
Bulletin of Entomological Research
 

Walking behaviour in the ground beetle, Poecilus cupreus: dispersal potential,
intermittency and individual variation.

--Manuscript Draft--
 

Manuscript Number: BER-D-19-00139R4

Full Title: Walking behaviour in the ground beetle, Poecilus cupreus: dispersal potential,
intermittency and individual variation.

Article Type: Research Paper

Corresponding Author: Joseph David Bailey
University of Essex
Colchester, Essex UNITED KINGDOM

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Essex

Corresponding Author's Secondary
Institution:

First Author: Joseph David Bailey

First Author Secondary Information:

Order of Authors: Joseph David Bailey

Carly M Benefer

Rod P Blackshaw

Edward A. Codling

Order of Authors Secondary Information:

Abstract: Dispersal is a key ecological process affecting community dynamics and the
maintenance of populations. There is increasing awareness of the need to understand
individual dispersal potential to better inform population level dispersal, allowing more
accurate models of the spread of invasive and beneficial insects, aiding crop and pest
management strategies. Here, fine-scale movements of Poecilus cupreus, an
important agricultural carabid predator, were recorded using a locomotion compensator
and key movement characteristics were quantified. Net displacement increased more
rapidly than predicted by a simple correlated random walk model with near ballistic
behaviour observed. Individuals displayed a latent ability to head on a constant bearing
for protracted time periods, despite no clear evidence of a population level global
orientation bias. Intermittent bouts of movement and non-movement were observed,
with both the frequency and duration of bouts of movement varying at the inter- and
intra-individual level. Variation in movement behaviour was observed at both the inter-
and intra- individual level. Analysis suggests that individuals have the potential to
rapidly disperse over a wider area than predicted by simple movement models
parametrised at the population level. This highlights the importance of considering the
role of individual variation when analysing movement and attempting to predict
dispersal distances.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Response to Referee Comments: None 

None



1 
 

Walking behaviour in the ground beetle, Poecilus cupreus: dispersal potential, 1 

intermittency and individual variation. 2 

Joseph D. Bailey*1, Carly M. Benefer2, Rod P. Blackshaw3, Edward A. Codling1 3 

1Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ, 4 

UK.  5 

2School of Biological and Marine Sciences, Plymouth University, Plymouth, PL4 6 

8AA. 7 

3Blackshaw Research and Consultancy, Parade, Chudleigh, TQ13 0JF. 8 

*Contact author: jbailef@essex.ac.uk 9 

Abstract 10 

Dispersal is a key ecological process affecting community dynamics and the 11 

maintenance of populations. There is increasing awareness of the need to 12 

understand individual dispersal potential to better inform population level dispersal, 13 

allowing more accurate models of the spread of invasive and beneficial insects, 14 

aiding crop and pest management strategies. Here, fine-scale movements of 15 

Poecilus cupreus, an important agricultural carabid predator, were recorded using a 16 

locomotion compensator and key movement characteristics were quantified.  Net 17 

displacement increased more rapidly than predicted by a simple correlated random 18 

walk model with near ballistic behaviour observed. Individuals displayed a latent 19 

ability to head on a constant bearing for protracted time periods, despite no clear 20 

evidence of a population level global orientation bias. Intermittent bouts of 21 

movement and non-movement were observed, with both the frequency and duration 22 

of bouts of movement varying at the inter- and intra-individual level. Variation in 23 

Manuscript



2 
 

movement behaviour was observed at both the inter- and intra- individual level.  24 

Analysis suggests that individuals have the potential to rapidly disperse over a 25 

wider area than predicted by simple movement models parametrised at the 26 

population level. This highlights the importance of considering the role of 27 

individual variation when analysing movement and attempting to predict dispersal 28 

distances.  29 

Keywords: dispersal, ground beetles, dispersal potential, intermittency, path 30 

analysis, random walk.  31 

 32 

1. Background 33 

Dispersal is a key ecological process affecting population, species and 34 

community dynamics over small and large spatial scales. For species of ecological 35 

and economic importance, such as pest insects and their natural predators, it is 36 

essential to understand how dispersal behaviour leads to observed population 37 

distributions in order that effective management strategies can be implemented at 38 

appropriate scales (Petrovskii et al., 2014).  39 

Ground beetles (Coleoptera: Carabidae) are widely recognised to be 40 

important components of terrestrial ecosystems, playing a major role in the food 41 

web as both predators of a wide range of invertebrates and as prey to a number of 42 

bird and mammal species, some of which are of conservation concern (Holland et 43 

al., 2006; Pocock  & Jennings, 2007). Carabids are also considered to be of bio-44 

indicative value since they are sensitive to cultivation impacts, and particularly to 45 

intensification of agricultural practices (Rainio & Niemelä, 2003). For these 46 

reasons, and because of their importance in the natural control of invertebrate pests 47 

and weed populations in agricultural land, the biology and ecology of species within 48 
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Carabidae have been extensively studied (Bohan et al., 2011; Kromp, 1999). 49 

Critical to their function in controlling pest populations within fields is their 50 

dispersal ability. Many carabid species are highly mobile with movement mainly 51 

via walking, though flight may be used under some circumstances, e.g. longer 52 

distance dispersal (Lövei & Sunderland, 1996). Field margins act as refuges for 53 

natural enemy species and movement occurs into cropped fields from these semi-54 

natural areas (Thomas et al., 1997). As such, ‘beetle banks’ have been specifically 55 

created in farmland across the UK and Europe as overwintering habitats for 56 

beneficial invertebrates (MacLeod et al., 2004; Thomas et al., 1991). Knowledge of 57 

dispersal into fields from such areas and the effects of biological characteristics of 58 

individual species and how this leads to their observed distribution in agricultural 59 

landscapes is key to understanding the maintenance of metapopulations and the 60 

dynamics of predator-prey interactions (Banks et al., 2020; Bastola and Davis, 61 

2018; Petrovskii et al., 2014). This is particularly relevant in the context of climate 62 

change and habitat fragmentation, for which it is important to be able to predict 63 

effects of changes to the environment on species of economic and ecological 64 

importance. 65 

Previous studies investigating ground beetle dispersal have used mark-66 

release-recapture techniques (Rijnsdorp, 1980; Thomas et al., 1998, 1997).  This 67 

approach results in the estimation of movement distance being limited to the 68 

maximum distance at which pitfall traps are set. Others have used harmonic radar to 69 

track individuals (Lövei et al., 1997; Wallin & Ekbom, 1994).  These are similar in 70 

principle to mark-release-recapture because individuals are tagged and then located 71 

at a later time point. However, neither of these approaches gives fine-scale detail of 72 

walking movements since observation frequencies are low and often the majority of 73 
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individuals released are not recovered. To try to overcome these limitations, 74 

individual-based simulation models have been used, incorporating spatial and 75 

landscape parameters for forest carabids (Jopp & Reuter, 2005) and common 76 

agricultural (Pterostichus) species (Benjamin et al., 2008; Firle et al., 1998), or 77 

based on population level estimates of random walk movement parameters for a 78 

range of insects including ground beetles (Byers, 2001). Although such models may 79 

try to take into account factors that are likely to affect distribution and abundance in 80 

the field, they are frequently based on data collected from field studies like those 81 

described above, which do not explicitly consider inter- and intra-individual 82 

variation in walking behaviours and how this affects dispersal distances. This is 83 

particularly relevant when considering pest species and their natural predators, since 84 

it is important to know the extent of dispersal in differing situations i.e. under 85 

alternate cultivation practices.  Studies using high resolution movement data in a 86 

homogenous featureless environment have been recorded for mealworm beetles 87 

(Tenebrio molitor) (Reynolds et al., 2013), where a power law distribution in the 88 

beetles’ step-lengths was found. In the same study, highly linear movements in 89 

Poecilus beetles were reported, although a full analysis for this species was not 90 

undertaken.  91 

Recent advances in tracking technology mean that fine-scale position data 92 

can now be more easily collected from real animal movement paths in both the field 93 

and laboratory. In this study we used a laboratory based technique, a locomotion 94 

compensator, to measure fine-scale walking movements of Poecilus  cupreus, one 95 

of the most common carabid species in European agricultural land (Kromp, 1999; 96 

Luff, 2002). It is a diurnal, macropterous species which is active in spring-summer 97 

and is found in relatively dry warm habitats such as open grassland and agricultural 98 
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fields (Luff, 1998). Its abundance and dominance in these habitats makes it an ideal 99 

species for investigating movement behaviour within- and between- individuals. 100 

Although the locomotion compensator is not a new technique (Kramer, 1976), to 101 

our knowledge it has not been used in this way before.  It should be noted that the 102 

artificial setup of the experiment results in limitations as to the conclusions which 103 

can be reliably drawn from these results.  Whilst such problems regarding the 104 

artificiality and low generality of the setup are a recognised flaw in model systems 105 

(Carpenter, 1996) and lead to the common ‘replication versus realism’ debate 106 

(Srivastava et al, 2004; Schindler, 1998) there are inherent benefits of such model 107 

systems, such as repeatability and ease of experimentation (Levins, 1984; 108 

Srivastava et al, 2004).   In this experimental setup the use of the TrackSphere 109 

locomotion compensator allows for data to be collected with relative ease and 110 

accuracy, giving data with high frequency and greater accuracy than would be 111 

expected from simple video analysis or from capture-recapture techniques.  112 

Similarly, the setup removes any impedimentary effect a tracker attached to an 113 

individual would have.   114 

Here we chose to focus on measuring the dispersal potential of P. cupreus as 115 

well as discerning whether there were significant differences in general movement 116 

patterns in an unobstructed environment.  We give a detailed analysis of individual 117 

movement of P. cupreus which the novel use of the TrackSphere allows. We 118 

quantify the observed movement using standard path analysis measures and explore 119 

the level of inter- and intra-individual variation. We subsequently demonstrate how 120 

simple random walk movement models, parameterised at the population level from 121 

the observed data, do not adequately explain the observed dispersal behaviour. 122 

2. Methods 123 
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2.1 Insect Collection and Care 124 

Adult P. cupreus were captured daily using pitfall traps from a permanent 125 

grazed grassland in Dartington, Devon, UK (1.7 acre field, centred at OS grid 126 

reference SX 78366 62988) between 8th and 20th July 2012, coinciding with main 127 

activity period for this species. Pitfall traps consisted of 200 ml white plastic cups 128 

dug into the ground, flush with the soil surface. Each trap was covered by a plastic 129 

lid to prevent flooding during wet weather. No preservative or liquid was used 130 

inside the pitfall traps in order to retain live individuals. The beetles were 131 

maintained at 16oC in tanks containing soil, leaf litter and dead wood in mixed 132 

populations with other ground beetle species and fed on fresh meat based (chicken) 133 

cat food every few days until needed for the experiment, whereby identified 134 

individuals were transferred to separate 20 ml universal tubes containing a small 135 

piece of damp tissue paper (Luff, 2002). 136 

2.2 Tracking beetle walking behaviour 137 

2.2.1 Use of TrackSphere 138 

A locomotion compensator (Tracksphere LC 300, Syntech, Hilversum, The 139 

Netherlands; Syntech, 2004) was used to track and measure the movement paths 140 

(measured in mm) for each beetle.  The locomotion compensator consists of a 141 

lightweight sphere (300mm diameter), with a camera located directly above to 142 

measure displacements. The sphere rotates opposite to these displacements by 143 

means of two electric motors, and two encoders contacting the sphere transmit the 144 

rotational movements to a computer as incremental (x, y) coordinates, which are 145 

recorded 10 times per second.   The sphere is supported by a noiseless aerostatic 146 

spherical bearing. 147 

2.2.2 Experimental Design 148 
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Beetles were tested three times each between 1st and 8th August 2012. 149 

Between trials individuals were maintained at 16°C. Experiments were carried out 150 

between 16.8 and 24.2°C, recorded at the beginning of each trial, and were 151 

illuminated by a fluorescent light located directly behind the sphere. A white 152 

cardboard screen was placed around the sphere to prevent external influences 153 

affecting beetle behaviour and the sphere was wiped clean with 70% ethanol after 154 

each trial. Individual beetles were allowed to acclimatise on the sphere for one 155 

minute before recording began for ten minutes. However, due to the sphere failing 156 

to properly compensate for the movements of eight beetles for the full ten minute 157 

period, the final analysis was performed on data recorded over a five minute span 158 

starting from 10 seconds into the track and finishing 5 minutes later (this period of 159 

data collection was available for all experimental trials).  Trials in which beetles did 160 

not move at all during this period were removed from the dataset completely, giving 161 

data from 22 individual beetles. In summary, walking movement data ((x, y) 162 

coordinates recorded 10 times per second) over a five minute period were obtained 163 

for 22 individual beetles, repeated three times each (66 observations in total). 164 

2.3 Initial processing of movement path data 165 

The raw movement data, recorded at a frequency of 10 Hz was found to 166 

include artificial ‘pixelisation’ of the movement paths, leading to artificially high 167 

turning angles being recorded. To overcome this problem, the raw data was sub-168 

sampled at a sampling rate of 1 Hz to smooth the movement paths and avoid 169 

pixelisation effects (i.e. only every 10th location recorded in the raw data was 170 

included in the analysis). The choice of 1 Hz as the sub-sampling rate was 171 

essentially an arbitrary choice, however other sampling rates of 2 Hz, 0.5 Hz and 172 

0.2 Hz (i.e. respectively only every 5th, 20th or 50th raw data point included) were 173 
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also considered but did not qualitatively change the results (Supplementary Tables 174 

S1-10, Additional File 3).   175 

A minimum instantaneous speed threshold was used to classify bouts of 176 

‘purposeful movement’ (movement associated with relocation in space) and ‘non-177 

movement’ (periods where beetles either paused to reorient or stopped moving 178 

entirely, leading to zero or limited relocation in space). This gave an objective way 179 

to classify each step of the movement paths with instantaneous speeds above the 180 

minimum threshold classified as movement and those below as periods of non-181 

movement. A range of minimum speed threshold values were considered: 5 mm/s, 182 

10 mm/s and 15 mm/s, as well as no minimum speed threshold.  The minimum 183 

speed threshold of 5 mm/s was used for the main analysis as this retained the largest 184 

number of data points while allowing objective classification of bouts. The use of 185 

different minimum speed thresholds did not lead to qualitatively different results 186 

(Supplementary Tables S1-10, Additional File 3). 187 

Using this threshold (5 mm/s) lead to movement and stationary bouts of very 188 

short length due to noise in the recording and processing of the data. To account for 189 

this the movement data were smoothed, with bouts of movement and non-190 

movement identified using a cumulative sum algorithm similar to Knell & Codling 191 

(2012) (see Additional File 1). Bouts that had not ended by the end of the 192 

experiment were considered to have been artificially truncated and hence were not 193 

included in the analysis presented in the main paper, since their true duration was 194 

indeterminable. However, results were qualitatively similar if these truncated bouts 195 

were included, under the assumption that they terminated at the end point of the 196 

experiment (see Additional File 4).  197 

%%Figure 1 about here%% 198 
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2.4 Statistical analysis 199 

2.4.1 Basic Path analysis measures 200 

Standard path analysis measures adopted from random walk theory were 201 

quantified for each of the observed movement paths (Kareiva & Shigesada, 1983; 202 

Kramer & McLaughlin, 2001; Goodwin & Fahrig, 2002; Codling et al, 2008). It is 203 

known that the precise form of the distributions underlying movement in step-turn 204 

processes has large effects on the predicted movement and hence a detailed analysis 205 

of individual movement is required in order to accurately predict movement 206 

behaviour (Codling et al, 2010; Choules & Petrovskii, 2017).  Therefore, for each 207 

movement path the turning angles between the directions of successive movement 208 

steps, the global direction of movement at each step, and step length / speed (step 209 

length and the instantaneous speed are equivalent as we used a fixed sampling 210 

frequency of 1 Hz), were calculated (Figure 1C-D). The observed speeds were then 211 

used to determine bouts of movement and non-movement as described in the 212 

previous section. Summary statistics for each movement path were determined: 213 

total net displacement (mm; Figure 1B), mean cosine of turning angles, straightness 214 

(total track length/total net displacement; a measure of tortuosity), average speed 215 

(mm/s; determined for bouts of movement only), number of bout transitions 216 

(movement to non-movement and vice versa), average bout duration (s), variance in 217 

bout duration (s2), and proportion of time spent moving (%). Temperature was 218 

included as a covariate in the initial analyses but was found not to be significant and 219 

so was excluded from subsequent analysis, as has been observed in other studies of 220 

ground beetle movement (Tuf et al. 2012; Růžičková & Veselý, 2016).  221 

2.4.2 Intra- and inter-individual variation 222 

Repeatability 223 
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To measure the consistency of behaviour among individuals the 224 

repeatability, 𝑟, was calculated (also known as the intra class coefficient, ICC, 225 

(Lessels & Boag, 1987)). Where 𝑟 = 𝑉ind/(𝑉ind + 𝑉𝜀 ) with 𝑉𝑖𝑛𝑑 being the variance 226 

between individuals and 𝑉𝜀 the residual variance, which is equivalent to the 227 

variation within individuals (Nakagawa & Schielzeth, 2010; Dingemanse & 228 

Dochtermann, 2013; Houslay & Wilson 2017).  Therefore, 𝑟, indicates the relative 229 

strength of the variance between individuals compared to the total variance (𝑉ind +230 

𝑉𝜀 ) (Brommer, 2013; Dingemanse & Dochtermann, 2013; Dosmann et al. 2015).  231 

These variances were found using Linear Mixed Effect Models using Restricted 232 

Maximum-Likelihood parameter estimation following the method described in 233 

Nakagawa & Schielzeth (2010) by use of the rptR package (Stoffel et al, 2017) in R 234 

(R Core Team, 2018). 235 

Correlation 236 

Correlation between any of the parameters at either the between- or within-237 

individual level was calculated by dividing the covariance between two parameters 238 

by the square root of the product of the two variances (Dosmann et al, 2015).  These 239 

values we found using a bivariate (two-trait) mixed model, with the individual 240 

beetle as the random intercept, the experiment number (centred) as the repeat 241 

number, and the parameters (centred and scaled) as the random effects, as per 242 

Houslay & Wilson (2017).  The model was implemented by the MCMCglmm 243 

package (Hadfield, 2010) in R (R Core Team, 2018).  In order to ensure auto-244 

correlation was not an effect, 500,000 iterations were run with a ‘burn-in’ period of 245 

15,000 and a thinning of 100.  Results were significant if the confidence intervals 246 

(95%) did not span 0, as is standard with Bayesian CI’s (Houslay & Wilson 2017).    247 

2.4.3 Global Movement Direction 248 
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Global orientation of movement directions were considered at both 249 

population and individual level, to ascertain whether a global or an individual 250 

preference in direction existed.  A Watson test checked for uniform distribution of 251 

global movement directions and a Rayleigh test determined whether the distribution 252 

corresponded to a unimodal wrapped distribution with specific resultant vector 253 

(where a resultant vector close to 1 would indicate a strong preference in movement 254 

direction, whereas a vector close to 0 would indicate no preference in direction). 255 

2.4.4 Turning Angles 256 

The observed turning angles were fitted to two standard circular probability 257 

distributions: the von Mises (a close approximation to the normal distribution on a 258 

circle) and the wrapped Cauchy (a heavy-tailed circular distribution). These were 259 

fitted using the CircStats package in R (R Core Team, 2018).  The Kuiper and the 260 

Watson-U2 tests were used to check the validity of both models, with the Akaike 261 

Information Criterion (AIC) used to indicate the closer fitting distribution (Mardia 262 

& Jupp, 2009).  Evidence of unimodal turning angle distributions centred around 0 263 

would indicate persistence in the beetles’ movements.  264 

2.4.5 Step lengths (instantaneous speeds) & Intermittency 265 

Four distributions were considered for fitting the observed distribution of 266 

step lengths (instantaneous speeds), with the same distributions also considered for 267 

the movement and non-movement bout durations: power-law, exponential, Weibull 268 

and log-normal.  Distributions were fitted using the fitdistrplus package in R (R 269 

Core Team, 2018), except for the power-law that was fitted using the power.law.fit 270 

function in the iGraph package in R (R Core Team, 2018).  The power-law was 271 

considered in two circumstances. Firstly, to check if a power-law fitted all the data, 272 

a restricted power-law was considered.  The xmin value in this case was set at the 273 
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smallest non-zero value of the data rather than the value for xmin calculated by 274 

power.law.fit function (Virkar & Clauset, 2014). Secondly, a power-law fitting only 275 

the tail of the data was considered as this is an indicative features of Lévy walk 276 

behaviour (Edwards et al., 2007; Sims et al., 2007; Reynolds et al., 2013; Ahmed et 277 

al., 2018). The tail of the data was calculated by using the best fit xmin value 278 

calculated by the power.law.fit() function.  The potential distributions were fitted 279 

only to data points which were greater than this minimum value.  As the fitting 280 

algorithm for the power-law utilised a maximum likelihood estimation (MLE) 281 

method to maximise the p-value for the Kolmogorov–Smirnov (K-S) test, a G-test 282 

was also used to consider the fit of the distributions (Edwards et al., 2007).  283 

2.4.6 CRW v BRW Behaviour 284 

To investigate whether the characteristics of the beetle movement paths 285 

could be classified best as either a correlated random walk (CRW; i.e. movement is 286 

persistent but not globally directed) or a biased  random walk (BRW; i.e. movement 287 

is globally directed), we measured the Δ statistic from (Marsh & Jones, 1988): 288 

∆=
1

𝑛2
[(∑ cos 𝜃𝑖)2 + (∑ sin 𝜃𝑖)2] −

1

(𝑛−1)2
[(∑ cos 𝜔𝑖)

2 + (∑ sin 𝜔𝑖)
2]  (1) 289 

where, 𝜃𝑖 is the global orientation and 𝜔𝑖 is the turning angle, at time 𝑖.  The Δ 290 

statistic gives a relative measure of how well the observed data fits each of the two 291 

types of random walk movement model (see details in Additional File 5).   292 

 Data for turning angles and step lengths (speeds) were fitted at the 293 

population level (10045 data points from 66 movement paths) and at the individual 294 

path level (between 37 and 298 data points for each movement path). The Δ statistic 295 

was calculated for each individual movement path separately and also for all turning 296 

and global orientation angles aggregated at the population level. Data for bout 297 
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durations were fitted only at the population level due to the limited number of data 298 

points from each individual path (326 data points from 66 movement paths). 299 

3. Results 300 

3.1 Basic path analysis measures  301 

Figure 1C illustrates how the observed movement paths consisted of bouts 302 

of high speed and highly persistent movement (where the mean cosine of turning 303 

angles is close to 1), interspersed with bouts of low speed (5-10 mm/s) in which the 304 

distribution of turning angles is more uniform.  305 

The beetles’ net displacement ranged from 14 to 9785 mm (Figure 2A) with 306 

the measure of straightness of each individual path varying from 0.98 (near straight-307 

line movement) to 0.21 (tortuous) (Additional File 2; Supplementary Figure S1).  308 

The average of the mean cosine values was found to be 0.780 with a standard 309 

deviation of 0.146, indicating a small range of values for the mean cosine across all 310 

trials (Figure 2C).  On average the beetles as a population spent 55.5% of the 311 

experiment moving, recording an average speed when moving in the range of 5.65 312 

mm/s to 36.3 mm/s with the population average being 12.5 mm/s (Figure 2B; 313 

Additional File 2, Supplementary Figure S1).  The number of transitions from bouts 314 

of movement to non-movement (and vice-versa) in a single trial varied from 0 to 12 315 

across the population, with individuals exhibiting a wide range in the number of 316 

transitions across their individual 3 trials (Figure 2D).  Correspondingly the average 317 

bout length varied from 17s, for the individual trial which displayed 12 completed 318 

bouts, to 293s for the individual trial which displayed only one complete bout 319 

during the experiment.   320 

3.2 Intra- and inter-individual variation 321 

Repeatability 322 
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The number of bouts, time spent moving (%) and average speed when 323 

moving were found to be repeatable implying that the beetles displayed individual 324 

consistency across the three trials. (𝑝 < 0.05).  All of these gave a repeatability of 325 

over 0.2, with the highest being average speed when moving, 𝑟 = 0.282.  However, 326 

when considering the 95% confidence intervals, only average speed had an interval 327 

which did not span 0, indicating that average speed was the only consistent 328 

movement behaviour (Table 1). 329 

The repeatability results demonstrate that between 12.7-36.2% of the 330 

variance in the parameters was caused by differences between individuals and 331 

therefore the majority of the variation in the parameters is due to the differences 332 

within-individuals (Additional File 2; Table S1). 333 

% Table 1 about here % 334 

Correlation in parameters 335 

At the between individual level all parameter combinations had CI’s which 336 

span 0 indicating no evidence of statistically significant correlation (Additional File 337 

2; Table S2).  At the within-individual level, a strong positive correlation (𝑝 <338 

0.01) between displacement, straightness and time spent moving was observed, as 339 

well as between displacement and average speed, as might be expected from 340 

standard movement. A strong negative correlation (𝑝 < 0.01) between the average 341 

bout duration and the number of bout transitions was anticipated:  the longer a bout, 342 

the fewer there can be in a given time period.  However, a significant positive 343 

correlation (𝑝 < 0.01) between the average speed when moving and the time spent 344 

moving was also found, indicating that the longer the time the beetles spent moving, 345 

the faster on average they moved (Additional File 2; Table S3).  346 

% Figure 2 about here % 347 
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3.3 Global movement direction 348 

Figure 1D shows a near uniform distribution in the global orientation angle, 349 

relative to the associated turning angle for the pooled data across all beetles and 350 

trials. This suggests that, at the population level, there is no consistent reorientation 351 

towards a specific global movement direction.  A Rayleigh test at the population 352 

level revealed a slight bias towards a global movement direction of µ̅ = 59°, 353 

although the resultant vector was low (𝑅̅ = 0.194) suggesting this was only a weak 354 

effect 355 

At the individual level, beetles were observed to have highly consistent 356 

oriented movements (resultant vector, 𝑅̅, ranging from 0.194 to 0.972, with mean =357 

0.662, sd = 0.213).  The Watson test rejected the possibility of a uniform 358 

distribution of global movement directions for each individual, indicating 359 

movement at the individual level was highly directed.  360 

3.4 Turning Angles 361 

When considering the distribution of turning angles at the population level, 362 

both the wrapped Cauchy (MLE parameters: ρ=0.859, µ=0.005) and von Mises 363 

distributions (MLE parameters: 𝜅 = 6.43, µ = 0.001) were rejected by the Watson 364 

test (𝑈𝑤𝑐
2 = 2.42, 𝑝 < 0.01; 𝑈𝑣𝑀

2 = 51.9, 𝑝 < 0.01) and the Kuiper test (𝑉𝑤𝑐 =365 

6.79, 𝑝 < 0.01; 𝑉𝑣𝑀 = 21.1, 𝑝 < 0.01) (Supplementary Tables S1-S2, Additional 366 

File 3).  However, the AIC favoured the wrapped Cauchy over the von Mises 367 

(𝐴𝐼𝐶𝑤𝑐 = 7032, 𝐴𝐼𝐶𝑣𝑀 = 10668), and visual inspection indicates that the wrapped 368 

Cauchy is the better fit (Figure 3A).  Tests at other sampling rates and speed 369 

thresholds revealed no significant differences from these results (Supplementary 370 

Tables S1-S2, Additional File 3). 371 
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At the individual level, a wrapped Cauchy distribution was found to be the 372 

best fitting distribution for 58 of the 66 trials.  The resultant vectors for each of the 373 

individual trials were high, indicating persistence in movement (𝑅̅ ranging from 374 

0.397 to 0.913 with mean = 0.780,  sd = 0.147). 375 

3.5 Step-lengths (Instantaneous speeds) & Intermittency 376 

When considering the distribution of the instantaneous speeds at the 377 

population level, both the Kolmogorov-Smirnov (K-S) test and G-test rejected all 378 

four distributions (𝑝 < 0.01) when fitted to the tail of the data.  The AIC indicated 379 

that the Weibull distribution (MLE parameters; 𝛾 = 0.992, 𝛼 = 9.67) was the 380 

closest fit (Supplementary Tables S3-S5, Additional File 3). When considering the 381 

full data set and using a restricted power-law with 𝑥𝑚𝑖𝑛 = 5, the K-S test and G-test 382 

still rejected all the distributions (𝑝 < 0.01), but the AIC now favoured the log-383 

normal distribution (Figure 3B) with MLE parameters 𝜇 = 1.69, 𝜎2 = 1.28 384 

(Supplementary Tables S6-S8, Additional File 3). Choosing different values for the 385 

sampling rate and speed threshold did not qualitatively change these results 386 

(Supplementary Tables S3-S8, Additional File 3).  At the individual level, the log-387 

normal and the Weibull distributions were favoured in 65 of the 66 trials when 388 

considering the full data set, and 61 of the 66 when looking only at the tail of the 389 

data. 390 

3.6 Intermittency (movement and non-movement bouts) 391 

Both the Weibull (MLE parameters; 𝛾 = 0.97, 𝛼 = 45.7) and log-normal 392 

(MLE parameters; 𝜇 = 3.30, 𝜎2 = 1.04) distributions were accepted by the G-test 393 

for the distribution of the bouts of movement with the AIC value distinguishing 394 

between them by favouring the log-normal distribution.  For the bouts of non-395 
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movement, the G-test and K-S test reject all the distributions (𝑝 < 0.01); although, 396 

the log-normal distribution (MLE parameters; 𝜇 = 3.00, 𝜎2 = 0.94) was favoured 397 

by the AIC (AIClog-norm = 1373, AICexp = 1420, AICweib = 1422).  Visual 398 

inspection implies a reasonable fit here (Figures 3C-D; Supplementary Tables S9-399 

S10, Additional File 3). 400 

As predicted by the lognormal distribution an inverse relation was found 401 

between lengths of following bouts, with a long bout often followed by a short bout, 402 

and bouts close to the median bout length mostly followed by bouts of comparable 403 

length (Additional File 3, Supplementary Figure S1). 404 

% Figure 3 about here % 405 

3.7 CRW v BRW behaviour 406 

At the individual level the Marsh-Jones ∆ statistic indicated that the 407 

observed data did not fit with the expected result from either a CRW or BRW, with 408 

60 paths giving an indeterminate result, 5 paths identified as most like a CRW and 409 

only one most like a BRW (Additional File 5; Supplementary Table S1).   Similarly, 410 

at the population level, the statistic did not coincide with the expected result for 411 

either a BRW or a CRW.  However, in this case the value (Δ = −0.335) was 412 

strongly negative and much closer to the expected CRW value, indicating that the 413 

population movement was more similar to a CRW.  414 

When the observed net displacement was compared with the expected 415 

displacement of a CRW (parameterised by calculated population level values of the 416 

speed and turning angle mean resultant length), it is clear that the beetles dispersed 417 

considerably faster than expected by simple CRW movement (Figure 4).  With an 418 

initial period of super-ballistic behaviour followed by a sustained linear increase in 419 

net displacement over time as predicted by a purely ballistic movement process.   420 
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% Figure 4 about here % 421 

4 Discussion 422 

Movement data of 22 P. cupreus beetles were collected over three replicate 423 

trials on a locomotion compensator. Analysis of observed trajectories highlighted 424 

high levels of inter- and intra-individual variation in movement path characteristics 425 

(Figure 1 & 2), with a correlation between time spent moving and instantaneous 426 

speed, suggestive of possible ‘flee’ behaviour.  Observed turning angles were best 427 

fitted by the wrapped Cauchy distribution with step lengths (instantaneous speeds) 428 

best described by a log-normal distribution with no evidence of power-law 429 

behaviour (Figure 3A-B). Beetle movements were observed to be highly persistent 430 

at the individual level, with beetles able to maintain forward movement towards a 431 

chosen direction over a sustained period. At the population level, a weak preference 432 

in global movement direction appeared to be present, however, further inspection 433 

highlighted that this weak global directional bias was directly correlated to the 434 

initial movement direction of the beetles at the start of recording, (presumably 435 

related to the initial orientation of the beetle as they were released onto the tracking 436 

sphere’), and the global bias towards this specific orientation had disappeared by 437 

the end of each trial (Additional File 5; Supplementary Figure S1).  Hence, there 438 

was no strong evidence for a consistent global bias at the population level (see 439 

Figure 1A). This could be an artefact of the experimental setup where such an 440 

unfamiliar setting caused the beetles to engage in ’flee’ behaviour where movement 441 

was in a constant direction away from the starting location.  Assuming the beetles 442 

were not placed facing exactly the same direction at the start of the experiment, 443 

along with the beetles' inherent ability to travel in a straight line could explain the 444 

lack of global direction. 445 
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Intermittency in movement was observed, with the lengths of the bouts of 446 

movement and non-movement both best described by log-normal distributions 447 

(Figure 2C-D).  Movement bouts were found to highly vary between individuals at 448 

both the inter- and intra-individual level, with some trials consisting of bouts of 449 

constant movement and others involving highly intermittent stop-start behaviour. 450 

The intermittency in movement behaviour, along with the observation that bouts of 451 

short length are often followed by bouts of similar length (Additional File 3, Figure 452 

S1), has been characterised as foraging or searching behaviour in aphids 453 

(Mashanova et al, 2010) and has been reported for a number of species including 454 

crickets, copepods and ghost crabs (Kramer & McLaughlin, 2001). 455 

The ability for individual beetles to disperse over much larger distances than 456 

predicted by a simple CRW movement model, while showing no evidence of a 457 

global preferred direction at the population level, is an interesting finding. The 458 

beetles in this study showed an innate ability to travel on a near constant bearing 459 

with high persistence (Figure 1A) a phenomena found in other insects such as dung 460 

beetles (Byrne et al, 2003) but has been shown to not be present in other animals 461 

such as humans (Souman et al, 2009).  It is known that small errors in attempted 462 

straight line movement compound over time (Biegler, 2000; Cheung et al, 2007), 463 

therefore, if an individual can continue on a constant bearing for a protracted time 464 

period without any obvious external cues, the method by which these small errors 465 

are negated is interesting and may be due to some unknown internal cue. Similar 466 

underestimates of total displacement have also been reported when considering 467 

parameterised CRW models for T. confusum beetles (Morales & Ellner, 2002) and 468 

three Eleodes sp. (Crist et al, 1992). A possible explanation for these discrepancies 469 

is that the parameterised models do not consider the use of internal mechanisms or 470 
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external cues that enable deviations in heading to be corrected so that forward 471 

movement is maintained. However, it is far from clear in this context what such 472 

mechanisms might be since there were no known visual navigation cues in the 473 

immediate walled environment of the locomotion compensator that could have been 474 

utilised. 475 

Other insect species, such as bumblebees and other arthropods, (Chittka et 476 

al, 1999; and references therein) are thought to possess an internal magnetic 477 

compass that allows forward navigation in the absence of other cues. Bumblebees 478 

also use odour cues to direct movement within a featureless environment (Chittka et 479 

al, 1999) and are able to discriminate between hydrocarbon scent marks excreted 480 

from the tarsi left by themselves and conspecifics on flowers (Pearce et al, 2017); P. 481 

cupreus has been observed to use chemical cues to navigate, orienting towards prey 482 

such as Heteromurus nitidus, a ground dwelling springtail (Mundy et al, 2000) 483 

therefore a similar mechanism might allow them to track their own footprints on the 484 

locomotion compensator, although we have no direct evidence that this is the case. 485 

Polarization of light has been shown to act as a method of navigation in many 486 

species of insect and beetles (Scwhind, 1991; Wehner, 2001).  Dung beetles (e.g. 487 

Scarabaeus sp. and Scarabaeini sp) have been shown to use the polarisation of light 488 

to move with high persistence (Dacke et al, 2004; Baird et al, 2012),  Although 489 

there were no direct visual cues in our experimental arena, there was a fixed light 490 

source on the ceiling of the laboratory and it is possible that  P. cupreus are using 491 

the polarisation of the light source relative to their initial starting direction to 492 

maintain their forward movement.  This could be simply tested by running a similar 493 

experimental setup incorporating a light polariser, similar to the method used to 494 
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demonstrate the use of light polarisation in dung beetle navigation (Dacke et al, 495 

2004; Baird et al, 2012).  496 

Whilst the experimental setup allowed for the collection of data both at a 497 

high frequency and high level of accuracy, giving answers to the questions 498 

regarding the dispersal potential and variability in movement behaviour of P. 499 

cupreus, the experimental setup itself causes the conclusions and applications of our 500 

findings to be limited.  Due to the featureless conditions, caution must be taken in 501 

generalising these results as they are not indicative of movement in natural 502 

environments, in which encounters with obstacles or changing conditions would be 503 

present.  However, a similar tracking device was used in Dahmen et al, 2018 to 504 

compare the movement of desert ants (Cataglyphis sp.) under experimental 505 

conditions to those observed in an open test field.  They recorded movement in a 506 

test arena both outside with natural light and inside a laboratory with a polarised 507 

light source, comparing the observed movement to that recorded by using a 508 

cushioned tracking sphere under similar conditions.  The findings reported no 509 

significant differences between the movement recorded using the tracking sphere to 510 

that in the open test field.  Whilst this may be the case for this specific species of 511 

ant, as we did not engage in similar direct comparisons of movement in natural 512 

settings to that on the TrackSphere, it is not necessarily clear that movement 513 

recorded on such a device can act as a sensible approximation for real world 514 

movement 515 

Although the homogeneity of the experimental setup has been highlighted as 516 

a flaw in scaling up our findings to movement in the real world, the agricultural 517 

landscapes P. cupreus often inhabit, are by their cultivated nature more 518 

homogeneous relative to non-agricultural landscapes.  Therefore, our recorded 519 
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movement behaviour could be beneficial to studies which attempt to understand the 520 

invasive potential of P. cupreus in crop management.  521 

Banks et al (2020) looked at the expected affect ladybirds and P. cupreus 522 

had on controlling aphid invasions of agricultural fields, with the aim of providing a 523 

pest management structure to efficiently eradicate aphid populations.  Their model 524 

concluded that using a population of ladybirds was the most effective compared to a 525 

mixture of the two predators.  However, the model explicitly relied on predicted 526 

movement rates of P. cupreus which had been aggregated at the population level.  527 

Therefore, applying our findings of the dispersal potential and movement behaviour 528 

in similar studies may affect the outcome, leading to alternative crop management 529 

strategies.   530 

  531 
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Figures 707 

Figure 1 (A) Individual beetle movement paths for the first trial run of each beetle.  708 

Starting points are the origin (0,0).   (B) Displacement over time for each individual 709 

beetle from their first trial run.  (C) Cosine of the turning angle (the angle between 710 

successive steps) against the instantaneous speed at that step.  The vertical lines 711 

represent possible values for the speed threshold value (5 mm/s, 10 mm/s and 15 712 

mm/s) which were used to distinguish between purposeful movement and non-713 

movement. Data is taken for all beetles across all three trials.  (D) Global 714 

orientation of movement at each step (and the cosine of the corresponding turning 715 

angle (the angle between successive global orientations).  Data is taken for all 716 

beetles across all three trials. In all plots the same hue is used to indicate individual 717 

beetles.  For all figures the sampling size used was 1 Hz.   718 

Figure 2 (A-D) (A) Total displacement, (B) mean cosine of turning angle, (C) mean 719 

speed when moving, and (D) number of bout transitions of each beetle for each trial  720 

(figures displaying variability across the other parameters are found in Additional 721 

File 2, Figure S1).  In all plots, circle points correspond to Trial 1, square to Trial 2 722 

and triangle to Trial 3.   723 

Figure 3 (A) Histogram of the turning angles.  The solid dark grey line shows the 724 

best fit wrapped Cauchy (WC) distribution with 𝜇 = 0.005, 𝜌 = 0.859 and the 725 

dashed light grey line shows the best fit von Mises (vM) distribution with 𝜇 =726 

0.001 and 𝜅 = 6.43.  (B) Histogram for distribution of the instantaneous speeds.  727 

The grey dashed line shows the best fitting log-normal distribution (C) & (D) 728 

Histograms showing the distribution of the length of bouts of movement and non-729 

movement.  The grey dashed line shows the best fitting log-normal distribution.  In 730 

all cases, the sampling rate was 1 Hz and speed cut-off threshold was 5 mm/s 731 
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Figure 4 Net displacement of beetles over time.  The solid black line shows the 732 

mean net displacement of the beetle population with sampling rate 1 Hz and no 733 

speed threshold; the light grey dashed line is the expected result for a CRW with 734 

turning angles taken from a zero centred wrapped Cauchy distribution with 735 

concentration parameter 𝜌 = 0.819, and step length drawn from the exponential 736 

distribution with mean, 1/𝜆 =  8.33  (Additional File 3, Supplementary Table S2 & 737 

S5); the dark grey dotted line is ballistic movement.    738 
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Tables 739 

 Repeatability 

 𝒓-stat CI (95%) 𝒑-value 

Number of Bouts 0.227* [0, 0.478] 0.052* 

Displacement 0.151 [0, 0.382] 0.146 

Straightness 0.127 [0, 0.399] 0.192 

Mean Cosine 0.200 [0, 0.444] 0.077 

Average Bout Duration 0.211 [0, 0.466] 0.067 

Time Spent Moving (%) 0.234* [0, 0.486] 0.047* 

Average Speed 0.362* [0.013, 0.526] 0.021* 

 740 

Table 1.  Values of the repeatability value, r, for the calculated parameters, along 741 

with the 95% confidence intervals (CIs).  Values marked with the asterisk (*) 742 

indicate significant results (𝑝 < 0.05) 743 
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Additional file 1 1 

Bout classification 2 

The method to determine the transition between movement and non-movement bouts is an adjusted 3 

version of the algorithm described in [1]: 4 

 5 

Smoothing Algorithm 6 

1. Cumulative sum.   7 

Determine the cumulative sum 8 

𝐶𝜏 = ∑  𝑆𝑡
𝜏
𝑡=2 ,    with     𝐶1 = 𝑆1 9 

 for 𝜏 = 2, … , 𝑇. 10 

Where 𝐶𝜏 denotes the cumulative sum of 𝑆𝜏 at time step 𝜏 and  is calculated as: 11 

𝑆𝑡 = {
𝑆𝑡−1 + 𝑣𝑡, 𝑖𝑓 𝑣𝑡 > 𝑠𝑝𝑒𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒
𝑆𝑡−1 − 𝑣𝑡  , 𝑖𝑓 𝑣𝑡 ≤ 𝑠𝑝𝑒𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

 13 

where 𝑣𝑡 is the instantaneous speed calculated at time 𝑡. 12 

2. Time Series.  Construct the time series 𝐶𝜏 vs. 𝜏. 14 

3. Termination criterion.  Does a turning point exist within the generated time series? 15 

- Yes: proceed to 4. 16 

- No: one cannot effectively analyse this movement path; terminate procedure. 17 

4. Max-min algorithm.  Determine turning points of the time series using the max-min algorithm 18 

(see Appendix 2 in [1]) for full algorithm).  Essentially, here the algorithm aims to find 19 

turning points (local maxima or minima) in the time series 𝐶𝜏 vs. 𝜏.  To do this a moving 20 

window of size 𝜀 is applied to the time series and for the case when 𝐶𝜏+𝜀 < 𝐶𝜏  a change is 21 

determined to have occurred if for the current maximum value of the cumulative sum at time 22 

𝜏, 𝐶𝜏𝑚𝑎𝑥
 , we have max {𝐶𝜏+1, 𝐶𝜏+2, … , 𝐶𝜏+𝜀} < 𝐶𝜏𝑚𝑎𝑥

 otherwise 𝐶𝜏𝑚𝑎𝑥
 is set at this max value 23 

and the method continues starting now at 𝜏 + 1 (and similar for 𝐶𝜏+𝜀 > 𝐶𝜏 finding a local 24 

minimum).   Therefore, in essence the value 𝜀 represents the minimum size of a possible bout 25 
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and is calculated by the algorithm to give the optimal value for identifying true transition 26 

behaviour. 27 

5. Conclusion.  Classify turning points as either transitions from movement to stationary 28 

behaviour or vice-versa. 29 

An example of the results of using this algorithm is demonstrated in Additional File 1, Figure S1.   30 

This algorithm requires calculating a value for the minimum possible length of a bout, ε, per beetle 31 

per experimental trial, which was found to range from 3 to 17. As this value was not fixed for all 32 

experimental trials, results were also calculated when using a fixed ε across all trials (calculated as the 33 

median value of all ε, which in the case for the sampling rate being 1Hz and the speed threshold 34 

taking value 5mm/s gave, 𝜀 = 7). However, this was not seen to significantly affect the outcome of 35 

the analysis (Additional File 1, Table S1-S2).   36 

  37 



 38 

Figure S1  Variation in instantaneous speed over time for a single  trial of an example beetle.  The red 39 

horizontal line represents the speed threshold value of 5 mm/s, which was used throughout the main 40 

analysis (other values were considered but did not qualitatively change the results; see Additional File 41 

2).  The lower plot demonstrates how the smoothing algorithm designated bouts of movement (state 42 

1) and non-movement (state 0).  The sampling rate used was 1 Hz.  43 



 

Restricted Power-

law 

Exponential Weibull Log-normal 

Type of bout xmin Α λ (rate) γ (shape) α (scale) μ (mean) 𝜎2 (s.d.) 

All 1 1.33 0.028 0.97 35.41 3.07 0.94 

Moving 1 1.28 0.016 0.96 47.55 3.39 1.06 

Stationary 1 1.31 0.020 0.97 32.97 3.10 0.99 

 44 

Table S1 Parameter values for the best fit distributions when the median ε value was used in the 45 

smoothing algorithm.  Results shown are for same sampling rate of 1 Hz and threshold value of 5  46 

mm/s as was used throughout the analysis in the main text   47 



 

Restricted Power law Exponential Weibull Log-normal 

Bout type 

G2-Test K-S Test 

AIC 

G2-Test K-S Test 

AIC 

G2-Test K-S Test 

AIC 

G2-Test K-S Test 

AIC 

stat p stat p stat p stat p stat p stat p stat p stat p 

All 119.70 0 0.419 0 3444 33.016 0.005 0.207 0 2991 31.000 0.009 0.177 0 2988 27.314 0.026 0.117 0 2932 

Moving 73.15 0 0.366 0 1828 17.358 0.298 0.148 0 1568 18.054 0.260 0.158 0 1571 10.334 0.798 0.092 0.112 1553 

Stationary 138.04 0 0.467 0 1599 51.802 0 0.284 0 1419 43.382 0 0.200 0 1409 37.514 0.001 0.142 0.002 1401 

 48 

Table S2 Results of the statistical tests for each best fitting distribution when the median ε value was used in the smoothing algorithm.  Results shown are for 49 

the same sampling rate of 1Hz and threshold value of 5 mm/s as was used throughout the analysis in the main text.  These results show that the favoured 50 

distribution was the log-normal for the distribution of movement bouts, stationary bouts and combined movement and stationary bouts.  Comparing these with 51 

the findings with a varying epsilon (see Main Text; Additional File 3) shows no qualitative difference. 52 

  53 
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Additional file 2 1 

Summary Statistics Comparison 2 

The summary statistics discussed in section 2.3 (and not included in Figure 3) of the main text are 3 

displayed here highlighting the variation across individuals as well as between individuals.  The three 4 

tables (Additional File 2, Table S1-S3 ) show the full results of the repeatability analysis, the correlation 5 

between individuals and the correlation within individuals..  All tests are for a sampling rate of 1 Hz and 6 

speed threshold value of 5 mm/s.   7 

 8 

Figure S1 (A-C) variability in the statistical parameters described in the main text section 2.3.2 for each 9 

individual trial run per beetle;  (A) Time spent moving, (B) Variance in Bout Duration and (C) average 10 

length of bouts.  (D - E) lengths of bouts of movement and stationary resepctively. 11 

In all plots, circle points correspond to trial 1, squares to trial 2 and triangles to trial 3. 12 

  13 
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Figure S1 14 



 15 

 Repeatability 

𝑽𝒊𝒏𝒅 𝑽𝜺 

 
𝒓 stat CI (95%) p-value 

Number of 

Bouts 
0.227 [0, 0.478] 0.052 0.224 0.763 

Displacement 0.151 [0, 0.382] 0.146 0.164 0.817 

Straightness 0.127 [0, 0.399] 0.192 0.130 0.870 

Mean Cosine 0.200 [0, 0.444] 0.077 0.204 0.797 

Av. Bout 

Duration 
0.211 [0, 0.466] 0.0665 0.208 0.805 

Time Spent 

Moving (%) 
0.234* [0, 0.486] 0.0467* 0.237 0.768 

Av. Speed 0.362* [0.013, 0.526] 0.0206* 0.331 0.583 

 16 

Table S1 Values of the repeatability given as 𝑟 = 𝑉ind/(𝑉ind + 𝑉𝜀 ) for the calculated parameters, along 17 

with the 95% CIs.  Values marked with an asterisk (*) indicate significant results (𝑝 < 0.05), however, 18 

only the Av. Speed Cis did not include 0 therefore, the significant of the results is inconclusive.  𝑉𝑖𝑛𝑑 19 

gives the variance between individuals and 𝑉𝜀 the residual (error) variance, equivalent to the 20 

variation within individuals.21 



Correlations Number of Bouts Displacement Straightness 
Mean 

Cosine 

Av. Bout 

Duration T 

Time Spent 

Moving (%) 
Av. Speed 

Number of 

Bouts 
\\\\\ -0.006 0.301 0.332 -0.129 0.141 -0.291 

Displacement (-0.848, 0.812) \\\\\ 0.229 0.102 0.08 0.287 0.487 

Straightness (-0.555, 0.991) (-0.673, 0.977) \\\\\ 0.095 -0.089 0.164 0.171 

Mean Cosine (-0.446, 0.987) (-0.780, 0.837) 
(-0.791, 

0.848) 
\\\\\ -0.072 0.206 -0.03 

Av. Bout 

Duration T 
(-0.851, 0.755) (-0.723, 0.908) 

(-0.876, 

0.761) 

(-0.857, 

0.767) 
\\\\\ 0.101 -0.139 

Time Spent 

Moving (%) 
(-0.676, 0.900) (-0.646, 0.967) 

(-0.729, 

0.924) 

(-0.697, 

0.958) 
(-0.698, 0.892) \\\\\ 0.258 

Av. Speed (-0.940, 0.449) (-0.450, 0.993) 
(-0.659, 

0.910) 

(-0.879, 

0.711) 
(-0.893, 0.587) 

(-0.534, 

0.943) 
\\\\\ 

 

Table S2 Correlations between parameters calculated at between individual level using the mixed effects model described in section 2.3.3 in the Main Text.  

Values in the upper triangle are the correlation coefficients and lower triangle values are the corresponding 95% CIs.  Values marked with an asterisk (*) 

denote those which are significant as the CIs do not straddle 0. 

  



Correlations 
Number of 

Bouts 
Displacement Straightness Mean Cosine 

Av. Bout 

Duration T 

Time Spent 

Moving (%) 
Av. Speed 

Number of 

Bouts 
\\\\\ -0.195 0.195 -0.031 -0.657* 0.004 -0.116 

Displacement (-0.445, 0.074) \\\\\ 0.564* 0.535* 0.189 0.747* 0.722* 

Straightness (-0.065, 0.463) (0.384, 0.745)* \\\\\ 0.644* -0.24 0.579* 0.241 

Mean Cosine (-0.318, 0.258) (0.340, 0.743)* (0.468, 0.801)* \\\\\ -0.006 0.666* 0.228 

Av. Bout 

Duration T 
(-0.819, -0.496)* (-0.093, 0.461) (-0.487, 0.033) (-0.290, 0.271) \\\\\ 0.011 0.176 

Time Spent 

Moving (%) 
(-0.272, 0.289) (0.614, 0.860)* (0.388, 0.753)* (0.508, 0.823)* (-0.274, 0.290) \\\\\ 0.425* 

Av. Speed (-0.418, 0.170) (0.582, 0.856)* (-0.022, 0.508) (-0.061, 0.501) (-0.102, 0.466) (0.186, 0.670)* \\\\\ 

 

Table S3 Correlations between parameters calculated at the within individual level using the mixed effects model described in section 2.3.3 in the Main Text.  

Values in the upper triangle are the correlation coefficients and lower triangle values are the corresponding 95% CIs.  Values marked with an asterisk (*) 

denote those which are significant as the CIs do not straddle 0. 

 



Additional file 3 1 

Complete data analysis for all sampling rates and speed thresholds 2 

Results detailed here include fitting distributions to the turning angles (Additional File 3, Tables S1-3 

S2), instantaneous speeds (Additional File 3, Tables S3-8) and bout durations (Additional File 3, Tables S9-4 

S10) for all combinations of the sampling rates (2 Hz, 1 Hz, 0.5 Hz and 0.2 Hz) and speed threshold (15 5 

mm/s, 10 mm/s 5 mm/s and no threshold value).  In the case of the turning angles (Additional File 3, Tables 6 

S1-S2), neither the Kuiper nor the Watson tests accepted either the wrapped Cauchy or the wrapped normal 7 

distributions. However, when comparing between the two, the AIC preferred the wrapped Cauchy 8 

distribution in all cases, and visual comparison confirmed that the wrapped Cauchy was a closer fit to the 9 

data. 10 

Comparing the instantaneous speeds at differing sampling rates and speed thresholds, the results 11 

reveal that there was no clear likely best-fit distribution, as the preference for a particular distribution varied 12 

based on the speed threshold value regardless of the sampling rate; with a propensity for exponential and 13 

Weibull distributions when the speed threshold is high and a log-normal distribution for lower values of the 14 

threshold.  Additional File 3, Tables S3-S5. present the results of fitting distributions to the tail of the data, 15 

that is the data which was greater than the optimal xmin value of the best-fit power law distribution, which 16 

was used to infer the presence of a heavy-tailed distribution.  As was mentioned in the main text (Section 17 

3.2), the findings indicate that at any sampling rate and threshold value the power-law was not favoured over 18 

the other distributions. 19 

In comparing the bout durations, distributions were considered for the length of moving bouts only, 20 

stationary bouts only and both moving and stationary combined.  Additional File 3, Tables S9-S10 Indicate 21 

that both the log-normal or Weibull distributions were accepted for certain combinations of the sampling rate 22 

and speed threshold, although, the AIC generally favoured the log-normal distribution over the Weibull.  23 

Data was not considered for no threshold value as this resulted in no stationary bouts (section 2.3.1 of the 24 

main text). Similarly, when the threshold value was too high (15 mm/s) or the sampling rate too low (0.2 Hz) 25 

the number of bouts measured was too small to give meaningful or accurate results and so have been 26 

omitted.  Although, discerning an appropriate distribution for the frequency of the bouts was not clear, an 27 
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inverse relationship between the lengths of consecutive bouts was observed (Additional File 3, Figure S1A).  28 

That is, longer bouts were followed by shorter ones and vice versa, and medium length bouts were followed 29 

by bouts of similar length.  Although (Additional File 3, Figure S1B-C), demonstrates that this is an expected 30 

result given the distribution found which best describes the bout lengths. 31 

  32 



 33 

Figure S1 Comparing the lengths of following bouts.  (A) displays the length of a completed bout compared 34 

to the length of the following completed bout, taken from the beetle data.  The curve plotted in black shows 35 

the line of form 𝑘2/𝑥, where 𝑘 is a constant shown in top right hand corner of the plot, which accounts for 36 

90% of the plot points being located between the curve and the axes.   Comparing this inverse relationship 37 

with the expected results from simulated models where the lengths of bouts were drawn from the best fitting 38 

log-normal distribution (B) and a uniform distribution (C) shows the similarity between the actual results and 39 

predicted log-normal results.  This demonstrates that this inverse relationship between bout lengths is most 40 



likely due to the lognormal distribution of the lengths of bouts.  Data was calculated with a sampling size of 41 

1 Hz and speed threshold of 5 mm/s,  42 



 

  

Wrapped Cauchy von Mises 

   

Watson test Kuiper test 

AIC 

Watson test Kuiper test 

AIC Sampling 

rate (Hz) 

Speed cut-

off (mm/s) 

Number 

of points 

statistic 

(U2) p-value 

statistic 

(V) p-value 

statistic 

(U2) p-value 

statistic 

(V) p-value 

2 

none 39534 37.045 <0.01 29.148 <0.01 71744.16 342.2524 <0.01 54.7352 <0.01 95325.86 

5 20155 2.8369 <0.01 7.0981 <0.01 20356.18 125.6914 <0.01 32.6401 <0.01 29315.92 

10 12223 3.2087 <0.01 7.4731 <0.01 7318.787 71.0998 <0.01 24.7016 <0.01 12412.84 

15 7028 2.1223 <0.01 6.0109 <0.01 3007.066 37.4251 <0.01 18.1023 <0.01 5641.406 

1 

none 19734 8.8988 <0.01 14.7254 <0.01 32661.86 164.3228 <0.01 38.0826 <0.01 44129.71 

5 10011 2.4193 <0.01 6.7936 <0.01 7031.784 51.9381 <0.01 21.0598 <0.01 10668.31 

10 5900 1.9623 <0.01 6.1516 <0.01 2181.849 29.1009 <0.01 15.7044 <0.01 4249.526 

15 3356 1.1261 <0.01 4.7802 <0.01 966.559 16.2974 <0.01 11.9061 <0.01 2129.47 

0.5 

none 9834 1.9588 <0.01 7.6059 <0.01 16403.39 61.9318 <0.01 23.4196 <0.01 20787.61 

5 5040 1.2417 <0.01 4.7511 <0.01 4275.96 18.824 <0.01 12.9362 <0.01 5454.31 

10 2900 0.9912 <0.01 4.4125 <0.01 1580.272 9.9763 <0.01 9.4965 <0.01 2181.111 

15 1580 0.6161 <0.01 3.5536 <0.01 724.7004 5.1869 <0.01 6.8364 <0.01 1036.83 

0.2 

none 3894 0.3281 <0.01 2.8823 <0.01 7747.179 14.2082 <0.01 11.559 <0.01 8803.505 

5 2024 0.4467 <0.01 3.068 <0.01 2501.256 5.3992 <0.01 7.018 <0.01 2772.177 

10 1131 0.2489 0.01 < p < 0.025 2.6106 <0.01 1114.658 3.0138 <0.01 5.3566 <0.01 1252.11 

15 604 0.1187 > 0.10 2.0013 <0.01 535.0097 1.5012 <0.01 3.9792 <0.01 584.0033 

 43 

Table S1. Statistical test results for the turning angle distributions at all considered sampling rates and speed threshold values. 44 

 45 

  46 



  

Wrapped Cauchy von Mises 

Sampling 

rate (Hz) 

Speed cut-off 

(mm/s) μ ρ μ κ 

2 

none -0.001 0.814 -0.0108 2.1842 

5 0.0026 0.8413 0.0041 4.5583 

10 0.0049 0.8653 0.0055 6.7311 

15 0.0028 0.8745 0.0037 8.192 

1 

none 0 0.8192 -0.0108 2.1842 

5 0.0045 0.8586 0.0011 6.4313 

10 0.0053 0.8768 0.0085 8.8482 

15 0.0026 0.8814 0.0024 9.5947 

0.5 

none -0.0001 0.8049 0.0019 2.7213 

5 0.0066 0.8466 0.0094 6.3378 

10 0.0105 0.8649 0.0135 8.5942 

15 -0.0034 0.8694 0.0031 9.4126 

0.2 

none 0.0061 0.7553 0.0175 2.4435 

5 0.0004 0.8154 0.0189 4.9129 

10 0.0042 0.8365 0.0207 6.2121 

15 -0.0085 0.8454 0.0006 7.0781 

 47 

Table S2 MLE for the parameters of the Wrapped Cauchy and von Mises distributions when considering the turning angle distribution for all considered sampling 48 

rates and speed threshold values. 49 

 50 

  51 



  

  

 
Power-law (MLE)   Exponential Weibull Log-normal 

Sampling 

rate (Hz) 

Speed cut-

off (mm/s) 

Number 

of points xmin 

K-S 

Statistic p-value AIC 

K-S 

Statistic p-value AIC 

K-S 

Statistic p-value AIC 

K-S 

Statistic p-value AIC 

2 

none 1473 34.4 0.0517 0 9565 0.0326 0.087 9481 0.0334 0.075 9481 0.0762 0 9835 

5 1506 33.2 0.056 0 9788 0.0321 0.09 9690 0.0327 0.08 9691 0.0767 0 10059 

10 1422 33.8 0.0691 0 9250 0.0344 0.07 9139 0.0348 0.064 9141 0.0783 0 9467 

15 1537 33 0.0718 0 10073 0.0306 0.112 9909 0.0318 0.089 9909 0.0724 0 10297 

1 

none 6047 10.7 0.0715 0 40149 0.0406 0 39710 0.0275 0 39698 0.0594 0 40699 

5 5499 10.7 0.1027 0 37477 0.0416 0 36196 0.0245 0.003 36178 0.0694 0 37319 

10 620 33.7 0.0576 0.032 3827 0.0332 0.503 3784 0.0344 0.454 3785 0.0713 0.004 3898 

15 608 33.9 0.0647 0.012 3758 0.0343 0.473 3707 0.0351 0.443 3708 0.0731 0.003 3829 

0.5 

none 2884 10.1 0.0698 0 19110 0.0464 0 18630 0.0339 0.003 18626 0.0601 0 19161 

5 2711 10.6 0.099 0 18176 0.0472 0 17546 0.0359 0.002 17543 0.0633 0 18039 

10 265 33.7 0.0547 0.402 1550 0.0445 0.672 1532 0.0444 0.674 1534 0.0834 0.05 1588 

15 286 33.1 0.0608 0.237 1688 0.0394 0.766 1663 0.0399 0.752 1665 0.0773 0.066 1739 

0.2 

none 1201 10.6 0.0744 0 7591 0.039 0.052 7558 0.0346 0.114 7560 0.0633 0 7761 

5 596 15.3 0.1058 0 3940 0.0525 0.075 3813 0.0438 0.202 3811 0.0833 0.001 4009 

10 232 24.9 0.1269 0.001 1445 0.0868 0.061 1401 0.0635 0.307 1394 0.1132 0.005 1458 

15 225 25.2 0.1414 0 1408 0.0885 0.059 1353 0.066 0.282 1347 0.1182 0.004 1412 

 52 

Table S3  Statistical test results for the instantaneous speed distribution at every considered sampling rate and speed threshold value, for the tail of the data only (calculated 53 

from the xmin value given by the power-law distribution).  54 

  55 



 

 

  Power-law (MLE) Exponential Weibull Log-normal 

Sampling 

rate (Hz) 

Speed cut-

off (mm/s) 

Number of 

points G2-Stat p-value G2-Stat p-value G2-Stat p-value G2-Stat p-value 

2 

none 1473 97.566 0 54.64 0 53.615 0 190.7 0 

5 1506 112.64 0 58.968 0 58.061 0 201.06 0 

10 1422 117.29 0 53.266 0 52.863 0 181.8 0 

15 1537 152.07 0 60.955 0 59.907 0 199.73 0 

1 

none 6047 474.71 0 127.95 0 105.87 0 467.07 0 

5 5499 788.32 0 139.6 0 115.05 0 505.81 0 

10 620 43.795 0 35.258 0.013 36.2 0.009973 71.707 0 

15 608 51.591 0 40.38 0.002916 40.75 0.002605 76.507 0 

0.5 

none 2884 217.46 0 80.254 0 68.17 0 216.77 0 

5 2711 348.12 0 69.982 0 59.646 0 205.26 0 

10 265 12.721 0.5486 18.402 0.4958 18.35 0.4992 30.416 0.04674 

15 286 14.722 0.3974 13.115 0.8326 13.27 0.8244 27.999 0.08345 

0.2 

none 1201 73.223 0 38.13 0.005713 35.757 0.0113 66.537 0 

5 596 79.829 0 26.142 0.1263 26.044 0.129 70.962 0 

10 232 37.324 0 24.979 0.1612 22.017 0.2834 39.791 0.003486 

15 225 40.923 0 23.062 0.2346 19.279 0.4391 37.747 0.006391 

 56 

Table S4 Similar to Additional File 3, Table S3, results of the G-Test for the distribution of instantaneous speed.  Results are for the tail of the data only. 57 

 58 

  59 



  

  Power-law (MLE) Exponential Weibull Log-normal 

Sampling rate 

(Hz) 

Speed cut-

off (mm/s) 

Number of 

points α xmin λ (rate) γ (shape) α (scale) μ (mean) σ2 (s.d.) 

2 

None 1473 5.56 34.39 0.109 1.02 9.27 1.65 1.31 

5 1506 4.86 33.2 0.109 1.02 9.24 1.64 1.32 

10 1422 4.37 33.76 0.109 1.02 9.21 1.64 1.31 

15 1537 3.68 32.95 0.108 1.03 9.35 1.66 1.3 

1 

None 6047 2.69 10.73 0.102 0.96 9.65 1.66 1.33 

5 5499 2.19 10.68 0.101 0.95 9.68 1.65 1.38 

10 620 4.84 33.68 0.129 1.03 7.85 1.49 1.26 

15 608 4.21 33.86 0.129 1.02 7.8 1.48 1.29 

0.5 

None 2884 2.79 10.11 0.108 0.96 9.15 1.61 1.34 

5 2711 2.22 10.63 0.107 0.97 9.23 1.62 1.34 

10 265 5.42 33.73 0.151 1 6.6 1.29 1.32 

15 286 4.49 33.11 0.149 1.01 6.74 1.32 1.34 

0.2 

None 1201 2.82 10.55 0.117 0.99 8.5 1.55 1.3 

5 596 2.81 15.33 0.111 1.06 9.2 1.65 1.34 

10 232 3.67 24.91 0.133 1.19 7.94 1.56 1.16 

15 225 3.04 25.24 0.135 1.17 7.8 1.53 1.19 

 60 

Table S5 Parameter values calculated for the instantaneous speed distribution for the tail of the data only. 61 

  62 



  

  
Power-law (restricted) 

 (xmin=speed cut-off) Exponential Weibull Log-normal 

Sampling 

rate (Hz) 

Speed cut-

off (mm/s) 

Number of 

points 

K-S 

Statistic p-value AIC 

K-S 

Statistic p-value AIC 

K-S 

Statistic p-value AIC 

K-S 

Statistic p-value AIC 

2 

none 39600 0.1795 0 255834 0.1471 0 229424 0.1359 0 228179 0.2205 0 225598 

5 20188 0.249 0 136383 0.0274 0 125141 0.0253 0 124411 0.0691 0 122780 

10 12244 0.1349 0 81086 0.0417 0 75167 0.0209 0 74862 0.0579 0 74333 

15 7039 0.107 0 49828 0.0245 0 44916 0.0217 0.003 44465 0.078 0 44466 

1 

none 19800 0.1811 0 128277 0.1202 0 116833 0.1158 0 116233 0.2046 0 114963 

5 10045 0.2418 0 66472 0.0266 0 61302 0.0253 0 60915 0.0692 0 60228 

10 5919 0.2188 0 38818 0.0405 0 35861 0.0281 0 35646 0.0605 0 35445 

15 3365 0.1137 0 23603 0.0328 0.001 21154 0.0276 0.012 20844 0.0857 0 20891 

0.5 

none 9900 0.1865 0 64725 0.0998 0 59457 0.0938 0 59113 0.195 0 58505 

5 5074 0.2341 0 32856 0.0283 0.001 30309 0.0281 0.001 30078 0.0652 0 29705 

10 2918 0.2122 0 18727 0.046 0 17380 0.0343 0.002 17265 0.0586 0 17158 

15 1591 0.2552 0 11093 0.0492 0.001 9944 0.0316 0.083 9770 0.0979 0 9816 

0.2 

none 3960 0.1928 0 26104 0.0759 0 24162 0.0806 0 23990 0.1737 0 23783 

5 2058 0.2453 0 13063 0.0254 0.141 12053 0.0288 0.065 11933 0.0699 0 11765 

10 1149 0.2035 0 7087 0.0426 0.031 6630 0.0327 0.17 6581 0.07 0 6543 

15 613 0.2444 0 4057 0.051 0.083 3675 0.0396 0.291 3610 0.0804 0.001 3618 

 63 

Table S6 Statistical test results for the speed distribution at every sampling rate and speed threshold value, for the whole data set (the xmin value was fixed at the speed cut off 64 

threshold value)  65 

  66 



 

  
Power-law (restricted) 

 (xmin=speed cut-off) Exponential Weibull Log-normal 

Speed cut-

off (mm/s) 

Number of 

points G2-Stat p-value G2-Stat p-value G2-Stat p-value G2-Stat p-value 

none 39600 14849 0 327.23 0 296 0 1232.1 0 

5 20188 6158.5 0 191.51 0 172.68 0 1258.7 0 

10 12244 4145.9 0 213.83 0 160.31 0 1005.9 0 

15 7039 250.82 0 111.24 0 97.322 0 803.59 0 

none 19800 7586.6 0 208.37 0 271.91 0 570.9 0 

5 10045 3545.2 0 122.2 0 117.36 0 594.79 0 

10 5919 2148.3 0 129.82 0 106.78 0 437.15 0 

15 3365 103.15 0 73.686 0 48.433 0 372.1 0 

none 9900 3818 0 69.769 0 147.03 0 250.02 0 

5 5074 1813.6 0 66.227 0 65.857 0 252.52 0 

10 2918 981.76 0 75.85 0 64.231 0 212.87 0 

15 1591 898.04 0 46.329 0 30.643 0.006218 180.75 0 

none 3960 1587.8 0 36.44 0 81.035 0 125.79 0 

5 2058 749.94 0 39.072 0 40.523 0 98.501 0 

10 1149 384.16 0 28.243 0.01321 22.594 0.06721 60.804 0 

15 613 315.25 0 24.079 0.04483 25.19 0.03274 56.18 0 

 67 

Table S7 Similar to Additional File 3, Table S6, with additional results of the G-Test.   Results are for the whole data set. 68 

 69 

  70 



 71 

  

  Power-law (restricted) Exponential Weibull Log-normal 

Sampling rate 

(Hz) 

Speed cut-

off (mm/s) 

Number of 

points α xmin λ (rate) γ (shape) α (scale) μ (mean) σ2 (s.d.) 

2 

None 39600 1.502 0 0.118 0.526 5.817 0.445 3.256 

5 20188 1.497 5 0.098 0.988 10.12 1.736 1.277 

10 12244 1.499 10 0.098 0.943 9.979 1.686 1.350 

15 7039 1.470 15 0.089 1.029 11.31 1.851 1.291 

1 

None 19800 1.509 0 0.121 0.579 6.10 0.620 2.99 

5 10045 1.508 5 0.103 0.992 9.668 1.690 1.28 

10 5919 1.503 10 0.102 0.965 9.687 1.667 1.329 

15 3365 1.475 15 0.094 1.066 10.87 1.826 1.268 

0.5 

None 9900 1.516 0 0.123 0.638 6.424 0.794 2.732 

5 5074 1.512 5 0.109 0.999 9.200 1.644 1.270 

10 2918 1.517 10 0.108 0.966 9.158 1.609 1.340 

15 1591 1.484 15 0.098 1.100 10.516 1.804 1.267 

0.2 

None 3960 1.524 0 0.126 0.714 6.731 0.973 2.418 

5 2058 1.530 5 0.116 1.022 8.665 1.597 1.251 

10 1149 1.538 10 0.118 0.973 8.406 1.529 1.320 

15 613 1.509 15 0.110 1.091 9.369 1.689 1.233 

            72 

Table S8 Parameter values calculated for the speed distribution for the whole data set. 73 

  74 



 75 

All Bouts 

 

Power-law (restricted) Exponential Weibull Log-normal 

Sampling 

rate (Hz) 

Speed cut-

off (mm/s) 

xmin 
G2-Test K-S Test 

AIC 
G2-Test K-S Test 

AIC 
G2-Test K-S Test 

AIC 
G2-Test K-S Test 

AIC 

Stat p stat p stat p stat p stat p stat p stat p stat p 

2 
5 0.5 147.17 0 0.393 0 5593 42.001 0.002 0.163 0 4997 30.068 0.051 0.12 0 4986 33.128 0.006 0.095 0 4852 

10 0.5 79.225 0 0.435 0 5515 38.11 0.006 0.159 0 4892 26.862 0.108 0.154 0 4883 13.855 0.792 0.099 0 4701 

1 
5 1 117.38 0 0.390 0 3364 29.517 0.058 0.107 0.002 2976 26.562 0.115 0.11 0.001 2977 21.854 0.292 0.072 0.078 2902 

10 1 92.14 0 0.438 0 3542 37.948 0.006 0.163 0 3111 38.141 0.006 0.162 0 3113 32.479 0.028 0.114 0 2986 

0.5 
5 2 96.196 0 0.398 0 1865 23.963 0.198 0.143 0.001 1612 25.352 0.149 0.108 0.025 1609 20.298 0.377 0.078 0.195 1566 

10 2 78.96 0 0.377 0 1696 31.515 0.035 0.14 0.002 1477 31.099 0.039 0.112 0.022 1474 20.441 0.369 0.06 0.536 1436 

                        

                        Moving 

Bouts 

 

Power-law (restricted) Exponential Weibull Log-normal 

Sampling 

rate (Hz) 

Speed cut-

off (mm/s) 
xmin G2-Test K-S Test AIC G2-Test K-S Test AIC G2-Test K-S Test AIC G2-Test K-S Test AIC 

Stat p stat p stat p stat p stat p stat p stat p stat p 

2 
5 0.5 141.56 0 0.385 0 2928 37.486 0.007 0.102 0.011 2582 30.537 0.045 0.086 0.05 2582 24.226 0.188 0.08 0.078 2541 

10 0.5 79.666 0 0.432 0 2738 27.555 0.092 0.139 0 2363 32.858 0.025 0.126 0.001 2365 15.397 0.697 0.085 0.054 2292 

1 
5 1 113.15 0 0.368 0 1760 26.489 0.117 0.083 0.216 1550 24.436 0.18 0.091 0.14 1552 16.895 0.597 0.049 0.837 1525 

10 1 93.094 0 0.453 0 1726 32.261 0.029 0.196 0 1490 41.208 0.002 0.159 0 1488 33.806 0.019 0.094 0.09 1432 

0.5 
5 2 94.111 0 0.408 0 974 22.783 0.247 0.142 0.041 840 24.251 0.187 0.122 0.117 839 18.24 0.561 0.076 0.642 822 

10 2 80.961 0 0.380 0 804 28.548 0.073 0.156 0.027 695 27.964 0.084 0.102 0.314 693 18.412 0.48 0.068 0.811 673 

                        

                        Non-

moving 

Bouts 

 

Power-law (restricted) Exponential Weibull Log-normal 

Sampling 

rate (Hz) 

Speed cut-

off (mm/s) 
xmin 

G2-Test K-S Test 
AIC 

G2-Test K-S Test 
AIC 

G2-Test K-S Test 
AIC 

G2-Test K-S Test 
AIC 

Stat p stat p stat p stat p stat p stat p stat p stat p 

2 
5 0.5 27.703 0.01 0.414 0 2668 100.72 0 0.147 0 2407 60.513 0 0.157 0 2396 44.569 0 0.103 0.011 2300 

10 0.5 55.006 0 0.439 0 2782 107.35 0 0.211 0 2519 58.785 0 0.171 0 2501 43.453 0.001 0.117 0.002 2406 

1 
5 1 58.884 0 0.417 0 1607 38.405 0.005 0.132 0.009 1420 34.773 0.015 0.141 0.004 1422 29.876 0.053 0.11 0.045 1373 

10 1 83.4 0 0.424 0 1820 73.289 0 0.177 0 1618 64.136 0 0.156 0 1618 55.506 0 0.131 0.004 1553 

0.5 
5 2 96.775 0 0.408 0 895 29.755 0.055 0.162 0.015 772 31.026 0.04 0.121 0.132 771 19.605 0.419 0.106 0.252 745 

10 2 77.426 0 0.385 0 895 26.728 0.111 0.131 0.09 779 28.235 0.079 0.126 0.11 779 20.212 0.382 0.09 0.457 761 



Table S9 Statistical test results for the bout distributions.  4 distributions were considered.  Sampling size of 0.2 Hz was not included as there were too few bouts to give 76 

reliable results, and similar for speed threshold value of 15 mm/s.  The case for no speed threshold was also not considered as the data returned few non-moving bouts.  77 

Results are for the data as a whole with the fixed xmin value at the minimum non-zero value of the data.78 



  All 

Bouts 

   

 

      

  

Power-law 

(restricted) 
Exponential Weibull Log-normal 

Sampling 

rate (Hz) 

Speed cut-

off (mm/s) α xmin λ (rate) 

γ 

(shape) 

α 

(scale) 

μ 

(mean) σ2 (s.d.) 

2 
5 0.5 1.30 0.019 0.89 50.23 3.36 1.06 

10 0.5 1.30 0.020 0.91 46.00 3.31 0.97 

1 
5 1 1.32 0.025 0.96 39.30 3.15 1.00 

10 1 1.34 0.034 1.00 29.77 2.92 0.88 

0.5 
5 2 1.35 0.038 1.13 27.46 2.87 0.86 

10 2 1.37 0.044 1.13 23.79 2.72 0.87 

  

 

      Moving Bouts  

      

  

Power-law 

(restricted) 
Exponential Weibull Log-normal 

Sampling 

rate (Hz) 

Speed cut-

off (mm/s) α xmin λ (rate) 

γ 

(shape) 

α 

(scale) 

μ 

(mean) σ2 (s.d.) 

2 
5 0.5 1.28 0.016 0.94 59.52 3.54 1.08 

10 0.5 1.30 0.024 1.04 42.15 3.28 0.89 

1 
5 1 1.30 0.022 0.97 45.73 3.30 1.04 

10 1 1.35 0.039 1.12 27.07 2.87 0.82 

0.5 
5 2 1.34 0.035 1.14 30.48 2.97 0.88 

10 2 1.39 0.053 1.20 20.27 2.59 0.81 

  

 

      Non-moving Bouts  

      

  

Power-law 

(restricted) 
Exponential Weibull Log-normal 

Sampling 

rate (Hz) 

Speed cut-

off (mm/s) α xmin λ (rate) 

γ 

(shape) 

α 

(scale) 

μ 

(mean) σ2 (s.d.) 

2 
5 0.5 1.31 0.022 0.86 41.65 3.19 1.00 

10 0.5 1.30 0.018 0.84 49.76 3.35 1.04 

1 
5 1 1.33 0.030 0.97 33.13 3.00 0.94 

10 1 1.34 0.030 0.94 32.46 2.98 0.93 

0.5 
5 2 1.36 0.043 1.14 24.46 2.77 0.81 

10 2 1.35 0.038 1.11 27.39 2.85 0.90 

 

Table S10 MLE for the parameters of the four distributions considered for the distribution of the bout 

lengths. 

 



Additional file 4 1 

Analysis of data when including truncated bouts 2 

As discussed in the main text (Section 2.3.1), bouts which had not ended by the end of the experiment 3 

were not included in the final analysis as their true length was indeterminable.  Additional File 4, Tables 4 

S1-S2 show the results of the statistical analysis used in the main text when these bouts were included 5 

(that is the final bout was deemed to have finished when the experiment had ended) at a sampling rate 6 

of 1HZ and speed threshold value of 5mm/s.   In general, the inclusion of these truncated bouts resulted 7 

in the statistical tests rejecting the fitted distributions, , with the G-test rejecting all distributions for all 8 

types of bouts and the K-S test rejecting the distributions for all bout types except for the exponential 9 

in the case of stationary bouts, the Weibull in the case of moving bouts and the log-normal for both 10 

moving and stationary bouts (𝑝 > 0.1).   However, the log-normal distribution was favoured by the AIC 11 

likelihood for all bout types, which is the same for the findings when the truncated bouts were excluded 12 

(see Additional File 3; Supplementary Tables S9-S10). 13 

  14 
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 Restricted Power law Exponential Weibull Log-normal 

Bout type 

G2-Test K-S Test 
AIC 

G2-Test K-S Test 
AIC 

G2-Test K-S Test 
AIC 

G2-Test K-S Test 
AIC 

stat p stat p stat p stat p stat p stat p stat p stat p 

All 87.764 0 0.419 0 1726 54.884 0 0.130 0 1574 45.813 0 0.117 0 1537 40.48 0.004 0.065 0.075 1506 

Moving 96.500 0 0.568 0 1609 56.667 0 0.104 0.031 1037 50.194 0 0.088 0.174 1017 39.878 0.005 0.042 0.879 993 

Non-

moving 135.39 0 0.764 0 1809 91.156 0 0.085 0.121 1543 74.918 0 0.093 0.072 1545 54.538 0 0.094 0.164 1500 

 15 
Table S1  Test results for the bout distributions when truncated bouts were included.  4 distributions were considered.  Results are for the data as a whole with the 16 

fixed xmin value at the minimum non-zero value of the data.  Results displayed are for sampling size 1 Hz and speed threshold 5 mm/s, which were the values used 17 

throughout the analysis in the main text.  The results indicate that the log-normal distribution was the favoured distribution for all types of bouts in similitude with 18 

the analysis when the truncated bouts were not included (see Main Text; Additional File 2, Supplementary Tables S9-S10).  19 

  20 



 
Restricted Power-law Exponential Weibull Log-normal 

Type of 

bout xmin α  λ (rate) γ (shape) α (scale) μ (mean) σ2 (s.d.) 

All  1 1.30 0.019 0.90 48.69 3.32 1.08 

Moving 1 1.29 0.018 0.94 54.10 3.44 1.09 

Non-

moving 1 1.31 0.021 0.87 43.41 3.21 1.07 

 21 

Table S2 - MLE for the parameters of the four distributions considered for the bout distributions 22 

when including truncated bouts.   Results are for the data as a whole with the fixed xmin value at the 23 

minimum non-zero value of the data.  Results displayed are for sampling size 1 Hz and speed 24 

threshold 5mm/s, which were the values used throughout the analysis in the main text. 25 

 26 

 27 

 28 



Additional File 5 1 

Categorisation of movement paths as a BRW or a CRW 2 

Here we discuss the methods used to categorise the movement of the beetles as either a 3 

CRW or a BRW at both the individual and population level.   4 

It was noted in the main text that at the population level a slight preference in global 5 

direction was found (section 3.3). However, when looking at the individual level this apparent 6 

preferential angle can be explained by comparing the initial orientation of the beetles along with 7 

their final positions. Additional File 5, Figure S1A shows the direction of each individual trial run at 8 

the beginning of the experiment, represented as a unit vector in the given direction (the direction was 9 

calculated by calculating the mean orientation across the first 10 moving steps of the trial).  10 

Additional File 5, Figure S1B shows the final location of the beetle for each trial run represented as a 11 

unit vector in the direction of the final position.  These figures demonstrate that whilst the initial 12 

distribution of orientation angles appears to be concentrated towards the top-right quadrant and away 13 

from the bottom-left, the final positions of the beetles have become more uniform in distribution.  14 

Hence, we conclude that at the population level, there is no consistent long-term global preferred 15 

direction of movement, and the slight preference in global orientation found when analysing all steps 16 

of the movement paths is due to the initial distribution of movement directions. 17 

A direct method of determining if a movement path is better described by either a CRW or 18 

BRW is to calculate the Marsh-Jones ∆-statistic [1] (section 2.3.3); given by: 19 

∆=
1

𝑛2
[(∑cos𝜃𝑖)

2

+ (∑sin𝜃𝑖)
2

] −
1

(𝑛 − 1)2
[(∑cos𝜔𝑖)

2

+ (∑sin𝜔𝑖)
2

] 20 

where, 𝜃𝑖 is the global orientation and 𝜔𝑖 is the turning angle, at time 𝑖.  21 

Turning angles are calculated as the angle between the direction of successive steps and the 22 

global orientation of a given time step is calculated as the angle between the direction at that time 23 

step and the positive y-axis.  The expected values of the Δ statistic are calculated by extensive 24 
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simulations using the equivalent number of data points as found in the observed data, therefore, the 25 

value of the statistic depends upon both the number of individuals and the number of time steps.  26 

The global orientation and turning angles for these simulations are drawn from distributions with 27 

resultant vectors calculated directly from the global orientations and turning angles of the observed 28 

data.   29 

The analysis of the results of calculating the ∆-statistic is given in the main text, section 3.3. 30 

Additional File 5, Table S1 shows how the Δ statistic classified each individual trial, with 5 trials 31 

corresponding to a CRW and only one as a BRW.  The remaining trials could not be determined as 32 

being either type of random walk.  33 



34 
 35 

Figure S1 (A) orientation of all the individual trials (shown as a unit vector in the direction of the 36 

angle of orientation) at the start of the experiment (orientation was taken as the mean of the first 10 37 

steps of movement).  In contrast (B) shows the final location of the beetle at the end of the 38 

experiment (shown as a unit vector in the direction of the final location).  Each individual colour 39 

represents an individual beetle, as in Figures in the main text. 40 
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Beetle Trial ∆ observed Predicted ∆ (BRW) Predicted ∆ (CRW) 

1 1 -0.0151 (-0.0079, 0.0626) (-1.0111, -0.4215) 

2 1 -0.0145 (0.1441, 0.2113) (-0.7498, -0.6336) 

3 1 -0.0779 (0.2214, 0.2385) (-0.6161, -0.5434) 

4 1 -0.1473 (0.1567, 0.2196) (-0.87, -0.6652) 

5 1 0.0433 (0.1669, 0.225) (-0.644, -0.5636) 

6 1 0.0753 (0.1048, 0.1836) (-0.719, -0.619) 

7 1 -0.0954 (0.0751, 0.1594) (-0.9646, -0.5823) 

8 1 -0.2887 (0.0875, 0.1624) (-0.4506, -0.4046) 

9* 1* -0.4143* (-0.0077, 0.0266)* (-0.4263, -0.3827)* 

10 1 -0.111 (0.1157, 0.193) (-0.9065, -0.6538) 

11 1 -0.0984 (0.1011, 0.1816) (-0.9191, -0.6444) 

12 1 -0.5412 (0.0486, 0.123) (-0.6497, -0.5705) 

13 1 -0.1998 (0.2153, 0.2386) (-0.6238, -0.5488) 

14* 1* -0.2871* (-0.0073, 0.024)* (-0.2995, -0.2678)* 

15 1 -0.3388 (0.205, 0.2378) (-0.7348, -0.6249) 

16 1 0.0768 (0.0845, 0.1659) (-0.7536, -0.6344) 

17 1 -0.3343 (0.1587, 0.2194) (-0.6182, -0.544) 

18 1 -0.0491 (0.2226, 0.2374) (-0.5038, -0.4521) 

19 1 -0.1062 (0.2252, 0.2376) (-0.5697, -0.5057) 

20 1 -0.1286 (0.166, 0.2251) (-0.8259, -0.664) 

21 1 -0.1229 (0.2069, 0.2389) (-0.7173, -0.6145) 

22 1 -0.0939 (0.2208, 0.2378) (-0.5412, -0.4822) 

1 2 -0.1798 (0.1929, 0.2347) (-0.5347, -0.4768) 

2 2 0.0821 (0.2045, 0.2381) (-0.5134, -0.4588) 

3 2 -0.135 (0.2067, 0.2394) (-0.7297, -0.623) 

4† 2† 0.0217† (0.0147, 0.0929)† (-0.9175, -0.6462)† 

5* 2* -0.4462* (-0.0029, 0.0405)* (-0.4584, -0.4112)* 

6 2 0.0636 (0.2094, 0.2395) (-0.5196, -0.4638) 

7 2 -0.1473 (0.2065, 0.2389) (-0.5373, -0.4801) 

8 2 -0.0093 (0.1448, 0.2095) (-0.2616, -0.2335) 

9 2 -0.0559 (0.0417, 0.1143) (-0.1471, -0.1266) 

10 2 0.044 (0.1911, 0.2355) (-0.5892, -0.5214) 

11 2 -0.1272 (0.2225, 0.2392) (-0.664, -0.5824) 

12 2 0.0366 (0.145, 0.2131) (-0.6917, -0.599) 

13 2 -0.2612 (0.0413, 0.1136) (-0.3539, -0.3173) 

14 2 -0.2799 (0.1629, 0.2209) (-0.5701, -0.5053) 

15* 2* -0.6147* (0.1713, 0.225)* (-0.9516, -0.6057)* 

16 2 -0.2787 (0.223, 0.2394) (-0.733, -0.6218) 

17 2 0.0369 (0.2183, 0.2394) (-0.514, -0.4595) 

18 2 -0.0736 (0.2257, 0.2379) (-0.5378, -0.4809) 

19 2 -0.0409 (0.1654, 0.2226) (-0.3359, -0.3026) 

20 2 0.1448 (0.155, 0.2182) (-0.5614, -0.4984) 

21 2 -0.06 (0.052, 0.1266) (-0.1694, -0.1479) 

22 2 -0.2325 (0.1278, 0.1987) (-0.4582, -0.4124) 



1 3 0.0031 (0.0236, 0.1048) (-0.9285, -0.6358) 

2 3 -0.19 (0.0999, 0.1751) (-0.3687, -0.332) 

3 3 -0.0977 (0.1002, 0.1805) (-0.9257, -0.638) 

4 3 -0.4701 (0.1812, 0.2301) (-0.7996, -0.6538) 

5 3 -0.0781 (0.1881, 0.2342) (-0.7211, -0.6184) 

6 3 -0.2405 (0.1994, 0.2364) (-0.8602, -0.6691) 

7 3 -0.3289 (0.0534, 0.1279) (-0.44, -0.3964) 

8 3 -0.2201 (0.0247, 0.0903) (-0.2874, -0.2571) 

9 3 -0.1472 (0.2258, 0.2381) (-0.6678, -0.5791) 

10 3 -0.2246 (0.2163, 0.2396) (-0.6483, -0.5675) 

11 3 0.0318 (0.2214, 0.2394) (-0.4081, -0.3677) 

12 3 -0.0704 (0.1298, 0.2031) (-0.8328, -0.6674) 

13 3 -0.1881 (0.149, 0.2128) (-0.4508, -0.4059) 

14 3 -0.0104 (0.2004, 0.2375) (-0.6207, -0.5484) 

15* 3* -0.7675* (0.0905, 0.1657)* (-0.9685, -0.5703)* 

16 3 -0.2012 (0.2077, 0.2386) (-0.5973, -0.5288) 

17 3 -0.2774 (0.1496, 0.2133) (-0.5446, -0.486) 

18 3 -0.035 (0.1863, 0.2336) (-0.6828, -0.5931) 

19 3 -0.0879 (0.2185, 0.2394) (-0.641, -0.5612) 

20 3 -0.2363 (0.0296, 0.0989) (-0.3149, -0.283) 

21 3 -0.3461 (0.0783, 0.1555) (-0.4961, -0.4437) 

22 3 -0.1682 (0.2258, 0.2385) (-0.6897, -0.5979) 

 42 

Table S1 shows the ∆ statistic calculated from the observed movement paths.  The intervals for the 43 

expected values of the BRW and CRW were calculated via extensive simulation of random walks 44 

generated using the same number of steps as observed in the experiment, and represent the 95% 45 

significance level for each respective RW type. Therefore, any observed ∆ falling outside these 46 

intervals can be rejected a the 5% significance level.  Those marked with (*) have observed ∆ 47 

corresponding to a CRW and those with a (†) correspond to a BRW.  48 

 49 

  50 
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