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Abstract. The ‘moduli continuity method’ permits an explicit algebraisation of the Gromov-Hausdorff com-
pactification of Kähler-Einstein metrics on Fano manifolds in some fundamental examples. In this paper,

we apply such method in the ‘log setting’ to describe explicitly some compact moduli spaces of K-polystable
log Fano pairs. We focus on situations when the angle of singularities is perturbed in an interval sufficiently

close to one, by considering constructions arising from Geometric Invariant Theory. More precisely, we discuss

the cases of pairs given by cubic surfaces with anticanonical sections, and of projective space with non-Fano
hypersurfaces, and we show ampleness of the CM line bundle on their good moduli space (in the sense of

Alper). Finally, we introduce a conjecture relating K-stability (and degenerations) of log pairs formed by a

fixed Fano variety and pluri-anticanonical sections to certain natural GIT quotients.

1. Introduction

Deciding when a Fano variety, and more generally a log Fano pair (X, (1 − β)D), is log K-stable remains
an interesting open problem. In particular, in the logarithmic setting it is natural to ask how log K-stability
varies when β is perturbed. This question was initially addressed for del Pezzo surfaces and anticanonical
divisors in [CMG16], where no moduli considerations were given.

In the present article we want to describe some prototypical situation in the logarithmic setting in which the
study of log K-stability compactifications can be reduced to GIT problems, by using the “moduli continuity
method” strategy already implemented in the absolute case [OSS16, SS17, LX19], and pioneered in [MM93].
Beside reducing the checking of K-stability (and hence of the existence of Kähler-Einstein metrics) to an
explicitly checkable condition, this approach has the advantage of classifying continuous families of compact
moduli spaces of K-stable log Fano pairs in some situations.

The first case we are going to analyse consists of pairs given by a del Pezzo surface of degree 3 and
an anticanonical divisor. More precisely, we are interested in studying the moduli spaces of Q-Gorenstein
smoothable K-stable pairs as above. Note that when such a del Pezzo surface is smooth (or more generally
it has canonical singularities), it is realised in P3 as a cubic hypersurface, and its anticanonical sections
are given by hyperplane sections. In [GMG18] notions of GITt-stability for log pairs given by a Fano or
Calabi-Yau hypersurface and a hyperplane section were introduced. This notion of stability depends on a
parameter t moving in an open interval and moduli spaces of such log pairs were constructed using GITt-
stability. Furthermore, in [GMG19] all the GIT compactifications of log pairs formed by a cubic surface and
an anticanonical divisor were described. We will use one of these GITt-compactifications to realise the log
K-stability compactification where the angle of conical singularities of the log pairs is large.

Our first result shows that for β sufficiently close to one, K-stability reduces to the above GITt(β)-stabilities.

Theorem 1.1. If β > β0 =
√

3
2 , then we have a natural homeomorphism between the Gromov-Hausdorff

compactification of the moduli spaces M
K

3,β of Kahler-Einstein/K-polystable pairs (C, (1 − β)D) (where C is

a cubic surface and D is an anticanonical section) and the GITt-quotients M
GIT

t(β) , for the explicit algebraic

function t(β) = 9(1−β)
9−β , with inverse β(t) = 9(1−t)

9−t .

Let π be the GIT quotient morphism with target M
GIT

t(β) (as defined in [GMG18, GMG19], cf. Section 3)

and π1 and π2 be the natural projections from the space of embedded pairs (C,H) ⊂ P3 — where H is the
hyperplane in P3 determining D — to the Hilbert schemes of cubic surfaces and hyperplanes in P3, respectively.
For any a, b > 0, consider the ample line bundle

O(a, b) := π∗(π
∗
1(O(a))⊗ π∗2(O(b))),
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on M
GIT

t(β) . Then the canonically defined log CM line ΛCM,β(t) on M
K

3,β is isomorphic to O(a, b) for some

a, b > 0 such that a
b = t(β).

The CM line bundle is canonically defined on the base scheme of families of K-polystable varieties. Intro-
duced by Paul and Tian in the absolute case [PT06], its definition can naturally be extended for pairs (see
§2). It has been conjectured that the CM line bundle is ample on the good moduli space (in the sense of
Alper [Alp13]) in the absolute case [OSS16]. This conjecture can be naturally extended to the log CM line
bundle in the logaritmic setting. A consequence of Theorem 1.1 is that the ampleness condition is verified in

the instance of M
K

3,β when
√

3
2 < β < 1.

Our result identifies M
GIT

t(β) with M
K

3,β for 1 > β > β0 :−
√

3
2 . One would expect to obtain the log K-

stability compactification M
K

3,β for smaller angles 0 < β < β0 by modifying appropriately the GITt-stability

compactifications M
GIT

t(β) constructed in [GMG19] by performing several birational transformations of M
GIT

t(β) .
The expected correspondence between GITt-stability and log K-stability for 0 < β < β0 is made explicit in

Theorem 3.8 by defining a function t(β) which identifies the natural polarizing line bundle of M
GIT

t(β) and the

CM line bundle of M
K

3,β . This identification generalises the one in Theorem 1.1 to all 0 < β < 1.
We should stress that, in order to find good a-priori bounds on the singularities of the Gromov-Hausdorff

limits, the proof of the above results makes essential use of recent advances on bounds of the so-called nor-
malised volumes of singularities of K-stable varieties [LLX18].

Next we consider some higher dimensional examples. A natural Gap Conjecture [SS17, Conjecture 5.5,
cf. Conjecture 2.1] 4.3 about normalised volumes says that (in the absolute case) there are no Kawamata
log terminal (klt) singularities whose normalised volume is bigger than the one of the n-dimensional ordinary
double point singularity. A proof of the Gap Conjecture is available in dimensions 2 and 3 [Liu18,LX19], and
it has been used in [SS17,LX19] to study compactifications of K-stable varieties. Our next result shows that,
assuming such conjecture, the K-stability of pairs (Pn, (1 − β)H) with H a hypersurface of degree d > n + 1
reduces to the classical GIT-stability of hypersurfaces for β sufficiently close to one. More precisely:

Theorem 1.2. If the Gap Conjecture 4.3 (introduced in [SS17, Conjecture 5.5]) holds, then for all d > n+ 1
there exists β0 = β0(n, d) such that for all β ∈ (β0, 1), the pair (Pn, (1− β)Hd), with Hd any possibly singular
degree d hypersurface, is log K-polystable if and only if [Hd] is GIT-polystable for the natural action of SL(n+1)
on P(H0(O(d))). In particular, this holds in dimension n = 1, 2, 3, thanks to [Liu18, LX19].

A (non-optimal) explicit choice of β0 is given by

(1) β0 = 1−

(
n+ 1

d

(
1− n
√

2(1− 1

n
)
))
.

Moreover, if β0 < β < 1, the Gromov-Hausdorff compactification of K-polystable pairs (Pn, (1 − β)Hd) is

homeomorphic to the GIT quotient M
GIT

d of degree d hypersurfaces in Pn.

The first statement of the above result is a special case of the following natural expectation, at least when
the automorphism group has no non-trivial characters.

Conjecture 1.3. Let X be a K-polystable Fano variety. Then for any sufficiently large and divisible l ∈ N,
there exists β0 = β0(l,X) such that for all D ∈ | − lKX | and β ∈ (β0, 1), the pair (X, (1 − β)D) is log K-
polystable if and only if [D] ∈ P(H0(−lKX)) is GIT-polystable for the natural representation of Aut(X) on
H0(−lKX).

Moreover, the Gromov-Hausdorff compactification M
K

X,l,β of the above pairs (X, (1−β)D) is homeomorphic

to the GIT quotient P(H0(−lKX))ss//Aut(X).

Note that the automorphism group Aut(X) of a K-polystable Fano is always reductive. If X is smooth or a
Gromov-Hausdorff degeneration, this follows from by Matsushima’s obstruction [Mat57] and Chen-Donaldson-
Sun [CDS15]. Otherwise, this has been very recently established in [ABHLX20] via purely algebro-geometric
techniques

Once its different steps are established, the application of the moduli continuity method (the proof of
theorems 1.1 and 1.2) is just a couple of paragraphs. However, in order to keep the reader focused on the main
goal of the paper, we recall here what the different steps of the moduli continuity method are, noting that each
of them requires involved technical proofs to accomplish them. Suppose that we have a Gromov-Hausdorff
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compactification space M
GH

of objects (varieties, log pairs...) admitting a Kähler-Einstein type of metric

(usually smooth or with conical singularities). Suppose further that we want to show M
GH

is homeomorphic

to certain algebraic scheme, usually obtained as a GIT quotient M
GIT

= Hss//G, where H is some scheme
representing objects which may or may not admit a metric of Kähler-Einstein type. The moduli continuity
method would proceed as follows (see brackets for where each step is accomplished for theorems 1.1 and 1.2,
respectively):

(1) Construct M
GIT

and possibly characterise geometrically (e.g. in terms of their singularities) the (poly
/semi)stable elements p represented as [p] ∈ H ( [GMG18,GMG19]; [MFK94]).

(2) Show (perhaps using the geometric characterization in (1)) that all elements in M
KE

are represented in
H (Proposition 4.2; Proposition 4.4).

(3) Show that for any [p] ∈ H such that the object p is K-(poly/semi)stable, the point [p] ∈ H is GIT
(poly/semi)stable.

(4) As a result of steps (1)–(3) one has a natural map φ : M
GH →M

GIT
, which one must show to be injective

(usually follows from uniqueness of Kähler-Einstein metrics) and continuous (usually follows from [CDS15]
and Luna slice theorem).

(5) Moreover, one must show that Im(φ) is open and dense (usually this depends on the choice of GIT
quotient).

(6) The rest is just an application of topological facts: Im(φ) is compact as φ is continuous and M
GH

is
compact. As Im(φ) is also dense, it follows that φ is surjective and in fact a homeomorphism as φ is a
continuous map between a compact space and a Hausdorff space.

The structure of the paper is as follows. In section 2 we discuss some relations between log-K-stability and
GITs, recalling the relevant definitions. In section 3, we apply the machinery to some specific cases, which
include the ones relevant for our main theorems listed above. Finally, in section 4 we finish the proofs of the
main theorems, and discuss further directions.

Remark 1.4. CS and JMG proved Theorem 1.2 during the visit of CS to JMG in August 2018, as part of this
project. When communicating the proof to PG, the latter informed them that such a statement in the special
case of n = 2, had been obtained independently by another group pursuing a different question [ADL19].
Ten months after the appearance of our work in preprint form in the ArXiv, [ADL19] was shared with the
mathematical community in the ArXiv, including a proof of Theorem 1.2 for n > 4 without assuming the
Gap Conjecture, as well as studying in details wall-crossing phenomena, predicted in section 4.2 in relation to
the pairs given by P2 and a quartic. The paper [ADL19] also includes the description of a natural algebraic
structure on the moduli space of general smoothable K-polystable Fano pairs, using analytic techniques, in
analogy to the absolute case established in [SSY16], [Oda15] and [LWX19]. Regarding this last point, it
is worth mentioning that recently there has been several important advances in establishing properties of
the moduli of (non-necessarily smoothable) Fano (pairs) via purely algebro-geometric techniques, such as
its separatedness [BX19], its existence [ABHLX20] (but not yet properness), and the general openness of
K-semistability ( [Xu20] and [BLX19]).

Acknowledgments. PG is grateful for the working environment of the Department of Mathematics in Wash-
ington University at St. Louis. PG’s travel related to this project was partially covered by the FRG Grant
DMS-1361147 (P.I Matt Kerr). JMG is supported by the Simons Foundation under the Simons Collabora-
tion on Special Holonomy in Geometry, Analysis and Physics (grant #488631, Johannes Nordström). CS is
supported by AUFF Starting Grant 24285, DNRF Grant DNRF95 QGM ‘Centre for Quantum Geometry of
Moduli Spaces’, and by Villum Fonden 0019098. This project was started at the Hausdorff Research Institute
for Mathematics (HIM) during a visit by the authors as part of the Research in Groups project Moduli spaces
of log del Pezzo pairs and K-stability. We thank HIM for their generous support.

We would like to thank F. Gounelas for a clarification regarding the Fano index in deformation families.
We would like to thank M. de Borbón, J. Nordström, Y. Odaka and S. Sun for useful comments.

2. Donaldson-Futaki invariant and Geometric Invariant Theory

Let π : X → B be a flat proper morphism of relative dimension n. Let D ⊆ X be an effective Weil Q-divisor
of X such that D|b is equidimensional of dimension n− 1 for all b ∈ B. Let L be a π-very ample Q-line bundle
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of X . Assume that the restriction π|D : D → B is also a flat proper morphism of relative dimension n− 1 and
LD is π|D-ample. The fibers of π are projective varieties.

For sufficiently large k > 0, the Knudsen-Mumford theorem [KM76] says that there exist functorially defined

line bundles λj := λj(X ,B,L) and λ̃j := λj(D,B,L|D) on B such that

det
(
π!∗
(
Lk
))

= λ
⊗( k

n+1)
n+1 ⊗ λ⊗(kn)

n ⊗ · · · ,

det
(
π!∗

(
(L|D)

k
))

= λ̃
⊗(kn)
n ⊗ λ̃⊗( k

n−1)
n−1 ⊗ · · · .

Lemma 2.1 ( [Zha96, PRS08], [Elk89, I.3.1]). For each r > 0, the line bundles in the Knudsen-Mumford
expansion of Lr satisfy the following properties in relation to the Deligne’s pairing with n+ 1 entries:

(i) λn+1(Lr) = 〈Lr, · · · ,Lr〉 = 〈L, . . . ,L〉⊗r(n+1)
= λ⊗r

n+1

n+1 .

(ii) If X and B are smooth, then (λn(Lr))⊗2 = 〈Lnr ⊗K−1
X/B,L

r, . . . ,Lr〉.
(iii) If γ : B′ → B is a proper morphism and X ×B B′ → X is the pullback of γ via the fibred product, then〈

γ∗(L), . . . , γ∗(L)
〉

= γ∗
(
〈L, . . . ,L〉

)
.

Moreover, Deligne’s pairing is multilinear with respect to the tensor product of line bundles.

Since π is flat, the Hilbert polynomial is constant along fibres b ∈ B. Let p(k) and p̃(k) be the Hilbert
polynomials of Lb and Lb|D on fibres Xb and Db, respectively. For k sufficiently large, we have

p(k) = a0k
n + a1k

n−1 + · · · , p̃(k) = ã0k
n−1 + ã1k

n−2 + · · · .

If the general fibre Xb has mild singularities (e.g. if Xb is Q-factorial), then we can write the coefficients of the
Hilbert polynomials in terms of first chern classes:

a0 =
c1(Lb)n

n!
,(2)

a1 =
c1(Xb) · c1(Lb)n−1

2(n− 1)!
,(3)

ã0 =
c1(L|Db)n−1

(n− 1)!
=
c1(L)n−1 · Db

(n− 1)!
.(4)

Definition 2.2. Given the tuple (X ,D,B,Lr) as above, we define its log CM Q-line bundle with angle β ∈ Q>0

on B as

ΛCM,β(X ,D,L) = λ
⊗
(
n(n+1)+

2a1−(1−β)ã0
a0

)
n+1 ⊗ λ⊗(−2(n+1))

n ⊗ λ̃⊗(1−β)(n+1)
n .

We will write either ΛCM,β(L) or ΛCM,β for ΛCM,β(X ,D,L) whenever there is no confusion on (X ,D) or L,
respectively.

When β = 1, the latter definition recovers the definition of CM line bundle for varieties in [PT06, PT09],
c.f. [LWX19].

Lemma 2.3. Let X and B be smooth and assume the general fibre of Xb is Q-factorial. Then ΛCM,β(Lr) =(
ΛCM,β(L)

)⊗rn
for all r > 0.

Proof. From Lemma 2.1 (i) we have that λn+1(Lr) = λ⊗r
n+1

n+1 and λ̃n(Lr) = λ⊗r
n

n .
Moreover, Lemma 2.1 (ii) gives

(λn(Lr))⊗2 = 〈Lnr ⊗K−1
X ,Lr, . . . ,Lr〉

=
[
〈Lnr−n ⊗ Ln ⊗K−1

X ,L, . . . ,L〉
]⊗rn

=
[
〈Lnr−n,L, . . . ,L〉 ⊗ 〈Ln ⊗K−1

X ,L, . . . ,L〉
]⊗rn

=
[
〈L, . . . ,L〉⊗n(r−1) ⊗ 〈Ln ⊗K−1

X ,L, . . . ,L〉
]⊗rn

= λ
⊗rnn(r−1)
n+1 ⊗ λ⊗2rn

n .
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Let ai(r) and ãi(r) be the coefficients of the Hilbert polynomials of X and D, respectively, for a power Lr of
L. By restricting to a general fibre b of X we have

a0(r) =
c1(Lr|b)n

n!
= rn

c1(L|b)n

n!
= rna0,

ã0(r) =
c1(LrD|b)n−1

(n− 1)!
= rn−1 c1(LD|b)n−1

(n− 1)!
= rn−1ã0,

a1(r) =
c1(X|b) · c1(Lr|b)n−1

2(n− 1)!
= rn−1a1.

Hence

λn+1(Lr)⊗
(
n(n+1)+

2a1(r)−(1−β)ã0(r)

a0(r)

)
= (λ⊗r

n+1

n+1 )
⊗
(
n(n+1)+r−1 2a1−(1−β)ã0

a0

)

=

(
λ

2a1−(1−β)ã0
a0

n+1 ⊗ λ⊗rn(n+1)
n+1

)⊗rn
.

The latter identity, together with
(
λn(Lr)

)⊗2
= λ

⊗rnn(r−1)
n+1 ⊗ λ⊗2rn

n completes the proof:

ΛCM,β(Lr) = (λn+1(Lr))⊗n(n+1)+
2a1(r)−(1−β)ã0(r)

a0(r)

⊗ (λn(Lr))⊗(−2(n+1)) ⊗
(
λ̃n(Lr)

)⊗(1−β)(n+1)

=

(
λ
⊗ 2a1−(1−β)ã0

a0
n+1 ⊗ λ⊗rn(n+1)

n+1

)⊗rn
⊗
(
λ
⊗(−(n+1)n(r−1))
n+1

)⊗rn
⊗
(
λ⊗(−2(n+1))
n

)⊗rn
⊗
(
λ̃⊗(1−β)(n+1)
n

)⊗rn
=
(
ΛCM,β (L)

)⊗rn
.

�

Hence, the log CM Q-line bundle is unique up to scaling. In particular, if it is ample, it induces the same
polarisation of B for all r sufficiently large. Therefore we will simply refer to the log CM line bundle ΛCM,β .

Definition 2.4. Let (X,D) be a log pair where X is a projective variety and D is a divisor of X. Let L be
an ample Q-line bundle of X.

A test configuration of (X,D,L) is a tuple (X ,D,L) where D is a Weil Q-divisor of the projective variety
X and a flat proper morphism π : X → C such that

(i) the morphism π induces a flat proper morphism πD : D → C,
(ii) the general fibres of π and πD are isomorphic to X and D, respectively,
(iii) there is a π-equivariant C∗-action on (X ,L) which preserves D. In particular, all the fibres of π and πD

at s 6= 0 ∈ C are isomorphic to X and D, respectively.

Let (X ,D,L) be a test configuration of (X,D,L). Let X0 and D0 be the central fibres of X and D. For k
sufficiently large, we can write

w(k) = b0k
n+1 + b1k

n + · · · , w̃(k) = b̃0k
n + · · · ,

for the sum of the weights of the action of C∗ on Λn+1(H0(X0,L|⊗kX0
)) and

Λn(H0(D0,L|⊗kD0
)), respectively. Since the Hilbert polynomial is invariant along fibres of flat deformations, (2)

(3), (4) define its coefficients of the initial terms of the Hilbert polynomials of X and D. Let β ∈ (0, 1] ∩ Q.
The β-Donaldson-Futaki invariant of (X ,D,L) is

DFβ(X ,D,L) =
2(a1b0 − a0b1)

a0
+ (1− β)

b̃0a0 − ã0b0
a0

.

Definition 2.5. An L-polarised pair (X, (1 − β)D) is K-semistable if and only if DFβ(X ,D,L) > 0 for all
test configurations (X ,D,L) of (X,D,L).

An L-polarised pair (X, (1−β)D) is K-stable (respectively K-polystable) if and only if DFβ(X ,D,L) > 0 for
all test configurations (X ,D,L) which are not isomorphic to the trivial test configuration (X×C, D×C, π∗1(L)),
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(respectively equivariantly isomorphic to the trivial test configuration), where π1 is projection on the first
factor.

Theorem 2.6. Let B = C and suppose that (X ,D,B,L) is a test configuration of an L-polarised pair (X,D).
Then

w(ΛCM,β(X ,D,Lr)) = (n+ 1)!DFβ(X ,D,L),

where w(ΛCM,β(X ,D,Lr)) is the total weight of ΛCM,β(X ,D,Lr) under the C∗-action of the test configuration.

Proof. Denote by w(G) the total weight of the C∗-action on any C∗-linearised Q-line bundle G. Observe that
L is C∗-linearised since (X ,D,L) is a test configuration. Then:

w(det
(
π!∗
(
Lk
))

) = b0k
n+1 + b1k

n + . . . .

On the other hand

w
(
det
(
π!∗
(
Lk
)))

= w

(
λ
⊗( k

n+1)
n+1 ⊗ λ⊗(kn)

n ⊗ · · ·
)

=

(
k

n+ 1

)
w(λn+1) +

(
k

n

)
w(λn) + . . . ,

and since (
k

n+ 1

)
=

kn+1

(n+ 1)!
− n(n+ 1)

2

1

(n+ 1)!
kn + · · ·(

k

n

)
=
kn

n!
− n(n− 1)

2

1

n!
kn−1 + · · · ,

we have that b0 = w(λn+1)
(n+1)! . Similarly b̃0 = w(λ̃n)

n! . On the other hand, by looking at the coefficients of the kn

terms we get that

b1 =
−n(n+ 1)

2

1

(n+ 1)!
w(λn+1) +

1

n!
w(λn) =

−n(n+ 1)

2
b0 +

n+ 1

(n+ 1)!
w(λn).

Rearranging terms we obtain the weights of each relevant line bundle in the Mumford-Knudsen expansions:

w(λn) = (n+ 1)!

(
b1

n+ 1
+
n

2
b0

)
, w(λn+1) = (n+ 1)!b0, w(λ̃n) = n!b0.

We can now compute the weight of the log CM line bundle, substituting the values for the weights:

w (ΛCM,β) =

(
n(n+ 1) +

2a1 − (1− β)ã0

a0

)
w (λn+1)

− 2(n+ 1)w (λn) + (1− β) (n+ 1)w(λ̃n)

=

(
n(n+ 1) +

2a1 − (1− β)ã0

a0

)
(n+ 1)!b0

− 2(n+ 1)(n+ 1)!

(
b1

n+ 1
+
n

2
b0

)
+ (1− β) (n+ 1)n!̃b0

= (n+ 1)!

((
2a1b0 − 2b1a0

a0

)
+ (1− β)

(
b̃0a0 − ã0b0

a0

))
= (n+ 1)!DFβ(X ,D,L).

�

Theorem 2.7. Let (X,D,L) be the restriction of a family (X ,D,L) where Grothendieck-Riemann-Roch applies
(e.g. if the fibres have mild singularities, for instance if they are locally complete intersections) to a general

b ∈ B and let µ(L) = c1(X)·c1(L)
c1(L)n and µ(L,D) = D·c1(L)

c1(L)n . Assume that X is Q-factorial. Then

deg(ΛCM,β) = π∗

(
nµ (L) c1 (L)

n+1
+ (n+ 1) c1 (L)

n
c1
(
KX/B

)
+

(1− β)
(

(n+ 1) c1 (L)
n · D − nµ(L,D)c1 (L)

n+1
))

.
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Moreover, if L = −KX/B and D|Xb ∈ | −KXb | for all b ∈ B, then

deg(ΛCM,β) = π∗
(
c1
(
−KX/B

)n · (−c1 (−KX/B)+ (1− β)
(
(n+ 1)D − nc1

(
−KX/B

))))
.

Proof. From applying the Grothendieck-Riemann-Roch Theorem to Lk and (L|D)k we obtain (c.f. [FR06, §2]):

π∗(c1(L)n+1) = deg(λn+1)

ndeg(λn+1)− 2 deg(λn) = π∗
(
c1 (L)

n · c1
(
KX/B

))
π∗ (c1 (L|D)

n
) = deg

(
λ̃n

)
.

Hence, we have:

c1 (ΛCM,β) =

(
n (n+ 1) +

2a1 − (1− β)ã0

a0

)
π∗

(
c1 (L)

n+1
)

− (n+ 1)π∗

(
nc1 (L)

n+1 − c1 (L)
n
c ·1

(
KX/B

))
+ (1− β)(n+ 1) ((π|D)∗ (c1 (L|D)

n
))

= π∗

((
2
a1

a0
− (1− β)

ã0

a0

)
c1 (L)

n+1
+

(n+ 1) c1 (L)
n · c1

(
KX/B

)
+ (1− β) (n+ 1)c1 (L)

n · D
)

= π∗

(
2
a1

a0
c1 (L)

n+1
+ (n+ 1) c1 (L)

n · c1
(
KX/B

)
+ (1− β)

(
(n+ 1) c1 (L)

n · D − ã0

a0
c1 (L)

n+1

))
.

We obtain the identities 2a1
a0

= nµ(L) and ã0
a0

= nµ(L,D) from (2) (3) and (4). Substituting in the above

identity gives us the first formula. For the second formula note that if L = −KX/B, and D|Xb ∈ |−KXb |, then
µ(L) = µ(L,D) = 1 and the second formula follows.

�

3. Variations of GIT for hypersurfaces

Let Hn,d = P
(
H0
(
Pn+1,OPn+1 (d)

))
. The product Hn,d × Hn,1 parametrises, up to multiplication by

constants, pairs (p, l) of homogeneous polynomials in n + 2 variables where p has degree d > 2 and l has
degree 1. Therefore, it parametrises all pairs (X,H) formed by a (possibly non-reduced and/or reducible)
hypersurface of degree d and a hyperplane H in Pn+1. The group G = SL(n + 1,C) acts naturally on
Hn,d×Hn,1. Let π1 : Hn,d×Hn,1 → Hn,d and π2 : Hn,d×Hn,1 → Hn,1 be the natural projections. By [GMG18],

PicG(Hn,d ×Hn,1) ∼= Z2. Moreover we can describe all line bundles L ∈ PicG(Hn,d ×Hn,1) as

L ∼= O(a, b) :=
(
π∗1
(
OHn,d (a)

)
⊗ π∗2

(
OHn,1 (b)

))
,

where a, b ∈ Z and O(a, b) is ample if and only if a > 0 and b > 0. Therefore we have a natural GIT quotient
(Hn,d×Hn,1)ss//O(a,b)G for each choice of (a, b) ∈ Z. Since GIT stability is independent of scaling of O(a, b) by

a positive constant, we may parametrise the GIT stability conditions by t = b
a > 0. It follows from [GMG18,

Theorem 1.1] that for t > tn,d := d
n+1 there are no GIT semistable pairs (X,H) and that the interval (0, tn,d)

is subdivided into a wall-chamber decomposition where walls are given by t1 = 0, t2, . . . , tk = tn,d such that
(Hn,d ×Hn,1)ss//O(a,b)G is constant for t ∈ (ti, ti+1).

The above setting, introduced in [GMG18] and expanded in [GMGZ18], is an application of the more general
theory of variations of GIT quotients introduced by Dolgachev and Hu [DH98] and Thaddeus [Tha96]. The
approach introduced in [GMG18] is two-fold. On the one hand, an algorithmical approach was introduced
to determine the GIT stability of each pair (X,H) via computational geometry. These algorithms were
implemented in [GMG17] to determine the wall-chamber structure, and the GIT unstable, strictly semistable
and polystable locus for each value of t. On the other hand, these GIT quotients induce a compactification
for log pairs in the Fano case. To describe this setting, let X = {p(x0, . . . , xn+1) = 0} and H = {l = 0} for
[p] ∈ Hn,d, [l] ∈ Hn,1. If Supp(H) 6⊂ Supp(D), or equivalently if l does not divide p, then D := X ∩ H ∈
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)∣∣ defines a Q-Cartier divisor on X. Moreover, if d 6 n + 1, X is Fano and if d = n + 1,

then D ∈ | −KX |.

Theorem 3.1 ( [GMG18, Theorem 1.3]). Every point in the GIT quotient

(Hn,d ×Hn,1)ss//O(a,b)G

parametrises a closed orbit associated to a pair (X,D) with D = X ∩H in the cases where X is a Calabi-Yau
or a Fano hypersurface of degree d > 1. Furthermore, if X is Fano t 6 tn,d and (X,H) is t-semistable, then X
does not contain a hyperplane in its support, unless t = tn,d, in which case (X,H) is strictly tn,d-semistable.

In the rest of this section, unless othewise stated, we will assume that 1 < d 6 n+ 1.

Definition 3.2. Let G = SL(n + 2,C), X ⊂ Pn+1 be a Fano hypersurface and H ⊂ Pn+1 be a hyperplane
such that H 6⊂ Supp(X) and D = X ∩ H ∼ OPn+1(1). We say that (X,D) is GITt-semistable (respectively
GITt-stable, GITt-polystable) if and only if (X,H) is GIT semistable (respectively GIT stable, GIT polystable)
with respect to the unique G-linearised polarisation O(a, b), where t = b

a .

In order to use the setting from Section 2, we need to construct an appropriate flat family of pairs. Next,
we show that such a family exists over an open set U ⊂ Hn,d × Hn,1 and that the complement of U is the
union of two loci Z1 and Z2 with codimension at least two. This will allow us to extend line bundles in U to
line bundles in Hn,d ×Hn,1.

Lemma 3.3. For n + 1 > d > 2, let Z1 = {(p, l) ⊂ Hn,d ×Hn,1 | X = {p = 0}, H = {l = 0}, Supp(H) ⊆
Supp(X)}, then

codim(Z1) =

(
n+ d

d

)
> 2.

Proof. We have Supp(H) ⊆ Supp(X) if and only if the polynomials defining the equations of H and X can
be written as the homogenous polynomials l(x0, . . . , xn+1) and l(x0, . . . , xn+1)fd−1(x0, . . . , xn+1) of degrees 1

and d, respectively. The result follows by counting: there are (n+2) coefficients in the equation of l and
(
n+d
d−1

)
coefficients in the equation of fd−1. Finally, we subtract two degrees of freedom because we can divide each
polynomial by a non-zero coefficient. We obtain

dim(Z1) =

(
n+ d

d− 1

)
+ n

which implies the formula for codim(Z1) from observing that

dim(Hn,d ×Hn,1) =

(
n+ 1 + d

d

)
+ n

and by using the identity (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.(5)

To obtain the lower bound, we use the hypothesis that n+ 1 > d. First, we suppose that n > d. Observe that
n+d−k
d−k > n+d

d for all k > 0. Therefore, we obtain the following inequality:(
n+ d

d

)
=

(n+ d)(n+ d− 1) · · · (n+ 1)

d!
=
n+ d

d
· n+ d− 1

d− 1
· · · n+ 1

1
>

(
n+ d

d

)d
.

We conclude that (
n+ d

d

)
>

(
n+ d

d

)d
>
(n
d

+ 1
)2

>

(
n

n+ 1
+ 1

)2

> 2.(6)

Finally, we suppose that n+ 1 = d. Since d > 2, by (5) we get:(
n+ d

d

)
=

(
2d− 1

d

)
=

(
2d− 2

d− 1

)
+

(
2d− 2

d

)
=

(
2d− 3

d− 2

)
+

(
2d− 3

(d− 1)

)
+

(
2d− 2

d

)
> 3.

�
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Corollary 3.4. For n, d > 2, let

Z ′1 = {p ∈ Hn,d : p = l(x0 : · · · : xn+1) · fd−1(x0 : · · · : xn+1), deg(l) = 1}.

Then codim(Z ′1) =
(
n+d
d

)
− (n+ 2) > 2.

Proof. By counting the coefficients in the polynomials we find (n + 2) coefficients in the equation of l and(
n+d
d−1

)
coefficients in the equation of fd−1. We subtract two degree of freedom due to projective equivalence to

obtain

dim(Z ′1) =

(
n+ d

d− 1

)
+ n.

Therefore, the codimension is equal to an expression which we denote as f(n, d).

codim(Z ′1) =

((
n+ d+ 1

d

)
− 1

)
−
((

n+ d

d− 1

)
+ n

)
=

(
n+ d

d

)
− (n+ 1) := f(n, d).

To obtain the lower bound, we use (5) to obtain

f(n, d) = f(n− 1, d) +

(
n+ d− 1

d− 1

)
− 1.

which implies f(n, d) > f(n− 1, d). If we set n = 2, then we obtain

f(2, d) :=

(
d+ 2

d

)
− 3 =

(d+ 1)(d+ 2)

2
− 3

which is an parabola with f(2, 2) = 3 and f(2, d) > 3 for d > 2. The result follows.
�

Lemma 3.5. For n > 2, let

Z2 = {(p, l) ∈ Hn,d ×Hn,1 | X = {p = 0}, H = {l = 0}, ∃H ′ 6= H, such that X ∩H = X ∩H ′}.

Then

codim(Z2) =

(
n+ d+ 1

d

)
−
(
n+ d− 1

d− 2

)
+ n− 2 > 2.

Proof. Let (p, l) ∈ Z2, X = {p = 0}, H = {l = 0}, and let H ′ 6= H be a hyperplane such that X∩H = X∩H ′.
Without loss of generality, we may assume that H = {x0 = 0}, H ′ = {x1 = 0}. Since X ∩ H ′ = X ∩ H
is a Cartier divisor supported on {x0 = x1 = 0} ∼= Pn−1 and X ∩ H is a hypersurface of degree d in
H = {x0 = 0} ∼= Pn, we have that X ∩H ⊂ H is dL, where L = {x0 = x1 = 0} ⊂ H is an (n− 1)-dimensional
hyperplane of H. Hence

p = axd1 + bx0fd−1(x0, . . . , xn+1).(7)

Similarly, by considering X ∩H ′ the equation of X can be written as

p = a′xd0 + b′x1gd−1(x0, . . . , xn+1).(8)

By comparing equations (7) and (8), we conclude that the equation of (X,H) ∈ Z2 must have, up to iso-
morphism, the form p = axd0 + a′xd1 + x0x1gd−2(x0, . . . , xn+1), l(x0, x1). The formula for codim(Z2) follows

by counting. The number of coefficients in the polynomial gd−2 is
(
n+d−1
d−2

)
. The equation of H is a linear

combination of x0 and x1. We must subtract two degrees of freedom because we can divide each polynomial
by a non-zero coefficient. We obtain

dim(Z2) =

((
n+ d− 1

d− 2

)
+ 2

)
+ 2− 2 =

(
n+ d− 1

d− 2

)
+ 2

which implies

codim(Z2) =

(
n+ d+ 1

d

)
+ n−

((
n+ d− 1

d− 2

)
+ 2

)
=

(
n+ d+ 1

d

)
−
(
n+ d− 1

d− 2

)
+ n− 2.

The equality (
n+ d

d− 1

)
=

(
n+ d− 1

d− 2

)
+

(
n+ d− 1

d− 1

)
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leads us to −
(
n+d−1
d−2

)
> −

(
n+d
d−1

)
. Together with Lemma 3.3 we conclude:

codim(Z2) >

(
n+ d+ 1

d

)
−
(
n+ d

d− 1

)
+ n− 2 =

(
n+ d

d

)
+ n− 2 >

(
n+ d

d

)
> 2.

�

Lemma 3.6. Suppose d 6 n + 1 and 0 < t < tn,d. Then, for any 0 < t < tn,d, the points in Z1 ∪ Z2 are
GITt-unstable. In particular

(Hn,d ×Hn,1 \ (Z1 ∪ Z2))sst = (Hn,d ×Hn,1)sst .

Proof. By Theorem 3.1, we know that pairs in Z1 are unstable. Let (X,H) be a pair parametrised by
(p, l) ∈ Z2. Then we can choose a coordinate system such that p = xd0 + xd1 + x0x1pd−2(x0, x1), l(x0, x1).

The one-parameter subgroup λ : Gm → G, given by λ(s) = Diag(sn, sn, s−2, . . . , s−2) destabilises the pairs
(X,H) for any t ∈ (0, tn,d), by the Hilbert-Mumford criterion, since the Hilbert-Mumford function [GMG18,
Lemma 2.2] gives µt(P, l, λ) = n+ tn > 0.

�

Define U := (Hn,d ×Hn,1) \ (Z1 ∪ Z2). Let πVn,d : Vn,d → Hn,d be the universal family of hypersurfaces of

degree d in Pn+1 and let p1 : Hn,d × Hn,1 → Hn,d and p2 : Hn,d × Hn,1 → Hn,1 be the projections onto the
first and second factor, respectively. We have that

Vn,d =

{
(x0, . . . , xn+1)× aI ∈ Pn+1 ×Hn,d |

∑
aIx

I = 0

}
where I runs over all partitions of d of n+ 2 non-negative integers.

Consider the following commutative diagram of fibre products

X

π

��

// Vn,d ×Hn,1
//

πVn,d×IdHn,1

��

Vn,d
πVn,d

��
U �
� i // Hn,d ×Hn,1

p1 //

p2

��

Hn,d

Hn,1 ,

where the first square diagram is the fibre product of i and πVn,d × IdHn,1 . We define π : X → U to be given
by the fibre product in the first diagram, where i : U ↪→ Hn,d ×Hn,1 is the natural embedding.

Observe that πVn,d : Vn,d → Hn,d is flat and proper because it is a universal family and πVn,d × IdHn,1 is flat
and proper because it is a pullback of a flat proper morphism. For the same reason, π is flat and proper.

Moreover U parametrises —up to scaling by constants— pairs (p, l) of homogeneous polynomials in n + 2
variables of degrees d and 1, respectively.

Observe that

X = {(x0, . . . , xn+1)× aI × (b0, . . . , bn+1) ∈ Pn+1 × U |
∑

aIx
I = 0}.(9)

Define

D = {(x0, . . . , xn+1)× aI × (b0, . . . , bn+1) ∈ X |
∑

bixi = 0} ⊂ X .(10)

Clearly D is a Cartier divisor of X and the restriction of π to D, namely πD : D → U is an equidimensional
morphism with a smooth base. Therefore πD is flat and proper.

Lemma 3.7.
Pic(U) ∼= Pic(Hn,d ×Hn,1) ∼= p∗1 (Pic (Hn,d))⊕ p∗2 (Pic (Hn,1)) ∼= Z2,

and if we identify L ∈ Pic(U) as

L ∼= OU (a, b) := i∗
(
OHn,d (a)�OHn,1 (b)

)
|U ,

via the above morphisms, then the line bundle L is ample if and only if a > 0 and b > 0.

Proof. The codimension of U in Hn,d×Hn,1 is at least 2, by lemmas 3.3 and 3.5. The result follows from [Har77,
Proposition II.6.5b]. �
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Notice that if d 6 n+1, we have that −KX/U is a relatively very ample line bundle. It follows from Lemma
3.7 and Theorem 3.1 that ΛCM,β(−KX/U ) ∼= O(a, b). Hence, by Lemma 3.7, we can extend this line bundle
uniquely to the whole of Hn,d ×Hn,1. By a slight abuse of notation we will denote that extension by −KX/U .
Let β ∈ (0, 1) ∩Q. Define:

ΛCM,β := ΛCM,β(−KX/U ) := ΛCM,β(X ,D,−KX/U ).

Theorem 3.8. Let d 6 n+ 1, β ∈ (0, 1] ∩Q. Then ΛCM,β(−KX/U ) ∼= O(a(β), b(β)). where

a(β) = (n+ 2− d)n−1

[
(n+ 2− d)

(
(n+ 2)(d− 1)(1 + n(1− β)) + (1− β)(n+ 1)

)
,

− nd(1− β)(n+ 1)

]
> 0,

b(β) = (n+ 2− d)nd(n+ 1)(1− β) > 0,

and hence ΛCM,β is ample.

In particular, for d = n+ 1, and t = b
a , we have that:

t(β) =
d2(1− β)

d2 − β

Proof. This theorem is a direct consequence of applying Theorem 2.7 to two particular type of pencils. To
determine the value of a, we use a pencil of log pairs where the hypersurfaces vary while the hyperplane section
is fixed. To determine the value of b, we use a pencil of log pairs where the hypersurface is fixed while the
hyperplane sections vary. Next, we consider each case in detail.

Let X1 and X2 be two different very general hypersurfaces of degree d in Pn+1 and let its base locus be
C := X1 ∩X2. By Corollary 3.4, we may assume that all the elements in the pencil are irreducible and hence
the intersection of a fibre with an element of the pencil determines a hyperplane section.

Then, we construct a pencil of hypersurfaces of degree d in Pn+1 by taking BlCPn+1 → P1. We denote
this pencil as Y/P1 ⊂ BlCPn+1/P1 and let πY : Y → P1 be the natural projection. Notice that we have a
commutative diagram

Y

π

��

� � i // X
π

��
P1 �
� i // U �

� j // Hn,d ×Hn,1

π1

��

π2 // Hn,1
∼= Pn+1

Hn,d
∼= PN .

Let pH0
be a point in Hn,1 parametrizing a general hyperplane H0. Then (9) implies that

Y × pH0 ⊂ P1 × Pn+1 ×Hn,1.

In particular, Y is a hypersurface of bidgree (1, d) in P1 × Pn+1. We are interested in constructing a family
(Y,D) of log pairs formed by a fibre of πY and the divisor obtained by intersecting each fibre with H0. Hence

D = {r ∈ P1 × Pn+1 | r ∈ Y and r|Pn+1 ∈ H0}

is the complete intersection of two hypersurfaces of degree (1, d) and (0, 1) in P1 × Pn+1. Let πP1 : P1 ×
Pn+1 → P1 and πPn+1 : P1 × Pn+1 → Pn+1 be the natural projections. Let HPn+1 = π∗Pn+1(OPn+1(1)) and
HP1 = π∗P1(OP1(1)). By adjunction

KY =
(
KP1×Pn+1 +BlCPn+1

)
|Y

= (−2HP1 − (n+ 2)HPn+1 +HP1 + dHPn+1) |Y
= (−HP1 − (n+ 2− d)HPn+1) |Y .
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from which we deduce

KY/P1 = KY − π∗KP1

= (−HP1 |Y − (n+ 2− d)HPn+1 |Y) + 2HP1 |Y
= HP1 |Y − (n+ 2− d)HPn+1 |Y ,

The expression

(−KY/P1)n =
(
−HP1 |Y + (n+ 2− d)n−1HPn+1 |Y

)n
= −n(n+ 2− d)HP1 |Y ·Hn−1

Pn+1 |Y + (n+ 2− d)nHn
Pn+1 |Y

implies that c1(−KY/P1)n · D is equal to(
−n(n+ 2− d)n−1HP1 ·Hn−1

Pn+1 + (n+ 2− d)nHn
Pn+1

)
· (HP1 + dHPn+1) ·HPn+1

from which we obtain

c1(−KY/P1)n · D =
(
(n+ 2− d)n − nd(n+ 2− d)n−1

)
HP1Hn+1

Pn+1 .

Similarly, we obtain

(−KY/P1)n+1 = −(n+ 1)(n+ 2− d)nHP1 ·Hn
Pn+1 |Y + (n+ 2− d)n+1Hn+1

Pn+1 |Y ,

which implies

c1(−KY/P1)n+1 = (−(n+ 1)(n+ 2− d)nHP1 ·Hn
Pn+1 + (n+ 2− d)n+1Hn+1

Pn+1)|Y
=
(
−(n+ 1)(n+ 2− d)nHP1 ·Hn

Pn+1 + (n+ 2− d)n+1Hn+1
Pn+1

)
· (HP1 + dHPn+1)

=
(
−d(n+ 1)(n+ 2− d)n + (n+ 2− d)n+1

)
HP1 ·Hn+1

Pn+1

= (n+ 2− d)n(n+ 2)(1− d)HP1 ·Hn+1
Pn+1 .

By Theorem 2.7, we deduce that

(11) deg(i∗ΛCM,β) = −(1 + n(1− β))π∗

(
c1
(
−KY/B

)n+1
)

+ (1− β) (n+ 1)π∗
(
c1
(
−KY/B

)n · D) .
Observe that

deg((j ◦ i)∗(ΛCM,β)) = deg((j ◦ i)∗ ◦ π∗1(OPN (a))) = a.

Hence, substituting the values in (11), we obtain the value of a.
Next, we calculate b. For that purpose, we consider a pencil of pairs induced by a general smooth hy-

persurface S ⊂ Pn+1, represented by pS ∈ Hn,d and a pencil of hyperplanes H(t) with t ∈ P1. We claim
that

D|pS×P1 = (fS = fH(t) = 0) ⊂ pS × P3 × P1

where fS and fH(t) are the equations of the hypersurface S and the pencil of hyperplanes. D|pS×P1 is a

complete intersection in Pn+1 × P1 of two hypersurfaces of bi-degree (d, 0) and (1, 1). Because S × P1/P1 is a
trivial fibration, we have that c1(−KS×P1/P1)n+1 = 0.

Then

K(S×P1)/P1 = KS×P1 − π∗KP1 = KS ⊗OP1 = (d− n− 2)HPn+1 |S ⊗OP1

which implies

deg(ΛCM,β) = −(1− β)(n+ 1)
(
K(S×P1)/P1

)n · D
= −(n+ 1)(1− β)(d− n− 2)n (HPn+1)

n · dHPn+1 · (HPn+1 +HP1)

= −(n+ 1)(1− β)(d− n− 2)n (HPn+1)
n · (dHPn+1HP1)

= −d(n+ 1)(1− β)(d− n− 2)n
(
Hn+1

Pn+1 ·HP1

)n
This implies that

b = (d− n− 2)nd(n+ 1)(1− β))

�
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Remark 3.9. Cubic surfaces with only A1 (or A2) singularities play an important role in the classical GIT
quotient first considered by Hilbert, since they are precisely the (semi-)stable ones. Not surprisingly, they
also play a similar role in the GIT quotient of log pairs in the first polarisation chamber, with little added
complexity provided by the boundary. In Proposition 3.10 below we summarise their GITt stability for all
values of t.

In addition, for those log pairs which are GITt-unstable, we provide a one-parameter subgroup λ∗ such that
the limit of the log pair (which in principle is only a class representing a cubic polynomial and a monomial) is
also a log pair. That such a one-parameter subgroup exists is not at all obvious. Let us illustrate this. Recall
that the scheme Hn,d ×Hn,1 represents pairs of homogeneous polynomials, not necessarily log pairs, e.g. all
pairs (lq2, l) (where q2 is a homogeneous polynomial of degree 2) do not represent a log pair. In principle, for
a given GITt-unstable pair (S,D) defined by polynomials (p, l), it could happen that for all one-parameter
subgroups λ which destabilise (S,D), the pair (p, l) = limt→0(p, l) does not represent a log pair or, equivalently,
l divides p. If we can find a one-parameter subgroup λ∗ such that (p, l) represents a log pair then we can use
its orbit to induce a destabilising test configuration, as we do later in Theorem 3.11. In fact, this is precisely
what we use Proposition 3.10 for in the proof of Theorem 3.11 (i). We should remark that this is the price to
pay when cooking up a GIT quotient for log pairs which is easy to characterise geometrically.

One may ask why we do not include a similar statement to Proposition for all other GITt-unstable pairs.
Probably we can find a similar statement for cubic surfaces whose singularities are worse than A2 (at least
for most of them). However the proof would have to be specific to each case and since we do not need such a
general result, we do not include it.

Proposition 3.10. Let S be a cubic surface which is either smooth or has A1 or A2 singularities, D ∈ |−KS |
and t ∈ (0, 1). The pair (S,D) is

(i) GITt-stable if and only if the support of D does not contain any surface singularity of S of type A2,
(ii) GITt-polystable but not GITt-stable if and only if S = S∗ is the unique surface with three A2 singularities

and D = D∗ is the unique hyperplane section in S∗ consisting of three lines, each passing through two of
the singularities,

(iii) GITt-semistable but not GITt-polystable if and only if S has at least an A2 singularity p such that
p ∈ Supp(D) and D has normal crossings at p (i.e. D is reduced and has an A1 singularity at p),

(iv) GITt-unstable if and only if S has at least one singularity p of type A2 such that D is either non-reduced
or has a cuspidal singularity at p.

Moreover, there is a destabilising one-parameter subgroup λ∗ such that if (S,D) is GITt-unstable the natural
morphism π : λ∗ · S ⊂ P3 × P1 → P1 has an irreducible fibre at 0 ∈ P1. Furthermore, if (S,D) is GITt-
semistable but not GITt-polystable, then limt→0 λ · (S,D) = (S∗, D∗).

Proof. Parts (i) and (ii) follow from [GMG19, Theorems 1.3 and 1.4]. Hence, we may assume that S has at
least one A2 singularity. By [BW79, p. 255] S is irreducible. Let S be defined by the equation f =

∑
fIx

I ,
where fI ∈ C and I ∈ Z4 runs over all partitions of 3 of four non-negative integers. Let D = S ∩H, where H
is defined by the equation h =

∑3
i=0 hixi with hi ∈ C.

Given a one-parameter subgroup λ : Gm → G := SL(4,C), we say that λ is normalised if λ = Diag(sa),

where a ∈ Z4, a = (a0, a1, a2, a3), a0 > a1 > a2 > a3,
∑3
i=0 ai = 0. We have a natural pairing between

normalised one-parameter subgroups and monomials xI = xd00 x
d1
1 x

d2
2 x3d

3 given by 〈xI , λ〉 =
∑3
i=0 aidi. Given

a normalised one-parameter subgroup λ = Diag(sa), a = (a0, a1, a2, a3), and if j = sup{0, 1, 2, 3|hi 6= 0}, we
define the functions

(12) 〈f, λ〉min{〈xI , λ〉 : fI 6= 0}, 〈h, λ〉 = min{ai : hi 6= 0} = aj .

There is a natural order of monomials of fixed degree (sometimes known as Mukai’s order [GMG18]). Namely,
xI 6 xJ if and only if for each one-parameter subgroup λ, 〈xI , λ〉 6 〈xJ , λ〉. Therefore, it is enough to test
the pairing 〈f, λ〉 for the set of minimal monomials with non-zero coefficients in f .

By [BW79, p. 255], if S has an A2 singularity, then it has at most two other singularities, which are A1

or A2 singularities. Moreover, by [BW79, Lemma 3] (c.f. [GMG19, Lemma 4.2]), S has a A2 singularity at a
point p ∈ Supp(D) if and only if (S,D = S ∩H) is conjugate by an element of Aut(P3) to a pair defined by
equations

f = x0x1x3 + x3
2 + x2

2f1(x0 : x1) + x2f2(x0 : x1) + f3(x0 : x1),(13)

h = h0x0 + h1x1 + h2x2,
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where fd are homogeneous polynomials of degree d and p is conjugate to (0 : 0 : 0 : 1). For the rest of the proof
we will therefore assume that (S,D) is given by (13) and that S is singular at p := (0 : 0 : 0 : 1) ∈ Supp(D).
The Mukai order of monomials of degree 3 in four variables is described in [Muk03, Figure 7.3], from which
we can deduce that the minimal monomials which have non-zero coefficient in f are x0x1x3 and x3

2. Hence, if
λ = Diag(sa), a = (a0, a1, a2, a3), then

(14) 〈f, λ〉 = min{a0 + a1 + a3, 3a2}.

In [GMG18] a finite set of one-parameter subgroups Sn,d was introduced. This set determines the GITt-
stability of any pair (X,D = X ∩H) of dimension n and degree d. In [GMG19, Lemma 2.1], the set S2,3 was
computed. More explictly, if (S,D) is defined by f and h and t ∈ (0, 1), the pair (S,D) is GITt-semistable if
and only if

max
λ∈S2,3

µt(f, h, λ) := max
λ∈S2,3

{〈f, λ〉+ t〈h, λ〉} 6 0

and (S,D) is not GITt-stable if in addition there is a λi ∈ S2,3 such that µt(S,D, λi) = 0. The set S2,3 includes

the element λ∗ = Diag(Sa∗), where a∗ = (1, 1, 0,−2) (λ∗ = λ2 in the notation of [GMG19, Lemma 2.1]).
Suppose that h2 6= 0 in (13). Then, running (12) and (14) through the finite list of elements λ ∈ S2,3, gives

that µt(S,D, λ) 6 0 for all t ∈ (0, 1) and all λ ∈ S2,3. Moreover µt(S,D, λ∗) = 0. Hence (S,D) is strictly
GITt-semistable. Conversely, suppose that h2 = 0. Then µt(S,D, λ∗) = t > 0 for t ∈ (0, 1) and (S,D) is
GITt-unstable. Hence, (S,D) with one surface singularity of type A2 at p ∈ Supp(D) is GITt-unstable if and
only if h2 = 0.

Moreover, notice that limt→0 λ∗(t)·f =: f0 = x0x1x3 +x3
2, which is the equation for the unique cubic surface

S∗ with three A2 singularities (and therefore irreducible). If in addition h2 6= 0, then limt→0 λ∗(t) · h = x2,
which is the hyperplane section in S∗ corresponding to D∗, the union of the unique three lines in S∗, each
passing through two of the singularities of S∗.

The only thing that remains to show is that h2 6= 0 and h2 = 0 in (13) characterise (S,D) as the log pairs
described in (iii) and (iv) in the statement, respectively. To see this, notice that if h2 6= 0, then we may
describe D by substituting x2 = −h0

h2
x0− h1

h2
x1 and x3 = 1 in the equation of f in (13) to obtain the equation

of D in H = {h = 0} localised at p as x0x1 + g3(x0 : x1), where g3 is a homogeneous polynomial of degree 3.
Hence D has a nodal singularity at p = (0 : 0 : 0 : 1) and by the classification of singularities of plane cubic
curves (see, e.g. [GMG19, Table 2]), D has only normal crossing singularities.

Conversely, if h2 = 0, then either h1 6= 0 or h = x0. In the former case, substituting x1 = cx0, c =
−h0/h1 ∈ C in the equation of f in (13) and localising at p we obtain that the equation of D is locally given
by cx2

0 + x3
2 + g3(x0 : x2) and hence D has either a cuspidal singularity at p (c 6= 0) or D is the union of three

lines (counted with multiplicity) intersecting at p. Finally, if h = x0, then substituting x0 = 0, x3 = 1 on f we
obtain that the equation of D is the union of three lines through p, counted with multiplicity. �

Theorem 3.11. Let (X,D) be a log pair of dimension n, L be a very ample line bundle of X, such that
i : X ↪→ PN (such that L = i∗ (OPN (1))), and β ∈ (0, 1), where either:

(i) X ⊂ P3 is a cubic surface which is smooth or has only A1 and A2 singularities, with the embedding
i giving the natural inclusion, D = X ∩ H is a hyperplane section, N = 3, Y := P(H0(P3,O(3))) ×
P(H0(P3,O(1))), G = SL(4,C) acts naturally on Y , or

(ii) X is a normal Fano variety, D ∈ P(H0(−aKX)) =: Y is some non-trivial Cartier divisor for some
a ∈ N, G = Aut(X) is reductive and its character group is trivial and acts naturally on Y with its
natural representation. Suppose further that there is some GIT polystable D0 ∈ P(H0(−aKX)), such
that (X, (1− β)D0) is log K-polystable.

Let ΛCM,β be the log CM line bundle of the universal family π : Y → Y . We have that ΛCM,β is ample.
Suppose (X, (1 − β)D,L) is log K-(semi/poly)stable, then for each of the two situations described above we
have:

(i) (X,D) is GITt(β) (semi/poly)stable, where t(β) = b(β)
a(β) for b, a as in Theorem 3.8,

(ii) D is GIT (semi/poly)stable,

with respect to the ΛCM,β-polarisation of Y .

Proof. Note that by naturality of the construction ΛCM,β is G-linearised. Furthermore, L is G-linearised (see,
for instance [GMG18, Lemma 2.1]) and both linearisations are the same up to rescaling since the G-linearised
Picard group injects into the Picard group as the character group of G is trivial. Firstly, we prove the ampleness
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of the log CM line bundle. In case (i), we have that ΛCM,β
∼= O(a, b) for some a, b ∈ Z>0, by Theorem 3.8,

and hence ΛCM,β is ample.
In case (ii) we have that rk(Pic(Y )) = 1, so ΛCM,β is either ample, antiample or trivial. In the antiample

and trivial cases, we may take any non-trivial test configuration (X ,D,L) for (X, (1 − β)D0) where both L
and ΛCM,β are defined and agree for all fibres, including the central fibre (e.g. by taking any non-trivial one-
parameter subgroup which kills some monomials of D0 as t goes to 0). On the one hand w(ΛCM,β(X ,D,L)) 6 0

since Λ−1
CM,β is nef. On the other hand, DFβ(X ,D,L) > 0 since (X, (1−β)D0) is log K-polystable and (X ,D,L)

is not trivial, contradicting Theorem 2.6.
The proof follows the same strategy as in [OSS16, Theorem 3.4]. Let λ be a one-parameter subgroup of

G acting on a point p ∈ Y , which represents either a log pair (X,H) where X is a cubic surface, H 6⊂ X
is a hyperplane and D = X ∩ H is a hyperplane section (case (i)) or a pluri-anticanonical section D (case
(ii)). Consider the natural projection π : X := λ · p ⊂ Y × P1 → P1 and by abuse of notation π : X =
X \{π−1(∞)} → C. Let q = π−1(0) ∈ Y be the central fibre of π. In case (ii), q is a hypersurface D and hence
X is a test-configuration. In case (i), q ∈ Y is a pair (X,H) formed by a cubic surface X and a hyperplane
H. If H 6⊂ X (for instance, if X is irreducible), then D := H ∩X ∈ |−KX | and λ induces a test configuration
of (X,D). By Proposition 3.10, if X is smooth or it has only A1 or A2 singularities and it is not semistable,
we can find a destabilising one-parameter subgroup that induces a destabilising test configuration. Hence, in
both case (i) and (ii) if (X, (1−β)D,L) is log K-(semi)stable, the statement follows at once from Theorem 2.6,
which allow us to write the Hilbert-Mumford numerical criterion in terms of the Donaldson-Futaki invariant
of the induced test configuration.

Now suppose that (X, (1 − β)D,L) is K-polystable, then it is also K-semistable. We distinguish the two
cases separately:

(i) Let p ∈ Y be the point representing (X,H).
(ii) Let p ∈ Y be the point representing D.

The point p is GIT semistable. If it is not GIT polystable, by definition there is a one-parameter subgroup
γ(t) of G such that the pair p = limt→0 γ(t) ·p is GIT polystable but not GIT stable. Let (X ,D,L) be the test
configuration induced by γ and let (X,D) be its central fibre (note that the induced one parameter subgroup
is in Aut(X,D)). Then w(ΛCM,β(X ,D,L)) = 0. Theorem 2.6 implies DFβ(X ,D,L) = 0, but as (X, (1−β)D)

is log K-polystable, (X ,D) ∼= (X × C, D × C), once the C∗-action is ignored. Hence (X,D) ∼= (X,D). But
then p = p is GIT polystable. �

Remark 3.12. To our knowledge this is the first article in the literature using the moduli continuity method
to describe compactifications of log K-stable pairs. Therefore, we find it is important to stress the obstruction
we encountered when compactifying the orbit of one-parameter subgroups to obtain test configurations in the
proof of Theorem 3.11, since this problem does not appear in the case of cubic surfaces (without boundary)
or more generally in the hypersurfaces cases of [OSS16]. See Remark 3.9 for such an account. We must
stress that this difficulty does appear when dealing with other varieties (no boundary) such as complete
intersections [OSS16,SS17] and a different workaround to address it in the case of quadrics can also be provided
by analysing the GIT quotient, see Appendix of [SS17]. A more desirable solution than the one we use would
involve showing that any GITt-unstable pair (X,D) can be destabilised by a one-parameter subgroup whose
limit is a not too singular log pair (X,D). However, we are not able to prove this in full generality, but in a
case-by-case basis.

4. Proofs of the main theorems

We first observe that in all the cases considered in our main theorems we know that for all β ∈ (0, 1) there
exists conical Kähler-Einstein metrics on log pairs (X, (1 − β)D) for X and D smooth (pluri)anticanonical,
which have positive Einstein constant if β is greater than the log Calabi-Yau threshold. This follows by
the interpolation property of log K-stability [LS14], since X is Kähler-Einstein, and Kähler-Einstein metrics
exist for all small enough value of β. Now we restrict to the case when (X, (1 − β)D) is a log smooth log
Fano pair. By the work of Chen-Donaldson-Sun [CDS15], if we have a sequence (Xi, (1− β)Di, gi) of singular
Kähler-Einstein metrics gi on Xi with conical singularities of angle 2πβ along Di where the Xi are deformation
equivalent, we can take subsequences converging in the Gromov-Hausdorff topology to (W, (1−β)∆, g∞), a klt
weak Kähler-Einstein Fano pair, where W is a Q-Gorenstein smoothable Fano variety with the same degree
as Xi.
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Our next goal is to obtain some a-priori control on the singularities appearing in the Gromov-Hausdorff
limits. The crucial estimate we need is the following purely algebro-geometric result of Li and Liu [LL19,
Proposition 4.6], which states the following:

Theorem 4.1 ( [LL19, Proposition 4.6]). For any K-semistable log Fano pair (W, (1− β)∆),

(−KW − (1− β)∆)n ≤
(

1 +
1

n

)n
v̂ol(W,(1−β)∆),p,

for p any point in W .

Here v̂ol(W,(1−β)∆),p is the normalised volume at the singularity p ∈ W , defined as the infimum of local
volumes of valuations centred at p normalised by their log discrepancies, as in [LLX18]. It follows from the
definition that the normalised volume satisfies

(15) v̂ol(W,(1−β)∆),p ≤ v̂olW,p, for any β ∈ (1− lct(W,∆), 1),

where lct(W,∆) denotes the log canonical threshold of the pair (W,∆). One can easily verify (15) for the
normalised volume of any quasi-monomial valuations (and as a result, for all valuations).

Since by Berman [Ber16], a Kähler-Einstein log Fano pair is log K-polystable, we can use the above estimate
to control the singularities of the limit ambient space W . Let us analyze the cases that appear in our main
theorems.

Proposition 4.2. Let (W, (1−β)∆) be the Gromov-Hausdorff limit of smooth Kähler-Einstein pairs (Xi, (1−
β)Di) with Xi smooth cubic surface and Di smooth hyperplane section. For any β > β0 =

√
3

2 , the surface

W must be itself defined as cubic surface in P3 whose singular locus (if non-empty) consists of A1 or A2

singularities and the limit divisor ∆ is a hyperplane section.

Proof. The degree of the limit pair is

(−KW − (1− β)∆)2 = (−KXi − (1− β)Di)
2 = (−βKXi)

2 = 3β2,

by continuity of volumes. Moreover, note that W must have only isolated quotient singularities locally analyt-
ically isomorphic to C2/Γ, where Γ is a finite subgroup of U(2) acting freely on S3, since W must have at worst
klt singularities, and klt surface singularities are precisely quotient singularities [CKM88, 6.11]. Moreover, by

Liu [Liu18] the local normalised volume for quotient singularities is simply given by v̂olC2/Γ,0 = 4
|Γ| . Thus,

from Theorem 4.1 and (15), it follows that

4

|Γ|
= v̂olW,p >

4

3
β2.

If we take β > β0 =
√

3
2 , then |Γ| ≤ 3. By the classification of Q-Gorenstein smoothable surface singularities

[KSB88, Proposition 3.10], Γ must be a cyclic group acting in SU(2). Hence the singularities of W are canonical
and, by the classification of del Pezzo surfaces with canonical singularities, W is a cubic surface with at worst
A1 or A2 singularities. In particular, any anticanonical section of W is given by a hyperplane section, as
claimed. �

For the case of Pn we need to assume the following conjecture.

Conjecture 4.3 (Gap Conjecture [SS17, Conjecture 5.5, c.f. Conjecture 2.1]). Let p be a klt singularity of an
n-dimensional variety W . Then

v̂olW,p ≤ 2(n− 1)n.

We remark that this is know to hold in dimension two by Liu [Liu18], and in dimension three by Liu and
Xu [LX19, Theorem 3.1.1].

Proposition 4.4. Let (W, (1−β)∆) be the Gromov-Hausdorff limit of smooth Kähler-Einstein pairs (Xi, (1−
β)Di) with each Xi isomorphic to Pn and Di smooth hypersurfaces of degree d. If we choose β such that
1 > β > β0, for β0 as in (1), then W is also isomorphic to Pn and ∆ is a hypersurface of degree d, provided
that the Gap Conjecture 4.3 holds.
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Proof. Arguing as in the proof of Proposition 4.2, we have that

(−KW − (1− β)∆)n = (n+ 1− (1− β)d)n,

and it is then easy to see that by taking 1 > β > β0 = 1−
(
n+1
d

(
1− 21/n(1− 1

n )
)

, the normalised volume of

any eventual singularity p of the limit space W must have volume

v̂olW,p > 2(n− 1)n.

This contradicts the formula in Conjecture 4.3, which we assume to hold. Hence, W is smooth. Moreover,
by Chen-Donaldson-Sun [CDS15] we know that W is deformation equivalent to Pn. Since the Fano index
is constant along smooth deformations [GJ18, Proposition 6.2], the Fano index of W is n + 1. Hence W is
biholomorphic to Pn by Kobayashi-Ochiai [KO73], and the claims follow. �

Remark 4.5. Notice that there are know examples of smooth toric Fanos having the same degree as the
projective space starting from dimension five (the unique projective toric smooth Fano 5-fold X with (−KX)5 =
(−KP5)5 = 7776 whose toric polytope Q has 8 vertices, 18 facets and volQ = 18, [Øb07, BK09]). Thus, just
having the same volume is not sufficient to determine that W ∼= Pn and we really use that the index is
preserved.

In order to conclude the proof of the main theorems one runs the moduli continuity method, which has
already appeared in the literature for the absolute case (see, e.g. [OSS16]). For the reader’s convenience, we
briefly recall the method:

Proof of Theorems 1.1 and 1.2. First of all, notice that thanks to Theorem 3.11, propositions 4.2, 4.4, and
[Ber16], we can define a natural map:

φ : M
GH

β −→M
GITβ

,

where:

(i) in the situation described in the statement of Theorem 1.1, 1 > β > β0 =
√

3
2 , M

GH

β denotes the
Gromov-Hausdorff compactification of the log pairs (X, (1 − β)D) formed by a del Pezzo surface X of
degree 3 admitting a singular Kähler–Einstein metric with conical singularities of angle 2πβ along an

anticanonical section D, and M
GITβ

denotes the explicit GITt(β) stability quotient of log pairs (X,D),

where t(β) = 9(1−β)
9−β ;

(ii) in the situation described in the statement of Theorem 1.2, 1 > β > β0 for β0 as in (1), M
GH

β denotes
the Gromov-Hausdorff compactification of the log pairs (X, (1− β)D), where X = Pn admits a Kähler–
Einstein metric with conical singularities of angle 2πβ along D ⊂ Pn is a hypersurface of degree d, and

M
GITβ

denotes the explicit GIT stability quotient of hypersurfaces D ⊂ Pn of degree d.

Since singular Kähler-Einstein metrics with conical singularities of fixed angle are unique [CDS15], the map

φ is injective. In addition, φ is a continuous map between the Gromov-Hausdorff topology in M
GH

β and the

euclidean topology of M
GITβ

. The latter follows by [CDS15] and the Luna slice theorem (see also [SSY16]
and [LWX19]). The image of φ is open and dense since all smooth log pairs are dense and Kähler-Einstein, and

compact since M
GH

β is compact. Thus φ must be surjective. Since φ is a continuous map between a compact
space and a Hausdorff space, it must be a homeomorphism. The claim for the line bundle in the statement of
Theorem 1.1 follows from Theorem 3.8. �

Remark 4.6. We expect that similar analysis may be performed for other examples of Fano pairs (e.g., of
cubic threefolds with a hyperplane section, compare [GMG19,LX19]).

4.1. Explicit examples of K-polystable pairs. Thanks to the explicit description of GITt-stability for
log pairs consisting of a cubic surface and a hyperplane section given in [GMG19, Theorems 1.3, 1.4], we can
characterise precisely which of these log pairs are log K-polystable (equivalently which of these log pairs admit
a Kähler-Einstein metric with conical singularities) when β is large enough.

Proposition 4.7. For β > β0 =
√

3
2 , a log pair (S, (1 − β)D) (consisting of a del Pezzo surface S of degree

three and an anticanonical divisor D ∈ |−KS |) is log K-polystable if and only if it belongs to the following list:

(i) S has finitely many singularities of types at worst A1 or A2 and if P ∈ D is a surface singularity, then
P is at worst an A1 singularity of S.
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(ii) S is the unique cubic surface with three A2 singularities and D is the divisor consisting of the union of
the unique three lines in S, each of them containing two of the two A2 singularities.

Proof. From theorems 1.1 and 3.8 we know that (S, (1−β)D) is log K-polystable if and only if it is GITt-stable
for

0 < t(β) =
9(1− β)

9− β
< t(β0) =

3

107
(33− 16

√
3) ≈ 0.148 <

1

5

when β > β0. The description of the GITt-polystable pairs for t ∈ (0, 1
5 )∩Q follows from [GMG19, Theorems

1.3, 1.4]. �

Similarly we now apply Theorem 1.2 to a survey of the GIT stability of hypersurfaces in low degrees and
dimension to deduce K-polystability of pairs (Pn, (1− β)Hd):

Proposition 4.8. Let (n, d) in

Ω :=
{

(2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4)
}

and 1 > β > β0 where β0 is as in (1). A log pair (Pn, (1− β)D) (where D ⊂ Pn is a hypersurface of degree d)
is log K-polystable if and only if the corresponding following conditions hold for each choice of (n, d) ∈ Ω:

(2, 3) D is smooth or the union of three non-concurrent lines;
(2, 4) D is either:

(a) reduced and smooth or has A1 and A2 singularities,
(b) D = 2C where C is a smooth conic;

(2, 5) D is smooth or has isolated singularities of type Ak, D4 or D5, or there is some (a : b) ∈ P1 such
that D is isomorphic to

{x1(x2
0x

2
2 + 2ax0x2x

2
1 + bx4

1) = 0};
(2, 6) D is a sextic curve satisfying one of the following:

(1) D is reduced and has ADE singularities,
(2) D is the union of three distinct conics,
(3) D is the union of a double line and an irreducible quartic curve,
(4) D = 2C1 + C2 where C1, C2 are conics, C1 is irreducible and C1 and C2 intersect with simple

normal crossings,
(5) D = 2C, where C is a smooth cubic,
(6) D = 2C1 + C2 where C1 and C2 are two conics tangent to each other at two points,
(7) D = 3(L1 + L2 + L3), where L1, L2, L3 are three distinct lines with no common intersection;

(3, 3) D has at worst finitely many A1 singularities or D has precisely three A2 singularities;
(3, 4) D is a quartic surface satisfying one of the following:

(1) D is smooth or has ADE singularities of type An,Dn,E6,E7,E8,

(2) D has a double point P of type Ẽ8 and some ADE singularities of type An, Dn, E6, E7, E8

such that no line in D contains P ,
(3) D is singular along an ordinary nodal curve C and some ADE singularities of type An, Dn, E6,

E7, E8. Either D is irreducible and C is a nonsingular curve of degree 2 or 3 with four simple
pinch points (i.e. locally analytically isomorphic to x2

1 + x2
2x3 = 0) or D consists of two quadric

surfaces which intersect transversely along a nonsingular elliptic curve of degree 4,
(4) the singular locus of D consists of a double point P locally analytically isomorphic to x1x2x3 +

x2
1 + x3

2 = 0 and some ADE singularities of type An,Dn,E6,E7,E8 such that no line in D
contains P ,

(5) either D is singular along a strictly quasi-ordinary nodal curve C and some ADE singularities of
type An,Dn,E6,E7,E8, such that no line in D contains a double pinch point (i.e. locally ana-
lytically isomorphic to x2

1 +x2
2g = 0 where g ∈ C[[x2, x3]], g = x2

3 mod x2), or C is a nonsingular
rational curve of degree 2 and D has either two double pinch points on C or one double pinch
point and two simple pinch points on C,

(6) either the singular locus of D consists of two double points of type Ẽ8 or it consists of two double

points of type Ẽ7 and some ADE singularities of type An,Dn,E6,E7,E8,
(7) the singular locus of D consists of two skew lines, each of which is an ordinary nodal curve with

four simple pinch points,
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(8) D consists of a plane and a cone over a nonsingular cubic curve in the plane,
(9) the singular locus of D consists of a nonsingular, rational curve C of degree 2 or 3, and some

ADE singularities of type An, Dn, E6, E7, E8, C is a strictly quasi-ordinary (i.e. D has no
points on C of multiplicity larger than 2 and each pinch point on C is a double pinch point), nodal
curve and the set of pinch points consists of two double pinch points such that each double pinch
point lies on a line in D,

(10) D consists of two, nonsingular, quadric surfaces which intersect in a reduced curve C of arithmetic
genus 1. C consists of two or four lines such that its singularities consist of 2 or 4 ordinary double
points; the dual graph of C is homeomorphic to a circle,

(11) D consists of four planes with normal crossings.

In addition, let 1 > β > 3+8 3√2
15 and D ⊂ P3 be one of the following quintic surfaces:

(1) D is either a smooth quintic surface or has only isolated singularities of type ADE,
(2) D has only isolated double point singularities and isolated triple point singularities with reduced tangent

cone,
(3) D is a normal surface such that each of its singularities has either Milnor number smaller than 22 or

modality smaller than 5,
(4) D has isolated minimal elliptic singularities,
(5) D is the union of a double smooth quadric surface and a transverse hyperplane,
(6) D is a generic quintic surface with a curve of singularities of multiplicity three such that the support

of that curve does not contain any lines,
(7) D is irreducible with a curve of singularities supported on a reduced curve C such that the genus of C is

greater than one, C does not contain any lines, and D does not have an additional line of singularities.

Then (P3, (1− β)D) is log K-polystable.

Proof. This is a straight-forward application of Theorem 1.2 and the classification of GIT polystable hy-
persurfaces. For (n, d) = (2, 3), (2, 4), (3, 3) see [Muk03, Examples 7.12, 7.13 and theorems 7.14 and 7.24]
and [MFK94, page 80]. For (n, d) = (2, 5) see [MFK94, page 80] and [Laz06, Corollary 5.14 and page 149].
For (n, d) = (2, 6), see [Sha80, Theorem 2.4]. For (n, d) = (3, 4) see [Sha80, Theorem 2.4]. For (n, d) = (3, 5)
see [Gal19]. �

4.2. Wall-crossing. It is natural to ask what happens in the previous examples when the value of β becomes
smaller. The natural expectation is that birational modifications are occurring, giving rise to wall-crossing
phenomena in the space of log K-stability conditions. This paradigm should be thought as an analogue of
variations of GIT stability for the log CM line bundle. There are two approaches when considering this analogy.

For the fist approach we must recall that it has been conjectured by Odaka-Spotti-Sun that the CM line
bundle should be ample in the good moduli (in the sense of Alper [Alp13]) of families of K-polystable Fano
varieties [OSS16].

It is natural to expect a similar conjecture for the log CM line bundle over families of log K-polystable pairs
to hold. However, in this case the positivity of the CM line bundle is dependent on the choice of K-stability
condition β. If the log version of the Odaka-Spotti-Sun conjecture holds, as β is perturbed the variation of the
positivity of the CM line bundle over families would detect wall-crossing phenomena in the compact moduli
space.

Remark 4.9. The ampleness of the log CM line bundle has been recently established in the pre-print [XZ19].

In variations of GIT quotients these wall-crossing modifications tessellate the space of GIT stability con-
ditions into “chambers” and “walls” (see [GMG19] for a full description of this tessellation in the case of
cubic surfaces and hyperplane sections). The GIT quotient remains constant when the stability condition is
perturbed within a chamber, while it undergoes a Thaddeus flip [Tha96,DH98] when it is perturbed through
a wall.

The second approach to understand the analogy between variations of log K-stability and variations of GIT
stability is with regards to particular examples: it is not surprising that in some cases the setting of variations
of log K-stability cannot be reduced only to the study of classical variations of GIT quotients. For example,
when we consider the log pair (P2, (1−β4)H4), it follows by the study of del Pezzo surfaces of degree 2 [OSS16]
that for β = 1

2 the GIT picture above is not accurate any more. More precisely:
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Proposition 4.10 ( [OSS16]). The K-polystable compactification of the moduli of log pairs (P2, (1 − β)H4)
where H4 is a plane quartic curve and β = 1

2 is given by the blow-up of the GIT quotient of quartic plane
curves at the point representing the double conic. Over this point the Gromov-Hausdorff limits are log pairs of
type (P(1, 1, 4), 1

2H), where H is the hyperelliptic curve z2
3 = f8(z1, z2), where f8 is a polystable binary octic.

De Borbon [dB17] has informally discussed the case (P2, (1−β)H3), where H3 is a plane cubic curve. More
generally, it seems very intriguing to fully understand the case of (P2, (1−β)Hd), even whenHd is a hypersurface
whose degree d is small as β gets smaller. In fact, one can hope to be able to study such problem with the help
of the Hacking-Prokhorov classification of Q-Gorenstein degenerations of the projective plane [HP10]. Any
such degeneration is given by a weighted projective plane of the form P(a2, b2, c2) satisfying a Markov type
equation a2 + b2 + c2 = 3abc. The log curve is going to degenerate to certain weighted hypersurfaces. Thus
one should be able to study the K-stability problem by “gluing” quotients as in [OSS16].

We should moreover stress that another situation in which wall-crossing phenomena for the K-polystable
compact moduli space can be observed is given in Fujita’s work on weighted hyperplane arrangements [Fuj17].

Regarding the case of a cubic surface and a hyperplane section, we should remark that some classical
wall-crossing picture is described in [GMG19]. Our present estimate for β is not strong enough to reach the
first wall in the space of K-stability conditions. Hence our main theorem is unable to realise a wall-crossing
phenomena. Moreover, we should remark that for values of β smaller than our bound, one a-priori is forced
to consider degenerations of the cubic surfaces to singular non-canonical del Pezzo surfaces of degree three,
embedded in three-dimensional weighted projective spaces. These situations may be addressed through a more
technical study of K-stability in such explicit situations. In particular, it is highly probable that for small β,
the compact moduli of K-polystable pairs will not coincide with the one induced in GITt-stability. It would
be very interesting to find whether this expectation is correct and what the natural replacement should be.

4.3. Further evidence supporting Conjecture 1.3. In this section we make some further comment on
Conjecture 1.3. In particular we can check that the conjecture holds for the case of the unique del Pezzo
surface S of degree 3 with three A2 singularities and l = 1. This surface is given by S = {x0x2x3 = x3

1} ⊂ P3,
and it is toric. In order to see if the conjectural picture holds, we first need to discuss the geometry of the
surface. The singular points of S are located at:

p0 = [1 : 0 : 0 : 0], p2 = [0 : 0 : 1 : 0], p3 = [0 : 0 : 0 : 1].(16)

S has three lines p0p2, p0p3, and p2p3 which join the corresponding singular points. There is an unique
hyperplane section H∗ := {x1 = 0}|S = p0p2 + p0p3 + p2p3 ∼ −KS that contains the three singularities. In
addition, there are three hyperplanes H23 = {x0 = 0}, H03 = {x2 = 0}, H02 = {x3 = 0}, which induce
non-reduced hyperplane sections Hij |S = 3pipj .

Lemma 4.11. Let Hi ⊂ | −KS | = |OS(1)| ∼= (P3)∗ be the 2-dimensional linear system (or net) whose base
locus is the singular point pi and j, k be distinct indices such that {i, j, k} = {0, 2, 3}. The net Hi contains
three 1-dimensional linear systems (or pencils) H1

i ,H2
i ,H3

i ⊂ Hi whose common intersection is empty and
such that the following hold:

(i) the elements of −KS \
(⋃3

i=1Hi
)

are the hyperplane sections which do not contain any of the points
p0, p2, p3,

(ii) the elements of Hi \ (H1
i ∪ H2

i ∪ H3
i ) are irreducible plane cubic curves with precisely one nodal (A1)

singularity supported at pi,
(iii) H2

i ∩H3
i = H∗|S = p0p2 + p0p3 + p2p3, H1

i ∩H2
i = 3pipj and H1

i ∩H3
i = 3pipk,

(iv) the elements of H2
i \(H1

i ∪H3
i ) = H2

i \{H∗|S∪3pipj} (respectively, H3
i \(H1

i ∪H2
i ) = H3

i \{H∗|S∪3pipk})
are reducible plane cubic curves pipj +C where C is an irreducible plane conic containing pi and pj and
coplanar to pipj (respectively, pipk + C where C is an irreducible plane conic containing pi and pk and
coplanar to pipk),

(v) the elements of H1
i \ {3pipj ∪ 3pipj} are irreducible plane cubic curves intersecting pipj and pipk only at

pi, intersecting pjpk away from pj and pk and with precisely one cuspidal (A2) singularity supported at
pi.

Proof. Part (i) is automatic from (16). Without loss of generality, let i = 0 (the other cases are symmetrical).
We have that

H0 = {(x0 : x1 : x2 : x3) ∈ S : c1x1 + c2x2 + c3x3 = 0, (c1 : c2 : c3) ∈ P2}.
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The pencils H1
0,H2

0,H3
0 correspond to taking c1 = 0, c2 = 0 and c3 = 0, respectively in the above description.

From this description it is clear that (iii) holds. Let H = {c1x1 + c2x2 + c3x3 = 0}|S ∈ H0. If H is as in (ii),
we may write x1 = − c2c1x2 − c3

c1
x3 and equation of H is given by

x0x2x3 −
(
−c2
c1
x2 −

c3
c1
x3

)3

= 0

which is easily seen to be irreducible with a nodal singularity at (1 : 0 : 0) when c2, c3 6= 0, proving (ii). If
H ∈ H2

i \ (H1
i ∪H3

i ), then c2 = 0 and c1, c3 6= 0, so the equation of H is

x0x2x3 −
(
c3
c1
x3

)3

= x3

(
x0x2 −

(
c3
c1
x3

)2
)

= 0,

which corresponds to the situation described in (iv) (the case for H ∈ H3
i \ (H1

i ∪ H2
i ) is analogous). Finally,

if H ∈ H1
i \ (H2

i ∪H3
i ), then c1 = 0, c2, c3 6= 0, x3 = − c2c3x3 and the equation of H is

(
− c2c3x0x

2
2 − x3

1 = 0
)

, as

in (v). �

Lemma 4.12. [Sak10, Sec 4.9] Let Σ3 be the symmetric group of order 3 acting naturally on the coordinates
of P3 and let S be the cubic surface given by (x0x2x3 − x3

1 = 0), then Aut(S) ∼= (C∗)2 o Σ3.

Observe that Aut(S) is reductive and there is a natural action of Aut(S) on

(17) H := P(H0(S,−KS)) ∼= P(H0(S,OS(1))) ∼= (P3)∗ ∼= P3.

We will describe this action and determine the stability of the GIT quotient (P(H0(S,−KS)))ss//Aut(S) in
two steps. First we will describe the action of the neutral component Aut0(S) ∼= (C∗)2 and the stability of
(P(H0(S,−KS)))ss//Aut0(S) and then we will extend this analysis to (P(H0(S,−KS)))ss//Aut(S). We will
use the description of polystable points to prove Conjecture 1.3 for X = S and l = 1 and then show how the
description of the GIT quotient can be used in combination with the moduli continuity method to prove a
stronger statement.

Fix a set of coordinates and let {x0, x1, x2, x3} be the natural basis of the space H0(S,−KS), which is
projectivised in (17). The action of the neutral component of the automorphism group (C∗)2 /Aut0(S), with
coordinates (t0, t2), on H0(S,−KS) is defined over the basis elements by

(t0, t2) · [x0, x1, x2, x3] = [t0x0, x1, t2x2, t
−1
0 t−1

2 x3].(18)

Next, we describe the GIT quotient of P(H0(S,−KS)) ∼= P3 with respect to the action of (C∗)2 described in
(18). It is well known that such quotients are not unique, but they rather depend on the (C∗)2-linearisation
of the line bundle OH(1). We follow the framework of [Dol03, Sec 7]. By the arguments that precede [Dol03,
Corollary 7.1 and Theorem 7.2], we have the short exact sequence of groups

0→ χ
(
(C∗)2

)
→ Pic(C∗)2 (H)→ Pic (H)→ 0,

where χ
(
(C∗)2

)
= Hom((C∗)2,C∗) is the group of rational characters of (C∗)2. Since χ

(
(C∗)2

) ∼= Z2 and

Pic (H) ∼= Z, we obtain Pic(C∗)2 (P3
) ∼= Z3. A (C∗)2-linearised bundle must of the form OH(m), so the

linearisation is given by a linear representation of (C∗)2 in (C[x0, x1, x2, x3]m)
∗
, the dual of C[x0, x1, x2, x3]m.

Such action is defined by the following formula (see [Dol03, Example 8.2]):

(t0, t2) · xi1 · · ·xim → t−a
′

0 t−b
′

2 xi1 · · ·xim ,
for some integers a′ and b′. Then, the (C∗)2-linearised bundle can be indexed by the triples (m, a′, b′) ∈ Z3.
The GIT quotient does not change if we rescale the parameters (m, a′, b′). Hence, we can set m = 1 and the

GIT quotient will depend of two rational parameters (a, b) :=
(
a′

m ,
b′

m

)
which define the following action of

(C∗)2 on (C[x0, x1, x2, x3]m=1)
∗
.

(19) (t0, t2) · [x0, x1, x2, x3] = [t−a+1
0 t−b2 x0, t

−a
0 t−b2 x1, t

−a
0 t−b+1

2 t2x2, t
−a−1
0 t−b−1

2 x3].

Lemma 4.13. Given the action of (C∗)2 on P(H0(S,−KS)), in (18), linearised by a = b = 0 in (19), a
hyperplane section H is

(i) stable if and only if it does not contain any of the A2 singularities of S, i.e. H ∈ | −KS | \
⋃3
i=1Hi,

(ii) strictly polystable if and only if it intersects all three A2 singularities of S, i.e. H = H∗,
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x2 ≡ (0, 1)

x3 ≡ (−1,−1)

x0 ≡ (1, 0)x1 ≡ (0, 0)

Figure 1. Characters of the action (C∗)2 on H0(S,−KS)

(iii) unstable if and only if it is a triple line or a cuspidal plane cubic curve whose cuspidal singularity is

supported at one of the A2 singularities of S, i.e. H 6= H∗ but H ∈ Hji for some i, j ∈ {1, 2, 3}.

Proof. We follow the approach in [Dol03, Sec 9.4]. The characters of (C∗)2 are χ((C∗)2) ∼= Z2. The action of
(C∗)2 on (17) given in (18) decomposes H0(S,−KS) into four one-dimensional spaces:

H0 (S,−KS) = V(1,0) ⊕ V(0,0) ⊕ V(0,1) ⊕ V(−1,−1),(20)

where V(a,b) is the eigenspace of vectors invariant by (ta0 , t
b
0), where (a, b) ∈ χ((C∗)2) ∼= Z2. Indeed

V(1,0) = C · x0 V(0,0) = C · x1 V(0,1) = C · x2 V(−1,−1) = C · x3.

Hence, each element of the canonical basis of H0(S,−KS) generates an eigenspace for the action of (C∗)2.
Given v ∈ H0(S,−KS) its set of weights is

w(v) = {χ ∈ Hom((C∗)2,C∗) ∼= Z2 : v|VX 6= ~0}.

Given the decomposition (20) in eigenspaces with for the basis {x0, x1, x2, x3}, we have that for any H =

{
∑4
i=0 cixi = 0}|S ∈ H0(S,−KS), xi ∈ w(H) if and only if ci 6= 0. Let w(H) be the convex hull of w(H).

The centroid criterion [Dol03, Theorem 9.2 9.9] states that H ∈ H0(S,−KS) is GIT stable (GIT semistable,

respectively) if and only if 0 ∈ interior(w(H)) (if 0 ∈ w(H), respectively). Figure 1 shows the position of the
characters in the lattice χ((C∗)2).

Let H = {
∑4
i=0 cixi = 0}|S ∈ P(H0(S,−KS)). A direct application of the centroid criterion implies that

(i) H is stable if and only if (c0, c2, c3) ∈ (C∗)3 and c1 ∈ C (i.e. if and only if {x0, x2, x3} = w(H)),
(ii) H is strictly semistable if and only if one of x0, x2, x3 is not in w(H) and x1 ∈ w(H), i.e. if and only if

one the following cases holds:

c0 = 0, c1 ∈ C∗, (c2, c3) ∈ C2; c2 = 0, c1 ∈ C∗, (c0, c3) ∈ C2; c3 = 0, c1 ∈ C∗, (c0, c2) ∈ C2,

(iii) H is unstable if and only if one of x0, x2, x3 and x1 6∈ w(H), i.e. if and only if one the following cases
holds:

c0 = c1 = 0; c1 = c3 = 0; c1 = c2 = 0.

In particular H∗ = {x1 = 0}|S is strictly semistable and (C∗)2 acts trivially on it. Hence, H∗ is strictly
polystable. Moreover, any strictly semistable pair in (ii) can be degenerated to H∗ by taking the limit of a
one-parameter subgroup of (C∗)2. Hence H∗ is the only closed strictly semistable orbit, proving (ii) in the
statement.
H is a hyperplane section that contains the point pi if and only if ci = 0, where i = 0, 2, 3. Hence (i) follows

from Lemma 4.11. Finally, if c1 = ci = 0 for some i ∈ {0, 2, 3}, then H ∈ Hi and by inspection on the proof of
Lemma 4.11, either H is a triple line, or a cuspidal curve whose cusp lies on an A2 singularity of S, proving
(iii).

�

The above classification implies the following:
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Corollary 4.14. Consider the GIT quotient with respect to the linearisation a = b = 0 in (19)

(P(H0(S,−KS)))ss//~0Aut(S)

Let D ∈ | −KS | ∼= P(H0(S,−KS)), then

(1) D is stable if and only if D ∩ Sing(S) = ∅,
(2) D is polystable but not stable if and only if D = H∗, the union of the unique three lines in S, which

contain the three A2 singularities,
(3) D is unstable if and only if D is either a cuspidal plane cubic curve with Sing(D) ∩ Sing(S) 6= ∅ or

D is a triple line.

Proof. Since Aut(S) = (C∗)2 o Σ3, we have the exact sequence of groups

1→ (C∗)2 → Aut(S)→ Σ3 → 1.

Let ((t0, t2), σ) ∈ Aut(S), where (t0, t2) ∈ (C∗)2 and σ ∈ Σ3. In particular, if η(t) is a one-parameter
subgroup of Aut(S), then η(t) = (λ(t), σ), where λ(t) is a one-parameter subgroup of (C∗)2 and for any
x ∈ P(H0(S,−KS))

lim
t→0

η(t) · x = lim
t→0

(λ(t), σ) · x = lim
t→0

λ(t) · (σ · x)

Therefore, the hyperplane section x is stable, semi-stable, or unstable with respect to η if and only if σ · x is
stable, semi-stable, unstable with respect to λ. In particular x is (semi/poly)stable with respect to Aut(S) if
and only if it is (semi/poly)stable with respect to (C∗)2. Hence, the result follows from Lemma 4.13. �

Remark 4.15. The proof of Lemma 4.13 implies that the projectivisation P
(
(C∗)4

)
⊂ P(H0(S,−KS)) of the

torus (C∗)4 parametrising general elements H = {
∑4
i=0 cixi = 0} with all ci 6= 0 is contained in the stable loci

of the action linearised by a = b = 0. Therefore, the GIT quotient is a rational curve i.e isomorphic to P1. It
is natural to ask how stability changes under a variation of the parameters (a, b). In fact, any such variation
will yield at most three possible quotients: The empty space, a point, or P1. The latter only takes place when
a = b = 0. Indeed, we can see from Figure 1 that if either a 6= 0 or b 6= 0 and H is any hyperplane section,
the trivial character (0, 0) will either be outside w(H) or belong to its boundary. Indeed, any non-trivial value
of (a, b) has the effect of translating the characters by the lattice isomorphism (x, y)→ (x− a, y − b). Hence,
we can apply the centroid criterion to conclude that any non-trivial choice of (a, b) would render the general
hyperplane section either strictly semistable or unstable. As a consequence, the GIT quotient will consist of
either a point or it will be empty, respectively.

Observe that GIT stability of D ∈ | −KS | in Corollary 4.14 coincides with K-stability of (S, (1 − β)D) in
Proposition 4.7. In particular, this verifies Conjecture 1.3 for the cubic surface S with three A2 singularities and
l = 1. This lengthy method of verification can be applied to other cubic surfaces and hyperplane sections. One
may expect that a more direct approach may be possible by repeating the arguments of the moduli continuity
method. However, due to the technical requirement appearing in Theorem 3.11 (ii), which requires that there
is a K-polystable pair (S, (1−β)D) such that D is GIT polystable, we implicitly need to use Corollary 4.14. In
addition, when showing that the image of the continuous map between the Gromov-Hausdorff compactification
and the GIT quotient is open and dense, we also require explicit knowledge of the GIT quotient, as we do not
work on log smooth pairs any longer. On the other hand, the moduli continuity method provides a stronger
result, which allows us to verify Conjecture 1.3 in this special example.

Proposition 4.16. Let S be the unique cubic surface S with three A2 singularities. Let 1 > β > β0 :=
√

3
2 .

There is a natural homeomorphism between the Gromov-Hausdorff compactification M
GH

β of pairs (S, (1−β)Di)

where Di ∈ | −KS | and the GIT quotient M
GIT

:= P(H0(S,−KS))ss//~0Aut(S) for the natural representation
of Aut(S) in H0(S,−KS) linearised by a = b = 0 as in (19).

Proof. Let (W, (1 − β)∆) be the Gromov-Hausdorff limit of Kähler-Einstein pairs (S, (1 − β)Di) with Di ∈
| −KS |. Let p ∈ W be a singularity. Since W is a surface, p is klt and hence a quotient singularity, locally
analytically isomorphic to C2/Γ, where Γ is a finite group. By flatness, we have that (−KW−(1−β)∆)2 = 3β2.

From Theorem 4.1, (15) and Liu’s estimate v̂olC2/Γ,0 = 4
Γ , it follows that |Γ| 6 3, so p is an A2 or A1 singularity.

Hence, by the classification of cubic surfaces with canonical singularities, W is a cubic surface with at worst
A2 singularities, but since it is a degeneration of S, we have that S = W and D ∈ |−KS |. By Lemma 4.12 we
have that Aut(S) is reductive. By Proposition 4.7 and Corollary 4.14 we have that there is some K-polystable
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pair (S, (1 − β)D) such that the point D ∈ P(H0(S,−KS)) is GIT polystable. Hence, by Theorem 3.11 (ii),

we can define a map φ : M
GH

β → M
GIT

, which sends (W, (1 − β)∆) to [∆]. As it is customary, injectivity of
φ follows by uniqueness of Kähler-Einstein metrics, continuity is a consequence of [CDS15] and the Luna slice

theorem and the image of φ is compact since φ : M
GH

β is compact. We have that φ is a homeomorphism if it
is surjective, since φ is a continuous map between a compact space and a Hausdorff space. Surjectivity of φ

follows if the image of φ is open and dense. The latter is a consequence of comparing the descriptions of M
GH

β

and MGIT in proposition 4.7 and Corollary 4.14. �

4.4. Behaviour of conical Kähler-Einstein metrics near the singularities. It is natural to ask if one
can be more precise on the behaviour of the Kähler-Einstein metrics on the singular log pairs which appear in
our constructions. The picture is still not complete, mainly due to the missing proofs of the results of [DS17]
for tangent cones in the case of log pairs. However, we expect the following generalisations to the log setting
of many results known to hold in the absolute case.

Conjecture 4.17. Let (W, (1 − β)∆, g) be a Gromov-Hausdorff limit of log Fano pairs admitting a Kähler-
Einstein metric. The following properties hold:

(1) For any point p ∈ (W, (1− β)∆, g) the metric tangent cone at p is unique (analogous to [DS17]).

(2) The metric density Θp is equal to the normalised volume of the singularity v̂olW,p (analogous to [HS17,
LX18]).

(3) The metric tangent cone can be understood algebraic via the two steps construction (analogous to
[DS14, LX18, LWX18]).

We point out that in some situations the above conjecture is already known to hold by different techniques.
In [dBS17] it is proved that certain log Calabi-Yau metric on surfaces have unique tangent cones given by the
expected models, and in such cases it has been checked that metric densities and normalised volumes agree.
By applying an implicit function theorem, there are situations in which the log pair is log Fano too (but only
close to the Calabi-Yau threshold).

For a concrete example, note that our theorems give instances of conical Kähler-Einstein metrics on pairs
(C, (1−β)H), where C is a smooth cubic surface and H is an anticanonical divisor with a cuspidal singularity.
Since the value of β we consider is greater than 5/6, according to the above conjecture the behaviour of the
metric near the singularity of the cusp is given by a tangent cone splitting as C× Cβ̄ with 1− β̄ = 2(1− β).
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