
              

City, University of London Institutional Repository

Citation: Lopedoto, E. and Weyde, T. ORCID: 0000-0001-8028-9905 (2020). ReLEx: 
Regularisation for Linear Extrapolationin Neural Networks with Rectified Linear Units. Paper 
presented at the AI-2020 Fortieth SGAI International Conference on Artificial Intelligence, 8-9 
Dec 2020; 15-17 Dec 2020, Virtual. 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/24941/

Link to published version: 

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/334593177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ReLEx: Regularisation for Linear Extrapolation
in Neural Networks with Rectified Linear Units

Enrico Lopedoto and Tillman Weyde

Department of Computer Science
City, University of London

Abstract. Despite the great success of neural networks in recent years,
they are not providing useful extrapolation. In regression tasks, the pop-
ular Rectified Linear Units do enable unbounded linear extrapolation by
neural networks, but their extrapolation behaviour varies widely and is
largely independent of the training data. Our goal is instead to continue
the local linear trend at the margin of the training data. Here we in-
troduce ReLEx, a regularising method composed of a set of loss terms
design to achieve this goal and reduce the variance of the extrapolation.
We present a ReLEx implementation for single input, single output, and
single hidden layer feed-forward networks. Our results demonstrate that
ReLEx has little cost in terms of standard learning, i.e. interpolation,
but enables controlled univariate linear extrapolation with ReLU neural
networks.

Keywords: Neural Networks · Regression · Regularisation · Extrapola-
tion.

1 Introduction

Neural Networks (NN) are very successful for many applications in artificial
intelligence and the rectified linear function used in rectified linear units (ReLU)
has become the most popular activation function. However, neural networks with
ReLUs produce widely varying extrapolation behaviour that is determined more
by the random initialisation of the network weights than by the training data.

Our goal in this study is to improve the extrapolation behaviour of NNs with
ReLUs for regression tasks in three ways:

1. the extrapolation should be mainly defined by the data and not the random
initialisation of the NN;

2. the extrapolation should continue the local linear trend with more influence
from training data points closer to the margin;

3. the non-linearities should not be outside the training data range.

To realise these goals we develop, implement and evaluate ReLEx, a regulari-
sation method to control extrapolation. In this study, we focus specifically on
univariate regression with a single input and output and a single hidden layer,
and do not address multi-dimensional settings.



2 Related Work

Neural Networks (NN) are universal function approximators [1,5] on a compact
interval. While it has often been observed that neural networks interpolate very
effectively between data points, it has been found in many studies that neural
networks do not extrapolate well, where extrapolation is generally understood
as the application of the trained model to data that is in some sense outside the
range of the training data [6,8]. This can even affect very simple functions like
the identity, which NNs do not generalise well to unseen data [11]. Linguistic
structures are an example that recently attracted attention. It has been shown
that NN do not generalise between different words [3]. This problem is being
addressed in current research with more complex NN architectures [4].

For numeric extrapolation, there have recently been several studies that aim
at learning functions that are more akin to those used physics by including
multiplication, linear and periodic functions as activation functions [7,10]. These
networks can produce good extrapolation if they can express the true function
and the training finds suitable weights. However, this is not the case in general
so that the extrapolation behaviour is unpredictable.

In this study, we choose a simpler approach, which uses a standard network
architecture and activation function, but aims to control a linear extrapolation
such that it matches the data. Linear extrapolations are often a simplification,
but they are often useful, e.g. in LIME (Local Interpretable Model-Agnostic
Explanations), which is widely used for explaining the behaviour of complex
models [9].

3 Model

We use a simple fully connected feed-forward network that has a single hidden
layer of N ReLUs, a single input neuron and a single linear output neuron. The
network output for an input xi is ŷi = bo +

∑N
n=1 won · ReLU(xi · wn + bn),

where bo is the bias of the output neuron and won and wn are the outgoing and
incoming weights, respectively, of the nth hidden neuron and bn is its bias. We
use stochastic gradient descent to train the network.

The neurons are rectified linear units, that use a rectified linear function as
the activation function: ReLU(x) = x ifx > 0, 0 otherwise. In the constant part
(x < 0) the gradient of the activation is always 0. If the activation of the ReLU
is in the constant part for all inputs, the ReLU does not contribute to the output
of the network and this is called a ‘dying ReLU’ [2].

We are particularly interested in the 0-Points, where the non-linearities of the
hidden neurons are: the input values xk0 that lead to input 0 for the activation
function of hidden neuron k: 0 = wk · xk0 + bk, such that xk0 = −bk/wk.

4 ReLEx Loss Definitions

We control the extrapolation behaviour of the neural network with additional loss
terms that achieve our design goals in the learning process. The losses are Cen-



tripetal (CP), Mutually Repellent (MR), Weight Orientation (WO) and Weight
Sign (WS) and are defined below in more details. The final loss to be minimised,
including the sum of squared errors, is therefore:

L =
∑

(ŷ − y)2 + θCP LCP +θMR LMR +θWO LWO +θWS LWS , (1)

with θX being the weighting factors for each additional loss term LX .

Centripetal Loss LCP , aims to move the 0-points inside the training range to
fulfil design goals 1 and 3. It is defined as the sum of the squared distances
between the 0-points and the the data points:

LCP =

N∑
k

K∑
i

(xk0 − xi)2, (2)

where N is the number of hidden neurons and K is the number of data points.

Mutual Repellent Loss LMR, is designed to fulfil design goal 2 by avoiding the
concentration of 0-points around the data mean, which can be the effect of LCP .
This loss term aims to equally distribute the 0-points by penalising pairs of 0-
points with a small distance. LMR is the sum of the inverted pairwise distances
between the positions of the 0-points with a small constant ε added to avoid
division by zero:

LMR =

N∑
i=1

N∑
j>i

1

(xi0 − xj0)2 + ε
(3)

Weight Orientation Loss LWO also relates to design goal 2. The data points that
are closer to the margin of the data range should influence the extrapolation
beyond that margin more strongly. This can be achieved by the linear parts
of the ReLUs covering more of the data points that are close to the margin.
Intuitively speaking, we encourage the linear part of the ReLU to point outwards
by penalising when a linear part of a ReLU covers more than half the data range:

LWO = −
N∑
i=1

ReLU((xk0 − x̄) · wi + ε), (4)

where x̄ is the data mean and ε is a small amount of linear part beyond the data
mean that we do not penalise.

Weight Sign Loss LWS prevents a degenerate condition and encourages an equal
distribution of weight signs so that linear parts of ReLUs are pointing to both
directions of extrapolation:

LWS =

( N∑
i=1

wi

)2

. (5)



-13.0 -10.0 -8.0 -5.0 -3.0 0.0 3.0 5.0 8.0 10.0 13.0
0

2

4

6

8

10
t1

t2

t3

t4

t5

-13.0 -10.0 -8.0 -5.0 -3.0 0.0 3.0 5.0 8.0 10.0 13.0
0

2

4

6

8

10
t1

t2

t3

t4

t5

Fig. 1: Comparison of extrapolation after standard (left) and ReLEx training
(right) with 5 models each. Input on x axis, output on y axis.

5 Experiments

5.1 Settings and Metrics

We use five functions to generate data: identity, absolute, scaled squared, sigmoid
and sine (x, |x|, x2/5, 1/(1 + e−x), sin(x)). We sample on 200 equidistant points
for the training data-set and another 200 points at random for the interpolation
test set from the range [−2, 2]. The extrapolation data range is [−10, 10] with
another 200 points. To measure extrapolation performance, we propose several
metrics as there is no natural target when we are not assuming a true underlying
linear function:

MSEint measures the interpolation error on test data that was randomly
sampled from the training data range.

σES measures the consistency of the extrapolation as the standard deviation
of the slope of the extrapolations as determined by a linear regression over the
NN predictions on the test set on ranges x ∈ [−10,−2] and [2, 10].

MSEex−tan measures extrapolation accuracy as the MSE relative to the
tangent of the generating function at the margins of the training data range.

MSEex−wlr measures accuracy against a more realistic extrapolation refer-
ence: a linear regression on the training data with higher weights on the data
points closer to the margin of the data range. We use this function for weighting
wx,τ = x(τ−1)(1− x)(τ−1), where x is the position of the data point in the data
range and τ is a free parameter.

5.2 Results

Preliminary experiments confirmed that the LCP is effective at concentrating the
0-points. θCP was set to 0.03 throughout, which was determined as an effective
values in most contexts. One issue that we observed was that for high θCP ,
values all 0-points would cluster around the data mean. This prevented a good



Method f(·) MSEint MSEex−tan MSEex−wlr σES

Std x 0.00 18.41 18.45 1.18
ReLEx x 0.03 0.02 0.02 0.02

Std |x| 0.00 6.32 7.13 1.31
ReLEx |x| 0.18 0.01 0.45 1.00

Std x2/5 0.02 14.63 14.06 12.92
ReLEx x2/5 0.03 0.07 0.04 10.50

Std 1/(1 + e−x) 0.01 4.55 3.97 7.83
ReLEx 1/(1 + e−x) 0.03 0.11 0.02 2.48

Std sin(x) 12.65 41.71 53.14 1.36
ReLEx sin(x) 0.43 1.82 34.78 0.02

Table 1: The effect of applying all ReLEx losses (CP, MR, WO and WS).

fit and extrapolation in some cases, which is the reason for introducing LMR.
By choosing a suitable ratio between θMR and θCP , we can adjust the 0-point
spread to the data range.

Figure 1 show results from standard NN and ReLEx networks and makes
clear how ReLEx reduces extrapolation variability and leads to a good continu-
ation of the local linear trend at the margins. When comparing to the weighted
linear extrapolation in the MSEex−wlr loss, we found that τ values above 0.5,
indicating higher weights for points close to the margin, gave better results. We
used a final τ value of 0.8, which generally leads to a good fit.

Table 1 shows the metrics for ReLEx in comparison with standard network
training. We can see that the MSEint is in most cases not affected much by
ReLEx, except for an increase for the |x| function and a decrease for the sin(x).
The extrapolation error against the tangents (MSEex−tan) is in all cases greatly
reduced, as is the error against the WLR extrapolation (MSEex−wlr). Both
extrapolation error measures are higher for the sin(x) function compared to other
functions, while the standard deviation of the slope (σES) is low, indicating that
for the sin(x) function the ReLEx NN extrapolation behaves differently than for
the other functions. In terms of standard deviation of the extrapolation slope,
the quadratic function (x2/5) shows much higher spread, even with ReLEx.
LWO and LWS can efficiently be calculated in O(N) time. However, the

computational complexity of calculating LCP and LMR is O(N ·K) and O(N2),
respectively. These may be computationally too expensive for large models and
data-sets. There are alternative variants with O(N) complexity, such as replacing
both with a small penalty on distance to the mean, or fixed boundaries for the
0-points, but they require an extra pass through the data before training.

6 Conclusions

The ReLU function offers the possibility of performing linear extrapolation,
which standard bounded activation functions do not. However, they show high



variability and little correlation with the data when trained, as standard, by
minimising just the error against the data. We proposed ReLEx, a set of loss
terms that provide regularisation for the behaviour of a ReLU network, such that
it produces linear extrapolations beyond the range of the training data that are
consistent and continue the local linear trend of the data at the margins.

The accuracy of the extrapolation has no single definition as there is no
pre-defined target, but measured against the tangent and a weighted linear re-
gression, ReLEx shows large improvements over a standard network. The ReLEx
loss terms can be directly integrated into a standard neural network framework,
as we have done with our implementation in PyTorch.1

The computational complexity of the loss functions can become relevant for
large networks and large data-sets, but had little impact in our experiments.
Future work will include the exploration of more efficient ReLEx variants, the
generalisation to multi-dimensional inputs and outputs and multiple layers, as
well as experiments with noisy and real-world data.

References

1. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems 2(4), 303–314 (1989)

2. Douglas, S.C., Yu, J.: Why ReLU units sometimes die: Analysis of single-unit error
backpropagation in neural networks. In: 52nd Asilomar Conference on Signals,
Systems, and Computers. pp. 864–868. IEEE (2018)

3. Lake, B., Baroni, M.: Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In: PMLR. vol. 80, pp. 2873–2882
(2018)

4. Lake, B.M.: Compositional generalization through meta sequence-to-sequence
learning. In: NeurIPS. pp. 9791–9801 (2019)

5. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural
Networks 6(6), 861–867 (1993)

6. Marcus, G.: Deep learning: A critical appraisal. CoRR abs/1801.00631 (2018)
7. Martius, G., Lampert, C.H.: Extrapolation and learning equations. In: ICLR,

Workshop Track Proceedings (2017)
8. Mitchell, J., Minervini, P., Stenetorp, P., Riedel, S.: Extrapolation in NLP. In:

Proceedings of the Workshop on Generalization in the Age of Deep Learning (2018)
9. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: Explaining

the predictions of any classifier. In: ACM KDD. p. 1135–1144 (2016)
10. Trask, A., Hill, F., Reed, S.E., Rae, J., Dyer, C., Blunsom, P.: Neural arithmetic

logic units. In: NeurIPS. pp. 8035–8044 (2018)
11. Weyde, T., Kopparti, R.M.: Feed-forward neural networks need inductive bias

to learn equality relations. In: NeurIPS Workshop on Relational Representation
Learning (2018)

1 The source code and more supporting material can be found at https://github.

com/EnricoLope/PhD_ReLEx.

https://github.com/EnricoLope/PhD_ReLEx
https://github.com/EnricoLope/PhD_ReLEx

	ReLEx: Regularisation for Linear Extrapolation in Neural Networks with Rectified Linear Units

