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Abstract

Power network operators have recently faced new challenges due to an increase

in the penetration of non-dispatchable renewable energy sources in power grids.

Incorporating emerging flexible resources like electric vehicle parking lots (EVPLs)

and demand response programs (DRPs) into power systems, could be a good solu-

tion to deal with inherent uncertainties imposed by these resources to the power

grid. EVPLs can improve power system operating conditions by active and reac-

tive power injection capabilities. The participation of consumers in DRPs can also

improve energy consumption management by decreasing or shifting loads to other

periods. This paper proposes a hybrid information gap decision theory (IGDT)-

stochastic method to solve a transmission-constrained AC unit commitment model

integrated with electric vehicle (EV), incentive-based DRP, and wind energy. The

behavioural uncertainty related to EV owners is modelled using a scenario-based

method. Additionally, an IGDT method is applied to manage wind energy uncer-

tainty under a two-level optimization model. Verification of the proposed model

is done under several case studies. Based on the results achieved, the proposed

risk-based hybrid model allows the operator to differentiate between the risk level
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of existing uncertainties and apply a high-flexibility decision-making model to deal

with such difficulties. Additionally, the role of the aforementioned flexible resources

in the reduction of power system running costs and wind power uncertainty han-

dling are evaluated. Numerical results confirm a 3.7% reduction in the daily oper-

ating costs as a consequence of coordinated scheduling of EVPL and DRP. Moreover,

Taking advantage of reactive power injection of EVPL provides more cost savings.

Keywords: Information-gap decision theory, electric vehicle parking lot, demand

response program, renewable energy resource, stochastic programming, emerging

flexible resources.

Nomenclature

Index

b, b’ Bus index

n Electric vehicle index

p Index for modeling of loads minimum on time and off time

u Index for modeling of thermal units minimum on time and off time

j Load index

pl Parking lot index

l Power line index

g Power unit index

s Scenario index

NEV Set of electric vehicles

NL Set of lines

NJ Set of loads

NPL Set of parking lots

NS Set of scenarios

NU Set of power units

NT Set of time intervals

NW Set of wind power plants

Parameters
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t Time index

w Wind power plant index

CapEV
n,tarv

n ,tdep
n ,s

Battery capacity of EV that enter PL at tarv and exit at tdep (KWh)

λj,t Cost of load participation in DR ($/MWh)

t
arv/dep,min
n ,

t
arv/dep,max
n

Determined range for the entry/exit time of EVs (h)

SOC
arv/dep,min
n ,

SOC
arv/dep,max
n

Determined range for the initial/final SOC of EVs (%)

λdispl,t Discharging cost of parking lot ($/MWh)

ηdis/ch Discharging/charging efficiency of EVs

ξdis/ch Discharging/charging rate of EVs (KW/h)

γ DR participation factor (%)

t
arv/dep
pl Entry/exit time of EVs (h)

Dj,t Expected hourly load (MW)

P̂w,t, Q̂w,t Forecasted active/reactive power of wind generation (MW, KVar)

Zl Impedance of lines (Ω)

ϕj Load angle (deg)

Smax
l Maximum capacity of lines (MVA)

Nmax
pl Maximum car capacity of PL

Smax
pl Maximum tradable apparent power between PL and grid (MVA)

µarv/dep/SOCarv/dep
Mean value of the EV owners uncertain parameters

R
up/dn
g Minimum ramp up/down of power units (MW/h)

MUTj, MDTj Minimum on/ off time of shiftable load (h)

MUTg, MDTg Minimum up/ down time of power units (h)

DR
min/max
j Minimum/ Maximum curtailed load (MW)

OFb Objective function in the base condition ($)

SUg, SDg On/ Off cost of power units ($)

Ψ Predicted amount of the uncertain parameter Ψ

πs Probability of scenarios

∆d
up/dn
j Ramp limits of load (MW)

dr/ρ Robustness/ opportuneness parameter in RA//RS strategy
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∆r/ρ Satisfactory value of the objective function in RA/RS strategy

U Set of input uncertain parameter

SOCEV
n,tarv

n ,tdep
n ,s

SOC of EV that enter PL at tarv and exit at tdep (%)

SOC
arv/dep
n Initial/final SOC of EVs (%)

cg, bg, ag Thermal units operation cost coefficients ($, $/MWh and $/(MWh)2)

Cappl,t,s Total battery capacity of PL (MWh)

Npl,t,s Total number of EVs in the PL

N
arv/dep
pl,t,s Total number of EVs arrive/departure to/from PL at a distinct time

NEV
tarv
n ,tdep

n ,s
Total number of EV that enter PL at tarv and exit at tdep

Pmax
g , Pmin

g Upper/ lower bound for active power of thermal units (MW)

Qmax
g , Qmin

g Upper/lower bound for reactive power of thermal units (MVar)

SOCmin/max
pl Upper/ lower bound for SOC of EVPL (%)

Vmax
b , Vmin

b Upper/ lower bound for voltage magnitude of buses (pu)

δmax
b , δmin

b Upper/ lower bound for voltage angle of buses (deg)

σ2
arv/dep/SOCarv/dep

Variance of the EV owners uncertain parameters

Decision variables

Drj,t,s, Q
r
j,t,s Active/ reactive load after DR implementation (MW/MVar)

PFl,t,s, QFl,t,s Active/ reactive power flow at line l (MW/MVar)

Pw,t Actual active power of wind generation (MW)

Zg,t Binary variable that represents on/ off status of thermal units

Zonj,t,s, Z
off
j,t,s Binary variable that describes on/ off time of load

U
PL2G/G2PL
pl,t,s Binary variable that shows PL2G/ G2PL mode of EVPL

Yj,t Binary variable that describes status of loads participation in DR

Fcg Cost function of power units ($)

P
PL2G/G2PL
pl,t,s EVPL active power in PL2G/ G2PL mode (MW)

Q
PL2G/G2PL
pl,t,s EVPL reactive power in PL2G/G2PL mode (KVar)

β, α Optimum opportuneness/ robustness function

Pg,t,s, Qg,t,s Scheduled active/ reactive power of thermal units (MW/MVar)

DRj,t,s Shiftable load (MW)

SUCg,t, SDCg,t Start-up/ shut-down cost of thermal generation unit ($)

SOEpl,t,s State of energy of EVPL (MWh)
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ε Unknown radius of the uncertain parameter

δb,t,s, Vb,t,s Voltage angle/ magnitude of buses (deg/pu)

1. Introduction1

1.1. Overview2

In recent decades, the global warming problem resulted from excess greenhouse3

gas emissions has become one of the most critical challenges. The United States en-4

vironmental protection agency published a report in 2018, which shows that trans-5

portation services and electricity generation sectors were two main greenhouse gas6

sources, releasing almost 55% of the total emissions in that year [1]. Hence replac-7

ing fossil fuels by renewable energy sources (RESs) and electrification of transporta-8

tion can deal with the greenhouse gas issues well [2–4]. The increasing universal9

trend in RESs utilization has imposed various challenges on the power system be-10

cause of the variable nature of these resources [5]. There are some measures to11

address this issue such as raising the flexibility of the energy suppliers under the12

lowest operating cost [6], applying modified models in the process of unit commit-13

ment (UC) [7] and modeling the uncertainty related to the system and integrating14

emerging flexible resources like electric vehicle parking lots (EVPLs) and demand15

response programs (DRPs) into power system operation [8]. Coordinated schedul-16

ing of these resources covers the challenges related to the RESs.17

EVs can supply active and reactive power for the grid and improve power sys-18

tem operating conditions consequently and because of the small capacity of each19

electric vehicle (EV), extensive use of EVs as a parking lot (PL) will have more chal-20

lenges and opportunities for the power system [9, 10]. EVPLs as an aggregator that21

collects EVs to reach high storage capacity can act as a controllable load with the22

potential of fast responding to the power injection need. Moreover, most EVs are23

available in parking lot areas for more than 95% of the time during a day [11].24

These advantages can provide precious opportunities for the power system. In ad-25

dition, consumers can shift their electricity use from the on-peak period or renew-26

able generation deficiency hours to off-peak period or surplus renewable generation27
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hours and decrease renewable generation spillage and energy cost of the system by28

participating in the DRP [12, 13]. To this end, in this paper, the effect of flexi-29

ble technologies such as EVPLs and DRPs under a coordinated approach in an AC30

transmission constrained unit commitment (AC-TCUC) problem is analyzed. The31

wind power uncertainty is modeled as an information gap decision theory (IGDT)-32

based technique, and the uncertain behavior of EV owners is modeled through a33

scenario-based approach.34

1.2. Literature review35

There are various researches on the assessment of smart technologies’ impacts36

on the power grid operation in the last decades. A stochastic UC problem accompa-37

nied by an EVPL and renewable energy generation is presented in [14], where the38

uncertainties of the RESs and EV owners are considered through a scenario-based39

method. Authors in [15] presented a two-level method for EVPL in distribution40

systems considering parking lot (PL) participation in energy, reserve, and regula-41

tion distribution markets. In the first level, EVs characteristics are modeled, and42

in the second level, a new approach is implemented to address the constraints of43

the distribution systems while minimizing the total cost. A day-ahead EV charging44

scheduling using a game model is proposed in [16], which evaluates the impact45

of EVs on electricity prices. Authors of [17] focused on the charging scheduling of46

EVs with the purpose of supplying frequency regulation services. A new two-level47

approach for the operation of a distribution company integrated with EVPL and48

RES is presented in [18] in which the power purchasing cost is minimized in the49

upper-level, and parking lot (PL) owner profit is maximized in the lower-level. The50

investigation of an optimal strategy of an EV aggregator in the electricity market51

considering price uncertainty is performed in [19] under a scenario-based stochas-52

tic method, and the risk of uncertainties is considered by downside risk constraints53

implementation. Authors in [20] proposed a new approach to integrate EVs in the54

day-ahead scheduling of the wind-based power. This literature considered market55

price and wind power uncertainty under a stochastic optimization model. A robust56

optimization approach is developed in [21] to evaluate the robust scheduling of EV57
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aggregators with consideration of uncertainties related to price. The uncertainty58

problem of EV aggregators is solved in [22] by implementing the interval optimiza-59

tion approach, and robust scheduling of EV aggregator is achieved. Authors in [23]60

proposed a new framework for optimal scheduling of EVs and RES in the distribu-61

tion system, and its goal is to minimize the operating cost of the system. A model62

for calculating the optimized scheduling of EVs’ active power along with reactive63

power supply function is provided by [24], and the main goal is minimizing own-64

ers’ cost. The impact of EVs on the power loss reduction of a microgrid is evaluated65

in [25] under a two-stage optimization approach. EVs reactive power allocation is66

considered in this literature.67

The effect of DRP on a UC problem with the aim of maximizing social welfare68

is investigated in [26] under a two-level approach. A stochastic market-clearing69

model using the scenario generation approach considering EVPL, DRP, and energy70

storage systems (ESS) is provided by [9], where a DC-power flow is applied to model71

the constraints of the network. A stochastic security-constrained DC-UC problem72

integrated with RES, DRP, and hydrogen ESS is solved in [27]. In this literature, DC73

constraints are considered for power flow calculation. A techno-economic model74

for the optimal scheduling of a distribution company is proposed in [28] in the75

presence of RESs and EVPLs with considering uncertainties of them. Authors in [29]76

presented two decentralized algorithms for the utilization of EVPLs as a distributed77

energy supplier in the presence of DRP in which EV owners’ uncertainty is modeled78

through a modified latent semantic analysis. A price-based DR model to optimize79

the charging strategy of EVs is proposed in [30], where a statistical approach is80

considered for modeling the charging behavior of EV owners. The DRPs and EVPLs81

impact on minimizing system operating cost and emission is evaluated in [31] under82

a DC-UC problem. Scheduling of the electricity market in the presence of RESs83

and DRP is done in [32] under a two-stage stochastic model. In [33], stochastic84

scheduling of power systems considering DRP and ESS is provided for handling the85

uncertainty of RES. An adaptive robust optimization technique for the UC problem is86

developed in [34], incorporating wind power uncertainty. A new method to model87

renewable generation uncertainty in day-ahead robust UC is developed in [35]. A88
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robust AC-UC model for managing the uncertainty of wind output is presented in89

[36], where EVPL and DRP are ignored.90

In almost all of the above literature, well-known robust optimization and stochas-91

tic approaches are applied for modeling the uncertainties of the power system. IGDT92

is a non-probabilistic method that can be implemented to model uncertainties of the93

power system. There is no requirement for probability density function (PDF) or94

scenario generation in this approach. That is why the computational time in the95

IGDT method is much lower than conventional approaches. Moreover in IGDT, the96

radius of uncertain parameters should not be predefined. In other words, in this97

method, the maximum uncertainty radius of the uncertain parameters will be de-98

termined by satisfying the objective function in the predefined interval. This can be99

useful for the independent system operator (ISO) in the decision-making process.100

This approach is a sufficient method to deal with various problems in power sys-101

tem operation and utilization such as market participants bidding strategies [37],102

UC problems [38], RESs dispatch in power system, and microgrids [39], and in-103

tegrated power and gas systems [40]. A new framework for multi-objective UC104

is proposed in [41], considering wind generation and EVs. Uncertainties of wind105

output and load demand are considered utilizing IGDT. A security-constrained UC106

problem considering wind farm is solved in [42], where the uncertainty of wind107

power generation is modeled through IGDT approach. Finally, in [43], the IGDT108

method is implemented for scheduling of thermal generation units, DR decisions,109

and grid parameters.110

1.3. Contribution111

There are a number of gaps in the reviewed literature; however, some of the112

main gaps are expressed below:113

Ø Some of the reviewed literature e.g. [3, 8, 9, 11, 12, 14–21, 28–30, 40, 42]114

has evaluated the impact of aggregated EVs on power system utilization ignor-115

ing the capability of reactive power injection for EVs, while EVs can provide116

reactive power support without battery wear.117
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Ø Although a few works of literature e.g. [8, 28–30, 42], has focused on co-118

ordinated scheduling of EVPL and DRP and its impact on network operation119

condition, this evaluation has been done under a DC-UC framework, while120

the assumption needed for DC load flow analysis takes the model away from121

reality.122

Ø Most of the reviewed literature, e.g. [18, 20, 30–32, 35–38] has only applied123

one of well-known traditional approach or IGDT under a robust attitude for124

modeling power system uncertainties, while ISO is reluctant to implement an125

identical conservatism level to manage system uncertainties, and also power126

grid uncertainties are not against the ISO benefit in all situations.127

To cover these challenges, this paper presents the simultaneous operation of128

EVPL and incentive-based demand response program (IDRP) in a transmission-129

constrained unit-commitment model under an AC optimal power flow (OPF) ap-130

proach that is shown in Figure 1. Uncertainties of wind power generation and EV131

owners’ behavior are considered in this study. Table 1 compares the main contri-132

butions of the proposed model and the literature by taking in mind the remarkable133

contribution of models. The main contributions of this paper are clearly provided134

below:135

Ø Developing a framework for reactive power injection via EVPL, by consider-136

ing technical limits, and EV owners’ desirables, and evaluating its impact on137

power system operation conditions and system operation cost reduction.138

Ø Applying IDRP for active and reactive loads in AC-TCUC that eliminates wind139

power uncertainty effect and decreases operation cost. This makes the pro-140

posed model more realistic since most of the power system loads have a power141

factor of less than unit.142

Ø Taking advantage of both IGDT and stochastic programming approaches un-143

der a two-level hybrid IGDT-stochastic optimization problem. This provides144

high-flexibility decision-making for ISO and facilitates differentiation between145

the risk level of existing uncertainties.146

Ø Considering uncertainties of both wind power and EV owners’ behavior so147

that wind power uncertainty is modeled through an IGDT-based method un-148
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der both risk-averse (RA) and risk-seeker (RS) strategies, and uncertain be-149

havior of EV owners are addressed by scenario-based approach.150

Table 1: Comparison of the previous reports with the current work

References UC problem Power flow EVPL DRP Uncertainty Uncertainty modeling

DC AC Wind EV owners Load

[9] Ø Ø × Ø Ø × Ø × Two-stage stochastic

[32] Ø Ø × × Ø Ø × × Two-stage stochastic

[34] Ø Ø × × × Ø × × Robust

[31] Ø Ø × Ø Ø Ø × × Two-stage stochastic

[35] Ø Ø × × × Ø × × Robust

[44] Ø × Ø × × Ø Ø × Two-stage stochastic

[36] Ø × Ø × × Ø × × Robust

[39] Ø Ø × × Ø Ø × × IGDT

[41] Ø Ø × Ø × Ø × Ø IGDT

[38] Ø Ø × × × × Ø Ø IGDT

Proposed model Ø × Ø Ø Ø Ø Ø × Hybrid IGDT-Stochastic

2. Hybrid IGDT-stochastic AC-TCUC151

This paper applies the AC-TCUC problem to investigate the impact of joint op-152

eration of DRP and EVPL on power system operating conditions. The proposed153

model considers the uncertainties of EV owners’ behavior and wind power produc-154

tion simultaneously. The uncertainty of EV owners’ behavior is modeled through a155

scenario-based stochastic problem, while the wind power uncertainty is managed156

using the IGDT approach under a two-level optimization scheme. In the following157

subsection, the uncertainty of EV owners’ behavior is modeled through a scenario-158

based stochastic problem and problem formulation is presented under a stochastic159

programming approach, in the next subsection, the presented formulation is mod-160

ified to a hybrid IGDT-stochastic approach in order to deal with the uncertainty of161

wind power and EV owners.162

2.1. Problem formulation under stochastic programming approach163

In this section, the optimization problem is described based on a scenario-based164

stochastic model. In the following, the objective function and related constraints165
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are explained.166

2.1.1. Objective function167

In this paper, minimizing power system operating cost by considering AC-calculation168

for network constraints is the main aim of the provided model. Eq. (1) shows the169

objective function. The first part states the cost of thermal units’ generation includ-170

ing fuel, start-up, and shut-down cost. The second part represents the discharge171

cost of EVPLs, and the third part defines the cost of consumers’ IDRP participation.172

As it was mentioned before the behavioural uncertainty related to EV owners is173

modeled using a scenario-based method, and scenario reduction is applied in order174

to reduce the generated scenarios, so πs shows the probability of each scenario after175

scenario reduction.176177

OFb= min
NS∑
s=1

πs


NT∑
t=1


NU∑
g=1

(
Fcg(Pg,t,s) + SUCg,t + SDCg,t

)
+
NPL∑
pl=1

λdispl,tP
PL2G
pl,t,s +

NJb∑
j=1

λj,tDRj,t,s


 (1)

2.1.2. UC constraints178

The power production cost of thermal plants which is a quadratic function of179

the power generation is described in Eq. (2). Start-up/shut down cost should be180

considered only at the time interval that a unit turned on/off, so a binary variable181

is introduced in Eqs. (3)-(6) to model this issue [40].182183

Fcg(Pg,t,s) = agP
2
g,t,s + bgPg,t,s + cg (2)

184

SUCg,t > SUg (Zg,t − Zg,t−1) (3)
185

SUCg,t > 0 (4)
186

SDCg,t > SDg (Zg,t−1 − Zg,t) (5)
187

SDCg,t > 0 (6)

Eqs. (7) and (8) shows that each thermal unit should produce active and reac-188

tive power within its allowable range. Because boilers and combustion equipment189

should not be subjected to excessive pressure, the rate of output power change190

should be limited with ramp up/down limit, this is modeled through (9)-(10) [27].191
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Figure 1: Schematic diagram of the proposed model
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It is required for each thermal unit to be online/offline after a start up/shut down192

for a certain period of time before it shut down/start up which is modeled in (11)-193

(14) [26].194195

Pmin
g Zg,t 6 Pg,t,s 6 P

max
g Zg,t (7)

196

Qmin
g Zi,t 6 Qg,t,s 6 Q

max
g Zg,t (8)

197

Pg,t,s − Pg,t−1,s 6 R
up
g (9)

198

Pg,t−1,s − Pg,t,s 6 R
dn
g (10)

199

Zg,t − Zg,t−1 6 Zg,t+TUg,u (11)
200

TUg,u =

 u u 6MUTg

0 u > MUTg

(12)

201
Zg,t−1 − Zg,t 6 1 − Zg,t+TDg,u (13)

202

TDg,u =

 u u 6MDTg

0 u > MDTg

(14)

2.1.3. EVPL constraints203

EVs can participate in the energy market via PL operator, in both grid to PL204

(G2PL) and PL to grid (PL2G) modes. Moreover, EVs can supply reactive power205

in these two modes. Scenarios of EV owners’ behavior are generated according206

to Eqs. (15)-(18) [28]. In these equations, entry time, exit time, initial state of207

charge (SOC), and final SOC of each EV are obtained through a scenario generation208

approach by considering truncated Gaussian distribution. To be sure that generated209

scenarios are reasonable, Eq. (19) is defined.210211

tarvn = fTG(χ;µarv,σ2
arv, (t

arv,min
n , tarv,max

n )) (15)
212

tdepn = fTG(χ;µdep,σ2
dep, (tdep,min

n , tdep,max
n )) (16)

213

SOCarvn = fTG(χ;µSOCarv
,σ2
SOCarv

, (SOCarv,min
n ,SOCarv,max

n )) (17)
214

SOCdepn = fTG(χ;µSOCdep
,σ2
SOCdep

, (SOCdep,min
n ,SOCdep,max

n )) (18)
215

tarvn 6 tdepn (19)
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The number of EVs entering or leaving the PL, and the number of EVs that are216

available in PL at time t, are represented in Eqs. (20)-(22), respectively. Eq. (23)217

shows that each EVPL has a car capacity that should not be exceeded by EVs which218

are parked in it. The arrival/ departure of the EVs to/ from the PL affects the total219

battery capacity of the PL, as represented in Eqs. (24)-(26) [9].220221

Narvpl,t,s =
∑
t∈tdep

n

NEV
tarv
n ,tdep

n ,s
(20)

222

Ndeppl,t,s =
∑
t∈tarv

n

NEV
tarv
n ,tdep

n ,s
(21)

223

Npl,t,s = Npl,t−1,s +N
arv
pl,t,s −N

dep
pl,t,s (22)

224

Npl,t,s 6 N
max
pl (23)

225

Caparvpl,t,s =

NEV∑
n=1

∑
t∈tdep

n

CapEV
n,tarv

n ,tdep
n ,s

(24)

226

Capdeppl,t,s =

NEV∑
n=1

∑
t∈tarv

n

CapEV
n,tarv

n ,tdep
n ,s

(25)

227

Cappl,t,s = Cappl,t−1,s + Cap
arv
pl,t,s − Cap

dep
pl,t,s (26)

Equations (27) and (28) show that the amount of active power that can be ex-228

changed between EVPL and network is capped by the nominal rate of discharging229

or charging power of EVs and the number of available EVs at the PL [21]. In order230

to avoid simultaneous PL2G and G2PL modes (29) is considered. As it was men-231

tioned before, reactive power injection potential for the EVPL is considered, and the232

amount of exchangeable apparent power between EVPL and grid is limited by the233

PL infrastructure in (30) [24].234235

PPL2G
pl,t,s 6 ξdisNpl,t,sP

max
pl U

PL2G
pl,t,s (27)

236

PG2PL
pl,t,s 6 ξchNpl,t,sP

max
pl U

G2PL
pl, t,s (28)

237

UPL2G
pl,t,s +U

G2PL
pl,t,s 6 1 (29)

238 (
PPL2G
pl,t,s + P

G2PL
pl,t,s

)2
+
(
QPL2G
pl,t,s +Q

G2PL
pl,t,s

)2
6 (Smax

pl )2 (30)

The total amount of stored PL energy at time t, increases/decreases as much239

as SOC of EVs which arrive/ depart to/ from PL at that time. This is illustrated in240
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Eqs. (31) and (32), respectively [15]. The amount of stored energy in PL at each241

time can be calculated from EVs entry/exit at that time and parking interaction with242

the grid in Eq. (33). Since the lifetime of EVs battery can be reduced at very low or243

very high SOC, (34) defines an allowable range for the SOC of PL.244245

SOEarvpl,t,s =

NEV∑
n=1

∑
t∈tdep

n

CapEV
tarv
n ,tdep

n ,s
SOCEV

n,tarv
n ,tdep

n ,s
(31)

246

SOEdeppl,t,s =

NEV∑
n=1

∑
t∈tarv

n

CapEV
tarv
n ,tdep

n ,s
SOCEV

n,tarv
n ,tdep

n ,s
(32)

247

SOEpl,t,s = SOEpl,t−1,s + SOE
arv
pl,t,s − SOE

dep
pl,t,s + η

chPG2PL
pl,t,s −

PPL2G
pl,t,s

ηdis
(33)

248

SOCmin
pl Cappl,t,s 6 SOEpl,t,s 6 SOC

max
pl Cappl,t,s (34)

2.1.4. IDRP constraints249

DRPs can be classified into price-based schemes and incentive-based schemes250

[45]. Participants can shift their consumption from high-demand periods to low-251

demand periods by taking involved in DRPs. In this paper, IDRP is applied. The252

amount of load after participating in IDRP and the boundaries for adjustable load253

are declined in Eqs. (35) and (36) [46]. Eq. (37) illustrates how to implement254

IDRP on reactive load. Since no electric load should be missed, the summation255

of the shifted load over the total time horizon must be zero which is illustrated in256

Eq. (38).257258

Drj,t,s = Dj,t −DRj,t,s (35)
259  DRmin

j Yj,t,s 6 DRj,t,s 6 DRmaxj Yj,t,s ifDRj,t,s > 0

DRj,t,s > Dj,t − (1 + γ)Dj,t else
(36)

260
Qrj, t,s = D

r
j,t,s tan(ϕj) (37)

261
NT∑
t=1

DRj,t,s = 0 (38)

The rate of load change when participating in a DRP shall not exceed its per-262

missible limit in the consecutive time intervals according to the load structure, so263

similar to the ramp-up/down limits which have been defined for thermal units, (39)264

and (40) are defined for DRP participant below.265
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266

Drj,t −D
r
j,t−1 6 ∆dupj (39)

267

Drj,t−1 −D
r
j,t 6 ∆d

dn
j (40)

Similar to the minimum on/ off times for thermal power plants, in DRPs a spe-268

cific load is supplied or curtailed in the scheduling horizon. Minimum on time269

shows the number of sequential time intervals that the load would be supplied af-270

ter it is restored. Minimum off time represents the minimum number of sequential271

time intervals that a load would be off after it is curtailed. These are defined by272

Eqs. (41)-(44).273274

Yj,t,s − Yj,t−1,s 6 Yj,t+TUj,p,s (41)
275

TUj,p =

 p p 6MUTj

0 p > MUTj

(42)

276
Yj,t−1,s − Yj,t,s 6 1 − Yj,t+TDj,p,s (43)

277

TDj,p =

 p p 6MDTj

0 p > MDTj

(44)

2.1.5. AC-network constraints278

As it was mentioned before, in this work AC power flow is applied in order to279

model network constraints. Active and reactive power balance are modeled in (45)280

and (46), which indicate the total amount of generated active (reactive) power281

should be equal to consumed active (reactive) power [28]. Voltage magnitude and282

voltage angle of the system buses should not exceed a predefined value, which is283

represented in (47) and (48) [44]. Equation (49) shows that the loading limit for284

a transmission line shall be its thermal loading limit [28].285286
NUb∑
g=1

Pg, t,s +

NWb∑
w=1

P̂w,t+

NPLb∑
pl=1

PPL2G
pl, t,s−

NPLb∑
pl=1

PG2PL
pl, t,s−

NJb∑
j=1

Drj,t,s =

NLb∑
l=1

PFl, t,s

(45)287
NUb∑
g=1

Qg, t,s +

NWb∑
w=1

Q̂w,t−

NPLb∑
pl=1

Qpl, t,s−

NJb∑
j=1

Qrj, t,s =

NLb∑
l=1

QFl, t,s (46)

288

Vmin
b 6 Vb,t,s 6 V

max
b (47)
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289

δmin
b 6 δb,t,s 6 δ

max
b (48)

290

PF2
l, t,s +QF

2
l, t,s 6 (Smax

l )2 (49)

Active and reactive power flow of line l that connects bus b to b’ are demon-291

strated in (50) and (51) which are a function of the line impedance and the voltage292

of the two connecting buses [36].293294

PFl, t,s =
V2
b,t,s

Zl
cos(θL) −

Vb,t,sVb′ ,t,s

Zl
cos(δb,t,s − δb′ ,t,s + θl)(50)

295

QFl, t,s =
V2
b,t,s

Zl
sin(θL) −

Vb,t,sVb′ ,t,s

Zl
sin(δb,t,s − δb′ ,t,s + θl)(51)

2.2. Applying IGDT approach in stochastic programming problem296

IGDT is a high-performance method to deal with severe uncertain parameters.297

Since there is no need for the production of a large number of scenarios in IGDT, the298

problem-solving time is much lower than scenario-based programming. Moreover,299

IGDT does not need the PDF for uncertain parameters. Compared to the robust300

optimization method that considers the uncertainty radius of the uncertain param-301

eters as a predefined value, it is not needed to be known when employing IGDT302

method. In fact, the main objective of solving the optimization problem in the pro-303

posed model is determining the forecast error of the uncertain parameter from its304

forecasted value. In this paper, IGDT is applied to deal with uncertainty related305

to wind power production. Among different uncertain parameters models, the en-306

velope bound model is applied to show the prior knowledge about the uncertain307

parameters Ψ, such as Eq. (52) [39].308309

U = U(Ψ, ε) =
{
Ψ :

∣∣∣∣Ψ− Ψ

Ψ

∣∣∣∣ 6 ε} (52)

In the proposed model both RA and RS strategies are considered which is illus-310

trated in Figure 2. The mathematical formulation of these strategies is presented in311

the next two subsections.312
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Applying risk-seeker strategy

Eqs (70)-(74)

Generating one thousand scenarios for electric vehicles parameters using Monte Carlo simulation

Reducing scenarios using SCENRED tool in GAMS software

Applying risk-averse strategy

Eqs (59)-(63)

Solving stochastic programming model to minimize the total operation cost Eqs (1)-(51)

Saving the total operation cost

Modeling the uncertainty of wind power generation using IGDT approach

Increasing the saved operation cost deviation 

factor

dr= dr-1 r=1, ,Nr

Decreasing the saved operation cost deviation 

factor

dρ = dρ-1 ρ =1, ,Nρ 

Determining optimum robustness function (α) Determining optimum opportuneness function (β)

NoNo

Yes Yes

dρ = dρ-1dr= dr-1

Start

End

Results: Allowable level of wind power generation forecast error, power system 

operation cost, hourly scheduling of EVPL, hourly scheduling of IDRP, hourly 

dispatch of generation units

Figure 2: Flowchart of the proposed hybrid IGDT-stochastic approach
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2.2.1. RA strategy313

In this strategy, the undesirable impact of the uncertain parameter on the ob-314

jective function is considered. The RA attitude aim is to overcome the incremental315

of operation cost that is caused by the undesirable variation of wind generation316

from its forecasted value. The mathematical formula of the RA strategy in IGDT317

approach is represented bellow [47].318319

α(X,∆r) =Max

{
ε :

(
Max

Ψ∈U(
−

Ψ,ε)

OF 6 ∆r = (1 + dr)OFb

)}
(53)

The main goal of applying IGDT approach for the ISO is to maximize the uncer-320

tain parameter radius which is modeled as a two-level problem in Eqs. (54)-(58)321

[39]. In this model, the uncertain radius of the uncertain parameter is maximized322

in the first level and expected operation cost is minimized in the second level.323324

α = max ε (54)

subject to:325326

Max

NS∑
s=1

πs


NT∑
t=1


NU∑
g=1

(
Fcg(Pg, t,s) + SUCg, t + SDCg, t

)
+
NPL∑
pl=1

λdispl,tP
dis
pl,t,s +

NJb∑
j=1

λj,tDRj,t,s


 6 ∆r (55)

327
∆r 6 (1 + dr)OFb (56)

328

(1 − ε)P̂w,t 6 PW,t 6 (1 + ε)P̂w,t (57)
329

Eqs. (2) − (51) (58)

Because of the complexity of solving a two-level optimization problem through330

common optimization software, the provided two-level model in Eqs. (54)-(58) is331

converted to a single-level problem as demonstrated in Eqs. (59)-(63).332333

α = max ε (59)
334

sumNSs=1πs


NT∑
t=1


NU∑
g=1

(
Fcg(Pg, t,s) + SUCg, t + SDCg, t

)
+
NPL∑
pl=1

λdispl,tP
dis
pl,t,s +

NJb∑
j=1

λj,tDRj,t,s


 6 ∆r (60)

335
∆r 6 (1 + dr)OFb (61)

336

PW,t = (1 − ε)p̂w,t (62)
337

Eqs. (2) − (51) (63)
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2.2.2. RS strategy338

It is worthwhile to say that sometimes violation of the uncertain parameter from339

its forecasted amount has a favorable impact on the objective function. An RS strat-340

egy is represented in this situation. As a matter of fact, the ISO goal is to decline the341

objective function more than the basic condition value. The mathematical model342

for the RS strategy is described as Eq. (64) [47]:343344

β(X,∆ρ) =Min

{
ε :

(
Min

Ψ∈U(
−

Ψ,ε)

OF 6 ∆ρ = (1 − dρ)OFb

)}
(64)

This strategy can be formulated as a two-level optimization in which the uncer-345

tain radius of the uncertain parameter is minimized in the first level and expected346

operation cost is minimized in the second level as it is illustrated in (65)-(69) [43].347348

β = min ε (65)
349

Min

NS∑
s=1

πs


NT∑
t=1


NU∑
g=1

(
Fcg(Pg, t,s) + SUCg, t + SDCg, t

)
+
NPL∑
pl=1

λdispl,tP
dis
pl,t,s +

NJb∑
j=1

λj,tDRj,t,s


 6 ∆ρ (66)

subject to:350351

∆ρ 6 (1 − dp)OFb (67)
352

(1 − ε)P̂w,t 6 PW,t 6 (1 + ε)P̂w,t (68)
353

Eqs. (2) − (51) (69)

As mentioned before, the increase in wind power generation provides a de-354

sirable impact on the operation cost. Therefore, in the proposed RS attitude, the355

minimum operation cost is obtained when wind generation rises from the predicted356

amount. The single-level problem in Eqs. (70)-(74) can be presented instead of the357

proposed two-level model in Eqs. (65)-(69) :358359

β = min ε (70)
360

NS∑
s=1

πs


NT∑
t=1


NU∑
g=1

(
Fcg(Pg, t,s) + SUCg, t + SDCg, t

)
+
NPL∑
pl=1

λdispl,tP
dis
pl,t,s +

NJb∑
j=1

λj,tDRj,t,s


 6 ∆ρ (71)

361
∆ρ 6 (1 − dp)OFb (72)
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362

Pw,t = (1 + ε)p̂w,t (73)
363

Eqs. (2) − (51) (74)

3. Numerical studies364

To evaluate the effectiveness of the presented model, it is implemented on a365

modified six-bus system, which is illustrated in Figure 3. This system contains seven366

lines, three thermal generation units, three loads, one wind farm, and one EVPL.367

Table 2 shows technical characteristics of the system lines [48]. The thermal units368

operating cost coefficients and the technical characteristics are represented in Ta-369

ble 3. It is worthwhile to say that according to these cost coefficients, unit G2 is370

the most costly unit and unit G1 is the cheapest unit. The information about the371

predicted wind power production and load is shown in Figure 4 [40]. The specifica-372

tions of EVs for evaluating the impact of EVPLs on system operation conditions are373

summarized in Table 4 [9]. It is assumed that the desired state of charge of each EV374

at departure time is more than 70% and so the main purpose of EV owners that is375

charging their EV battery will be satisfied. The cost of load participation in DRP and376

discharge cost for EVPL is considered 5 $/MWh. In order to model the uncertain377

behavior of EV owners, a thousand scenarios are generated using the Monte Carlo378

simulation approach, which is reduced to five scenarios applying a fast-backward379

approach. The proposed model is a mixed-integer non-linear problem (MINLP)380

which is solved by discrete and continuous optimizer (DICOPT) solver in general381

algebraic modeling system (GAMS) environment containing 1752 single variables382

and 3057 single equations. GAMS is a high-level modeling system appropriate for383

modeling and solving mathematical problems and non-convex optimization. Solu-384

tions resulted from DICOPT can be globally optimal with a fair degree of confidence,385

so that it has been utilized in some literature such as [8, 27, 37, 41, 49–51]. DI-386

COPT solves the MINLP problem via a series of NLP and MIP sub-problems. These387

sub-problems are solved using CONOPT and CPLEX solver, respectively. Figure 5388

shows the flowchart for the related solution algorithm.389
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Figure 3: Schematic diagram of the studied case study
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Table 2: Technical characteristics of the lines

Line number Starting bus End bus R (pu) X (pu) Smax (MVA)

1 1 2 0.005 0.170 200

2 1 4 0.003 0.258 100

3 2 3 0.000 0.037 100

4 2 4 0.007 0.197 100

5 3 6 0.000 0.018 100

6 4 5 0.000 0.037 100

7 5 6 0.002 0.140 100

Table 3: Cost coefficients and technical characteristics of the thermal units

a ($/MW2) b ($/MW) c ($/h) Pmin (MW) Pmax (MW) Qmin (MVar) Qmax (MVar) Rup (MW/h) Rdn (MW/h) MUT (h) MDT (h)

G1 0.0004 13.51 176.95 100 220 -80 200 55 55 4 4

G2 0.001 35.63 129.97 10 100 -40 70 50 50 2 3

G3 0.005 17.7 137.41 10 20 -40 50 20 20 1 1

The effectiveness of the provided model are examined by implementing follow-390

ing cases:391

Case study 1 (CS1): Stochastic AC-TCUC problem considering EVPL.392

Case study 2 (CS2): Stochastic AC-TCUC problem considering EVPL and DRP.393

Case study 3 (CS3): Applying IGDT approach in AC-TCUC problem394

CS1: Stochastic AC-TCUC problem considering EVPL395

In this case, an electric vehicle parking lot is considered at bus 5 and the ap-396

plication of DRPs is not considered. In order to clarify the effectiveness of EVPL397

capabilities on expected operating cost reduction, it is assumed that EVPL acts as a398

passive load at first. It means that no reactive power is injected into the grid by the399

parking lot and it only works in G2PL mode. By implementing the proposed model,400

the expected operating cost equals $75,895.36, which is $276.67 more than when401

there is no EVPL in the grid. It is due to an increase in grid load by considering402

EVPL. The expected power dispatch of units is shown in Figure 6. Since unit G1403

is the cheapest unit, it is committed over the whole day while unit G2 as the most404
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Figure 4: Predicted wind power production and load demand

Table 4: Technical characteristics of EVs

ζdis/ch (kW/h) ηdis/ch (%) SOCmin
pl (%) SOCmax

pl (%) Capacity (kWh)

11 90 30 90 20

costly unit is committed only for 8 hours. Although the demand for electricity is405

more than the maximum power output of the unit G1 at peak period, this unit is406

not operating at its maximum value at high demand hours. This is because of the407

thermal capacity limitation of the lines connected to unit G1. In the next step, ac-408

tive power injection capability is considered for the parking lot, which means that409

it can operate in both G2PL and PL2G modes. Figure 7 shows the scheduling of the410

parking lot. It can be seen that in the off-peak period, EVPL is in the G2PL mode411

in order to address two goals; charging EVs battery to the desired SOC, and storing412

energy in order to answer the power need of grid at high demand period. At the413

same time, it is in PL2G mode over peak period and sells its energy to the grid. This414

interaction leads to $149.30 cost saving in comparison with when no EVPL is in415

the grid (the expected operating cost equals $75,469.39 in this situation). Figure 8416

shows the power flow in line 2. As illustrated in this figure, line 2 which is con-417
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Figure 5: Flowchart of DICOPT algorithm for solving MINLP
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Figure 6: Expected power dispatch of thermal units

nected to the cheapest unit, operates at its maximum thermal capacity (100MVA)418

most of the time during a day. That is why more utilization from unit G1 is not419

possible. The potential of reactive power injection by EVPL can compensate reac-420

tive power flow of power lines and so more line capacity will be allocated to active421

power. As a consequence, unit G1 is able to provide more active power and it pro-422

vides more cost-saving for the ISO. The effect of reactive power injection capability423

of EVPL on the active and reactive power flow of line 2 is illustrated in Figures 9424

and 10, respectively. Improving EVPL operation by considering reactive power in-425

jection leads to the expected operating cost of $74,707.56, which is $911.13 lesser426

than the situation without EVPL. Table 5 easily compares system operating cost and427

power generation of thermal plants in two case of with and without reactive power428

injection for EVPL.429

Table 5: Expected operation cost and units’ dispatch with and without reactive power injection for EVPL

Operation cost ($) G1(MWh) G2(MWh) G3(MWh)

EVPL without Q injection 75469.39 4441.01 166.25 188.25

EVPL with Q injection 74707.56 4473.79 96.16 175.48

CS2: Stochastic AC-TCUC problem considering EVPL and DRP430

In this case, the impact of both DRP and EVPL on power system operating cost431
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and thermal unit dispatch are evaluated. A participation factor of 3% is considered432

for DRP. Figure 11 shows active and reactive load profile before and after partici-433

pating in DRP. By implementing DRP, participants shift their active and reactive load434

from high demand period to low demand period according to the DR participant435

factor, so the need for power in the on-peak period decreases. As a consequence the436

expected power dispatch of the most costly unit G2, and the expected operating cost437

will decline. This leads to the operating cost of $73,486.85 which is $1220.71 less438

than the previous case. This reduction illustrates the effectiveness of the simultane-439

ous operation of EVPL and DRP on cost-saving. Figure 12 illustrates the expected440

power dispatch of the unit G1 and G2 for DR participation factor of 3% and 7%. As441

can be seen by increasing consumers’ participation in DRP, the need for producing442

power by the unit G2 in the high demand period decreases. In consequence this443

unit is committed only for 2 hours. Table 6 illustrates the change of expected oper-444

ating cost and power dispatch of thermal plants relative to DR participation factor.445

It can be seen that the expected operating cost declines by the increment of DR par-446

ticipation factor. This trend continues until when DR participation factor reaches447

the amount of 16%. After that no cost-saving will be achieved since the generation448

of unit G1 reaches its maximum limit, and the last two rows of the table show no449

improvement in terms of cost savings.450

CS3: Hybrid IGDT-stochastic AC-TCUC problem451

In this case, the wind power uncertainty is modeled using the IGDT approach. In452

order to evaluate the impact of EVPL and DRP on range of manageable wind power453

uncertainty, this approach is implemented in both previous cases as well as the case454

in which none of EVPL and DRP is incorporated in the system. The expected operat-455

ing cost of the latter is considered as the base condition operating cost which equals456

$75618.69. The RA strategy is implemented by raising the robustness parameter dr457

from 0.005 to 0.050 with steps of 0.005. Figure 13 shows the direct relationship be-458

tween robustness function and robustness parameter for all three aforementioned459

cases. It means that as dr (and consequently operating cost) increases ISO can460

manage a larger amount of wind power uncertainty. For example, in the presence461

of EVPL and DRP for dr= 0.005 (0.5% increment in operating cost) the amount462
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Table 6: Expected operation cost and units generation for different DR participation factor

DR participation factor (%) Operation cost ($) G1(MWh) G2(MWh) G3(MWh)

1 74492.05 4494.13 84.64 166.29

3 73486.85 4521.36 50.00 172.27

5 73230.21 4545.01 40.00 160.10

7 72697.42 4545.23 20.00 178.70

9 72017.52 4571.90 0.00 172.03

11 71951.68 4584.31 0.00 159.61

13 71927.42 4595.10 0.00 148.60

15 71907.99 4622.50 0.00 121.42

17 71905.51 4623.93 0.00 120.00

19 71905.51 4623.93 0.00 120.00

of α equals to 0.29 which means that 29% error in forecasted wind power can463

be covered, while for dr= 0.015, robustness function is 0.38 meaning that a more464

extensive range of the wind power uncertainty is acceptable but with the higher op-465

erating cost. Comparing three curves in Figure 13 depicts that incorporating EVPL466

and DRP in the system benefits ISO in terms of wind uncertainty handling since by467

the same amount of cost increase a wider range of wind generation uncertainty can468

be managed. For instance by 3% rise in cost only 21% of wind uncertainty can be469

addressed in the absence of EVPL and DRP while the equivalent figures for CS1 and470

CS2 are 34% and 50%, respectively. Figure 14 shows how the power dispatch of471

units G1 and G2 change when α increases. It illustrates that by increasing manage-472

able amount of wind power uncertainty, generation of thermal units especially the473

most costly unit (G2) rises such that the difference between wind power generation474

and its predicted value can be compensated by thermal generation. To implement475

RS strategy, the opportunity parameter dρ is increased from 0.005 to 0.050 with476

steps of 0.005. This resulted in an operating cost reduction compared to its value in477

the base condition. It can be seen in Figure 15 that there is a direct relation between478

opportunity parameter and the opportuneness function β. This means that as more479

optimistic operation cost reduction is desired, more increment in wind power gen-480
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eration compared to its predicted value is needed. For example, in the presence of481

EVPL and DRP, when dρ= 0.045 (i.e. 4.5% desirable operating cost reduction) the482

amount of β is 0.07 (7% error in forecasted wind power is needed) while for dρ=483

0.05, opportuneness function is 0.17. It is also worthwhile to say that incorporat-484

ing EVPL and DRP in the power system diminishes the need for a wide range of485

optimistic forecast errors in exchange for a distinct amount of cost reduction. This486

is because of the flexibility that EVPL and DRP provide for the ISO. For instance,487

in exchange of 4% fall in operation cost, there is no need for any forecasted error488

in wind generation by considering EVPL and DRP in the system, since the impact489

of EVPL and DRP already prepared this cost reduction. Whereas in the absence of490

EVPL and DRP 40%, optimistic error is needed.491

4. Conclusion492

In this paper, the impact of coordinated utilization of EVPL and IDRP on power493

system operating condition has been investigated under an AC-TCUC framework.494

Wind power uncertainty was modeled by applying IGDT approach under both RA495

and RS strategies which facilitate decision making for ISO with higher reliability. A496

scenario-based approach using Monte Carlo simulation was implemented in order497
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to model uncertainties related to EV owners’ behavior. Developing a framework498

for reactive power injection by EVPL and implementing IDRP on both active and499

reactive power of consumers led to more cost saving and brought the model closer500

to the reality in comparison with the prior literature. Moreover coordinated utiliza-501

tion of EVPL and IDRP made ISO less vulnerable in terms of handling uncertainties502

related to power system parameter. The flexibility provided by coordinated schedul-503

ing of EVPL and IDRP made more range of wind power uncertainty tolerable for the504

system. The proposed framework was implemented in the AC-TCUC problem by505

considering technical requirements related to power system, EVs and participating506

loads in DRP. In order to make the model more realistic, desires of EV owners and507

DRP attendees was considered by taking favorable departure SOC and DRP load508

participation factor into account.Evaluating of the proposed model illustrates some509

remarkable results in the utilization of smart technologies in terms of cost-saving510

and RESs uncertainty handling as follows:511

Ø The joint operation of EVPL and IDRP resulted in a 3.7% reduction in daily512

operation cost in comparison with the non-coordinated scheduling of these513

technologies.514

Ø Reactive power injection capability for EVPL made the utilization of wind515

power more efficient. This resulted in 1% of more operation cost decrement.516

Ø Increasing DRP participation factor from 1% to 15% led to a rise in operation517

cost saving from 1.5% to 5% in the presence of EVPL.518

Ø Simultaneous operation of EVPL and IDRP in both strategies of RS and RA519

provided more flexible managing conditions for ISO to cover wind power un-520

certainty. This boosted the average robustness function from 22% to 49%.521
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