
The Hole Argument∗

Oliver Pooley†

Oriel College, Oxford

21 September, 2020

1 Introduction
Our best theory of space, time and gravity is the general theory of relativity
(GR). It accounts for gravitational phenomena in terms of the curvature of
spacetime. In more mathematical presentations of the theory, solutions are
standardly represented as n-tuples: (M, gab, φ1, φ2, . . .). The φs are objects
that represent the assorted material content of spacetime (such as stars and
electromagnetic fields). M and gab together represent spacetime itself. M is a
differentiable manifold representing the 4-dimensional continuum of spacetime
points. gab is a Lorentzian metric tensor defined on M . It encodes some of
spacetime’s key spatiotemporal properties, such as the spacetime distances
along paths in M . In particular, spacetime’s curvature can be defined in
terms of gab.

In its contemporary guise, the hole argument targets a natural interpre-
tation of this mathematical machinery. According to the spacetime substan-
tivalist, spacetime itself, represented by (M, gab), should be taken to be an
element of reality in its own right, on (at least) equal ontological footing
with its material content. John Earman and John Norton’s version of the
hole argument (Earman and Norton 1987) aims to undermine this reading of
the theory. In particular, it seeks to establish that, under a substantivalist
interpretation, GR is radically—and problematically—indeterministic.

Earman and Norton’s hole argument set the agenda for the wide-ranging
debate that burgeoned in the late 1980s and early ’90s, and that has rumbled
on in the decades since. The hole argument, however, did not originate with
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them. It was first advanced by Einstein (Einstein 1914), as he struggled to
find a theory of gravity compatible with the notions of space and time ushered
in by his 1905 special theory of relativity.

By 1913 Einstein had already settled on a non-flat metric tensor, gab,
as the mathematical object that would capture gravitational effects. The
remaining task was to discover field equations describing how gab depends on
material “sources”, encoded by their stress energy tensor Tab.

Einstein sought a theory that would generalise the relativity principle.
The restricted relativity principle of Newtonian physics and special relativity
only asserts the equivalence of all inertial frames: frames in which (inter
alia) force-free bodies move uniformly in straight lines. The inertial frames
are, however, physically distinguished in these theories from frames moving
non-uniformly with respect to them. Einstein believed that fundamental
physics should treat all frames of reference as on a par.

In 1913, Einstein came tantalisingly close to settling on the famous field
equations that he would eventually publish towards the end of 1915. These
equations are generally covariant: they hold in all coordinates systems within
a family related by smooth but otherwise arbitrary coordinate transformations.
Because such transformations include transformations between coordinates
adapted to frames in arbitrary states of motion, Einstein initially believed
that generally covariant equations embody a generalised relativity principle.

In 1913, however, he temporarily gave up the quest for general covariance.
His original version of the hole argument convinced him that any generally
covariant theory describing how gab relates to Tab must be indeterministic.
(For further details of Einstein’s argument and its role in his search for his
field equations, see Stachel (1989), Norton (1984) and Janssen (2014: §3).)

In this chapter, I focus on the hole argument as an argument against
substantivalism. The next section reviews some technical notions standardly
presupposed in presentations of the argument. Section 3 presents the argument
itself. The remainder of the chapter reviews possible responses.

2 Diffeomorphisms
As characterised above, the general covariance of a theory is a matter of the
invariance of its equations under smooth but otherwise arbitrary coordinate
transformations. In order to make contact with contemporary discussion of
the hole argument, we need an alternative formulation that dispenses with
reference to coordinates.

Let g(x) stand for some specific solution of a generally covariant theory
T , expressed with respect to some specific coordinate system {x}. Let g′(x′)
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be a redescription of the same situation but given with respect to a new
coordinate system {x′}. Since T is generally covariant, g′(x′) will also satisfy
T ’s equations (provided that the coordinate transformation x′ = f(x) is
smooth).

Understood in this way—as a map between descriptions of the very same
physical situation given with respect to different coordinate systems—the
transformation g(x) 7→ g′(x′) is a passive transformation. The active interpre-
tation of the transformation involves asking what the function of coordinates
g′ represents when interpreted with respect to the original coordinate system,
{x}. (Note that this question presupposes something that one might dispute,
namely, that it makes sense to talk of holding a specific coordinate system
fixed, independently of any solution described with respect to it.)

When g(x) 6= g′(x), g(x) and g′(x) will describe different physical sit-
uations (assuming no redundancy in the way the mathematical object g
represents physical reality). And because of T ’s general covariance, g′’s status
as a solution of T is independent of which coordinate system, {x} or {x′}, it
is referred to.

The distinction between active and passive transformations first arises
in the context of coordinate transformations. The terminology is now used,
however, in more general contexts. In particular, one may distinguish between
what are labelled (somewhat misleadingly) active and passive diffeomorphisms.

Recall that solutions of GR are n-tuples, (M, gab, . . .), where M is a
differentiable manifold. To callM differentiable just means that it is equipped
with structure that distinguishes, e.g., smooth from non-smooth curves. A
diffeomorphism between differentiable manifolds M and N is a bijective map
such that both the map and its inverse preserve such structure (e.g., under
the map, the image of a smooth curve in M will be a smooth curve in N and
vice versa).

Let d be a diffeomorphism from M to itself. There is no sense in which d
by itself can be said to be active or passive: it simply associates to each point
of M a (possibly distinct) point. To get further, we need to: (i) consider
maps naturally associated with d that act on structures defined on M and
(ii) distinguish between two types of structure.

The first type of structure includes coordinate systems: maps from M
into R4 (assuming that M is 4-dimensional) that preserve M ’s differentiable
structure. (In fact, the differentiable structure of M is standardly defined
extrinsically, via a set of preferred coordinate systems.) The second type
includes objects defined on M that are intended to represent something
physical: fields or other objects located in spacetime, or physically meaningful
spatiotemporal properties and relations.

The definitions of the natural maps associated with d on such objects will
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differ in detail, depending on the type of object. The basic idea, however, is
straightforward. If d maps p ∈M to q, we can define d’s action on an object
F via the requirement that the image object, d∗F , “takes the same value” at
p as the original object takes at q. So, for example, given a coordinate system
φ : U ⊆ M → R4, we can define a new coordinate system d∗φ on the open
set d−1(U) via the requirement that d∗φ(p) = φ(d(p)) for all p ∈ d−1(U).

A passive diffeomorphism corresponds to the case where one contemplates
the action of the diffeomorphism on a coordinate system (or systems) whilst
leaving the objects representing physically significant structure unchanged.
It is the exact correlate of the passive coordinate transformation described
above.

An active diffeomorphism, by contrast, leaves coordinate systems un-
changed but acts on the objects representing physical structure. So, for
example, if (M, gab) is a manifold equipped with a metric tensor field gab,
(M,d∗gab) is the (in general) mathematically distinct object that results from
applying to gab the active diffeomorphism d. (M, gab) and (M,d∗gab) are
mathematically distinct because, in general, when d(p) 6= p, the value of d∗gab

at p (I write: d∗gab|p) does not equal the value of gab at p.
With this machinery in place, a revised, coordinate-free notion of general

covariance, often labelled (active) diffeomorphism invariance, can be stated.
Let the models of a theory T be n-tuples of the form (M,O1, O2, . . .). T is
generally covariant if and only if: if (M,O1, O2, . . .) is a structure of the rele-
vant type and d is a diffeomorphism between M and N , then (M,O1, O2, . . .)
is a solution of T if and only if (N, d∗O1, d

∗O2, . . .) is also a solution of T .
GR is generally covariant in this sense. (Whether this coordinate-free notion
of general covariance is equivalent to the notion of general covariance given
earlier in terms of coordinate transformations is a subtle business. For more
discussion, see Pooley (2017), where the definition of diffeomorphism invari-
ance is also refined to take account of the distinction between dynamical and
non-dynamical fields.)

Finally, I define a hole diffeomorphism. Let M be a differential manifold
and let H (the “hole”) be a compact open subset of M . A diffeomorphism
d : M →M is a hole diffeomorphism corresponding to H if and only if d is the
identity transformation outside of H but comes smoothly to differ from the
identity transformation within H. In other words: d(p) = p for all p ∈M \H,
but d(p) 6= p for some p ∈ H.
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3 The Argument
The core conclusion of the hole argument is that, under a substantivalist
interpretation, any generally covariant theory such as GR is indeterministic.
(To simplify exposition, I focus on GR as the paradigm generally covariant
theory.) There is then the further question of whether this core conclusion
counts against a substantivalist interpretation of GR: is the indeterminism in
question problematic?

The argument for the core conclusion has three main premises: a claim
about what substantivalism entails, a claim about what general covariance
entails, and a claim about what it takes for a theory to be deterministic. The
core conclusion can be resisted by calling into question each of these claims.
They therefore merit careful individual articulation. Before that, however, a
brief initial statement of the argument will help ensure that we do not lose
sight of the wood for the trees.

LetM = (M, gab, Tab) be a solution of GR. Let d∗M = (M,d∗gab, d
∗Tab),

where d is a diffeomorphism fromM onto itself. It seems that a substantivalist
should takeM and d∗M to represent distinct possibilities. This is because (i)
the substantivalist regards the points of M as representing genuine entities,
namely substantival spacetime points, and (ii)M and d∗M assign the very
same points different properties. If p is such that d(p) 6= p, then (assuming
gab possesses no symmetries)M and d∗M will ascribe different geometrical
properties to p (gab|p 6= d∗gab|p) and may ascribe different matter content to
(the neighbourhood around) p (if Tab|p 6= d∗Tab|p).

We assumed that M is a solution of GR. It follows from GR’s general
covariance that d∗M is also a solution. This seems to mean that the (accepting
the above reasoning, distinct) situations thatM and d∗M represent are both
physically possible.

Finally, suppose that d is a hole diffeomorphism. In particular, suppose
that M is foliable by a family of achronal (with respect to gab) 3-dimensional
surfaces, let Σ be one such surface, and let H lie entirely to the future of Σ. (A
foliation of an n-dimensional manifold is family of disjoint (n−m)-dimensional
submanifolds (m < n) whose union is M . In this case, we take m = 1. A
surface is achronal if no two points in the surface lie to the past or future
of each other.) M and d∗M represent distinct situations (d is non-trivial
within H) but, outside of H, they are identical: they assign exactly the
same (spatiotemporal and material) properties to all the points of M \H. In
particular, the possible spacetimes that they represent are identical up to the
instant corresponding to Σ but differ to its future. Since both spacetimes
are physically possible according to GR, it seems that GR is indeterministic:
fixing the laws and the entire spacetime up to Σ fails to fix what will happen
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(which points will have which properties) to the future of Σ.
That concludes our initial statement of the hole argument. Note that

the indeterminism is (in a certain sense) radical. H can be freely specified.
Similarly, d can be freely specified, so long as it preserves M ’s differentiable
structure and so long as it smoothly reduces to the identity outside of H. This
means that, for any compact region of M as small as one likes, completely
specifying the properties of spacetime and matter outside of that region fails
to fix the properties within the region (Earman and Norton 1987: 524).

The rest of this section develops a slightly more careful version of the
argument, designed to be immune to some of the less telling criticisms found
in the literature.

I stated above that the core of the hole argument involved three main
premises. In the presentation just given, these are: (1) that the substantivalist
is committed to takingM and d∗M to represent distinct situations; (2) that
GR’s general covariance entails that the possibilities represented byM and
d∗M are equally physically possible; and (3) that a theory is indeterministic
if it both regardsM and d∗M as representing distinct possibilities (in the
way described) and regards the possibilities as equally possible. For each
premise, we should identify the most defensible version that is strong enough
to play the required role in the argument.

Premise (1) is closely related to what Earman and Norton dubbed the
“acid test” of substantivalism. They wrote:

If everything in the world were reflected East to West (or better,
translated 3 feet East), retaining all the relations between bodies,
would we have a different world? The substantivalist must answer
yes since all the bodies of the world are now in different spatial
locations, even though the relations between them are unchanged.
(521)

They then went on to claim that the diffeomorphism “is the counterpart of
Leibniz’ replacement of all bodies in space in such a way that their relative
relations are preserved” and concluded that substantivalists were necessarily
committed to the denial of Leibniz Equivalence, which they defined as the
thesis that diffeomorphic models represent the same physical situation (522).
Here two models (M,O1, O2, . . .) and (N,O′1, O′2, . . .) are diffeomorphic just
in case there is a diffeomorphism d : M → N such that, for each object Oi,
O′i = d∗Oi.

Although Earman and Norton conclude by making a claim about how
substantivalists must interpret diffeomorphic models, the Leibniz-inspired
scenario that they use to introduce their acid test makes no mention of
models. Instead, their claim is directly about the physical situations that such
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models represent. They assert that, for any given situation, a substantivalist
must recognise as genuinely distinct the situation where the entire material
content of the universe is shifted three feet East relative to its location in
the first situation. This very natural assumption went unquestioned by both
the antisubstantivalist Leibniz and the substantivalist Clarke, in their famous
Correspondence (Clarke 1717). If spatial locations are autonomous entities
in their own right, doesn’t one have to allow that two situations might be
genuinely distinct in virtue of differing only in terms of which substantival
places serve as the locations of various material bodies, even if everything
else about the two situations is identical?

Premise (1) is, therefore, best thought of as the combination of two theses:
one about the plurality of possibilities that it is alleged a substantivalist
must acknowledge; and another about how particular mathematical objects
represent those possibilities. Ultimately, it is only the first thesis that does
essential work in the hole argument.

Let’s label the two theses Plurality and Models and state them more
carefully.

Plurality Suppose that P is a possible spacetime. The substantivalist is
committed to a plurality of possibilities distinct from P that (i) involve
the same pattern of spatiotemporal properties instantiated in P and
contain the same material fields as P , but that (ii) differ from P (solely)
over which spacetime points have which properties and serve as the
locations of the common material content.

Now for Models. Suppose that M = (M, gab, Tab) can be taken to
represent a possible spacetime P , and suppose that P ′ is a distinct but related
possibility of the type contemplated in Plurality. Further, suppose that,
while differing over how the common geometrical and material properties
are distributed over their common set of spacetime points, P and P ′ do not
differ over which collections of points count as smooth paths (i.e., they agree
on differentiable structure). The second thesis in Premise (1) is that, for
some suitable choice of diffeomorphism d, d∗M = (M,d∗gab, d

∗Tab) must be
interpreted as representing P ′.

It is immediately clear, however, that this claim is needlessly strong. It is
sufficient for the hole argument that d∗M may be so used. In other words,
it is sufficient that there is a permissible joint interpretation of the models
M and d∗M according to which M represents P and d∗M represents P ′.
The advocate of the hole argument can easily concede that M and d∗M
are equally apt to represent either possibility, i.e., that they have the same
“representational capacities” (Weatherall 2018: 332). No more is required in
order to articulate the argument than the following claim:
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Models If M = (M, gab, Tab) can be chosen to represent a possible spacetime
P then, relative to that choice, there is a permissible and natural inter-
pretation of d∗M according to which it represents a distinct possibility
P ′.

Let us now turn to Premise (3), before revisiting Premise (2). In the spirit
of the emendation to Premise (1), note that whether a theory is deterministic
is, in the first instance, a matter of the range of situations that it judges to be
possible and only secondarily a matter of how models might represent those
possibilities (cf Brighouse 1994: 118).

Consider two possible spacetimes, P and P ′, differing in the way just
contemplated. That is, suppose that P and P ′ involve the same global pattern
of spatiotemporal properties and the same global pattern of material fields
but that the two spacetimes differ, for some of their common spacetime points,
over which of those points instantiate which of the properties common to both
spacetimes. Further, suppose that P and P ′ are in every respect identical up
to some global spacelike hypersurface and that their region of disagreement
is confined to a “hole” to the future of that hypersurface.

If P and P ′ are both physical possibilities according to the theory, then
the theory is, in one obvious and natural sense, indeterministic. A theory will
fail to be deterministic if it is consistent with worlds that involve identical
pasts but different futures. In the case at hand, fixing the entire past up to
some instant (a region where P and P ′ match perfectly) fails to fix the future:
according to the theory, spacetime’s continuation might be that of P , or it
might be that of P ′.

Finally, consider Premise (2) again. GR’s general covariance entails that
M is a solution if and only if d∗M is a solution. What follows concerning the
physical possibility (according to the interpreted theory) of the spacetimes
thatM and d∗M may be taken to represent?

Since we are not naively assuming that M and d∗M represent unique
possibilities, we should not simply assert that both the spacetime represented
byM and the spacetime represented by d∗M are equally possible according to
GR. These definite descriptions do not pick out unique situations. Rather, the
natural claim, in light of our reworked Premises (1) and (3), is the following:

Copossible Suppose thatM1 andM2 are both solutions to a theory T . If
there is a permissible joint interpretation ofM1 andM2 according to
whichM1 represents possibility P1 andM2 represents possibility P2
then if P1 is physically possible according to T so is P2.
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4 Responses to the Argument
Our reworked premises entail the hole argument’s core conclusion: according
to the substantivalist, GR is indeterministic. Responses to the argument
divide into those that accept this core conclusion and those that reject it.
Responses rejecting the core conclusion can then be classified according to
which key premise they reject.

For those who accept the core conclusion, the options are to reject substan-
tivalism or to bite the bullet and accept that GR is indeterministic. In their
paper, Earman and Norton favoured the first position. Determinism, they
concluded “may fail, but if it fails it should fail for a reason of physics, not
because of a commitment to substantival properties which can be eradicated
without affecting the empirical consequences of the theory” (Earman and
Norton 1987: 525).

According to the traditional, bipartite classification, the alternative to
substantivalism is relationalism. Relationalists deny the (autonomous) reality
of spacetime points and analyse facts about spacetime itself as grounded in
facts about spatiotemporal properties and relations instantiated by matter.
Relationalism evades the hole argument by lacking the plurality of possibilities
allegedly plaguing substantivalism: if spacetime points simply do not exist in
their own right, there can be no differences between possibilities that concern
only which points have which properties.

If relationalists deny that the manifolds in models of GR have a physical
correlate, they owe us a positive alternative picture of what such models should
be taken to represent. The simplest option is to view physical fields, not as
patterns of properties and relations instantiated by the points of substantival
spacetime, but as extended objects in their own right, possessing infinitely
many degrees of freedom. The role of the manifold is then to represent the
continuity and differentiable structure of the fields themselves, and to encode
which pointlike parts of one field are coincident with those of another. There
are both philosophers and physicists who count as relationalists in this sense
and who, to a greater or lesser degree, endorse the hole argument (see, e.g.,
Brown 2005: 156; Rovelli 2007: 1309–10).

Some remain as sceptical of relationalism as of substantivalism and have
sought a “third way” between the two. This was the programme that Earman
himself tentatively backed (1989: 208) but a genuinely novel reconception of
the metaphysics of spacetime remains elusive. In particular, various attempts
to articulate a “structural realist” approach to spacetime arguably collapse
into variants of either relationalism or (more frequently) substantivalism (see
Greaves 2011).

The other option available to someone who accepts the core conclusion is
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to bite the bullet. Should substantivalists be embarrassed at being forced to
view GR as indeterministic? In one sense the indeterminism is pernicious in
that, for every possible spacetime, no matter how small a region one considers,
the laws and the rest of spacetime fail to fix the state of that region. In
another sense, however, the indeterminism is anodyne. Any two possibilities
represented by models that differ by a hole diffeomorphism instantiate the
very same global pattern of properties and relations. They are therefore
qualitatively perfectly alike. Their differences involve only which particular
individual spacetime points instantiate which properties. In the terminology
of modal metaphysics, the differences between the possibilities are purely
haecceitistic (Kaplan 1975; see also [Caulton, this volume]).

The substantivalist can urge us to recognise that determinism is not an
“all-or-nothing affair” (Earman 1986: 13). Given the past of a spacetime,
GR might not fix which future individuals get to instantiate this or that
qualitative feature, but it might nonetheless fix which qualitative features
get to be instantiated. The substantivalist can claim, therefore, that, for all
the hole argument has shown, GR is qualitatively or physically deterministic:
given the past and the laws, all future physical facts might be fixed. The merely
haecceitistic facts that fail to be pinned down do not, this substantivalist
argues, count as the kind of features of the world that one should expect
physics to have anything to say about (Brighouse 1997). (Note that the hole
argument’s failing to show that GR is physically indeterministic does not
entail that GR is in fact physically deterministic. See Earman (2007: §6) for
a review of the wider question of whether GR is deterministic in senses other
than that at stake in the hole argument.)

A further step would be to reject the notion of determinism presupposed in
the hole argument. One would then block the core conclusion of the argument
by denying Premise (3). Leeds (1995), for example, argues that whether a
theory is deterministic is not a matter of which situations the interpreted
theory classifies as possible. Instead, he claims, it is a matter of what sentences
are provable within the language of the theory. In order for this strategy to
work, it would need to be shown that the notion of determinism presupposed
in the hole argument is not merely a possibly disfavoured option amongst
several but that it is somehow illegitimate. That seems like a tall order.
Leeds himself concedes that his proposal can be read as offering just one more
definition of determinism and, moreover, one that matches other definitions
framed in model-theoretic or possibility-based terms (Leeds 1995: 435). If the
link between substantivalism and indeterminism is to be severed, Premises (1)
and (2) are more promising targets.

Maudlin seeks to evade the core conclusion on the basis of a position
he dubs metrical essentialism (Maudlin 1989, 1990). Suppose modelM =
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(M, gab, Tab) is apt to represent a possible spacetime and consider model
d∗M = (M,d∗gab, d

∗Tab) for some diffeomorphism d. Recall that Premise (1)
of the hole argument was split above into two components: Plurality and
Models. Maudlin accepts Models in at least the following sense: he accepts
(in fact insists: see Maudlin 1989: 84) that there is a permissible joint inter-
pretation ofM and d∗M according to which they represent (if one assumes
substantivalism) different ways for the world to be. (I here borrow terminology
from Salmon (1989).) But, according to Maudlin, these ways for the world
to be are not both ways that the world might have been; they do not both
correspond to genuinely possible worlds.

Let us stipulate that modelM represents a possible world. The defining
commitment of metrical essentialism is that spacetime points bear their geo-
metrical properties and relations essentially. The value of the curvature scalar
at the spacetime point represented—or “named”—by p ∈ M is, therefore,
one of that point’s essential properties. Now suppose that d(p) 6= p. In that
case, d∗M represents the very same point as having different geometrical
properties, for the value of the curvature scalar at p in d∗M will (in the
generic case) be different from its value inM. It follows that, according to
the metrical essentialist, d∗M represents a state of affairs that is not even
metaphysically possible.

Note that the initial choice ofM to represent the genuine possibility is
arbitrary—consistently with their representational equivalence, one might
equally well have chosen d∗M. (This answers Norton’s (1989: 63) charge that
the metrical essentialist has to explain what distinguishes the “real” model
from “imposters”.) What the metrical essentialist insists on is that, relative
to that choice and relative to a natural and permissible joint interpretation of
the models, d∗M represents something metaphysical impossible.

Models had to be tweaked so as to be acceptable to metrical essentialists.
Something similar is true of Plurality. In one sense, metrical essentialists
block the hole argument by rejecting Plurality. Setting aside cases with
nontrivial isometries that are not also symmetries of the matter distribution,
the metrical essentialist recognises at most one possible world corresponding
to a given pattern of metrical and material properties and relations for any
given collection of spacetime points.

To characterise the metrical essentialist as rejecting Plurality is, however,
in some ways misleading. Maudlin endorses the intuition behind the “acid
test”; he agrees with Earman and Norton that the substantivalist must
view a Leibniz-inspired shift of all matter three feet East as generating a
genuinely distinct possibility. His dispute with Earman and Norton is over
their classification of diffeomorphisms as the natural generalisations of such
shifts. Maudlin stresses that Leibniz shifts apply only to the matter of the
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universe; they leave the geometric properties of the individual spacetime
points unaltered. He therefore sees the modelsM = (M, gab, Tab) andM′ =
(M, gab, d

∗Tab) as representing the proper generalization of Leibniz shifts when
the points of M are interpreted as naming the same spacetime points in each
model (Maudlin 1990: 552–3). And, of course, if M is a solution of GR,
thenM′ will, in general, not be (when Tab 6= 0). Since at most one of the
possibilities represented is physically possible (by the lights of GR), their
distinctness does not threaten indeterminism.

AlthoughM′ does not represent a physically possible spacetime, Maudlin
will judge that it does represent a metaphysically possible spacetime. The
atypical case of spacetimes with symmetries is therefore revealing. In such
cases, if d is an isometry,M′ can represent a physically possible world gen-
uinely distinct from that represented byM but one nevertheless qualitatively
indiscernible from it. Maudlin thus accepts the meaningfulness of merely
haecceitistic distinctions even if he denies that they (invariably) entail a
plurality of genuine possibilities.

This suggests the following representation of the metrical essentialist’s
position. They accept:

Plurality∗ Suppose that P is a possible spacetime. The substantivalist is
committed to a plurality of ways for the world to be distinct from P that
(i) involve the same pattern of spatiotemporal properties instantiated
in P and contain the same material fields as P , but that (ii) differ from
P (solely) over which spacetime points have which properties and serve
as the locations of the common material content.

But they reject:

Copossible∗ Suppose that M1 and M2 are both solutions to a theory T
and let P1 and P2 be ways for the world to be. If there is a permissible
joint interpretation ofM1 andM2 according to whichM1 represents
P1 andM2 represents P2 then if P1 is physically possible according to
T so is P2.

With these tweaks, the metrical essentialist counts as someone who accepts
Premise (1) but rejects Premise (2).

This regimentation highlights that metrical essentialists evade the hole
argument’s core conclusion only by rejecting what might seem like the obvious
moral of the diffeomorphism invariance of the theory. Grant Maudlin that
the points of the manifold M can be treated like proper names and that, so
understood, models M and d∗M represent distinct ways for the world to
be. What remains to be decided is whether these ways are both genuinely
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possible ways for the world to be. Having gone this far, however, it is a very
natural further step to take the diffeomorphism invariance of GR as telling
us precisely that both states are possible.

In postulating the real existence of spacetime points in the first place,
the metrical essentialist is likely to be a scientific realist who is happy to
take GR as a guide to ontology. Should not GR also be our guide as to
which properties are essential to spacetime points? What the diffeomorphism
invariance of GR appears to tell a haecceitist substantivalist is that the only
properties essential to a spacetime point are those that it exemplifies as part
of a set with the structure of a differentiable manifold (cf Earman 1989: 201).

A different criticism of metrical essentialism focusses on non-isomorphic
models. One straightforward way of illustrating the dynamical nature of
spacetime structure in GR is to assert, for example, that, had extra mass
been present close to some point, then the curvature at that point would
have been different (Earman 1989: 201). How are metrical essentialists to
evaluate such counterfactuals? They have to judge that the idea that the
curvature could have been different from its actual value at this very point
is as metaphysically absurd as, for example, the idea that Tim Maudlin
might have been made of iron girders. Maudlin is forced to concede that “no
model not isometric to the actual world can represent how this space-time
might have been” (Maudlin 1989: 89–90) but he insists that dynamically
allowed models of GR that are not isometric to the actual world can represent
genuine possibilities: “they are just different possible space-times, not different
possible states of this space-time” (1989: 90). He goes on to allow that such
possible spacetimes can be used to give a counterpart-theoretic explanation of
the truth of Earman’s counterfactual. As Brighouse observes (1994: 119–20),
this is a rather unsatisfying blend of essentialism and counterpart theory.

In the face of such criticism, what positive reasons can metric essentialists
offer for their position, aside from the ad hoc benefit that it avoids the
indeterminism of the hole argument? Maudlin’s answer appeals to Newton.
In a somewhat obscure passage, which has inspired almost as many different
interpretations as commentators, Newton wrote:

The parts of duration and space are understood to be the same as
they really are only because of their mutual order and position; nor
do they have any principle of individuation apart from that order
and position, which consequently cannot be altered. (Newton
1684 [2004]: 25)

According to Maudlin’s gloss, Newton is saying that “the parts of space and
time, being intrinsically identical to one another, [have] to be differentiated by
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their mutual relations of position. Parts of space bear their metrical relations
essentially” (Maudlin 1989: 86).

This is not especially compelling. Why should someone otherwise comfort-
able with haecceitistic distinctions think that intrinsically identical objects
require (metaphysical?) “differentiation”? Rather than cleaving to haecceitism
and avoiding indeterminism by way of an otherwise unmotivated essentialism,
perhaps the substantivalist does better to embrace wholeheartedly the “struc-
turalist” view that others (e.g., Stein 2002: 272) read in Newton’s cryptic
remarks. If spacetime points are only “individuated” one from another by
their spatiotemporal relations (i.e., by their positions in the overall network
of spatiotemporal relations), a possible spacetime is exhaustively specified
by a complete catalogue of the qualitative facts concerning the full pattern
of spatiotemporal relations that are instantiated by its points. According to
this antihaecceitist (or generalist) point of view, there simply are no further
“individualistic” facts concerning which objects possess which properties. At
a fundamental level, reality, at least concerning spacetime points, is purely
qualitative.

Despite the important differences between them, Butterfield (1989a),
Maidens (1992), Stachel (1993, 2002, 2006), Brighouse (1994), Rynasiewicz
(1994), Hoefer (1996), Saunders (2003), Pooley (2006) and Esfeld and Lam
(2008) all endorse some kind of antihaecceitism, at least concerning spacetime
points, whether on general philosophical grounds (as in Hoefer’s case), or
as a perceived lesson of the diffeomorphism invariance of the physics (as
in Stachel’s case). Whether acknowledged or not, these authors, in their
commitment to spacetime points as entities not reducible to matter and its
properties, count as substantivalists, albeit of a “sophisticated” variety (Belot
and Earman 2001: 228).

Sophisticated substantivalists reject the core conclusion of the hole ar-
gument by rejecting Premise (1). In particular, they reject Plurality. The
distinct possibilities countenanced by Plurality are precisely possibilities
that differ merely haecceitistically. That antihaecceitism and Plurality
are incompatible is therefore immediate. One strand of criticism questions
whether it is coherent to combine acceptance of spacetime points as entities
in their own right with a denial that there are the substantive facts (about
which such entities possess which properties) that would generate haecceitistic
distinctions. Some argue that a fleshed-out metaphysical story explaining
how this combination is possible is still to be given (Dasgupta 2011: 130–5).

In addition to Plurality, sophisticated substantivalists also reject Mod-
els, but this is a simple consequence of their rejection of Plurality, which
Models presupposes. This might lead one to wonder whether there is a
satisfactory response to the hole argument that rejects Models while dis-
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avowing metaphysics and remaining neutral with respect to Plurality. One
can interpret Weatherall (2018) and Fletcher (2020) as defending positions of
this kind.

According to Models, M and d∗M can be used to jointly represent
physically distinct situations. The essence of both Weatherall’s and Fletcher’s
views is that this use is not consistent with treating them as Lorentzian
manifolds. Weatherall’s starting point is that the physical interpretation of
a theory’s formalism should be consistent with our best understanding of
the mathematics of that formalism. In particular, the models employed in a
physical theory should count as (physically) equivalent just when they are
equivalent according to the mathematics used in formulating those models
(Weatherall 2018: 331). Since isometry provides the standard of ‘sameness’ in
the mathematics of Lorentzian manifolds, it is a condition on any acceptable
interpretation that it regard isometric manifolds, such asM = (M, gab) and
d∗M = (M,d∗gab), as physically equivalent.

In order to bite against Models, this stricture needs to be understood, not
merely as insisting that any two isometric models are equally apt to represent
any given possibility (something our formulation of the hole argument was
careful to allow), but as ruling out a joint interpretation of them on which they
are physically inequivalent in the sense that (so interpreted) they represent
distinct physical possibilities.

Fletcher is explicit that such a use of the models is in conflict with treating
them as members of the mathematical category of Lorentzian manifolds. Any
aspect of a state of affairs that is represented by one such model so conceived
must, he argues, be similarly represented by each isomorphic model. This
is because isomorphic models are equivalent “as objects in that category”:
their being isomorphic just is a matter of there being a bijective map of a
specific sort that preserves all of the structures constitutive of objects of that
type. The consequence Fletcher draws is that any putative representational
differences between such isomorphic models are “not reflected at all in the
models themselves as members of [the] category they are taken to be [members
of]—there is no mathematical correlate of those differences definable in the
category” (Fletcher 2020: 239–40).

For the sake of argument, let us concede to Weatherall and Fletcher that,
on a natural understanding of GR’s mathematical machinery, it cannot be
used to represent haecceitistic differences between possible spacetimes. What
follows for the hole argument? It becomes evident that all the heavy lifting in
Premise (1) is done by its metaphysical component, namely, Plurality. That
thesis was not the outcome of a naive way of thinking about the mathematics
of GR. It arose from an interrogation of the substantivalist’s metaphysics.
Weatherall’s and Fletcher’s reflections, therefore, leave it untouched.
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In effect, both authors argue that, if there are pluralities of merely haeccei-
tistically distinct possibilities, the mathematical formalism of GR, correctly
interpreted, is necessarily indifferent to differences between them. But this
just means that GR does not distinguish between any two elements of such a
plurality; both will count as physically possible according to GR or neither
will. And that, of course, is just to admit that, according to any metaphysical
view committed to such pluralities, GR is indeterministic. The indeterminism
cannot be avoided by remaining loftily above the metaphysical affray.

5 Defining Determinism
Contrast the following two definitions of determinism for a theory T :
Det1 T is deterministic just in case, for any worlds W and W ′ that are

possible according to T , if the past of W up to some timeslice in W
is intrinsically identical to the past of W ′ up to some timeslice in W ′,
then W and W ′ are intrinsically identical.

Det2 T is deterministic just in case, for any worlds W and W ′ that are
possible according to T , if the past of W up to some timeslice in W
is qualitatively (intrinsically) identical to the past of W ′ up to some
timeslice in W ′, then W and W ′ are qualitatively identical.

(On these definitions, determinism is a matter of whether the entire history of
a world up to some time fixes its future, given the laws. Alternative notions
of determinism are easily obtained by considering whether a world at a time
(or some other part of a world) fixes the remainder, given the laws. There are
also reasons to focus on the conditions for a world, rather than a theory, to
be deterministic (Brighouse 1997: 468). For reasons of space, I ignore these
complications.)

According to sophisticated substantivalists, there are no primitive trans-
world facts about which objects in one world are identical to which objects in
another. On their view, two possible worlds (or two proper parts of distinct
worlds) that are not (intrinsically) identical differ qualitatively. Sophisticated
substantivalists therefore interpret Det1 and Det2 as strictly equivalent.

According to straightforward (haecceitist) substantivalists, in contrast,
worlds W and W ′ can differ not just by failing to be perfectly qualitatively
alike but by failing to have the very same individuals playing identical qualita-
tive roles. For them, therefore,Det1 describes a criterion for determinism that
is strictly stronger than that described in Det2. Absent sufficiently strong es-
sentialist constraints on what is possible for spacetime points, straightforward
substantivalists will judge GR to be indeterministic according to Det1.
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Det2 corresponds closely to the definition of determinism offered by David
Lewis (1983: 359–60). A related model-theoretic definition was defended by
Butterfield (1989b), who argued that it captures the notion of determinism
implicit in physicists’ discussions of GR’s determinism. A significant strand
of the hole argument literature has targeted definitions akin to Det2, arguing
that they misclassify as deterministic theories that are clearly indeterministic.
Such criticism is an obvious problem for sophisticated substantivalists, for
whom Det2 is equivalent to Det1, but it is also a problem for straightforward
substantivalists who, as noted above, might wish to distinguish a notion of
physical determinism from determinism tout court. Det2 might have seemed
to adequately capture the former notion.

Problem cases forDet2 were raised by Wilson (1993: 216) and Rynasiewicz
(1994: 418), and have been discussed in detail by Belot (1995), Brighouse
(1997) and Melia (1999). Here are two simple illustrative examples. In the
first (adapted from Melia 1999: 660–1) our theory, T1, governs the behaviour
of two types of particle: A particles and B particles. Consider a world that
contains one A particle equidistant from two B particles, all at rest with
respect to one another. Suppose that T1 determines that, at some fixed and
predictable time, the A particle will move at a fixed velocity towards one of
the B particles. Intuitively, T1 is indeterministic because, despite fixing the
qualitative evolution of the situation just described, it fails to fix which B
particle the A particle will move towards.

Imagine that we can label the particles in our toy world: a1, b1 and b2.
There appear to be two possible futures: one where a1 moves towards b1
and a second where a1 moves towards b2. Haecceitists will judge that T1
is indeterministic according to Det1, for they recognise the merely haec-
ceitistic distinctions between its being b1 or b2 towards which the A particle
moves. According to Det2, however, the world is compatible with T1’s being
deterministic: if there are two possible futures, they are qualitatively identical.

In our second example (cf Belot 1995: 191–2, and Melia 1999: 646–7),
theory T2 governs the decay of A particles into B particles. We suppose
that everything qualitative about such decays (their spacetime locations, the
momenta of the decay products, etc.) is fixed by the qualitative history of the
world prior to the decay. Now consider a world governed by T2 involving the
simultaneous decay of two A particles each into a B particle. The haecceitist
will judge that T2 is indeterministic because, despite fixing the qualitative
behaviour of all decays, it fails to fix the identities of the decay products.
Again, imagine that we can label the four particles and suppose that, in the
world we are considering, a1 decays into b1 and a2 decays into b2. A world
where a1 decays into b2 and a2 decays into b1, but where everything else is
otherwise held fixed, might seem to be an alternative possibility compatible
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with T2. While T2 is therefore deterministic according toDet2 (the qualitative
nature of all decays is fully determined by the qualitative nature of the pre-
decay state), a haecceitist will judge that the theory fails to be deterministic
according to Det1.

Some philosophers (e.g. Belot 1995) accept that both T1 and T2 manifest
genuine indeterminism. They have reason to reject Det2 and can rest content
with a haecceitist understanding of Det1. They are likely to accept the hole
argument’s conclusion that substantivalist GR is indeterministic.

A sophisticated substantivalist, on the other hand, will view the alleged
indeterminism of T2 as suspect: the purportedly distinct possibilities involved
in the example are merely haecceitistically distinct. For many, however, the
intuition that theory T1 is indeterministic is harder to dispel. Is there a
principled way for sophisticated substantivalists to acknowledge that T1 is
indeterministic but to deny that T2 is indeterministic?

Despite doubts recently expressed by Brighouse (2020: §4), it would seem
that this can be done. Consider again the three-particle world governed by
T1. According to the haecceitist, there are in fact two such possible worlds:
one in which a1 moves towards b1 and another in which a1 moves towards
b2. According to the antihaecceitist, there is only one such world: it contains
an A particle that moves towards one but not the other of two previously
qualitatively identical B particles. But the antihaecceitist can (and, indeed,
must) recognise two possible futures for two qualitatively identical proper
parts of this world. Prior to the A particle’s starting to move, there were two
qualitatively identical but distinct (and overlapping) pairs composed of an
A particle and a B particle. For convenience we can imagine labelling them
“(a1, b1)” and “(a1, b2)” but, note, their distinctness involves no haecceitistic
presuppositions. It is secured by the distinctness of b1 and b2, two particles
coexisting in the same world and situated some distance apart from one
another.

T1’s indeterminism can, therefore, be understood in terms of its failure to
fix the (qualitative) future of every part of each world that it governs (Melia
1999: 652). Take our two pairs of an A particle and a B particle. An exhaustive
qualitative specification of such a pair up to the time at which the A particle
moves will involve the complete specification of the qualitative history of the
whole world up to that time together with a qualitative characterisation of
the pair’s situation in this history. Up until the time at which the A particle
moves, both pairs will satisfy exactly the same qualitiative description. Such
a specification, therefore, fails to determine whether one of the particles in
the pair will move towards the other or not.

Note that indeterminism is still conceived, as it must be for the antihaec-
ceitist, as a matter of the qualitative past failing to fix the qualitative future.
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In order to recognise T1’s indeterminism, one just needs to attend to proper
parts of a world, in addition to the world as a whole. It turns out that it is
relatively straightforward to provide alternative definitions of determinism
that regiment the intuitions just described (see Belot 1995: 191, Definition 2;
Melia 1999: §4.1). This need not mean that Det2 should simply be jettisoned.
Following Dewar (2016), one might go on to distinguish “determinism de
dicto” (captured by Det2) from “determinism de re”:

. . . with a little hindsight, it is utterly unsurprising that there
should turn out to be two concepts of determinism. Determinism
is a matter of whether there is one possibility or more consistent
with things being a certain way at a certain time; we have two
species of possibility, de dicto and de re; so as a consequence,
there are two species of determinism. (Dewar 2016: 53–4)
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