to develop one-pot 
fluorinase and phosphorylase combined reactions to generate different pyr
imidine, uridine and thymidine nucleosides (Figure 20).[218] As fluorinated 
nucleosides are important compounds in antiviral and anticancer treatment, 
these one-pot in vitro approaches have wider synthetic applications. Different 
18F had labelled nucleoside analogues and 18F labelled nucleoside-peptide 
conjugates are affordable via these reactions for positron emission tomography 
(PET) in medical imaging and scanning.[219,220] Another interesting example 
of one-pot base swap methods was the synthesis of analogues of ribavirin, 
a broad-spectrum antiviral compound (Figure 20). A dehydroxyfluoro 

Figure 20. Preparation of 18F labeled and non labeled nucleotide analogues by one-pot enzymatic 
cascades using SAM-dependent halogenases, purine nucleotide phosphorylase (PNP), pyrimidine 
nucleotide phosphorylase (PyNP) enzymes.
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analogue of ribavirin 95 was synthesized in a one-pot enzymatic cascade using 
1,2,4-triazole 3-caboxamide 96 base by O’Hagan group.[218]

The success of these approaches could offer possibilities to generate many 
downstream metabolites, such as fluororibose, fluoroacetate, 4-fluorothreonine 
etc from 5ʹ-FDA in E. coli, by reconstructing 5ʹ-FDA degradation pathway 
enzymes.[221,222] It was shown previously that 4-fluorothreonine could be formed 
from SAM through an in vitro pathway reconstitution of four overexpressed 
enzymes, a fluorinase (FlA), purine nucleoside phosphorylase (FlB), an isomerase 
fuculose aldolase and a PLP-dependent 4-fluoro threonine transaldolase.[215,222] 

Fluoroacetaldehyde is converted into 4-fluorothreonine by PLP-dependent trans
aldolase in the final step, which could be replaced by any acetaldehyde dehy
drogenase to produce fluoroacetate. A chemo-enzymatic route to fluoroacetate is 
also reported via biohalogenation followed by an oxidative degradation 
method.[223] Identification of another fluoro metabolite, (2R3S4S)-5-fluoro- 
2,3,4-trihydroxypentanoic acid (5- FHPA) 97, from Streptomyces sp. MA37 
indicated that several other routes of 5′-FDA degradation also exist in nature 
(Figure 18c).[224] In vitro assay of over-expressed short-chain dehydrogenase 
protein FdrC demonstrated that the NAD+ dependent enzyme can oxidize 
5-fluoro-D-ribose (5-FDR) 98 to its corresponding lactone followed by hydro
lysis to generate 5-FHPA (Figure 18c).[225] Though this pathway was not engi
neered inside microbial cells, it could lead to many synthetic biology approaches 
toward branched halometabolite pathway generation in the coming years.

The structural similarity of fluoroacetate to the common acetate metabolite 
would even provide further opportunities to create other metabolic pathways 
that utilize fluoroacetate as the synthetic starting unit. In fact, the presence of ω- 
fluoro-fatty acids from seeds of the shrub Dichapetalum toxicarium formed from 
the fluoroacetate starting units has been known for many decades.[207,226] For 
these approaches, an initial activation of fluoroacetate to fluoroacetyl-CoA is 
required for the fluoro acetate to be taken as a substrate by fatty acid synthase. 
The key information by which plants effectively avoid fluoroacetyl-CoA conver
sion back to fluoroacetate via hydrolysis is currently lacking. It is highly logical to 
assume that these plants could be executing an evolved metabolism to selectively 
incorporate fluoroacetyl-CoA at higher concentrations to fatty acid biosynthesis.

6. Future perspective

Nature has its own intriguing methods to synthesize highly bioactive- 
halogenated molecules and natural products.[5] This is well reflected within 
the literatures that covers the earliest halogenase identification and character
ization to the recent ones.[227] Though once enzymatic halogenation was 
considered to be a byproduct of uncontrolled hypohalous acid generation 
within the active site; halogenases that carry fully evolved and well- 
orchestrated halogenation machinery to afford more complex regio- and 
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stereoselective transformations are currently known. The cryptic halogenases 
in many biosynthetic clusters in fact display diverse strategies that exist in 
nature for C-H activation, ring formation and functionalization of natural 
molecules.[171,228] In many cases, this inspires synthetic chemists to invent 
more viable, alternative and even parallel chemical reactions.[229]

The α-KG Hals, Fl-Hals and vHPOs exhibit exquisite reaction control with 
a defined active site and could be tuned for halogenating different structural 
scaffolds. This is one of the main reasons to consider the halogenase enzymes 
as most promising candidates for biosynthetic pathway generation.[20] SAM- 
dependent halogenases, though with a limited substrate scope, presents the 
only class of enzymes capable for introducing fluorine to organic molecules. 
The biosynthetic generation of halogenated molecules via halogenases and 
their further exploitation via chemo or bio routes have a great potential impact 
to chemical synthesis and to all sectors of chemical industry.[230] Here, we have 
only covered most of the recent and known examples in which halogenases are 
utilized explicitly for in vivo and in vitro pathway generations. Several practical 
and experimental challenges still remain unaddressed in this field, even though 
we could claim that an enormous stride have already been made over the years.

Halogenase enzymes are non-essential for the host survival or growth, 
hence they have undergone less evolutionary pressure to catalyze reactions 
more efficiently and with fast reaction kinetics.[231] The known catalytic turn 
over number for most active flavin-dependent and SAM-dependent halo
genases are only within the range of 0.5–4.0/min and 0.05–0.15/min, respec
tively. For a general comparison of the catalytic turnover with highly used 
industrial enzymes such as tryptophan synthases (70/sec) and phenylalanine 
ammonia lyase (115/sec), this is around 1500 times slower.[232,233] As 
a consequence, the low turnovers results in biosynthetic bottlenecks when 
generating in vivo pathways using halogenase enzymes, which are otherwise 
difficult to resolve without improving the halogenase conversion rates. Along 
with this, in most cases halogenation will only introduce a minor structural 
change with the halogenated product competing with the substrate, inhibiting 
the enzymatic reaction.[23,234,235]

Several attempts have been made to improve stability and activity of halo
genases through optimization, protein engineering, directed evolution, chi
meric protein design etc.[33,34,236–237] The information about structure– 
function and structure–reactivity relationship of halogenases and pathway 
enzymes are crucial and this is currently lacking for many novel halogenation 
reactions. Most of the reported approaches were by targeting the substrate- 
binding domains with an aim to change conformational and binding flexibility 
to increase the catalytic turn over and to explore the substrate specificity. The 
oxidative nature of the halogenation reaction mechanism often indicated that 
the active cofactor (FAD, Fe, heme or vanadium) itself is labile to oxidative 
damages that can lead to decay of the active intermediate. For example, the 
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formation of a decayed FAD(C4a)−OH intermediate from the active FAD 
(C4a)−OOH species were reported for Fl-Hals.[109] This indicate that there are 
unknown and currently untargeted conformational events within cofactor 
binding regions that are important to catalysis. New targeted engineering 
approaches are necessary to alleviate the low turn overs by comparing cofactor 
chemistry and reaction mechanism of evolutionary-related enzymes. 
Therefore, the other reported kinetic and mechanistic studies on flavin- 
dependent monoxygenases, α-KG-dependent hydroxylases, heme hydroxy
lases and oxidases, SAM-dependent hydrolases etc could shed more light in 
this direction for each class of halogenases.

The key developments in this area should also need to be translated to 
creating complex molecular scaffolds via pathway generation. Surprisingly, 
few halogenated natural product pathways, like chlorosulfolipids isolated from 
algae, are still not explored.[238,239] Recently, a putative diiron-carboxylate type 
halogenase from cylindrocyclophane biosynthesis in Cylindrospermum liche
niforme was identified, which undergo a unique C-C bond formation.[228] 

Though not fully characterized, these currently unknown chemistries have 
potential applications in biocatalysis and metabolic engineering.

As mentioned previously, identifying and engineering metabolic bottleneck is 
one of the common ways to improve productivity in biosynthetic pathways and 
this also applies to the halogenase pathways.[127] The low bromide and fluoride 
tolerance of host organism is often found to be problematic for large-scale 
fermentation processes. The alternative is to either engineer host organisms 
with additional toxicity mitigation mechanisms (‘built-in’ high resistance) or 
selecting halide tolerant host systems. This was already attempted in SAM- 
dependent fluorinases by creating an engineered E. coli cell.[215] Whereas 
a higher titer of brominated tryptophan was fermented using a bromide tolerant 
recombinant Corynebacterium glutamicum strain that carried tryptophan Fl- 
Hals.[240] In phenylpropanoid acid-based pathways, the reconstruction of non- 
native enzyme could introduce pathway intermediates such as cinnamic and 
coumaric acids that are toxic to the cell growth.[241] The low catalytic efficiency of 
down-stream pathway enzymes often seems to be an issue with many early stage 
halogenation metabolic pathways. The down-stream enzymes in natural product 
pathways have strict substrate specificity for halogenated molecule, which limits 
the possibilities to alter halogenation sites via combinatorial synthesis using 
different regioselective halogenases. This is exemplified in an earlier attempt to 
replace tryptophan 7-halogenase with a 6-halogenase in pyrrolnitrin combina
torial biosynthesis, which ended up with the accumulation of 6-chlorinated 
intermediate with no downstream enzyme activity.[116] The new developments 
in synthetic biology on microbial chassis engineering, transcription control via 
synthetic promotors, designing metabolic division of labor in cells etc could also 
be adapted here to address many of the metabolic bottleneck issues.[242243244245]
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The emergence of heavy-metal-based cross-coupling chemistries under mild 
and aqueous conditions pushed advance developments in the chemo-bio cata
lytic integrative reaction platforms. Several halogenated natural product and 
biosynthetic pathways could be employed for direct chemo-bio catalytic inte
gration, as carbon−halogen bond is the key substrate for these integrated 
reactions. This merges synthetic biology with synthetic chemistry, providing 
a powerful approach toward molecular diversification using specifically installed 
halogenation tags. Integration was found to be effective when bio and chemo 
catalytic components were compartmentalized for in vitro biotransformation 
using purified enzymes.[230] The whole cell reactions with engineered pathways 
have a greater advantage here, with the cellular components acting toward the 
required natural compartmentalization. The living geno-chemetics approaches 
were shown to be a way forward for synchronous biosynthesis, where biocata
lysis and chemocatalysis could perform in a sideways manner.[150] However, 
many parallel lessons from the chemo-catalyst research world including catalyst 
immobilization, separation, recycling, biphasic reactions etc are rarely applied to 
halogenase-based integrated catalytic platforms. This could be a way forward to 
enhance the currently limited product titers in such applications. In fact, the 
recent developments so far in this area have already set a stage for other 
transition metal-catalyzed reactions, additional regioselective transformations, 
abiotic reactions in microbial living culture and many un-attempted chemoca
talytic reactions in biological context using halogenase enzymes.
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