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Abstract. Micro differential evolution (mDE) refers to algorithms that evolve with
a small population to search for good solutions. Although mDEs are very useful
for resource-constrained optimization tasks, the research on mDEs is still limited.
In this paper, we propose a new mDE, i.e., vectorized bimodal distribution based
mDE (called VB-mDE). The main idea is to employ a vectorized bimodal distri-
bution parameter adjustment mechanism in mDE for performance enhancement.
Specifically, in the VB-mDE, two important control parameters, i.e., scale factor F
and crossover rate CR, are adjusted by bimodal Cauchy distribution. At the same
time, to increase the population diversity, the scale factor F is vectorized. The pro-
posed VB-mDE is evaluated on the CEC2014 benchmark functions and compared
with the state-of-the-art mDEs and normal DEs. The results show that the proposed
VB-mDE has advantages in terms of solution accuracy and convergence speed.

Keywords. Micro differential evolution, small population, bimodal distribution,
vectorized bimodal Cauchy distribution, parameter adjustment mechanism

1. Introduction

Differential evolution (DE) is one of the most powerful evolutionary algorithms for glob-
al optimization problems [1] . During the past two decades, DE has received much atten-
tion due to its attractive characteristics such as simplicity, speediness and robustness. DE
has also been successfully applied to solve various scientific and engineering problems,
such as chemical process optimization [2], economic load dispatch [3], and flow shop
scheduling [4].

Normal DEs usually works on a large population size [5]. With a large population
size, DE has better population diversity during the search process, and also has a higher
opportunity to achieve global solutions for complex problems. However, for the resource-
constrained problems like on-line nonlinear model predictive control (NMPC) [6] or real-

1Corresponding Author: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang
212013, Jiangsu, China; E-mail:xuchen@ujs.edu.cn
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time vehicle navigation system [7], the computing resources available for population re-
evaluation in one iteration are largely restricted. In such circumstances, DEs with large
population may become ineffective.

Recently, micro-DE (mDE) algorithms, also called as µDE, have been proposed as
good alternatives. mDE utilizes a small population size, which is often set under 10.
They have fast convergence speed, and can be implemented in the resource-constrained
problems, e.g., online applications. However, mDE often suffers premature convergence
and stagnation due to the lack of population diversity. To overcome the weakness, several
modified mDE algorithms have been developed [8,9,10,11,12,13,14] .

Although mDE algorithms can be very useful on the special scenarios, the research
on the mDE algorithms is still little compared to normal DE algorithms. On the other
hand, it is recognized that the parameter adjustment mechanism (PAM) has important
impacts on the performance of DE algorithms [15,16].

In this paper, we focus on advanced PAM for mDE algorithms. Specifically, using
vectorized bimodal distribution based PAM (VB-PAM), we propose a novel vectorized
bimodal distribution based micro-DE (VB-mDE). In VB-mDE, two important control
parameters, i.e., scale factor F and crossover rate CR, are adjusted by bimodal Cauchy
distribution. At the same time, to increase the population diversity, the bimodal distribu-
tion of scale factor F is vectorized.

The bimodal distribution based PAM is taken from the normal DE algorithm in the
literature [17]. In this paper, we will show how the bimodal distribution based PAM can
be used to design novel mDE algorithm. Our proposed VB-mDE will be compared with
several state-of-the-art mDE and normal DE algorithms on the CEC2014 functions under
the scenarios of small computational resources available for population re-evaluation.

The remainder of this paper is organized as follows. Section 2 reviews the existing
research of mDE algorithms. Section 3 proposes our VB-mDE algorithm. Section 4 e-
valuates our proposed VB-mDE algorithm with comprehensive simulation results and
analysis. Section 5 draws conclusion and gives an outlook on future work.

2. Literature review

This section will briefly review the research work of the mDE algorithms. The main
methods of mDE include (i) modification of search operators, (ii) local search based
method, and (iii) adjustment of parameters or operators, among others.

The first method to develop efficient mDE algorithms may be modifying the search
operators. For example, to address the prematurity problem, a modified DE using smaller
population called DESP is developed in [9]. In DESP, the disturbance is introduced to
the mutation operator, and an adaptive scheme is also used to adjust the disturbance
size. For the purpose of enhancing the population diversity, the random perturbation and
modified selection strategies are introduced to the mDE [10]. It is shown that the two
modifications can significantly improve the performance of mDE. However, the mDE
algorithms developed in [9,10] use constant control parameters and were only evaluated
in simple test functions. Therefore, it is difficult for them to obtain good performance in
complex optimization functions.

The second method may be employing local search technique to design efficient
mDE algorithms. In [11], a mDE algorithm with local search operator, called mDELS,
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is developed and applied for solving large-scale optimization problems. In [12], a mDE

algorithm with a directional local search (called µDSDE) is proposed to solve large-

scale problems. In µDSDE, exploration is realized by reinitializing the worse individ-

uals, while exploitation is performed through mutation, crossover and directional local

search. In [11,12], the local search technique increases the exploitation ability of the

mDE algorithms. Meanwhile, it also suffers the risk of local convergence.

The third method may be devising parameter and operator adaptive strategies for

mDE algorithms. In [13], a mDE algorithm with vectorized random mutation factor

called MDEVM is proposed. In MDEVM, by randomizing and vectorizing the scale

factor, the diversity of the population can be increased, thereby alleviating the prob-

lems of premature and stagnation. Later, by employing ensemble mutation and oppo-

sitional learning strategies in MDEVM, the ensemble mDE (EMDE) [14] and opposi-

tional ensemble mDE (OEMDE) [18] are presented, resectively. In the mDE algorithm-

s [13,14,18], the parameter or operator adjustment strategies are devised based on ran-

dom uniform distribution, and thus the performance is limited. In [6], an adaptive mDE

algorithm called µJADE is proposed. µJADE is developed based on the JADE [19].

In µJADE, performance is achieved through implementing a combination of parameter

adaptive strategy together with ‘current-by-rand-to-pbest’ mutation, perturbation strat-

egy and restart strategy. However, the µJADE algorithm has quite high complexity of

implementation.

Furthermore, some mDE algorithms are designed for real-world optimization prob-

lems. To deal with the image thresholding problem, opposition-based population initial-

ization (OBPI) is embedded into mDE, and a mODE algorithm is proposed in [8]. It

is shown that mODE converges faster than mDE through the OBPI. To solve the opti-

mization problems of topological active net, mDE with best improvement local search

(deBILS) is proposed in [20].

Compact DE (cDE) [21] is a related work to mDE. In cDE, a statistical description

of the population is used to evolve the search process and the memory requirement is a

population of four individuals.

The existing mDE algorithms may be summarized in Table 1.
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Table 1. Summary of existing mDE algorithms

mDE method mDE Algorithm Main characteristics

Modification of search operators DESP [9] Adaptive disturbance based mutation operator
mDE [10] Random perturbation; modified selection strategies

Local search based method mDELS [11] Local search
µDSDE [12] Directional local search; reinitialize the worse individuals
deBILS [20] Best improvement local search

Adjustment of parameters or operators MDEVM [13] Vectorized random scale factor
EMDE [14] Vectorized random scale factor; ensemble five mutation opera-

tors
OEMDE [18] Vectorized random scale factor; ensemble five mutation opera-

tors; opposition-based learning
µJADE [6] Advanced adaption of scale factor and crossover rate; ‘current-

by-rand-to-pbest’ mutation; perturbation strategy; restart strat-
egy

Applications of mDE mODE [8] Image thresholding problem
deBILS [20] Topological active net optimization problems

Virtual population Compact DE [21] Virtual population with statistical representation

3. Proposed VB-mDE

This section proposes a new mDE algorithm, i.e., vectorized bimodal distribution based
micro-DE algorithm (called VB-mDE). Our proposed VB-mDE algorithm can be illus-
trated by block diagram as in Figure 1.

 

Mutation

Crossover

Selection

Small Population

Settings

Vectorized

Bimodal Distribution

Parameter Adjustment

Current 

Population

New 

Population

CR, F

Initialization

Legends: 

Thin arrow: control mechanism

Wide hollow arrow: data flow

Figure 1. Block diagram of proposed VB-mDE algorithm
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3.1. Basics of DE

DE randomly initializes a population of N p individuals in the search space. It is assumed
that the dimension of the problem is D, the i-th individual in the population is:

Xi = {xi,1,xi,2, · · · ,xi, j, · · ·xi,D} (1)

where xi, j is the j-th dimension of the i-th individual. Initialization of the population is
carried out as follows:

xi, j = xmin
j +(xmax

j − xmin
j )× rand (2)

where xmax
j and xmin

j denote the upper and lower bounds of the j-th dimension across the
population, respectively, and rand is a random number within [0,1].

DE works over three phases in order, namely initialization, search and termination.
After initialization, DE implements three operators, namely mutation, crossover and s-
election to generate the offspring of the population in the search, until the termination
condition is satisfied.

The mutation operator is firstly applied to generate new offspring. The most com-
monly used mutation strategies include:

DE/rand/1:

Vi = Xr1 +F(Xr2 −Xr3) (3)

DE/rand/2:

Vi = Xr1 +F(Xr2 −Xr3)+F(Xr4 −Xr5) (4)

DE/best/1:

Vi = Xbest +F(Xr1 −Xr2) (5)

DE/best/2:

Vi = Xbest +F(Xr1 −Xr2)+F(Xr3 −Xr4) (6)

DE/current-to-best/1:

Vi = Xi +F(Xbest −Xi)+F(Xr1 −Xr2) (7)

where Xr1, Xr2, Xr3, Xr4 and Xr5 are individuals randomly selected from the population,
satisfying r1 ̸= r2 ̸= r3 ̸= r4 ̸= r5 ̸= i, Xbest is the best individual in the population, Vi is
the mutation vector, also called donor vector, and F is the scale factor.

After mutation, the crossover operator is applied between Vi and Xi to generate the
trial vector Ui, as described below:

Ui, j =

{
Vi, j i f rand <CR or j = jrand
Xi, j otherwise (8)

where Ui, j is the j-th dimension of the i-th trial vector Ui, CR is the crossover rate, and
jrand is a random integer within [1,D], which ensures that at least one element of Ui is
from Vi.
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After crossover, the selection operator is applied between the target vector Xi and
the trial vector Ui, as shown below:

Xi =

{
Ui i f f (Ui)≤ f (Xi)
Xi otherwise (9)

where f (Ui) and f (Xi) are the fitness values of Ui and Xi, respectively; and f (Ui) ≤
f (Xi) means Ui is not worse than Xi.

3.2. Vectorized bimodal distribution mechanism for mDE

The bimodal distribution PAM (B-PAM) was proposed in [17], aiming at efficiently com-
bining the global exploration and local exploitation during the searching process. B-PAM
has two advantages, i.e., (1) it can be coded very easily in DE; and (2) it is shown that
B-PAM obtains consistently high performance [16,17].

In this paper, we will employ B-PAM for the mDE, and integrate it into our VB-
mDE algorithm. Furthermore, to enhance the population diversity and reduce the risk of
premature convergence, the vectorized mutation strategy [13] is introduced into B-PAM,
resulting in a vectorized version of B-PAM, called VB-PAM. To be specific, the bimodal
distribution based scale factor in VB-PAM is set as follows:

Fi = [Fi,1,Fi,2, · · · ,Fi, j, · · · ,Fi,D] (i = 1,2, · · · ,N p) (10)

Fi, j =

{
randci(0.65,0.1) i f rand < 0.5
randci(1.5,0.1) otherwise ( j = 1,2, · · · ,D) (11)

From Eq.(10), it can be seen that the scale factor Fi for the i-th individual is vector-
ized. In other words, different values of Fi, j, j = 1, · · · ,D are used in different dimensions
and different individuals [22].

In Eq.(11), randci(θ ,∂ ) is a random number obeying Cauchy distribution. The range
of scale factor F is [0.1,1.5] 2, the same as in [13]. Moreover, if the value generated by
randci(0.65,0.1) is smaller than 0.1, then it will be truncated to 0.1; and if the value gen-
erated by randci(0.65,0.1) is larger than 1.0, then it will be truncated to 1.0. Likewise,
if the value generated by randci(1.5,0.1) is smaller than 1.0, then it will be truncated
to 1.0; and if the value generated by randci(1.5,0.1) is larger than 1.5, then it will be
truncated to 1.5.

The bimodal distribution based crossover rate is set as follows:

CRi =

{
randci(0.1,0.1) i f rand < 0.5
randci(0.95,0.1) otherwise (12)

In Eq.(12), the range of cross rate CR is [0,1], which is the same as in [17]. If the
value generated by randci(0.1,0.1) is smaller than 0, then it will be truncated to 0; and
if the value generated by randci(0.95,0.1) is larger than 1.0, then it will be truncated to
1.0.

In DE, the scale factor F controls the search range of mutation operator. A large
value of F is helpful for global exploration, while a small value of F is beneficial for local

2In mDE, it is very important to keep the population diversity, and therefore the upper bound for scale factor
F is set to be a fairly larger value (i.e., 1.5), which is recommended in [13].
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exploitation. In Eq.(11), the vectorized scale factor F has 50 percent probability being

within [0.1,1.0]D, which focuses on local search; and another 50 percent probability

being within [1.0,1.5]D, which favors the global exploration.

In addition, a large value of CR is helpful for the diversity enhancement, while a

small value of CR is helpful for the fast convergence. In Eq.(12), the crossover rate CRi

has 50 percent probability being distributed around 0.1, which puts emphasis on accel-

erating convergence, and the other 50 percent probability being distributed around 0.95,

which puts emphasis on enhancing the population diversity.

3.3. Pseudocodes of VB-mDE

By using the VB-PAM and small population, our proposed VB-mDE algorithm can be

represented by pseudocodes as shown in Algorithm 1.

The structure of the proposed VB-mDE algorithm would remain unchanged if the

mutation strategy rand/1 is substituted with any other mutation strategies, such as rand/2,

best/1, best/2 and current-to-best/1, in which case the VB-mDE algorithm accordingly

turns to be a VB-mDE/a/b algorithm. In general, VB-mDE has a very simple structure,

just like basic DE, and can be coded and implemented very easily.

3.4. Difference between VB-mDE and MDEVM

MDEVM [13] is a recently-developed mDE algorithm, which originally uses the vector-

ized mutation strategy. Since VB-mDE and MDEVM appear in great similarities, it is

worthwhile to highlight the differences between the two algorithms.

The main difference between VB-mDE and MDEVM lies in the parameter adjust-

ment mechanisms. Firstly, MDEVM generates the scale factor F based on a uniform

distribution, while VB-mDE utilizes bimodal Cauchy distribution to generate the scale

factor F . Secondly, MDEVM does not self-adjust the crossover rate CR but only uses a

constant value CR = 0.9. By contrast, VB-mDE employs bimodal Cauchy distribution to

generate the crossover rate CR.
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Algorithm 1 Vectorized Bimodal Distribution based Micro-DE algorithm (VB-mDE)
1: g=0 // Initialization;
2: Input the small population size N p;
3: for i=1 to N p do
4: for d=1 to D do
5: xi,d = xmin

i + rand × (xmax
i − xmin

i )
6: end for
7: end for
8: Pg = {X1 ,X2, · · · , XN p

}
9: while the termination condition is not met do

10: for i=1 to N p do
11: //Mutation, exemplified by mutation strategy rand/1
12: Fi =

[
Fi,1,Fi,2, · · · ,Fi,d , · · · ,Fi,D

]
is generated by bimodal distribution based on Eq. (11)

13: Select three individuals from population Pg satisfying Xr1 ̸= Xr2 ̸= Xr3 ̸= Xi
14: for d=1 to D do
15: Vi,d = Xr1,d +Fi,d(Xr2,d −Xr3,d)
16: end for
17: //Crossover
18: CRi is generated by bimodal distribution based on Eq. (12)
19: if rand <CRi or j = jrand then
20: Ui,d =Vi,d
21: else
22: Ui,d = Xi,d
23: end if
24: //Selection
25: if f (Ui)≤ f (Xi) then
26: Xnew

i = Ui
27: else
28: Xnew

i = Xi
29: end if
30: end for
31: Xi = Xnew

i , ∀i ∈ {1,2, · · · , N p}
32: g=g+1 // Update generation counter
33: Pg = {X1 ,X2, · · · , XN p

}
// Update population

34: end while

4. Performance evaluations

The proposed VB-mDE is compared with the state-of-the-art mDE and nomal DE algo-
rithms to validate its performance. All the algorithms are tested on 30 benchmark func-
tions from CEC2014 with four different dimensions, i.e., D=10, 30, 50 and 100 [23].
The benchmark functions fall into four groups, i.e., (1) unimodal functions (F1∼F3);
(2) simple multimodal functions (F4∼F16); (3) hybrid functions (F17∼F22); and (4)
composition function (F23∼F30).

The comparisons are summarized using B-S-W triplets, in which B, S and W rep-
resent the numbers of test functions, respectively, on which VB-mDE performs better
than, similarly to and worse than its competitor according to the Wilcoxon rank sum test
at significant level α = 0.05. The maximum number of functional evaluations is set to
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maxFES=2000×D 3, and all the algorithms are implemented 51 times independently.

The simulations are conducted in MATLAB2014a and in a PC with Windows 7, Dual-

core 3.9GHz CPU, 4GB RAM.

4.1. Comparisons between VB-mDE and MDEVM with different small population sizes

Firstly, we compare VB-mDE and MDEVM to investigate whether the vectorized bi-

modal distribution based PAM outperforms the vectorized uniform distribution based

PAM in the mDEs.

We compare the performances of VB-mDE and MDEVM with different small popu-

lation sizes. Table 2 shows the comparisons between VB-mDE and MDEVM with small

population size N p ∈ {4,5,6,7,8,9,10} .

When N p = 4, VB-mDE outperforms MDEVM on 30, 30 and 24 functions, but

loses merely to MDEVM on none, none and 2 functions under the mutation strategies

rand/1, best/1 and current-to-best/1, respectively.

When N p = 5, VB-mDE outperforms MDEVM on 27, 30, 21 and 16 functions,

but loses merely to MDEVM on none, none, 1 and none functions under the mutation

strategies rand/1, best/1, best/2 and current-to-best/1, respectively.

When N p = 6, VB-mDE outperforms MDEVM on 24, 21, 23, 20 and 17 function-

s, but loses merely to MDEVM on 1, 8, none, 2 and 1 functions under the mutation

strategies rand/1, rand/2, best/1, best/2 and current-to-best/1, respectively.

When N p = 7,8,9 and 10, VB-mDE also outperforms MDEVM on most of the test

functions under the five mutation strategies rand/1, rand/2, best/1, best/2 and current-to-

best/1, respectively.

Overall, VB-mDE outperforms MDEVM on 161, 116, 158, 125 and 123 functions,

but loses merely to MDEVM on 10, 19, 10, 23 and 11 functions under the mutation

strategies rand/1, rand/2, best/1, best/2 and current-to-best/1, respectively.

From the comparisons it is clear that VB-mDE performs significantly better than

MDEVM on most of the CEC2014 functions with different small population sizes. This

validates the effectiveness of the vectorized bimodal distribution based PAM being built

in VB-mDE.

3The recommended maxFES value for the normal DE algorithms is 10000×D in [23]. In this study, the
mDE algorithms use a reduced value maxFES = 2000×D.
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Table 2. Comparisons between VB-mDE and MDEVM with small population sizes N p ∈ {4,5,6,7,8,9,10}
for dimension D = 30

Pop. size

B-S-W Mutation
rand/1 rand/2 best/1 best/2 current-to-best/1

N p = 4 30-0-0 - 30-0-0 - 24-4-2
N p = 5 27-3-0 - 30-0-0 21-8-1 16-14-0

VB-mDE N p = 6 24-5-1 21-1-8 23-7-0 20-8-2 17-12-1
vs. N p = 7 24-5-1 19-4-7 19-9-2 21-5-4 18-12-0

MDEVM N p = 8 21-7-2 22-6-2 18-8-4 22-4-4 17-12-1
N p = 9 18-9-3 26-2-2 19-8-3 21-3-6 16-11-3
N p = 10 17-10-3 28-2-0 19-10-1 20-4-6 15-11-4

Total B-S-W 161-39-10 116-15-19 158-42-10 125-32-23 123-76-11

B, S and W represent the numbers of test functions on which VB-mDE performs better than, similarly to,
or worse than MDEVM, respectively.

4.2. Comparisons between VB-mDE and MDEVM with different problem dimensions

We further compare the performances of VB-mDE and MDEVM with four different
problem dimensions. In the comparisons below, the population size for all mDE algo-
rithms is set as N p = 8.

Table 3 shows the comparisons between VB-mDE and MDEVM with four different
dimensions D = 10, 30, 50 and 100.

When D = 10, VB-mDE outperforms MDEVM on 21, 25, 27, 24 and 22 function-
s, but loses to MDEVM only on 3, 1, 2, none and none functions under the mutation
strategies rand/1, rand/2, best/1, best/2 and current-to-best/1, respectively.

When D = 30, VB-mDE outperforms MDEVM on 21, 22, 18, 22 and 17 functions,
but loses to MDEVM only on 2, 2, 4, 4 and 1 functions under the mutation strategies
rand/1, rand/2, best/1, best/2 and current-to-best/1, respectively.

When D = 50 and 100, VB-mDE also outperforms MDEVM on most of the func-
tions under the mutation strategies rand/1, rand/2, best/1, best/2 and current-to-best/1,
respectively.

When considering all four problem dimensions (D = 10, 30, 50 and 100), VB-mDE
outperforms MDEVM on 84, 93, 85, 87 and 69 functions, but loses to MDEVM only on
12, 8, 10, 16 and 9 functions under the mutation strategies rand/1, rand/2, best/1, best/2
and current-to-best/1, respectively.

Based on the above analysis, it can be said that VB-mDE largely outperforms MDE-
VM under any problem dimension and with any mutation strategy. These comparisons
further validate the effectiveness of the vectorized bimodal distribution based PAM being
built in VB-mDE.

10
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Table 3. Comparisons between VB-mDE and MDEVM with different problem dimensions

Dimension

B-S-W Mutation
rand/1 rand/2 best/1 best/2 current-to-best/1

D = 10 21-6-3 25-4-1 27-1-2 24-6-0 22-8-0
VB-mDE D = 30 21-7-2 22-6-2 18-8-4 22-4-4 17-12-1

vs. D = 50 21-6-3 24-5-1 16-11-3 22-2-6 15-11-4
MDEVM D = 100 21-5-4 22-4-4 24-5-1 19-5-6 15-11-4

Total B-S-W 84-24-12 93-19-8 85-25-10 87-17-16 69-42-9

B, S and W represent the numbers of test functions on which VB-mDE performs better than, similarly to,
or worse than MDEVM, respectively.

4.3. Friedman ranks of VB-mDE and MDEVM with different mutation strategies

To compare the performances of VB-mDE and MDEVM algorithms with five different

mutation strategies, Figure 2 plots the Friedman ranks [24] of these algorithms on all the

30 functions .

As can be seen from Figure 2, for all four problem dimensions D, VB-mDE/a/b

always has a smaller rank than its counterpart MDEVM/a/b.

When D = 10, VB-mDE/current-to-best/1 achieves the best rank (i.e., 2.47), VB-

mDE/best/2 the second (i.e., 3.20) , followed by VB-mDE/rand/1 (i.e., 3.50) and others.

When D = 30, VB-mDE/current-to-best/1 achieves the best rank (i.e., 3.10), VB-

mDE/rand/1 the second (i.e., 3.23), followed by VB-mDE/best/2 (i.e., 3.30) and others.

When D= 50, VB-mDE/rand/1 achieves the best rank (i.e., 3.10), VB-mDE/current-

to-best/1 the second (i.e., 3.47), followed by VB-mDE/best/2 (i.e., 3.53) and others.

When D = 100, VB-mDE/current-to-best/1 achieves the best rank (i.e., 3.00), VB-

mDE/rand/1 the second (i.e., 3.20), followed by VB-mDE/best/2 (i.e., 3.83) and others.

From the analysis of Friedman test ranks, it is clear that VB-mDE/rand/1 and VB-

mDE/current-to-best/1 achieve the overall best performance among the ten mDE algo-

rithms. Thus, in the following sections, VB-mDE/rand/1 and VB-mDE/current-to-best/1

will be selected for further comparison.
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Figure 2. Friedman ranks of VB-mDE and MDEVM algorithms

4.4. Convergence comparison between VB-mDE and MDEVMM

Figure 3 plots the convergence graphs of VB-mDE and MDVEM with mutation strate-
gies rand/1 and current-to-best/1 on some typical functions with D = 30.

As can be seen from Figure 3, VB-mDE/a/b has relatively faster convergence speed
than MDEVM/a/b on these functions.

4.5. Comparisons between VB-mDE and other mDEs

The performances of VB-mDE/rand/1 and VB-mDE/current-to-best/1 are further com-
pared with other four mDE algorithms, i.e., DESP [9], EMDE [14], OEMDE [18] and
µJADE [6]. DESP introduces the disturbance with adaptive step size to differential mu-
tation strategy. EMDE is an improved mDE with ensemble mutation strategies. OEMDE
uses both ensemble mutation strategies and opposition-based learning to enhance its per-
formance. µJADE is a small population version of JADE algorithm with very competi-
tive performance.

Table 4 presents the comparisons between VB-mDE and other mDEs with four dif-
ferent dimensions (D=10, 30, 50 and 100).

When D=10, VB-mDE/rand/1 outperforms DESP, EMDE, OEMDE and µJADE on
23, 20, 24 and 10 functions, respectively; but loses to them only on 2, 1, none and 12
functions, respectively. VB-mDE/current-to-best/1 outperforms DESP, EMDE, OEMDE
and µJADE on 25, 22, 27 and 13 functions, respectively; but loses to them only on 2, 1,
none and 15 functions, respectively.

When D=30, VB-mDE/rand/1 outperforms DESP, EMDE, OEMDE and µJADE
on 23, 20, 25 and 12 functions, respectively; but loses to them only on 2, 2, 1 and 9
functions, respectively. VB-mDE/current-to-best/1 outperforms DESP, EMDE, OEMDE
and µJADE on 25, 19, 27 and 13 functions, respectively; but loses to them only on 4, 2,
1 and 7 functions, respectively.
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Figure 3. Convergence graphs of VB-mDE and MDEVM algorithms

When D=50, VB-mDE/rand/1 outperforms DESP, EMDE, OEMDE and µJADE
on 23, 17, 25 and 17 functions, respectively; but loses to them only on 2, 3, 2 and 3
functions, respectively. VB-mDE/current-to-best/1 outperforms DESP, EMDE, OEMDE
and µJADE on 23, 17, 22 and 15 functions, respectively; but loses to them only on 2, 5,
1 and 10 functions, respectively.

When D=100, VB-mDE/rand/1 outperforms DESP, EMDE, OEMDE and µJADE
on 20, 19, 24 and 15 functions, respectively; but loses to them only on 5, 4, 2 and 8
functions, respectively. VB-mDE/current-to-best/1 outperforms DESP, EMDE, OEMDE
and µJADE on 23, 24, 26 and 18 functions, respectively; but loses to them only on 3, 1,
2 and 9 functions, respectively.

When considering all four problem dimension (D=10, 30, 50 and 100), VB-
mDE/rand/1 outperforms DESP, EMDE, OEMDE and µJADE on 89, 76, 98 and 54 func-
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tions, respectively; but loses to them only on 11, 10, 5 and 32 functions, respectively.
VB-mDE/current-to-best/1 outperforms DESP, EMDE, OEMDE and µJADE on 96, 82,
102 and 59 functions, respectively; but loses to them only on 11, 9, 4 and 41 functions,
respectively.

In summary, based on the above analysis, it is clear that VB-mDE largely exhibit-
s better performance than DESP, EMDE and OEMDE with four different dimension-
s (D=10, 30, 50 and 100). Compared with µJADE, when the dimension is small (i.e.,
D=10), VB-mDE is slightly worse than µJADE; when the dimension increases, VB-
mDE exhibits better performance than µJADE.

Table 4. Comparisons between VB-mDE and other mDEs with different problem dimensions

Algorithm

B-S-W Algorithm
DESP EMDE OEMDE µJADE

D = 10 VB-mDE/rand/1 23-5-2 20-9-1 24-6-0 10-8-12
VB-mDE/current-to-best/1 25-3-2 22-7-1 27-3-0 13-2-15

D = 30 VB-mDE/rand/1 23-5-2 20-8-2 25-4-1 12-9-9
VB-mDE/current-to-best/1 25-1-4 19-9-2 27-2-1 13-10-7

D = 50 VB-mDE/rand/1 23-5-2 17-10-3 25-3-2 17-10-3
VB-mDE/current-to-best/1 23-5-2 17-8-5 22-7-1 15-5-10

D = 100 VB-mDE/rand/1 20-5-5 19-7-4 24-4-2 15-7-8
VB-mDE/current-to-best/1 23-4-3 24-5-1 26-2-2 18-3-9

Total B-S-W VB-mDE/rand/1 89-20-11 76-34-10 98-17-5 54-34-32
VB-mDE/current-to-best/1 96-13-11 82-29-9 102-14-4 59-20-41

B, S and W represent the numbers of test functions on which VB-mDE performs better than, similarly to,
or worse than its competitor, respectively.

4.6. Comparisons between VB-mDE and normal DEs

The performances of VB-mDE/rand/1 and VB-mDE/current-to-best/1 are further com-
pared with three normal DEs, namely CoBiDE [17], SaDE [25] and JADE [19]. The
normal DEs are implemented with small population size, i.e., CoBiDE (N p = 8), SaDE
(N p= 8), JADE (N p= 8), and also with normal population size, i.e., CoBiDE (N p= 60),
SaDE (N p = 50) and JADE (N p = 50).

Table 5 presents the comparisons between VB-mDE and DEs with four different
dimensions (D=10, 30, 50 and 100).

When D=10, 30, 50 and 100, VB-mDE/rand/1 and VB-mDE/current-to-best/1 per-
form better than CoBiDE (N p = 8), SaDE (N p = 8) and JADE (N p = 8). However, VB-
mDE/rand/1 and VB-mDE/current-to-best/1 perform similarly to or worse than CoBiDE
(N p = 60), SaDE (N p = 50) and JADE (N p = 50). These make sense as mDE is de-
signed to work on small population size whereas normal DE works on normal population
size.

When considering all four problem dimensions (D=10, 30, 50 and 100), VB-
mDE/rand/1 outperforms CoBiDE (N p = 8), SaDE (N p = 8), JADE (N p = 8), CoBiDE
(N p = 60), SaDE (N p = 50) and JADE (N p = 50) on 70, 103, 74, 53, 41 and 10 func-
tions, respectively; but loses to them on 24, 12, 30, 49, 52 and 94 functions, respectively.
Likewise, VB-mDE/current-to-best/1 outperforms CoBiDE (N p = 8), SaDE (N p = 8),
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JADE (N p = 8), CoBiDE (N p = 60), SaDE (N p = 50) and JADE (N p = 50) on 74, 102,
68, 58, 45 and 10 functions, respectively; but loses to them on 20, 9, 23, 47, 52 and 91
functions, respectively.

Based on the above analysis, it can be seen that VB-mDE generally outperforms
normal DEs, if the normal DEs are implemented directly with small population size.
This also reinforces the motivation that mDE algorithms should be elaborately designed,
rather than simply implementing normal DE algorithms with small population size.

It can be seen that VB-mDE generally loses to normal DEs with large population
size. This is perceivable because DEs with large population size can maintain better
diversity. At the same time, it is also worth noting that DEs with large population size
cannot be used for some resource constrained optimization applications.

Table 5. Comparisons between VB-mDE and normal DEs with different problem dimensions

CoBiDE SaDE JADE CoBiDE SaDE JADE

Algorithm

B-S-W Algorithm
(N p = 8) (N p = 8) (N p = 8) (N p = 60) (N p = 50) (N p = 50)

D = 10 VB-mDE/rand/1 17-8-5 24-2-4 15-6-9 18-5-7 8-8-14 3-5-22
VB-mDE/current-to-best/1 21-6-3 25-2-3 16-9-5 20-4-6 11-6-13 4-10-16

D = 30 VB-mDE/rand/1 21-6-3 27-1-2 17-4-9 13-5-12 11-4-15 2-4-24
VB-mDE/current-to-best/1 23-5-2 26-3-1 21-5-4 15-4-11 11-6-13 3-3-24

D = 50 VB-mDE/rand/1 19-6-5 27-1-2 17-5-8 11-6-13 11-8-11 3-5-22
VB-mDE/current-to-best/1 18-9-3 26-3-1 17-9-4 13-4-13 11-9-10 1-3-26

D = 100 VB-mDE/rand/1 13-6-11 25-1-4 25-1-4 11-2-17 11-7-12 2-2-26
VB-mDE/current-to-best/1 12-6-12 25-1-4 14-6-10 10-3-17 12-2-16 2-3-25

Total B-S-W VB-mDE/rand/1 70-26-24 103-5-12 74-16-30 53-18-49 41-27-52 10-16-94
VB-mDE/current-to-best/1 74-26-20 102-9-9 68-29-23 58-15-47 45-23-52 10-19-91

B, S and W represent the numbers of test functions on which VB-mDE performs better than, similarly to,
or worse than normal DE, respectively.

5. Conclusions

In this paper, a novel bimodal distribution based micro-DE (VB-mDE) has been devel-
oped. In our proposed VB-mDE, the vectorized bimodal distribution mechanism is em-
ployed to adjust the control parameters. Specifically, the scale factor F and cross rate CR
are adjusted by bimodal Cauchy distribution, and the scale factor F is further vectorized.
In this way, our proposed VB-mDE can simultaneously conciliate global exploration and
local exploitation more efficiently in the mDE.

Comprehensive experiments have been carried out to compare the proposed VB-
mDE with the state-of-the-art mDEs and normal DEs using the CEC2014 benchmark
functions. Firstly, it is observed that our proposed VB-mDE outperforms the state-of-the-
art mDEs (including MDEVM, DESP, EMDE, OEMDE and µJADE) on most functions.
This demonstrates the effectiveness of vectorized bimodal distribution mechanism in
VB-mDE. Secondly, our proposed VB-mDE outperforms the normal DEs (including
CoBiDE, SaDE and JADE), when the normal DEs are implemented directly with small
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population size. Compared with DEs with large population size, VB-mDE is defeated in
the competition.

There are several aspects worth exploring in the future. Firstly, it is worthwhile to
look into other parameter adjustment mechanism to further improve the performance
of mDEs. Secondly, this paper only considers the parameter adaptive mechanism for
mDE. However, actually, multi-strategy adaptive mechanism may be useful for mDEs as
well. Finally, mDEs may be extended to other types of problems, such as constrained,
dynamic, multi-objective and real-world problems.
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Appendix 1

Table A1. Mean error and standard deviation of VB-mDE and MDEVM (N p=8, D=30)

VB-mDE/rand/1 MDEVM/rand/1 VB-mDE/best/1 MDEVM/best/1 VB-mDE/cur2best/1 MDEVM/cur2best/1
F01 6.77E+05 1.07E+06 + 2.17E+06 1.89E+06 - 3.85E+05 7.72E+05 +

(4.67E+05) (8.54E+05) (4.45E+06) (1.13E+06) (3.05E+05) (1.53E+06)
F02 1.99E+02 8.09E+03 + 4.96E+07 1.68E+04 - 0.00E+00 8.80E+00 +

(8.30E+02) (8.83E+03) (1.91E+08) (2.42E+04) (0.00E+00) (1.39E+01)
F03 1.59E+02 9.33E+03 + 2.12E+03 2.03E+04 + 2.74E-06 1.50E+03 +

(4.92E+02) (8.92E+03) (4.13E+03) (1.80E+04) (8.75E-06) (2.44E+03)
F04 7.38E+01 7.35E+01 = 8.26E+01 9.78E+01 = 5.63E+01 4.79E+01 =

(4.61E+01) (4.83E+01) (4.49E+01) (3.56E+01) (4.34E+01) (3.60E+01)
F05 2.05E+01 2.10E+01 + 2.05E+01 2.10E+01 + 2.05E+01 2.10E+01 +

(5.74E-02) (5.03E-02) (6.37E-02) (5.04E-02) (5.13E-02) (4.78E-02)
F06 1.83E+01 1.30E+01 - 1.96E+01 2.66E+01 + 1.29E+01 1.48E+01 =

(2.86E+00) (3.31E+00) (3.02E+00) (3.73E+00) (4.23E+00) (4.20E+00)
F07 1.86E-02 7.13E-02 + 4.36E-01 7.76E-01 = 4.62E-02 4.94E-02 =

(5.24E-02) (2.20E-01) (9.91E-01) (3.39E+00) (6.71E-02) (8.62E-02)
F08 5.60E+00 5.13E+01 + 4.75E+01 1.06E+02 + 6.43E+00 5.35E+01 +

(4.02E+00) (1.52E+01) (2.07E+01) (3.23E+01) (6.01E+00) (1.54E+01)
F09 1.13E+02 6.06E+01 - 9.59E+01 1.30E+02 + 9.22E+01 7.10E+01 -

(1.21E+01) (2.76E+01) (2.06E+01) (3.60E+01) (1.38E+01) (1.58E+01)
F10 1.59E+01 1.06E+03 + 2.07E+02 2.46E+03 + 3.62E+01 1.62E+03 +

(3.24E+01) (4.29E+02) (2.10E+02) (5.31E+02) (2.64E+01) (6.26E+02)
F11 4.09E+03 7.01E+03 + 3.76E+03 3.44E+03 - 3.80E+03 6.33E+03 +

(3.86E+02) (1.21E+03) (3.99E+02) (9.54E+02) (3.26E+02) (1.46E+03)
F12 8.06E-01 2.82E+00 + 8.24E-01 2.47E+00 + 8.44E-01 2.88E+00 +

(1.20E-01) (3.47E-01) (1.28E-01) (1.02E+00) (1.34E-01) (3.38E-01)
F13 4.39E-01 5.01E-01 + 5.05E-01 5.61E-01 = 4.65E-01 5.00E-01 =

(8.12E-02) (1.04E-01) (1.16E-01) (1.57E-01) (7.42E-02) (1.04E-01)
F14 2.90E-01 3.49E-01 = 4.54E-01 4.30E-01 = 2.64E-01 3.48E-01 +

(4.43E-02) (1.58E-01) (7.60E-01) (2.71E-01) (4.73E-02) (1.51E-01)
F15 1.16E+01 1.63E+01 = 1.31E+02 3.70E+02 + 1.73E+01 1.64E+01 =

(1.47E+00) (1.03E+01) (3.55E+02) (3.74E+02) (6.90E+00) (1.26E+01)
F16 1.13E+01 1.25E+01 + 1.10E+01 1.13E+01 + 1.12E+01 1.22E+01 +

(3.54E-01) (7.49E-01) (4.54E-01) (7.85E-01) (4.35E-01) (5.71E-01)
F17 6.04E+04 1.16E+05 + 2.24E+05 3.81E+05 + 7.91E+04 3.38E+05 +

(4.10E+04) (6.97E+04) (4.50E+05) (2.32E+05) (7.19E+04) (2.91E+05)
F18 3.31E+03 2.68E+03 = 4.46E+06 4.08E+03 = 1.98E+03 3.65E+03 =

(3.95E+03) (3.24E+03) (2.26E+07) (4.34E+03) (2.22E+03) (4.28E+03)
F19 1.02E+01 1.66E+01 = 2.74E+01 2.72E+01 - 1.18E+01 1.26E+01 =

(1.48E+01) (2.31E+01) (4.72E+01) (2.86E+01) (1.62E+01) (1.73E+01)
F20 3.32E+03 1.74E+04 + 6.15E+03 3.70E+04 + 4.38E+02 3.67E+03 +

(4.20E+03) (1.17E+04) (7.08E+03) (1.99E+04) (4.45E+02) (3.84E+03)
F21 4.22E+04 1.09E+05 + 8.09E+04 2.97E+05 + 3.60E+04 1.51E+05 +

(4.53E+04) (8.50E+04) (1.00E+05) (2.81E+05) (3.74E+04) (1.88E+05)
F22 2.86E+02 3.30E+02 = 4.35E+02 6.17E+02 + 2.61E+02 2.72E+02 =

(1.17E+02) (2.18E+02) (2.22E+02) (2.41E+02) (1.11E+02) (1.15E+02)
F23 3.15E+02 3.15E+02 + 3.16E+02 3.15E+02 = 3.15E+02 3.15E+02 +

(6.62E-12) (1.11E-06) (1.01E+00) (2.59E-01) (2.84E-11) (6.05E-10)
F24 2.32E+02 2.45E+02 + 2.52E+02 2.59E+02 + 2.43E+02 2.45E+02 =

(6.36E+00) (6.27E+00) (8.18E+00) (9.50E+00) (6.95E+00) (8.23E+00)
F25 2.06E+02 2.08E+02 + 2.15E+02 2.18E+02 = 2.09E+02 2.10E+02 =

(1.87E+00) (3.38E+00) (5.96E+00) (8.45E+00) (3.89E+00) (4.48E+00)
F26 1.06E+02 1.10E+02 + 1.39E+02 1.54E+02 + 1.36E+02 1.22E+02 =

(2.37E+01) (2.99E+01) (5.60E+01) (6.48E+01) (4.81E+01) (4.14E+01)
F27 4.98E+02 6.05E+02 + 7.73E+02 9.21E+02 + 4.92E+02 6.35E+02 +

(1.48E+02) (1.29E+02) (2.16E+02) (2.86E+02) (1.14E+02) (1.52E+02)
F28 9.75E+02 1.08E+03 + 1.35E+03 1.99E+03 + 9.84E+02 1.09E+03 +

(5.66E+01) (1.65E+02) (3.15E+02) (5.52E+02) (9.17E+01) (1.19E+02)
F29 1.36E+03 1.28E+03 = 2.01E+03 1.57E+03 = 1.17E+03 1.39E+03 +

(3.71E+02) (3.27E+02) (2.66E+03) (6.81E+02) (3.88E+02) (4.57E+02)
F30 2.13E+03 2.77E+03 + 3.62E+03 5.04E+03 + 2.49E+03 2.44E+03 =

(7.60E+02) (9.04E+02) (9.64E+02) (3.77E+03) (8.97E+02) (1.07E+03)
B-S-W 21-7-2 18-8-4 17-12-1

+, = and - symbolize VB-mDE being better than, similar to, or worse than MDEVM, respectively.
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Table A2. Mean error and standard deviation of VB-mDE and other mDEs (N p=8, D=30)

VB-mDE/rand/1 DESP EMDE OEMDE µJADE
F01 6.77E+05 3.20E+06 + 7.12E+05 = 6.61E+07 + 1.08E+07 +

(4.67E+05) (1.57E+06) (4.98E+05) (2.68E+08) (6.24E+06)
F02 1.99E+02 1.09E+04 + 8.35E+03 + 1.06E+04 + 4.91E-10 -

(8.30E+02) (8.84E+03) (7.99E+03) (9.91E+03) (3.51E-09)
F03 1.59E+02 7.10E+04 + 8.66E+03 + 6.02E+05 + 6.50E-04 -

(4.92E+02) (1.89E+04) (8.20E+03) (3.54E+06) (2.63E-03)
F04 7.38E+01 1.25E+02 + 6.08E+01 = 8.34E+01 = 5.88E+01 -

(4.61E+01) (3.82E+01) (3.45E+01) (4.14E+01) (4.48E+01)
F05 2.05E+01 2.03E+01 - 2.10E+01 + 2.10E+01 + 2.04E+01 -

(5.74E-02) (4.17E-01) (5.18E-02) (2.02E-01) (1.84E-01)
F06 1.83E+01 2.44E+01 + 1.61E+01 - 2.25E+01 = 2.62E+01 +

(2.86E+00) (3.36E+00) (3.48E+00) (9.89E+00) (1.71E+00)
F07 1.86E-02 1.27E-02 = 2.23E-01 + 1.00E-01 + 6.03E-03 =

(5.24E-02) (1.59E-02) (1.16E+00) (1.65E-01) (1.19E-02)
F08 5.60E+00 1.07E+02 + 6.36E+01 + 6.22E+01 + 3.31E+01 +

(4.02E+00) (2.43E+01) (1.62E+01) (1.87E+01) (8.87E+00)
F09 1.13E+02 1.34E+02 + 7.66E+01 - 8.54E+01 - 1.62E+02 +

(1.21E+01) (3.52E+01) (2.52E+01) (2.48E+01) (1.87E+01)
F10 1.59E+01 2.67E+03 + 1.38E+03 + 3.56E+03 + 1.05E+03 +

(3.24E+01) (7.16E+02) (4.91E+02) (2.06E+03) (3.79E+02)
F11 4.09E+03 3.38E+03 - 5.84E+03 + 6.48E+03 + 5.32E+03 +

(3.86E+02) (8.16E+02) (2.23E+03) (1.55E+03) (7.49E+02)
F12 8.06E-01 1.05E+00 + 2.83E+00 + 2.15E+00 + 8.66E-01 =

(1.20E-01) (4.36E-01) (3.49E-01) (1.23E+00) (5.46E-01)
F13 4.39E-01 4.28E-01 = 4.90E-01 + 5.25E-01 + 4.57E-01 =

(8.12E-02) (9.84E-02) (9.74E-02) (1.11E-01) (6.62E-02)
F14 2.90E-01 2.88E-01 = 3.58E-01 = 3.49E-01 + 3.40E-01 =

(4.43E-02) (7.50E-02) (1.70E-01) (1.35E-01) (1.57E-01)
F15 1.16E+01 4.23E+01 + 1.75E+01 + 2.26E+01 + 1.50E+01 +

(1.47E+00) (2.15E+01) (1.18E+01) (2.77E+01) (2.99E+00)
F16 1.13E+01 1.14E+01 = 1.23E+01 + 1.27E+01 + 1.14E+01 =

(3.54E-01) (7.11E-01) (7.57E-01) (6.80E-01) (9.77E-01)
F17 6.04E+04 7.97E+05 + 8.74E+04 + 2.60E+05 + 5.10E+05 +

(4.10E+04) (5.26E+05) (5.24E+04) (6.38E+05) (4.62E+05)
F18 3.31E+03 3.67E+03 = 2.85E+03 = 3.70E+03 = 1.78E+03 =

(3.95E+03) (4.25E+03) (3.41E+03) (3.68E+03) (2.79E+03)
F19 1.02E+01 4.62E+01 + 1.59E+01 = 2.10E+01 + 8.59E+00 -

(1.48E+01) (4.40E+01) (2.24E+01) (2.43E+01) (1.19E+00)
F20 3.32E+03 4.89E+04 + 1.11E+04 + 1.46E+04 + 2.70E+02 -

(4.20E+03) (2.72E+04) (8.53E+03) (1.01E+04) (2.70E+02)
F21 4.22E+04 2.86E+05 + 4.91E+04 = 1.09E+05 + 2.31E+04 -

(4.53E+04) (2.28E+05) (3.82E+04) (7.21E+04) (1.61E+04)
F22 2.86E+02 5.92E+02 + 3.77E+02 = 4.19E+02 + 2.94E+02 =

(1.17E+02) (2.17E+02) (2.15E+02) (2.10E+02) (1.43E+02)
F23 3.15E+02 3.20E+02 + 3.15E+02 + 3.15E+02 + 3.15E+02 -

(6.62E-12) (4.14E+00) (4.33E-10) (4.47E-05) (3.95E-13)
F24 2.32E+02 2.61E+02 + 2.47E+02 + 2.46E+02 + 2.28E+02 -

(6.36E+00) (1.03E+01) (7.45E+00) (7.32E+00) (3.98E+00)
F25 2.06E+02 2.24E+02 + 2.10E+02 + 3.03E+02 + 2.11E+02 +

(1.87E+00) (6.15E+00) (5.01E+00) (8.39E+01) (2.52E+00)
F26 1.06E+02 1.63E+02 + 1.32E+02 + 2.56E+02 + 1.08E+02 =

(2.37E+01) (4.88E+01) (4.63E+01) (1.16E+02) (2.74E+01)
F27 4.98E+02 7.51E+02 + 7.20E+02 + 7.32E+02 + 5.43E+02 +

(1.48E+02) (2.79E+02) (1.33E+02) (2.92E+02) (1.74E+02)
F28 9.75E+02 2.40E+03 + 1.23E+03 + 2.15E+03 + 1.03E+03 =

(5.66E+01) (5.58E+02) (2.42E+02) (1.78E+03) (1.35E+02)
F29 1.36E+03 1.39E+07 + 1.36E+03 = 1.23E+07 = 6.68E+05 +

(3.71E+02) (2.55E+07) (3.91E+02) (8.79E+07) (2.30E+06)
F30 2.13E+03 2.35E+04 + 2.82E+03 + 3.13E+03 + 3.06E+03 +

(7.60E+02) (1.27E+04) (8.58E+02) (8.88E+02) (9.45E+02)
B-S-W 23-5-2 20-8-2 25-4-1 12-9-9

+, = and - symbolize VB-mDE being better than, similar to, or worse than its competitor, respectively.
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