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Abstract

In this paper, we develop a Mean Empirical Likelihood (MeanEL) method for right censored
data. This MeanEL approach is based on traditional empirical likelihood methods but uses
synthetic data to construct an EL ratio statistics, which is shown to have a χ2 limiting
distribution. Different simulation studies show that the MeanEL confidence intervals tend to
have more accurate coverage probabilities than other existing Empirical Likelihood methods.
Theoretical comparisons of different EL methods are also provided under a general framework.
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1. Introduction

Liang et al. (2019) proposed a Mean Empirical Likelihood (MeanEL) method based on
synthetic pairwise mean data. Empirical simulation results in Liang et al. (2019) showed that
this MeanEL method provides better results for heavy-tail or highly-skewed distributions and
for exponentially tilted likelihood. However, theoretical comparisons of MeanEL and other
existing EL methods, such as Bartlett correction Empirical Likelihood (BEL) in DiCiccio et al.
(1991), the adjusted empirical likelihood (AEL) in Chen et al. (2008) and extended empirical
likelihood method (EEL) in Taso and Wu (2013), were not established in Liang et al. (2019).
This paper will extend such MeanEL approach to right-censored data analysis. Theoretical
justification on why using such synthetic data can provide better coverage probability accuracy
is also discussed in this paper.

Assume that independent and identically distributed random observations T1, T2, · · · , Tn
with an unknown distribution function F (t) are subject to right censoring, so that we only
observe

Zi = min(Ti, Ci), ηi = I{Ti≤Ci}, i = 1, 2, · · · , n, (1.1)

where C1, C2, · · · , Cn are censoring times with distribution G, independent of survival times
T . We are interested in the estimation problem for a parameter θ = θ(F ). The true parameter
value θ0 is a unique solution of the equation

E g(T, θ) = 0 (1.2)
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for some function g. In this paper, we focus on estimating equations having true parameter
value θ0 as the unique solution, since such estimating equations will provide (asymptotically)
unbiased estimates. There are many such examples of g in the literature and the solution’s
existence and uniqueness are discussed therein (Newey and Smith, 2004). Different function g
corresponds to different parameter of interests. For example, if we choose g(t, θ) = m(t)− θ,
then θ is the expectation of m(T ), i.e. θ = E[m(T )] =

∫
m(t) dF (t). Other examples include:

[1.] g(t, θ) = (t− t0 − θ)I{t>t0} corresponding to θ being the mean residual life time at given
time t0; [2.] g(t, θ) = I{t>t0} − exp(−θ) corresponding to θ being the cumulative hazard
function at given time t0; [3.] g(t, θ) = I{t≤θ} − t0 corresponding to θ being the quantile
function at given time t0.

Based on synthetic data introduced in Liang et al. (2019), if T is observed, the pairwise
mean synthetic data set can be defined as,

M =

{
g(Ti, θ) + g(Tj, θ)

2
: 1 ≤ i ≤ j ≤ n

}
, (1.3)

which can also be written asM = {M1(θ),M2(θ), · · · ,MN0(θ)} with N0 = n(n+ 1)/2. Based
on the data set (1.3), the MeanEL ratio for θ is

R(θ) = sup

{
N0∏
k=1

N0pk

∣∣∣∣∣
N0∑
k=1

pkMk(θ) = 0,

N0∑
k=1

pk = 1, pk ≥ 0, k = 1, 2, · · · , N0

}
. (1.4)

Under some regularity assumptions, Liang et al. (2019) proved the mean empirical log-
likelihood ratio L(θ0) = −2 logR(θ0)/(n + 1) → χ2(1), in dist. Therefore, the (1 − α)
confidence interval can be constructed as I = {θ : L(θ) < χ2

α(1)}.
However, the above approach is not readily available under censoring, since we only observe

(Zi, ηi) instead of Ti and we cannot pairwise index variable ηi directly. Therefore, we need to
develop a new approach to construct, under right censoring, a synthetic data set, an estimating
equation and a MeanEL ratio for θ.

This paper is organised as follows. In Section 2, we will present the MeanEL methodologies
for right censored data and show that the MeanEL still has a limiting χ2 distribution, which
can be used to construct a MeanEL-based confidence interval. Simulation studies are presented
in Section 3 and they demonstrate that MeanEL outperforms the existing methods, especially
for heavy-tail distributions. Section 4 provides a real data analysis. A theoretical high-order
accuracy justification of different methods are provided in Section 5.

2. Methodology for censored data

Let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n be the ordered Z-values and η[i:n] be the concomitant of
the ith order statistic, that is η[i:n] = ηj if Zi:n = Zj. Let Gi = G(Zi:n), gi(θ) = g(Zi:n, θ),
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δi = η[i:n]. We define the pairwise mean data set as

MC =

{(
gi(θ) + gj(θ)

2
, δiδj

)
: 1 ≤ i < j ≤ n

}
.

In this new data set MC , only those observations satisfying δi = δj = 1 can be treated as
uncensored. The following equation can be easily proved,

E

(
(gi(θ0) + gj(θ0)) δiδj
2(1−Gi)(1−Gj)

)
= 0, i < j. (2.1)

Based on this equation, the MeanEL ratio can be defined as

RC(θ0) = sup

{
N∏
k=1

Npk

∣∣∣∣∣
N∑
k=1

pkWk = 0,
N∑
k=1

pk = 1, pk ≥ 0, k = 1, 2, · · · , N

}
,

where W1, W2, · · · , WN represent the items within the brackets of equation (2.1) and N =
n(n− 1)/2.

The above likelihood is not available since G is unknown. Therefore we here consider using

the Kaplan-Meier estimator Ĝ to replace G, Ĝ(t) := 1 −
∏n

i=1

[
1− 1− δi

n− i+ 1

]I{Zi:n≤t}

. Let

Ĝi = Ĝ(Zi:n), and then the observed quantity for Wk (k = 1, · · · , N) becomes

Wnk :=
(gi(θ0) + gj(θ0)) δiδj

2(1− Ĝi)(1− Ĝj)
, k = 1, · · · , N ; i, j = 1, · · · , n. (2.2)

Then the MeanEL ratio can be rewritten as

R̂C(θ0) = sup

{
N∏
k=1

Npk

∣∣∣∣∣
N∑
k=1

pkWnk = 0,
N∑
k=1

pk = 1, pk ≥ 0, k = 1, 2, · · · , N

}
.

Its large sample results are given in the following Theorem.

Theorem 2.1. Assume E
(
δ g(Z, θ0)
1−G(Z)

)4
< ∞, E

(
δ

1−G(Z)

)4
< ∞, the mean empirical log-

likelihood ratio
LC(θ0) = −2 log R̂C(θ0)/n

is asymptotically a scaled χ2 random variable, that is

σ2
2

σ2
1

LC(θ0) = − 2σ2
2

nσ2
1

log R̂C(θ0)→ χ2(1), in dist. (2.3)

where σ2
1 =

∫
g2(t, θ0)F (t−)G(t−)−1dΛ(t) with Λ(t) as the cumulative hazard function for T ,
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and σ2
2 = 2

N

∑N
k=1W

2
nk.

Proof. From Liang et al. (2019), Theorem 2.1 follows easily from Lemma Appendix A.1 and
the fact from Chapter 3 of Fleming and Harrington (1991) that

σ2
1 = lim

n→∞
var

[√
n

∫
g(t, θ0)dF̂ (t)

]
= lim

n→∞
E

[√
n

∫
g(t, θ0)F̂ (t−)

(
dΛ̂(t)− dΛ(t)

)]2
= lim

n→∞
E

∫
g(t, θ0)

2F̂ (t−)2
n

Ȳ (t)
dΛ(t) =

∫
g(t, θ0)

2F (t−)

G(t−)
dΛ(t)

where Ȳ (t) =
∑n

i=1 I{Zi≥t} and dΛ̂(t) = Ȳ (t)−1dQ(t), Q(t) =
∑n

i=1 I{Zi≤t, δi=1}.

A consistent estimator for σ2
1 is σ̂2

1 =
∫
g2(t, θ̂)F̂ (t−)Ĝ(t−)−1dΛ̂(t), with F̂ , Ĝ as the

product-limit estimators, and θ̂ as the solution of
∫
g(t, θ) dF̂ (t) = 0. In the asymptotic

result (2.3), if we replace σ2
2 by

σ̂2
2A =

2

N

∑
i<j

(
δi δj (gi(θ̂) + gj(θ̂))

2(1− Ĝi)(1− Ĝj)

)2

,

then an α-level MeanEL confidence interval for θ can be constructed as follows

IA =

{
θ :

σ̂2
2A

σ̂2
1

LC(θ) ≤ χ2
α(1)

}
. (2.4)

We may also replace σ2
2 by σ̂2

2B = σ̂2
22σ̂

2
20 + σ̂4

21 in (2.3), where

σ̂2
20 =

1

n

n∑
i=1

δi

(1− Ĝi)2
, σ̂2

21 =
1

n

n∑
i=1

δi gi(θ̂)

(1− Ĝi)2
, σ̂2

22 =
1

n

n∑
i=1

δi g
2
i (θ̂)

(1− Ĝi)2
.

Then another α-level MeanEL confidence interval for θ can be constructed as follows

IB =

{
θ :

σ̂2
2B

σ̂2
1

LC(θ) ≤ χ2
α(1)

}
. (2.5)

3. Simulation studies

For a given sample size n, we generate lifetime observations T1, T2, · · · , Tn from a spe-
cific distribution F and censoring time observations C1, C2, · · · , Cn from certain censoring
distribution G. Then, based on the simulated data, we can compare the performance of IC-
confidence interval (He et al., 2016), ScaledEL-confidence interval (Wang and Jing, 2001) and
MeanEL-confidence intervals IA, IB proposed in the previous section.
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Table 1: Coverage probabilities for Uniform(0, 1) Distributions
C ∼ U(0, 5/2) C ∼ U(0, 5/3) C ∼ U(0, 5/4)

IC Scaled Mean-A Mean-B IC Scaled Mean-A Mean-B IC Scaled Mean-A Mean-B
20 0.95 0.9350 0.9280 0.9570 0.9414 0.9348 0.9280 0.9563 0.9384 0.8638 0.8397 0.8877 0.8186

0.90 0.8812 0.8785 0.9127 0.8901 0.8806 0.8745 0.9097 0.8876 0.8048 0.7785 0.8389 0.7549
30 0.95 0.9392 0.9361 0.9586 0.9493 0.9439 0.9399 0.9533 0.9501 0.9029 0.8873 0.9281 0.8754

0.90 0.8871 0.8860 0.9114 0.8969 0.8899 0.8873 0.8997 0.9156 0.8439 0.8267 0.8789 0.8119
40 0.95 0.9464 0.9438 0.9604 0.9535 0.9493 0.9476 0.9523 0.9561 0.9174 0.9075 0.9435 0.9049

0.90 0.8939 0.8926 0.9152 0.9041 0.8956 0.8942 0.9073 0.9083 0.8644 0.8489 0.8949 0.8430
50 0.95 0.9489 0.9469 0.9608 0.9561 0.9476 0.9451 0.9600 0.9555 0.9269 0.9201 0.9497 0.9198

0.90 0.8977 0.8963 0.9143 0.9065 0.8963 0.8958 0.9141 0.9057 0.8715 0.8637 0.9045 0.8615
100 0.95 0.9497 0.9504 0.9571 0.9548 0.9494 0.9435 0.9567 0.9543 0.9430 0.9398 0.9593 0.9457

0.90 0.8986 0.8994 0.9089 0.9053 0.9003 0.9005 0.9088 0.9056 0.8867 0.8859 0.9136 0.8944
The boldface results are the most accurate coverage probabilities among EL methods.

Table 2: Coverage probabilities for Weibull(1, 10) Distributions
C ∼ Exp(4.3) C ∼ Exp(2.7) C ∼ Exp(1.86)

IC Scaled Mean-A Mean-B IC Scaled Mean-A Mean-B IC Scaled Mean-A Mean-B
20 0.95 0.9291 0.9268 0.9528 0.9433 0.9226 0.9168 0.9484 0.9367 0.9175 0.9036 0.9414 0.9258

0.90 0.8747 0.8764 0.8943 0.9082 0.8664 0.8637 0.9025 0.8839 0.8621 0.8553 0.8973 0.8761
30 0.95 0.9390 0.9374 0.9555 0.9497 0.9346 0.9291 0.9537 0.9456 0.9361 0.9269 0.9541 0.9443

0.90 0.8860 0.8875 0.9087 0.9002 0.8794 0.8772 0.9051 0.8933 0.8836 0.8782 0.9096 0.8960
40 0.95 0.9421 0.9407 0.9558 0.9510 0.9453 0.9415 0.9583 0.9543 0.9396 0.9318 0.9561 0.9487

0.90 0.8865 0.8875 0.9047 0.8973 0.8910 0.8894 0.9111 0.9020 0.8868 0.8807 0.9064 0.8955
50 0.95 0.9421 0.9410 0.9543 0.9511 0.9456 0.9424 0.9569 0.9531 0.9435 0.9369 0.9563 0.9506

0.90 0.8895 0.8901 0.9041 0.8989 0.8928 0.8916 0.9097 0.9092 0.8894 0.8855 0.9071 0.8984
100 0.95 0.9466 0.9464 0.9518 0.9504 0.9493 0.9481 0.9557 0.9533 0.9488 0.9467 0.9551 0.9528

0.90 0.8942 0.8949 0.9010 0.8986 0.8974 0.8964 0.9055 0.9021 0.8993 0.8975 0.9041 0.9077
The boldface results are the most accurate coverage probabilities among EL methods.

In our simulation, the parameter of interests, θ, is the mean of T , therefore the estimating
equation is g(T, θ) = T − θ. Uniform, Weibull and LogNorm distributions are considered
as the underlying lifetime distribution F . Let Unif(0, c) and Exp(c) be different censoring
distributions G, where the value c determines the censoring proportion. We set c to be three
different values to achieve a 20%, 30% and 40% censoring proportion respectively. Based
on 20, 000 sets of simulated data, we construct IC confidence intervals, Scaled confidence
intervals, Mean-A and Mean-B confidence intervals. The coverage probabilities with Uniform
and Weibull distributions are summarized in Table 1 and Table 2. We also plot in Figure 1
the results of coverage probabilities with T following LogNorm distribution and nominal level
set at 0.95.

From these Tables and Figure 1, the following results are noted.

1. As the sample size n increases, all coverage probabilities converge to the nominal level.
When the sample size n is fixed, coverage probabilities of all methods decrease as the
censoring proportion increases. In most cases, coverage probabilities of MeanELs are
closer to the nominal level than the other two methods.

2. The coverage probabilities of Mean-A (using (2.4)) are a little higher than that of Mean-
B (using (2.5)). More specifically, for Uniform distribution, the coverage probabilities of
Mean-B are closer to the nominal level than that of Mean-A when censoring proportion
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is small, but Mean-A performs better than Mean-B when censoring proportion is large.
For heavy-tailed distribution LogNorm(0, 1/4), the performance of Mean-A is the best
among all different methods.

3. Different distributions of T lead to different results. For Uniform distribution, IC is
more accurate than others when censoring proportion is low, while MeanEL performs
better when censoring proportion is high. For Weibull distribution, Mean-B is closer to
nominal level when sample size is small.

In Figure 1, Mean-A performs much better than other EL methods when censoring pro-
portion is large. This is what we expected. The tail properties of survival times and censoring
times are very important to the accuracy of the estimators. Under heavy-censoring there
may not have enough observations for the tails, in particular for small sample sizes. MeanEL
method actually uses each data point more than once. Using replicated i.i.d. data will not
make a great deal of difference when each observation is of the same weight. However, because
EL-type approaches give different weights for all observations, using observations (in the tails)
more than once will give a great advantage for the estimator.
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Figure 1: For LogNorm(0, 0.25), coverage probabilities under different censoring proportion. Here the five
points (from left to right) in each line represent coverage probabilities when sample sizes are n = 20; 30; 40;
50; 100. ’Scaled’ represents the method in Wang and Jing (2001), ’IC’ represents the method in He et al.
(2016), ’MEL-A’ represents MeanEL-A, and ’MEL-B’ represents MeanEL-B.

All of our simulation studies confirm that MeanEL outperforms IC and Scaled EL methods
under right censoring, in terms of the expected coverage probabilities. Of course, the proposed
MeanEL approach requires much heavier computational cost because of the enlarged synthetic
dataset. Therefore, for light-tail or symmetric distributions, such as uniform distributions
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Table 3: Average Lengths of Confidence Intervals for different Distributions under nominal level= 0.90.
IC Scaled Mean-A Mean-B IC Scaled Mean-A Mean-B IC Scaled Mean-A Mean-B

Unif(0, 1) C ∼ U(0, 5/2) C ∼ U(0, 5/3) C ∼ U(0, 5/4)
20 0.2181 0.2188 0.2529 0.2379 0.2265 0.2206 0.2699 0.2449 0.2335 0.2186 0.2782 0.2392
30 0.1803 0.1809 0.2087 0.2002 0.1886 0.1853 0.2358 0.2203 0.1988 0.1866 0.2651 0.2369
40 0.1568 0.1576 0.1819 0.1765 0.1644 0.1622 0.2075 0.1965 0.1750 0.1658 0.2483 0.2258
50 0.1407 0.1414 0.1614 0.1577 0.1472 0.1460 0.1885 0.1805 0.1579 0.1509 0.2368 0.2181
100 0.1000 0.1003 0.1110 0.1098 0.1041 0.1040 0.1322 0.1293 0.1115 0.1089 0.1791 0.1698

Weibull(1, 10) C ∼ Exp(4.3) C ∼ Exp(2.7) C ∼ Exp(1.86)
20 0.0905 0.0927 0.1017 0.0971 0.0961 0.0984 0.1096 0.1035 0.1026 0.1046 0.1180 0.1096
30 0.0749 0.0761 0.0819 0.0796 0.0794 0.0805 0.0881 0.0849 0.0854 0.0864 0.0964 0.0919
40 0.0653 0.0661 0.0706 0.0691 0.0693 0.0700 0.0761 0.0742 0.0744 0.0749 0.0826 0.0798
50 0.0584 0.0589 0.0624 0.0613 0.0618 0.0623 0.0674 0.0660 0.0665 0.0669 0.0737 0.0717
100 0.0414 0.0416 0.0439 0.0436 0.0439 0.0440 0.0475 0.0470 0.0470 0.0472 0.0516 0.0510

LogN(0, 1/4) C ∼ Exp(4.6) C ∼ Exp(2.9) C ∼ Exp(2)
20 0.2049 0.2068 0.2360 0.2241 0.2161 0.2160 0.2514 0.2351 0.2271 0.2231 0.2615 0.2393
30 0.1709 0.1715 0.1982 0.1914 0.1805 0.1789 0.2135 0.2039 0.1924 0.1881 0.2306 0.2166
40 0.1490 0.1492 0.1758 0.1714 0.1573 0.1558 0.1907 0.1842 0.1685 0.1647 0.2085 0.1987
50 0.1336 0.1335 0.1597 0.1564 0.1419 0.1404 0.1761 0.1712 0.1517 0.1481 0.1945 0.1870
100 0.0950 0.0948 0.1204 0.1192 0.1009 0.1000 0.1386 0.1366 0.1086 0.1067 0.1570 0.1539

(Table 1), MeanEL is not very attractive since it does not improve much on the accuracy of
coverage probabilities but has longer computing time. We also present the average lengths of
confidence intervals in Table 3. From this Table, we can see that, unsurprisingly the average
length of confidence intervals constructed by MeanEL are a little longer than others.

4. Real Data Analysis

In this section, we compare our proposed methods with existing methods using the primary
biliary cirrhosis(PBC) dataset, which is described in Fleming and Harrington (1991) and
originates from a Mayo Clinic trial between 1974 to 1984. It contains the survival time
of 312 patients and the status variable, which indicates if the patients’ survival times are
censored. We use this dataset to illustrate our proposed method described in Section 2.
Figure 2 presents the 95% confidence intervals for the mean survival time base on four different
methods, Mean-A, Mean-B described in Section 2 and the methods in Wang and Jing (2001)
and He et al. (2016). All confidence intervals produced by Mean-A, IC and Scale methods
contain the Maximum Empirical Likelihood point estimate value 3286. Mean-A provides
similar confidence interval as Scale but performs much better than IC. Mean-B does not work
as well as Mean-A, because the estimate σ̂2

2B is not as good as σ̂2
2A. This can be explained

by that σ̂2
2A is actually asymptotically equivalent to a U-statistic, which has the minimum

variance among all unbiased estimators (Lee, 1990). Also when deriving σ̂2
2B, we actually

omitted the last term in equation (A.1), which makes σ̂2
2B to have larger bias than σ̂2

2A.

5. Theoretical comparisons

In this section, we present a theoretical comparison of MeanEL and other EL methods.
Define Ak = n−1

∑n
i=1 g

k
i (θ0) − αk with αk = E gki (θ0). Following Liu and Chen (2010), we
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Figure 2: Confidence intervals based on different methods. ‘Scaled’ represents the method in Wang and Jing
(2001), ‘IC’ represents the method in He et al. (2016), ‘MEL-A’ represents MeanEL-A, and ‘MEL-B’ represents
MeanEL-B.

assume that α2 = 1, then the original EL can be written as

RO(θ0) = n(R1 +R2 +R3)
2 +Op(n

− 3
2 ),

and the Bartlett correction uses the corrected statistics

RB(θ0) = n

(
1− b

n

)
(R1 +R2 +R3)

2 +Op(n
− 3

2 ), (5.1)

where b = 1
2
α4 − 1

3
α2
3, R1 = A1, R2 = 1

3
α3A

2
1 − 1

2
A1A2 and R3 = 3

8
A1A

2
2 + 4

9
α2
3A

2
1 −

5
6
α3A

2
1A2 + 1

3
A2

1A3 − 1
4
α4A

3
1. Then the corrected statistic RB(θ0) gives second order accu-

racy, i.e. P{R̂B(θ0) ≤ z} = P{χ2
1 ≤ z} + O(n−2). Based on this idea, we now present the

accuracy of MeanEL in the following theorem.

Theorem 5.1. The MeanEL ratio R(θ0), defined in (1.4), can be written as

R(θ0) = n
(
R

(1)
1 +R

(1)
2 +R

(1)
3

)2
+Op(n

− 3
2 )

where R
(1)
1 = R1, R

(1)
2 = R2 and R

(1)
3 = R3 − 1

8
A1

(
(α3A1 − A2)

2 + 2A2
1 + 4

n+1

)
. We can

further write

R(θ0) = n

(
1− b1

n

)
(R1 +R2 +R3)

2 +Op(n
− 3

2 )

with b1 = n
4
(α3A1 − A2)

2 + n
2
A2

1 + 1 and E (b1) = 1
4
α4 − α2

3

4
+ 5

4
.

Proof. See Appendix.

We have b − E (b1) = 1
4
α4 − 1

12
α2
3 − 5

4
. The formula of b, defined in (5.1), implies for
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distributions with kurtosis α4 much larger than skewness α3 (such as log-normal), Bartlett
correction will be significantly better than original EL. The new MeanEL approach is actually
equivalent to using ”Bartlett correction constant” E (b1), such that E (b1) ∈ (0, b). Therefore,
MeanEL will always be better than the original empirical likelihood (correction constant to be
0), for such distributions. Also the advantage of MeanEL is that it does not need to estimate
the correction constant b.

We also compared the results of using pair-wise mean data and the results of using three-
value mean data ((gi(θ) + gj(θ) + gk(θ))/3) in the supplementary file. Both theoretical justi-
fications and simulation studies show that using the pair-wise mean data will provide better
results than using three-value mean data.

Appendix A. Proof of Theorem 2.1

Lemma Appendix A.1. Assume E
(
δ g(Z, θ0)
1−G(Z)

)4
<∞, E

(
δ

1−G(Z)

)4
<∞, we have

(i) max
1≤k≤N

|Wnk| = op(n
1/2).

(ii)
√
n

(
1

N

N∑
k=1

Wnk

)
→ N(0, σ2

1), in dist.

(iii)
1

N

N∑
k=1

W 2
nk = Op(1).

(iv)
1

N

N∑
k=1

W 2
nk =

1

2
σ̂2
2A + op(1),

1

N

N∑
k=1

W 2
nk =

1

2
σ̂2
2B + op(1).

Proof. Part (i) follows form Liang et al. (2019) and the result sup0≤z≤Zn:n

∣∣∣ Ĝ(z)−G(z)

1−Ĝ(z)

∣∣∣ = Op(1)

in Zhou (1992). We provide a sketch of proofs for other parts of the Lemma here and details
can be found in the supplementary file.

For part (ii), we rewrite N−1
∑N

k=1Wnk as

1

N

N∑
k=1

Wnk =

(
1

n

n∑
i=1

δigi(θ0)

1− Ĝi

)(
1

n− 1

n∑
i=1

δi

1− Ĝi

)
− 1

n(n− 1)

n∑
i=1

δigi(θ0)

(1− Ĝi)2
.

Noting that∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

δigi(θ0)

(1− Ĝi)2

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

δigi(θ0)

(1−Gi)2

∣∣∣∣∣max
i

∣∣∣∣1−Gi

1− Ĝi

∣∣∣∣2 = Op(n
−1),

n−1
n∑
i=1

δigi(θ0)

1− Ĝi

=

∫ ∞
0

g(t, θ0) dF̂ (t) =

∫ ∞
0

g(t, θ0) d(F̂ (t)− F (t)),

9



and n−1
∑n

i=1
δi

1−Ĝi
=
∫∞
0

dF̂ (t) = 1, we get

√
n

(
1

N

N∑
k=1

Wnk

)
=
√
n

∫ ∞
0

g(t, θ0) d(F̂ (t)− F (t)) + op(1).

Following Corollary 1.2 in Stute (1995) we have the conclusion (ii).
For part (iii) we rewrite N−1

∑N
k=1W

2
nk as

1

N

N∑
k=1

W 2
nk =

n

2(n− 1)

(
1

n

n∑
i=1

δig
2
i (θ0)

(1− Ĝi)2

)(
1

n

n∑
i=1

δi

(1− Ĝi)2

)

+
n

2(n− 1)

(
1

n

n∑
i=1

δigi(θ0)

(1− Ĝi)2

)2

− 1

n(n− 1)

n∑
i=1

δig
2
i (θ0)

(1− Ĝi)4
. (A.1)

The last term of (A.1) is bounded above by
∣∣∣ 1
n(n−1)

∑n
i=1

δig
2
i (θ0)

(1−Gi)4

∣∣∣maxi

∣∣∣1−Gi

1−Ĝi

∣∣∣4 = Op(n
−1) and

can be omitted. In addition, we have∣∣∣∣∣ 1n
n∑
i=1

δig
2
i (θ0)

(1− Ĝi)2
− 1

n

n∑
i=1

δig
2
i (θ0)

(1−Gi)2

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

(Ĝi −Gi)(1− Ĝi + 1−Gi)

(1− Ĝi)2
δig

2
i (θ0)

(1−Gi)2

∣∣∣∣∣
≤

(
max
i

∣∣∣∣∣Ĝi −Gi

1− Ĝi

∣∣∣∣∣+ max
i

∣∣∣∣∣(Ĝi −Gi)(1−Gi)

(1− Ĝi)2

∣∣∣∣∣
)

1

n

n∑
i=1

δig
2
i (θ0)

(1−Gi)2
= Op(1),

and∣∣∣∣∣ 1n
n∑
i=1

δigi(θ0)

(1− Ĝi)2
− 1

n

n∑
i=1

δigi(θ0)

(1−Gi)2

∣∣∣∣∣ = Op(1),

∣∣∣∣∣ 1n
n∑
i=1

δi

(1− Ĝi)2
− 1

n

n∑
i=1

δi
(1−Gi)2

∣∣∣∣∣ = Op(1).

Therefore, part (iii) is proved.
For part (iv), since θ̂ is a consistent estimator of θ0 and

1

N

N∑
k=1

W 2
nk −

1

2
σ̂2
2A =

1

4N

∑
i<j

δi δi

(1− Ĝi)2(1− Ĝj)2

[
(gi(θ0) + gj(θ0))

2 − (gi(θ̂) + gj(θ̂))
2
]
,

we have 1
N

∑N
k=1W

2
nk = 1

2
σ̂2
2A + op(1). Also from equation (A.1) we have,

1

N

N∑
k=1

W 2
nk −

1

2
σ̂2
2B =

1

2

(
1

n

n∑
i=1

δig
2
i (θ0)

(1− Ĝi)2
− σ̂2

22

)
σ̂2
20 (A.2)
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+
1

2

(
1

n

n∑
i=1

δigi(θ0)

(1− Ĝi)2
− σ̂2

21

)(
1

n

n∑
i=1

δigi(θ0)

(1− Ĝi)2
+ σ̂2

21

)
+ op(1).

Since θ̂ is a consistent estimator of θ0, then both the first term and the second term of (A.2)
are op(1). Therefore we have 1

N

∑N
k=1W

2
nk = 1

2
σ̂2
2B + op(1). This implies that limn→∞ σ̂

2
2A =

limn→∞ σ̂
2
2B = limn→∞

2
N

∑N
k=1W

2
nk.

Note that, the assumptions required by this Lemma are always satisfied based on the
commonly-used regularity condition for the tails of the survival and censoring distributions
(Stute and Wang, 1993), which guarantees the survival function F is identifiable.

Appendix B. Proof of Theorem 5.1

Proof. Let Bk = N0
−1∑N0

l=1M
k
l (θ0)−βk with βk = EMk

l (θ0). Following Liu and Chen (2010),

N0
−1

(
2

N0∑
k=1

log(1 + λMk(θ0))

)
= 2n−1R(θ0)

=
1

β2
B2

1 +
2β3
3β3

2

B3
1 −

1

β2
2

B2
1B2 +

(
2β2

3

β4
2

− β2
3

β3
2

− β4
2β4

2

)
B4

1 +
2

3β3
2

B3
1B3

+

(
2β3
β2
2

− 4β3
β3
2

)
B3

1B2 +

(
2

β2
2

− 1

β2

)
B2

1B
2
2 +Op

(
n−5/2

)
(B.1)

Under α1 = 0 and the assumption α2 = 1, we have

β1 = 0, β2 =
1

2
, β3 =

1

4
α3, β4 =

1

8
α4 +

3

8
,

B1 = A1, B2 =
1

2
A2 +

1

2
A2

1 +
1

2(n+ 1)
+Op

(
n−2/3

)
,

B3 =
1

4
A3 +

3

4
A1 +

3

4
A1A2 +

3α3

4(n+ 1)
+Op

(
n−2/3

)
.

Substitute these equations into (B.1) to get

n−1R(θ0) = A2
1 +

2

3
α3A

3
1 − A2

1A2 +

(
3

4
α2
3 −

1

2
α4 −

1

2

)
A4

1

+
2

3
A3

1A3 −
3

2
α3A

3
1A2 +

3

4
A2

1A
2
2 −

A2
1

n+ 1
+Op

(
n−5/2

)
.
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Assuming R(θ0) = n
(
R

(1)
1 +R

(1)
2 +R

(1)
3

)2
+ Op(n

− 3
2 ), where R

(1)
1 = Op(n

−1/2), R
(1)
2 =

Op(n
−1) and R

(1)
3 = Op(n

−3/2), then we have

R
(1)
1 = A1, R

(1)
2 =

1

3
α3A

2
1 −

1

2
A1A2,

R
(1)
3 =

(
23

72
α2
3 −

1

4
α4 −

1

4

)
A3

1 +
1

3
A2

1A3 −
7

12
α3A

2
1A2 +

1

4
A1A

2
2 −

A1

2(n+ 1)
.

Further, we write n
(
R

(1)
1 +R

(1)
2 +R

(1)
3

)2
+Op(n

− 3
2 ) = n

(
1− b1

n

)
(R1 +R2 +R3)

2 +Op(n
− 3

2 ).

Expand and simplify this equation with R1 = R
(1)
1 , R2 = R

(1)
2 , then the theorem is proved.
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