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Disease discovery-based emotion lexicon: A heuristic approach to characterise sicknesses in 

microblogs 

 

Abstract 

The analysis of microblogging data has been widely used to discover valuable resources for 

timely identification of critical illness-related incidents and serious epidemics. Despite the 

numerous efforts made in this field, making an accurate and timely prediction of incidents and 

outbreaks based on certain clinical symptoms remains a great challenge. Hence, providing an 

investigative method can be crucial in characterising a disease state. This study proposes a 

heuristic mechanism by using an unsupervised learning technique to efficiently detect disease 

incidents and outbreaks from the tweet content. We categorised the types of emotions that are 

highly linked to a specific disease and its related terminologies. Emotions (anger, fear, sadness, 

and joy) and diabetes-related terminologies were extracted using the NRC Affect Intensity 

Lexicon and a part-of-speech tagging tool. A two-cluster solution was established and validated. 

The classification result showed that K-means clustering with 2 centroids had the highest 

classification accuracy (96.53%). The relationship between diabetes-related terms (in the form of 

tweets) and emotions were established and assessed using the association rules mining technique. 

The results showed that diabetes-related terms were exclusively associated with fear emotions. 

This study offers a novel mechanism for disease recognition and outbreak detection in 

microblogs which is useful in making informed decisions about a disease state. 

 

Keywords: diabetes; emotion lexicon; disease detection; part-of-speech tagging; association 

rules mining; Twitter 
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1. Introduction 

Social media websites offer a promising opportunity for tracking people’s opinions about 

various health-related issues around the world. These websites provide users with the means to 

exchange thoughts and feelings on health-related topics. Using social media platforms can 

increase the chance of sharing personal experience among users at any time and place. Currently, 

social media is being used by public health organisations as a platform to help them reach a 

wider audience (Sharma & Kaur, 2017). Using social media sites to map people's health 

behaviour, disease transmission procedure and experience has boosted information diffusion 

(Benton, Coppersmith, & Dredze, 2017). Health-related topics that are shared between online 

users can be help health experts improve clinicians' skills, training simulations, and infectious 

disease monitoring. 

Twitter is one popular example of social media sites that offer a reliable medium for users to 

freely exchange various health-related information (Motamedi, Jamshidi, Rejaie, & Willinger, 

2020; Nejad, Delghandi, Bali, & Hosseinzadeh, 2020; Xu et al., 2016). Data extracted from 

Twitter data can help health organisations, such as state health departments and large healthcare 

systems, to use timely health statistics for decision-making (Mejova, Weber, & Macy, 2015). 

This has motivated many scholars to use Twitter in an attempt to extract knowledge related to 

public health and chronic disease (e.g., diabetes) (Lu, Wu, Liu, Li, & Zhang, 2017).  

Diabetes is one of the most complicated diseases that annually imposes heavy costs on 

economies worldwide. There are two types of diabetes: type 1 (often abbreviated as T1 or T1D 

on Twitter) which occurs when the pancreas does not produce sufficient insulin. Type 2 (T2 or 

T2D) develops when the body does not effectively respond to insulin. With T2, most patients 

tend to experience certain behavioural changes, such as adopting a healthy diet and increasing 
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physical activity, in an attempt to reduce diabetes-related complications (Tamarai, Bhatti, & 

Reddy, 2019). Type 2 diabetes is the leading cause of premature deaths, it can lead to a number 

of health issues, including heart diseases, stroke, kidney disease, blindness, nerve damage, leg 

and foot amputations (Asif, 2014). In general, patients with diabetes are advised to control blood 

sugar levels which includes eating healthy food, regular exercise, and medicines (Wilt, 

Kansagara, Horwitch, & Barry, 2018). However, all these aspects and many others are shared by 

diabetic patients via online social networking websites. Diabetes-related information, such as 

medication and outcomes, may offer an effective means for characterising individuals’ health, 

thus providing key insights into their disease state. This leads us to argue that extracting latent 

information related to diabetes symptoms from microblogs can help improve the efficiency of 

early disease detection methods. 

Many scholars have examined the potential of different machine learning algorithms in 

tracking users’ sharing of information (Yavary, Sajedi, & Abadeh, 2020). Machine learning is 

one example that gives the system the capability to automatically learn and improve over time 

(Habib, Asghar, Khan, Habib, & Khan, 2019). Classification algorithms have been extensively 

used by many scholars to process social media content and predict a specific outcome (Choubey, 

Kumar, Tripathi, & Kumar, 2020). In a health context, there has been an increasing attention on 

the use of social media and the Internet for general disease surveillance (Priyadarshi & Saha, 

2020). For instance, a study by Sarsam, Al-Samarraie, Ismail, Zaqout, and Wright (2020b) 

proposed a real-time bio surveillance mechanism in order to predict the early-stage of migraine 

disease. The authors researchers used machine learning algorithms to extract migraine-related 

symptoms based on the interconnection between emotional and climatic factors embedded in 

Twitter messages. Molaei, Khansari, Veisi, and Salehi (2019) introduced an entropy-based 
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method for minimising errors as well as time complexity in the event of predicting the influenza-

like illness (ILI) based on data derived from Twitter. The authors found that deep neural network 

and entropy-based methods help in minimising the mean average error by up to 25% compared 

to other nonlinear methods. Another study by Ji, Chun, Wei, and Geller (2015) investigated the 

main issues of spreading public concern about epidemics. They distinguished personal tweets 

into negative and positive tweets using Naïve Bayes classifier. From a recognition perspective, 

Rani (2018) proposed the “Bigram Text Classification” to track the diabetes disease using 

special features generated from “High Ranked Feature Extraction Algorithm”, followed by 

classifying the tweets using support vector machine classifier (SVM).  

Based on these, it can be observed that most of the utilised methods in previous studies were 

supervised in nature. In addition, the problem of filtering which content is relevant to a given 

topic of interest is still a matter of debate (Carvalho, Rosa, Brogueira, & Batista, 2017). 

According to Carvalho et al. (2017), it is very unlikely that more than a few thousand tweets are 

relevant to the search query. Therefore, this study aims at proposing a new approach to 

characterising sicknesses in microblogs. For this purpose, we have chosen diabetes as a case for 

this study. The proposed approach provides a heuristic way for detecting diabetes using emotions 

(embedded in the body of tweets) and association rules mining (unsupervised learning 

technique). In this study, we have three main objectives: extracting the diabetes-related groups 

from Twitter; identifying the types of emotions prominent in each group; and finding the types of 

emotions that are associated with diabetes-related terms. To accomplish our goals, an 

unsupervised learning technique was used to cluster diabetes groups from the collected tweets 

and to identify potential relationships between diabetes-related terms and diabetes-related 

emotions.  
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2. Literature review 

The rapid increase in user-generated online content has become a means for clinicians and 

public health practitioners to gather health-related data about. All publicly available are is 

invaluable resources to obtain some set of goals (Lee, Agrawal, & Choudhary, 2013). Because of 

that, social media platforms can be effectively used as new surveillance systems, especially when 

the traditional methods of disease surveillance take a long time to detect a potential outbreak (St 

Louis & Zorlu, 2012). Social media websites for clinicians, patients, and general public can offer 

a rich context for users to share healthy lifestyles, which helps in making informed medical 

decisions and improves personal health management (Zhou, Zhang, Yang, & Wang, 2018). 

Twitter, an example of such websites, provides an effective and efficient way for users to 

communicate and share their personal experience (Wakamiya, Kawai, & Aramaki, 2018). This 

also includes a rich reflection of individuals’ emotions which influence their decision-making 

and attitude (Wang, Chen, Thirunarayan, & Sheth, 2012). Predicting user’s emotion from shared 

messages on social media is referred to as “sentiment analysis” (Arora & Kansal, 2019). 

Sentiment analysis can be used to identify and map online opinions shared between users in the 

social media space (Chen, Hossain, & Zhang, 2020). Decisions that are linked to health domain 

and individuals’ behaviours usually take place in emotionally-laden contexts (Ferrer & Mendes, 

2018). Sarsam, Al-Samarraie, Ismail, Zaqout, and Wright (2020a) explored the interconnection 

between certain emotional and climatic factors related to the migraine disease. The authors found 

that sad emotions can play a significant role in disease recognition. In the same context, a work 

by Mannix et al. (2016) highlighted that frustration, depression, and anxiety might be linked to 

specific disease conditions. For example, the emotions that reflect anger can potentially influence 

individuals’ health by causing both chemical and hormonal imbalance (Yadav, Yadav, & 
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Sapkota (2017). In addition, fear has the potential to trigger anger response which can influence 

individuals’ blood pressure (Yadav et al., 2017). Also, in diabetes-related studies, a work by 

Ghaffari, Salsali, Rahnavard, and Parvizy (2014) revealed that several diabetic patients are likely 

to experience fear and anxiety responses. Therefore, analysing the emotions in tweets can offer 

some important applications to public opinion (Bravo-Marquez, Frank, Mohammad, & 

Pfahringer, 2016), healthcare (Dadich & Olson, 2017), and disease recognition (Schwartz et al., 

2018). Many previous studies have been conducted to examine ways for characterising disease or 

interspecific associations from Twitter messages. For instance, Hayate, Wakamiya, and Aramaki 

(2016) studied the role of analysing tweets to predict Influenza outbreak in a specific time and 

place. Another study by Lee et al. (2013) used data obtained from Twitter to develop a real-time 

disease surveillance system in an attempt to track both Influenza and cancer activities. The 

authors analysed the textual data and investigated the popularity of terms based on the type of 

disease, symptoms, and treatments. They also used Natural Language Processing (NLP) in order 

to analyse emotions within text (Giatsoglou et al., 2017). In addition, important document 

features can be further used to provide a successful sentiment detection process using frequent 

terms, parts-of-speech, emotional terms and phrases (Chatzakou & Vakali, 2015). 

Based on these, it can be concluded that emotions of online users can be effectively used in 

conjunction with supervised learning algorithms in order to effectively detect diseases. In this 

study, we proposed a heuristic approach to characterise diabetes by examining patient-related 

emotions in tweets. Using affect intensity lexicon method, we were able to extract four types of 

emotions: anger, fear, sadness, and joy. Disease-related terminologies were also extracted by 

means of the part-of-speech tagging technique. The relation between diabetes-related 
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terminologies and diabetes-related emotions were shaped and assessed using the association 

rules mining technique.  

 

3. Procedure 

Figure 1 summarises the main stages in this study, including data collection, data pre-

processing, text clustering, emotion extraction, part-of-speech tagging, association rules mining, 

and validation.  

 

 

Figure 1: Data collection and pre-processing procedure  
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3.1 Data collection 

A total of 573,718 English tweets were collected within a time span of six months (January 

15th 2019 till mid-June 2019). The data collection process was accomplished by using the Twitter 

free streaming Application Programming Interface (API) based on the recommendation of 

Sarsam, Al-Samarraie, and Omar (2019). The main keywords used in tweet searching were 

‘diabetes’ and ‘diabetes disease’.  

 

3.2 Data pre-processing and text clustering  

Several pre-processing techniques were applied to process the collected data for future 

analysis. Data transformation was applied to the collected tweets in order to obtain a manageable 

representation. This is due to that most of the popular machine learning algorithms may 

experience difficulties in processing textual data smoothly. This is why we considered the option 

of using the bag-of-words (or set-of-words) via n-gram tokenizer method to extract the features 

of the retrieved data. All the tokens were transformed to a lowercase form before applying the 

lemmatisation technique. Lemmatisation, in general, uses vocabulary and morphological analysis 

of word and removes inflectional endings to convert words to a dictionary form (Balakrishnan, 

Humaidi, & Lloyd-Yemoh, 2016). The stop-words method was applied on the lemmatised 

words. The length of each tweet was normalised using the L2 norm. The L2 norm was calculated 

based on the minimisation of the sum of the squares of the residuals, that permits the estimation 

of the values of unspecified parameters (Inal, Yetkin, Bulbul, & Bilgen, 2018).  

After the data pre-processing stage, the K-means clustering algorithm was utilised based on 

the recommendations of previous works (e.g., Patowary, Sarmah, & Bhattacharyya, 2020; 

Sarsam & Al-Samarraie, 2018a) to extract information about diabetes disease. This was achieved 
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by categorising the data into k groups. K-means calculates the k centroid and assigns each point 

to the relevant cluster centroid (the centroid for each cluster is the point to which the sum of 

distances from all the instances in that cluster is minimised). In order to determine the number of 

clusters using K-means algorithm, we used the “Log-likelihood” technique (Witten, Frank, Hall, 

& Pal, 2016). According to Witten et al. (2016), log-likelihood is a probabilistic clustering 

approach that can be measured over the training set used by the clustering algorithm. The larger 

the log-likelihood value, the better the model fit. Here, we implemented a density-based method 

to each cluster produced by the K-means algorithm. The performance of K-means was examined 

with different number of centroids (2, 3, 4, and 5). The log-likelihood values were: 35.04 for 2 

centroids, 21.94 for 3 centroids, 19.86 for 4 centroids, and 12.73 for 5 centroids. Figure 2 shows 

the feature values for each cluster (the higher the value is, the darker the colour). After finding 

the number of groups that share similar features, we extracted the embedded emotions from the 

two clusters to deduce the features relevant to diabetes disease. In this study, we argued that 

there is a particular type of emotion (in each group) that is mainly related to diabetes disease. 

Next section explains the emotion extraction process in details. 

 

Figure 2: K-means clustering result 
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3.3 Emotion extraction 

Emotions were extracted from the obtained clusters using the AffectiveTweets package. The 

NRC Affect Intensity Lexicon technique was applied, as recommended by Mohammad (2017), 

to extract the embedded emotions from the collected tweets. This method consists of a list of 

English words and their associations that we used to represent four basic emotions (anger, fear, 

sadness, and joy). For a given word and emotion X, the scores ranged between 0 and 1. A score 

of 1 means that the word conveys the highest amount of emotion X. A score of 0 means that the 

word conveys the lowest amount of emotion X. Then, the emotional features for each tweet were 

calculated by adding the relevant associations of words for a given lexicon. 

 

3.4 Part-of-speech tagging 

After finding the dominant emotions in each cluster, the part-of-speech tagging technique 

was applied to each cluster in order to extract the relevant features. Part-of-speech tagging is 

commonly used in social media analysis due to its role in identifying words that can be used in 

different parts of speech (Ritter, Etzioni, & Clark, 2012). In this study, we extracted sentences 

from each tweet using the Penn State Treebank tokenizer in conjunction with the Document Pre-

processor approach. Then, the Penn State Treebank tokenizer was applied again to obtain 

relevant words before applying the Probabilistic context-free grammar parser. This process 

enabled us to extract the ‘noun’ words from the sentence that were analysed using the association 

rules mining technique. The noun words were used to form the terminologies of diabetes. 

Finally, the relationship between these terminologies and the type of emotions in the two clusters 

was established using association rules.  
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3.5 Apriori algorithm 

The Apriori algorithm was used in this study to define patterns within a set of items and 

to make a meaningful relationship between the data features. We configured the Apriori 

algorithm by setting the delta value at 0.05 in order to reduce the support until a minimum 

support is reached. The minimum metric score was set at 0.9, while the upper bound and lower 

bound support were set at 1.0. Then, we invoked Apriori to find the emotional types associated 

with certain disease-related terminologies.  

 

3.6 Validation stage 

The validation process of the unsupervised learning phase was carried out in several steps 

using the Waikato Environment for Knowledge Analysis (WEKA) tool. First, we set the ground 

truth by labelling the obtained data with two target labels: ‘Yes’ (instances related to diabetes) 

and ‘No’ (instances not related to diabetes). Second, the prediction validity of the K-means 

algorithm was also established using  the “ClassificationViaClustering” classifier (Witten et al., 

2016). This was achieved by assessing the ground truth of the two classes. 

ClassificationViaClustering is a meta-classifier that allows converting a clustering task into a 

classification task. In this way, the majority of classes in each cluster can be used in the 

prediction process. In addition, ClassificationViaClustering was also used to find the minimum 

error assignment of class labels in which a particular class label can only be assigned to one 

cluster. The K-means algorithm was applied within the ClassificationViaClustering classifier for 

four times. The classification results are explained in section 4.2. 
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4. Results 

In each cluster, four types of emotions were extracted at the very early stage: anger, fear, 

sadness, and joy. Our results showed that among these emotions, only ‘sadness’ and ‘joy’ had a 

zero value (e.g., tweets with no sadness and joy emotions). The percentage of the ‘fear’ type 

(92%) in Cluster 1 was higher than Cluster 2 (8%) (see Figure 3a). In contrast, the percentage of 

the anger emotion category was higher in Cluster 2 (90%) than in Cluster 1 (10%) (see Figure 

3b). As a result, only one type of emotions was found to be dominant in each cluster. This led us 

to label Cluster 1 as ‘Fear group’ and Cluster 2 as ‘Anger group’.  

 

Figure 3: Fear vs. anger emotions in the two clusters  

 

 

4.1 Results of association rules mining and part-of-speech tagging methods 

After recognising the type of emotion in each cluster, the Apriori algorithm was invoked on 

the data/nouns. The constructed rules were evaluated using both support and confidence scores 

as shown in Figure 4. Figure 4a shows the highly associated rules (top-ten rules) with the fear 

emotion in Cluster 1. Figure 4b shows the top-ten words associated with the anger emotion type 

in Cluster 2. From Figure 4 it can be observed that the terms associated with the fear emotion in 

Cluster 1 are more relevant to the recognition of diabetes disease than the terms found in Cluster 
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2 (anger emotion). As such, it can be concluded that the fear emotion can be effectively used to 

characterise and predict diabetes in Twitter. 

 

 

Figure 4: Results from the association rules method 

 

 

4.2 Validation results 

In this study, a specific number of centroids (2, 3, 4, and 5) was used for K-means at each 

runtime in each classification procedure. A stratified tenfold cross-validation was also used to 

evaluate the overall learning process of the K-means algorithm. Several evaluation metrics were 

also used such as Accuracy, Kappa statistic, Root Mean Squared Error (RMSE), and Receiver 

Operating Characteristic (ROC) to evaluate the performance of the classification result. The 

classification result (see Table 1) showed that K-means clustering with 2 centroids had the 

highest classification accuracy (96.53%), followed by 3 centroids (72.54%), 4 centroids (64.68 

%), and 5 centroids (54.51 %). In addition, K-means clustering with 2 centroids was found to 

result in a higher kappa statistic result (95.43%) than 3 centroids (67.27 %), 4 centroids (51.27 

%), and 5 centroids (43.57 %), respectively. The results also showed that K-means clustering 

with 2 centroids had a lower RMSE result (10.03 %). Furthermore, the prediction model (with 2 
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centroids) had the highest ROC value than prediction models with 2 centroids, 3 centroids, 4 

centroids, and 5 centroids, respectively (see Figure 5). In sum, it can be said that K-means 

clustering with 2 centroids is more efficient in detecting instances related to diabetes. 

 

Table 1: Summary of the evaluation result of K-means clustering with different centroids 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: ROC curve result  

 
 

5. Discussion 

This study proposed a novel heuristic approach for detecting diabetes disease based on the 

characteristics of certain types of emotions embedded within tweets. Our result showed that fear 

emotions were the most effective in characterising and predicting diabetes disease than all other 

types of emotions. The results confirmed that predicting diabetes from microblogs can be 

achieved by building the disease-based emotion lexicon using the terminologies of the disease. 

Our results are in line with some previous studies that have found strong associations between 

Learning algorithm  Accuracy (%)  Kappa statistic (%)  RMSE (%) 

2 centroids  96.53  95.43  10.03 

3 centroids   72.54  67.27  28.00 

4 centroids   64.68  51.27  49.28 

5 centroids  54.51  43.57  64.66 
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fear emotions and hypoglycemia in diabetic patients. Hypoglycemia is popular among diabetes 

patients in which an increase in hypoglycemic level in a person can increase the probability of 

fear emotion (Willis, Diago-Cabezudo, Madec-Hily, & Aslam, 2013). In addition, severe 

hypoglycemic event (SHE) is an unpleasant experience, which may involve convulsions, coma 

and hypothermia. Based on this, any SHE may increase patients’ fears of future hypoglycemic 

episodes (Currie et al., 2006). Such fear places an increased psychologic burden on patients, 

which is often not shared or discussed with healthcare professionals.  

In contrast, previous work found different types of emotions that can be associated with 

diabetes when investigating the associations between several forms of emotional stress and the 

development of type 2 diabetes. For example, Pouwer, Kupper, and Adriaanse (2010) stated that 

not only depression can be correlated with an increased risk of type 2 diabetes, but also general 

emotional stress and anxiety, sleeping problems, anger, and hostility. 

In line with our approach, some previous studies considered emotions embedded in social 

media texts as key features for machine learning algorithms to perform disease recognition. For 

example, our results support the work of Ofoghi, Mann, and Verspoor (2016) who suggested that 

emotions found in Twitter messages may be utilised effectively in the detection and monitoring 

of a disease outbreak. This includes supporting the use of Ekman’s six basic emotions (anger, 

disgust, happiness, sadness, surprise, and fear) to extract embedded emotions in tweets. Our 

findings also support the work of Chen, Sykora, Jackson, and Elayan (2018), which reported the 

potential of emotion in predicting mental health conditions using stories shared/posted on social 

media websites. The results from this study are in line with the finding of Zuccon et al. (2015) 

who developed a prediction system to detect the outbreak of Influenza-Like Illness (ILI) through 

classifying textual features including n-gram, stemmed words, hashtags, URLs, and emoticons. 
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Nevertheless, the use of emotions for disease outbreak detection were applied not only on 

Twitter, but also in other microblogs like Sina Microblog. For example, Sun, Ye, and Ren (2014) 

utilised an unsupervised Bayesian technique based on Markov Network and microblog emotion 

to recognise early flu-like symptoms. Our work exhibited that the fear emotions can be linked to 

diabetes. This finding support the conclusion of Gabarron, Dorronzoro, Rivera-Romero, and 

Wynn (2019) who found that type 2 diabetes tweets are usually accompanied with negative 

emotions.  

 

6. Implications 

To the best of our knowledge, this is the first study to propose a heuristic mechanism (using 

an unsupervised learning technique) by establishing a relationship between diabetes-related 

terms and the emotions embedded in tweets. Our approach highly contributes to the health 

informatics and bioinformatics domains. The proposed mechanism can be treated as an 

investigative method for characterising a disease state to benefit public health. The detection 

scenario in this work can benefit health care systems by providing a cost-effective way to 

characterise and detect early stage of a disease from microblogs. The proposed approach can 

help assist the decision-making process by providing timely understanding of a disease outbreak. 

Moreover, our method paves the way for developing advanced surveillance systems to extract 

critical disease-related information from technologies like electronic health (eHealth) and mobile 

health (mHealth). For example, the proposed method can effectively contribute to the tracking 

process of disease progression trajectory, thus promoting disease surveillance and control 

programs.  

The use of clustering techniques in disease discovery can promote the adaptability of 

healthcare delivery plans by grouping patients according to similarities in their needs. This can 
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also help primary care practices develop multiple health needs-based delivery systems to predict 

disease spread in real world situations. In addition, the use of emotion lexicon in the prediction 

of disease in microblogs can help promote sentimental orientation toward disease relations. The 

proposed method has the ability to identify real-world latent infectious diseases that have not yet 

been identified by national public health authorities.  

 

7. Limitations and future works 

This research has some limitations. First, we examined online diabetes disease, mainly 

because it is one of the largest global health emergencies. Second, our study focused primarily 

on English tweets because it is the most common language used in Twitter. Therefore, future 

studies could incorporate other languages using our proposed approach. Third, we used a limited 

number of keywords to search for users’ tweets. Perhaps other missing tweets could have 

additional information to characterise the disease within social media posts. Finally, we 

considered only four types of emotions; in the future, scholars may consider other types of 

emotions and examine their relations with a particular disease.  

 

8. Conclusion 

In this study, we proposed a novel heuristic mechanism to efficiently detect disease incidents 

and outbreaks from the tweet content. We categorised the types of emotions that are highly 

linked to diabetes disease and its related terminologies. Emotions (anger, fear, sadness, and joy) 

and diabetes-related terminologies were extracted using the NRC Affect Intensity Lexicon and a 

part-of-speech tagging tool. The relationship between diabetes-related terms (in the form of 

tweets) and emotions were established and assessed using an association rules mining technique. 

The result showed that diabetes-related terms were exclusively associated with the fear emotions, 

which is in line with the extant literature on diabetes, and that supports the robustness and 
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effectiveness of the proposed mechanism. The current study offers a novel investigative 

mechanism for disease recognition and outbreak detection in microblogs which is useful in 

making informed decisions about a disease state. 
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