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Abstract

Inspired by actual parcel delivery operations in London, this paper describes a two-echelon
distribution system that combines the use of driving and walking as part of last-mile deliveries
in urban areas for a single driver. The paper presents an optimisation model that explic-
itly treats and integrates the driving and walking elements, and describes a branch-and-cut
algorithm that uses new valid inequalities specifically tailored for the problem at hand. Com-
putational results based on real instances obtained from a courier operating in London are
presented to show the performance of the algorithm.

Keywords Vehicle routing - Last-mile delivery - Branch-and-cut - Urban freight

1 Background and motivation

Sharp growth in e-commerce sales in developed countries worldwide over the last decade has
led to substantial increases in urban freight goods transport, with associated negative impacts
on road traffic, availability of kerbside space and air quality. In the UK, total measured
national volumes in the parcels market increased by 10%, to 2.6 billion items, in 2018-19
(Ofcom 2019). This growth and worsening road traffic and parking conditions in city centres
make parcel deliveries ever-more difficult to perform. Factors that increase vehicle use for
parcel deliveries include the growing trend for same-day and ‘instant’ deliveries (within
2 h) leading to fragmentation of consignments and increasing the number and frequency of

B Tolga Bektag
T.Bektas@liverpool.ac.uk

Centre for Operational Research, Management Science and Information Systems, University of
Southampton, Southampton SO17 1BJ, UK

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17
1BJ, UK

3 NIHR CLAHRC Wessex, University of Southampton, Southampton SO17 1BJ, UK

University of Liverpool Management School, University of Liverpool, Chatham Street, Liverpool
L69 7ZH, UK

Faculty of Architecture and the Built Environment, University of Westminster, London NW1 5LS, UK

Published online: 08 September 2020 @ Springer


https://core.ac.uk/display/334592791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-020-03781-8&domain=pdf
http://orcid.org/0000-0003-0634-144X

Annals of Operations Research

deliveries (Dablanc et al. 2017) and the substantial number of competing freight transport
operators that result in much duplication of van activity (Browne et al. 2014). Last-mile
parcel delivery operations, characterised by multi-player, multi-drop vehicle rounds where
kerbside access is needed are at direct odds with an infrastructure designed and legislated in
favour of passenger transportation (Allen and Browne 2014).

Many of our major cities and particularly London have seen a considerable shift to walking,
cycling and the use of buses over the past 20 years together with a fall in car traffic (Transport
for London 2016). As a result, road space is being increasingly reallocated in favour of
dedicated cycle and bus lanes, as well as pavement widening programmes, which in central
London has led to a 30% decrease in road network capacity for private motorised vehicles
between 1993 and 2009 (Transport for London 2013). With declining kerbside stopping
locations, carriers’ round efficiency declines due to the need for additional, unproductive
driving whilst searching for parking locations and the potential increase in fines and general
traffic disruption through illegal parking (Bates et al. 2017). With average speeds in cities
also falling, for example, by 13% (from 16.6 to 14.5 mph) on local authority managed roads
in London between 2015 and 2018 (Department for Transport 2020), there is growing interest
in alternative methods for addressing the last-mile problem that aim to reduce reliance on
road vehicles.

The study by Allen et al. (2018) on last-mile goods vehicle activity indicated that multi-
drop parcel delivery drivers in central London typically walk 8 km (5 miles) while their vehicle
is parked at the kerbside, taking up more than 60% of their time worked. Their observations
suggest a two-echelon last-mile distribution model, with driving and walking as the higher
and lower-level echelons, respectively. However, the design of such a last-mile distribution
model gives rise to challenging optimisation problems, even for a single driver, in which
decisions concerning the partitioning of customers that will be served either by driving or by
walking, the sequence of locations to be visited in either mode, and the selection of parking
points from where walking tours will start from and end at, need to be made simultaneously.
In addition, the driving and walking has to be differentiated on the basis of travel time or cost
between a pair of locations, which is likely to vary between these two modes.

Two-level distribution systems within the broader context of city logistics give rise to what
is known as the class of two-echelon vehicle routing problems (2EVRPs) (see Cuda et al.
2015, for a survey). Whilst the definition of the 2EVRP allows for use of different types of
vehicles at each echelon (e.g. Hemmelmayr et al. 2012), they are primarily differentiated by
the capacities of the vehicles, but not by travel cost or time. The 2EVRP assumes the use of a
set of ‘satellites’ at given locations, and where the first and the second echelon routes meet.
The model described by Anderluh et al. (2017) that combines vans and cargo bikes defines a
separate travel cost for each vehicle travelling between a pair of locations, but requires vans
and cargo bikes to travel from separate depots, and assumes that the customers are already
partitioned into those to be served by cargo bikes and vans. Our problem uniquely differs
from the 2EVRP in that we associate different travel costs for the two different modes, and
do not require the use of satellites.

There has recently been a stream of research dedicated to the combined use of walking
and driving for home on-site services. We will not attempt to review this body of literature
as it relates more to health care, but instead mention to the particular problem described
by Fikar and Hirsch (2015) to serve as an example. Motivated by home health care services,
but also applicable to others in home repair, maintenance and private tutoring, this problem
concerns the use of vehicles to transport nurses, who can be dropped-off and picked-up at
various locations. The nurses can choose to walk between a drop-off and pick-up location for
site visits. Additional practical restrictions, such as time windows and mandatory working
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time and break regulations, also apply. The authors describe a heuristic algorithm and apply
it on real-world data provided by the Austrian Red Cross.

More relevant to our setting in freight distribution is the truck-and-trailer routing problem
(TTRP) (Derigs et al. 2013; Villegas et al. 2010) where the ‘truck-and-trailer’ route in the
TTRP corresponds to the driving route in our setting, while the ‘truck only’ route corresponds
to that of walking. Variants of the TTRP that take into account the time requirements on the
deliveries as well as the limited carrying capacity of both modes of delivery have also been
studied (Lin et al. 2011), which give rise to difficult optimization problems that have only
recently been optimally solved with up to 100 customers (Parragh and Cordeau 2017). Such
problems however implicitly assume the use of a single mode of transport in both layers.
One study that looks at such a two-echelon distribution model where walking and driving
is treated separately is by Nguyén et al. (2019) where time window constraints are also
present. A similar distribution problem involving delivery to clusters of customers by a fleet
of trucks operating from a single depot appears in De Grancy and Reimann (2016), where
each customer is served on foot from the parking location within the cluster it belongs to,
and where there are time window restrictions on the deliveries made. However the problems
described by Nguyén et al. (2019) and De Grancy and Reimann (2016) both assume that
delivery locations are clustered in advance and is provided as input data.

The paper by Lin (2011) studies a similar problem to the one presented here, namely a
pick-up and delivery problem with two modes of delivery (e.g., a van and a foot courier) and
time windows, in which the two modes are treated separately. In this problem, the upper-
echelon mode of transport has capacity restrictions whereas the lower-echelon does not,
which is different to our setting. A similar problem arising in the routing and scheduling of
technicians of an energy provider is described by Coindreau et al. (2019), where workers
are allowed to either share a vehicle or walk to get from one site to another. Each vehicle
has a driver and can accommodate a worker, who can both choose to walk to a site. After
any walking, the driver must return to the vehicle. If a worker is dropped-off at a particular
location by one driver, they can be picked-up at another location by another driver, where the
travel between the two locations is undertaken by foot by that worker. For this problem, the
authors describe a formulation and a heuristic algorithm that is applied to a set of instances.

The delivery model we study here also bears resemblance to those that involve simulta-
neous routing of ground vehicles and drones, such as the one described in Luo et al. (2017)
in which drones are used for deliveries and are carried on the ground vehicles. However, as
the carriage capacity of drones is often limited to one parcel (Murray and Chu 2015), such
problems assume that drones serve only one customer at a time, and return to the ground
vehicle carrying it to pick up a new parcel for delivery to another customer. In addition,
drones are also limited by their flight range. For this reason, the problem we study here can
be regarded as a more general version of those involving drones and vehicles.

This paper contributes to the literature by (1) introducing a two-echelon last-mile delivery
system that explicitly considers driving and walking decisions in an integrated manner, (2)
describing an associated optimisation model, valid inequalities and a branch-and-cut algo-
rithm to solve the model, and (3) presenting results on real instances derived from last-mile
delivery operations in London. The rest of the paper is structured as follows. We present
a formal description of the problem in Sect. 2. We then describe an optimisation model in
Sect. 3, where we also present valid inequalities and describe the branch-and-cut algorithm.
Computational results are given in Sect. 4. The paper concludes in Sect. 5.
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Fig. 1 A feasible solution to an instance with one depot and 10 customers, where walking is shown by the
dashed lines and driving by the solid lines

2 Planning a combined driving and walking distribution model

The proposed distribution system requires explicit differentiation between walking and driv-
ing. In particular, the time required for travelling between two locations will differ between
walking and driving, sometimes by a significant margin, particularly in urban areas. Fur-
thermore, the dependency between the two echelons, one corresponding to driving and the
other to walking, suggest that designing the two sets of routes separately may result in a
sub-optimal solution. For a given area to be serviced by a single driver, the main decisions
that need to be made in the design of a combined distribution system include:

— The locations that are to be visited by either mode of transport,

— The selection of locations where the vehicle will be parked,

— The ordering of delivery locations in both the driving route and the walking routes, bearing
in mind the capacity restrictions in the latter (e.g., associated with using a backpack, a
wheeled bag or a trolley).

The distribution design problem concerns a single vehicle that is pre-loaded with parcels
and destined to serve a given set of customers with known locations and delivery requirements
specified in terms of number and size of items. The aim is to (1) group the customers into
clusters (where singleton clusters are allowed), (2) find a driving route across the clusters
such that one node within each cluster is designated as the parking node, and (3) find a
walking route within each cluster that starts and ends at the parking node. The objective is
to minimise the total time of all travel, under the following constraints: (1) the demands of
all customers must be satisfied, (2) the total weight and volume of all deliveries made within
each cluster is limited to the total capacity that the driver can carry, and (3) the driving starts
from and ends at a depot of a known location. Figure 1left shows an instance to the problem
with the depot shown by the dark square and 10 customers shown by the small circles. A
feasible solution to the problem is shown on the right of Fig. 1 which indicates the driving
by the solid lines and the walking by the dashed lines.

The design of the distribution system that includes driving and walking therefore hinges
on the trade-off between the time taken by the two modes, which requires the two modes to
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be treated separately. The model we describe in the following section explicitly addresses
this particular aspect of the problem.

Time window constraints for parcel delivery are not explicitly considered here. Our anal-
ysis of a data set from a major carrier operating in London covering the period 4-9 June 2018
revealed that, of about 13,000 consignments that were delivered, only 1.6% required delivery
by 9am, 2.3% by 10am and 7.2% by 12pm, whereas the rest (88.9%) could be delivered any-
time until 6pm on a given day. Given the relatively small proportion of time-sensitive parcels,
we assume that these could be delivered separately to ensure the delivery deadlines are met,
and therefore focus our attention on parcels that do not have any time delivery constraints
attached to them.

3 Mathematical model and branch-and-cut algorithm

This section presents a formulation of the problem described above along with valid inequal-
ities. We also describe a branch-and cut algorithm to solve the formulation and in which the
new valid inequalities are used.

3.1 Mathematical modelling

Let G = (V, A) be a complete graph with V = V' U {0} as the set of nodes, where node
0 corresponds to the depot, V' is the set of customers, and A is the arc set. Two different
(non-negative) travel times are associated with each arc (i, j) € A that represent travel from
nodei € V to j € V, namely the time cl-d. of driving and the time ¢}, of walking. We allow
the costs to be asymmetric. We denote by v; (w;) the volume (weight) of the parcels to be
delivered to customeri € V'.

There are no capacity or volume constraints on the vehicle as it is pre-loaded at the time
of departure, but each walking route is limited to carrying parcels that total no more than Q,,
units in volume and Q,, units in weight. In addition, any individual customer with demand
larger than Q, in volume or heavier than Q,, in weight must be visited and served by the
vehicle. Such a customer cannot appear on a walking route, and we assume that they also
cannot be a parking node. Let r(S) denote the number of walking routes needed to meet the
demand in a given subset S of V', calculated as r(S) = max{[v(S)/Qy1, [w(S)/Q1} where
v(S) = ), Vi is the total volume of parcels to be delivered to S, and w(S) = ;g w; is
the total weight of parcels to be delivered to S.

The mathematical model is defined with respect to a linear multiplier « > 0 to the driving
time, pre-defined as an input to the optimisation problem. It inversely reflects the relative
importance given to walking over driving. In particular, increasing « places less emphasis on
minimising the total walking time, and puts more weight on reducing the overall driving time.
This may be required if there are uncertainties on the driving times, or for when the overall
vehicle mileage (and the associated fuel consumption) of the vehicle needs to be reduced.

The model uses a binary variable xl.‘_ji, which takes the value 1 if driving takes place from
nodei € V tonode j € V \ {i}, and O otherwise. Similarly, a binary variable x;;? takes the
value 1 if walking takes place fromnode i € V tonode j € V \ {i}, and O otherwise. Finally,
abinary variable z; takes the value 1 if the driver parks the vehicle at the location of customer
i € V/ (hereafter called the parking node), and 0 otherwise.

Table 1 lists the parameters and the variables used in the model.

ieS
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Table 1 A list of the parameters and the variables used in the model

Parameters

c;]/. Driving time from node i to j on arc (i, j) € A

c;‘]f Walking time from node i to j on arc (i, j) € A

o Linear multiplier to the total driving time

Oy Maximum total volume that can be served on a given walking route

Qw Maximum total weight that can be served on a given walking route

r(S) Number of walking routes required to serve the subset S C V' of customers
Variables

x;]j € {0, 1} Equals 1 if arc (i, j) € A is traversed by the vehicle, and O otherwise
xi“; e {0, 1} Equals 1 if arc (i, j) € A is traversed by walking, and 0 otherwise

z; €10, 1} Equals 1 if node i € V’ is used as parking node, and 0 otherwise

The complete formulation is given as follows:

subject to

@ Springer

Minimise o Y cfxb+d—a) Y chxf M
(i,j)eA @i,j)eA
Do+ Yl =1+ VieV @
JjeV jev’
ieV
Yl =1 @
ieV
S <isi—1 vsc Vv’ ©)
i,jes
Y xf =z VieV (6)
Jjes
> oxd=>"x4 VieV' @)
jev jev
lez; >z VieV 3)
jes
ZX;§=ZX;; VieV ©)
jev’ jev’
X =x% =0 VieV (10)

v;i > Qyorw; > Qy

DA ISI—rS)+> u vScV (11
i,jes ieS
X tzit+z; <2 Vi,jev' (12)



Annals of Operations Research

Dox+ Y i+ X = ISI+2 -z —z; VSC V., S#Y (13)
keS k,leS keS
ieV\S,jeV\S,i#j
b xl e {0, 1) V@i, j) €A (14)
zi € {0, 1} VieV. (15)

The objective function (1) represents the total travel time parameterised with respect to
«. For example, setting o = 0.5 minimises the total travel time by giving equal importance
to both driving and walking, which would effectively assume that the unit cost of driving is
the same as the unit cost of walking. Constraints (2) impose degree restrictions on the nodes,
with the added constraint that the parking nodes must be visited in both driving and walking
routes. As a consequence of these constraints, we limit to one the number of walking routes
based on the same parking node. Constraints (3) and (4) are relevant to the driving route
ensuring that the vehicle leaves from and returns to the depot, where subtours are prevented
by constraints (5). If a node is designated as a parking node, constraints (6) ensure that it
is visited by the driver, for which route continuity is ensured by (7). Constraints (8) and (9)
play a similar role for the walking routes, where customers with excess volume or weight are
excluded by constraints (10). For a given subset S of customers, constraints (11) ensure that
there are a sufficient number of parking nodes if they are served by a walking route. Finally,
(12) and (13) are path elimination constraints that eliminate walking paths that do not start
from and end at the same parking node.

Assuming that unit costs of walking and driving per unit time are available, the model
above can be used to minimise the total costs (as opposed to time). In this case, the model
should be run with different values of «, and after evaluating the cost of each resulting
solution, the one with the minimum total cost should be chosen. This would entail solving
the above formulation for as many times as the number of different values of o used. We
provide numerical results on the way that the walking and driving times change with different
values of « in Sect. 4.

3.2 Valid inequalities

This section presents two new sets of valid inequalities to enhance the algorithm that will
be described later in this section. Both inequalities serve to improve the connectivity of
two graphs, one induced by the driving and the other by the walking routes. To shed some
light into the connectivity just mentioned, we present a fractional solution in Fig. 2 for an
instance with seven nodes with two disconnected components, where driving (solid lines) and
walking (dashed lines) takes place in each component. The solution is obtained at the root
node of the branch-and-cut tree whilst solving the formulation above, where the integrality
constraints (14) are relaxed, but where a number of subtour (5), walking capacity (11) and
path elimination (12) and (13) constraints are added. The support graph in Fig. 2 shows that
the component defined on nodes 1, 3, 4 and 5 is disconnected from the other component.

‘We now describe the new inequalities that are used to connect disconnected solutions such
as the one shown in Fig. 2. Let S C V’ be a subset of customers with |S| > 2 and let ¥ (S)
denote the set of arcs with both endpoints in set S.
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Fig.2 A fractional solution

where the numbers on the arcs 0.5 -- )@\ ~._05
correspond to the value of the xld. e g - ’ N R .
variables (solid lines) and x} @, -7 05 05 ~~
variables (dashed lines) in the @ 1 R~ -

fractional solution. In this AN AN S~ 0.5

solution, the subset sd = {4, 5} 1 SN R RS N 05 0.5
violates an extended subtour RN SO ’
elimination constraint for the 0.5 “~o_ AN

driving route and the subset R,

S¥ = {1, 3, 4, 5} violates an 1

extended subtour elimination

constraint for the walking routes. 1

Only node 2 is used as a
rendezvous node, i.e., z0 = 1

Proposition 1 The following extended subtour inequalities for the driving routes are valid
for the problem:

RERCAO))
2. Mz g (16)

ieS j¢S

Proof The inequality is trivially valid if x4y (S)) = 0. If not, then x4(y(S)) =
Z(i, jes xlfij > 1, which means that the driver visits any customer in § from another customer
in S, and which implies that there must be at least one arc from S to V' \ S used by the driver
due to constraint (5). Furthermore, x¢(y(S)) < |S] — 1 is always satisfied in any feasible
solution where an arc with both endpoints in S is used by the driver, so the right hand side
of (16) is always less than or equal to 1. O

Similar constraints on the arcs arriving to subset S can also be written as follows.

x ()/(S))
ITEEL S m

i¢S jeS

The extended subtour inequalities can also be written for the walking routes. In this case
the z variables related to the parking nodes are included in the inequality since the number
of arcs used in a walking route either leaving or arriving into subset S € V' will also depend
on the number of nodes in S used as parking nodes.

Proposition 2 The following extended subtour inequalities for the walking routes are valid
for the problem:

x*(y(S))

3 S gz L2 18
ieSjgéSx +lesz TS = S +1 (18)
x*(y(S)

X)) 19
ST Tt ot o

Proof We differentiate between the following cases:

— If all customers in S are served by the driver, i.e., no walking is required, then the right
hand side of either inequality is equal to O and they are trivially satisfied.
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— If there is a feasible closed walking path in S then x* (¥ (S)) = |S| and (S) = 1, so the
right hand side of either inequality would take the value 1, which would in turn require
the left hand side to attain the value of at least 1. This implies that at least one node of S
is a parking node, or at least one arc either leaves S through (18) or arrives into S through
(19), or both.

— Ifr(S) > 1, this means that at least two walking routes are required to serve the demand
in S. In this case, the maximum value ﬁ of the right hand side is given when

r(S) = |S]/2. Then, the right hand side of either inequality could increase by at most

r(S), which would necessitate the use of an additional parking node, or an additional

arc either leaving S through (18) or arriving into S through (19). In this case, the right

hand side of either inequality is less than |S|/2 and the left hand side of either inequality
should be greater than or equal to |S|/2 since that would be the minimum number of
parking nodes needed.

[m}

It is worth highlighting that the denominator of the right hand side of constraints (18) and
(19) is one unit greater than the denominator used in right hand side of (16) and (17) due
to the fact that a closed route could be performed by walking in S, but not by driving. The
driving must always start from and end at the depot.

Revisiting the example in Fig. 2, it can now be seen that the inequalities (16) and (17) are
violated for S = {4, 5}, and the inequalities (18) and (19) are violated for S = {1, 3, 4, 5}.

3.3 Branch-and-cut algorithm

The branch-and-cut algorithm is designed to optimally solve the integer linear programming
formulation presented in Sect. 3.1 and starts by solving the linear programming (LP) relax-
ation defined by the objective function (1) and constraints (2), (3), (4), (6), (7), (8), (9), (10).
Constraints (5), (11), (13) and the integrality constraints (14) are relaxed at the root node;
instead the x* and x? variables are restricted to be within the interval [0, 1].

Each node of the branching tree consists of a linear programme (LP) with a given set of
constraints solved to optimality, and a set of separation routines which aim to find violated
constraints. If a violated constraint is identified at a given node, it is added to the LP of that
node and the LP is reoptimised. This process is repeated until the separation routines are not
able to find any new violated inequality, following which the branch-and-cut algorithm will
branch on a variable which violates the integrality constraints (14).

For a fractional solution ¥ of the LP, we construct a support graph G* = (V, A%) for the
walking routes where (i, j) € A¥ iff {7 > 0. Similarly, let G = (V, A9) be the support

graph for the driver where (i, j) € Ad iff )Eldj > 0. At any node of the branching tree, one
of the two cases below may arise, depending on whether the integrality conditions (14) are
satisfied:

1. If the solution of an LP at a given node is integer, then we check if constraints (5), (11)
and (13) are also satisfied. This can be done in linear time by shrinking the nodes in the
support graphs G¢ and G¥. If no violated inequalities are identified, then the solution at
that node would be feasible and no further branching would be needed. Otherwise, the
LP is reoptimised after appending the violated inequality. We note that the addition of
violated inequalities to the LP may once again make the solution fractional.

2. If the solution to the LP is fractional we use separation routines for the following inequal-
ities:
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(a) Subtour/capacity inequalities for the driving route (5).

(b) Capacity inequalities for the walking routes (11).

(c) Extended subtour inequalities for the driving and walking routes (18), (19), (16) and
(17) as described in Sect. 3.2.

(d) Path elimination constraints (13).

The separation procedures used for the extended subtour elimination constraints are presented
in Algorithms 1 and 2 for the driving and walking routes, respectively. In both cases we first
compute the connected components of the support graph (line 2 in Algorithms 1 and 2) and
check all the nodes of each connected component (lines 4-5 in Algorithms 1 and 2). Then
we apply a greedy heuristic to build promising subsets S in order to identify new cuts (5),
(16) and (17) for the driving route (lines 8-20 in Algorithms 1) and (11), (18) and (19) for
the walking routes (lines 13-25 in Algorithm 2). Path elimination constraints for the walking
routes (13) are checked only when the corresponding connected components are integer.

Algorithm 1 Finding violated extended subtour elimination constraints for the driving route

1: Compute G4,

2: Compute the different connected components of 5‘1.
3: for each connected component Ez of G* do

4 if nodes in EZ violate any capacity inequality (5) then
5 Add inequality (5).

6: endif
7.

8

9

S<0
for each node i considered in EZ do
S «— SU{i}

10: while Number of nodes in 6;(1 is greater than |S| do
11: Compute j/ := argmax g g Zles(x;'il +xldj)
12: S <« SU{j’}
13: if inequality (5) with S is violated then
14: Add inequality (5).
15: end if
16: if inequalities (16) and (17) with S are violated then
17: Add violated inequalities.
18: end if
19: end while
20:  end for
21: end for

The separation routines shown in Algorithms 1 and 2 differ from the classical separation
procedures in that one separation routine is used to find inequalities from different families.
The main reason behind this idea is that we use several inequalities that use a subset S,
which would need to satisfy similar conditions across the different inequalities. A detailed
computational analysis of how the cutting plane approach used at each node of the branching
tree enhances the branch-and-cut algorithm is presented in Sect. 4.

4 Computational experiments

The branch-and-cut algorithm was tested on a set of instances, extracted from a real data
set of a courier operating in the Southwark area in London. The original data set contained
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Algorithm 2 Finding violated extended subtour elimination constraints for the walking routes

1: Compute G".

2: Compute the different connected components of G".
3: for each connected component 6;:) of G do

4 if nodes in E;f violate any subtour inequality (11) then
5 Add inequality (11).

6: endif

7:  if All the arcs have a weight of 1 in 6;: then

8: if There is a path between two parking nodes then
9: Add Inequality (13).

10: end if

11:  endif

122 S«

13:  for each node i considered in Ekw do

14: S« SuU{i}

15: while Number of nodes in 5}: is greater than |S| do
16: Compute j := argmax j¢g Zles(x"ﬁ + xl'j? —zj1)
17: S < SuU{j}

18: if inequality (11) with S is violated then

19: Add inequality (5).

20: end if

21: if inequalities (18) and (19) with S are violated then
22: Add violated inequalities.

23: end if

24: end while

25:  end for

26: end for

information on 117 deliveries, including location of delivery, and volume and weight of each
item delivered. The weights of the items ranged between 2 and 5 kg (with an average of
1.41 kg) and the volumes ranged between 20 and 82 L (with an average of 21.8 L), with Q,,
=200 L and Q,, =25 kg. From this data set, we create 26 instances by randomly sampling
between |V’'| = 5,6, ..., 30 unique locations, include the depot, and repeat this five times
for each value of |V’| to result in a total of 26 x 5 = 130 instances. Walking and driving
times between all pairs of points were computed off-line using the Google Maps Distance
Matrix API. The experiments were run using a computer with an Intel(R) Core (TM) i9-
9980XE CPU at 3.00 GHz running Windows 10 with 64 bits and with 64 GB of RAM. The
algorithm was coded in MVS2017 in which CPLEX 12.9 was used as the optimiser, and part
of which included the use of the lazy and cut callback functions for Algorithms 1 and 2 .
For comparison purposes, each instance was subject to a computational time limit of 3600 s.
Testing was performed using the four following Branch-and-Cut (BC) solution strategies:

— BCl is a branch-and-bound algorithm that uses no cutting planes, and where the path
elimination constraints (13) are separated only on integer nodes.

— BC2is the same as BC1 in which an initial solution (and a corresponding upper bound) is
provided to the solver. The initial solution assumes that all deliveries are made by driving,
obtained by the solution of the corresponding Travelling Salesman Problem, which can be
solved efficiently using Concorde (http://www.math.uwaterloo.ca/tsp/concorde.html).

— BC3is a branch-and-cut algorithm, initialised with an upper bound as in BC2, and where
Algorithms 1 and 2 are used at each node of the branching tree only for separating
inequalities (5) and (11).

— B(C4 is similar to BC3 which additionally uses the extended subtour inequalities (16),
(17), (18) and (19).
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Table2 Comparison results between the four different BC strategies showing average values of five instances
per line with @ = 0.9

V'] Best UB BCl1 BC2 BC3 BC4

Time Gap Time Gap Time Gap Time Gap

(sec) (%) (sec) (%) (sec) (%) (sec) (%)
5 1881.80 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00
6 1929.07 0.02 0.00 0.02 0.00 0.03 0.00 0.03 0.00
7 1936.49 0.05 0.00 0.04 0.00 0.07 0.00 0.05 0.00
8 1971.92 0.06 0.00 0.08 0.00 0.08 0.00 0.07 0.00
9 1953.01 0.08 0.00 0.10 0.00 0.12 0.00 0.12 0.00
10 1999.72 0.18 0.00 0.19 0.00 0.24 0.00 0.27 0.00
11 2004.19 0.33 0.00 0.29 0.00 0.47 0.00 0.33 0.00
12 1999.99 0.65 0.00 0.63 0.00 0.97 0.00 0.47 0.01
13 2047.71 0.97 0.01 1.00 0.01 1.64 0.00 1.05 0.00
14 2027.06 0.57 0.00 0.60 0.00 1.04 0.00 0.98 0.00
15 2060.28 3.00 0.01 2.79 0.01 6.74 0.01 3.42 0.00
16 2066.11 2.58 0.01 2.39 0.01 5.20 0.01 2.04 0.01
17 2057.80 7.70 0.01 7.25 0.01 8.17 0.01 5.36 0.01
18 2051.55 4.95 0.01 4.72 0.01 6.67 0.01 6.05 0.01
19 2115.53 293.86 0.01 295.74 0.01 137.87 0.01 188.59 0.01
20 2126.66 65.89 0.01 66.78 0.01 44.23 0.01 48.13 0.01
21 2070.62 970.32 0.12 976.29 0.12 840.82 0.04 809.77 0.05
22 2141.56 105.08 0.01 103.43 0.01 59.29 0.01 61.98 0.01
23 2110.42 161.31 0.01 163.02 0.01 45.35 0.01 44.10 0.01
24 2144.67 436.90 0.01 439.80 0.01 301.59 0.01 169.98 0.01
25 2161.42 840.59 0.01 927.09 0.01 317.30 0.01 204.54 0.01
26 2133.17 710.63 0.01 737.86 0.01 338.76 0.01 182.57 0.01

27 2161.12 2054.00 0.87 2060.74 0.88 1603.76 0.02 1647.38 0.10
28 2162.73 3345.74 222 3327.57 2.11 2904.94 0.94 2671.69 0.55
29 2138.92 1463.26 0.39 1368.96 0.36 1309.24 0.46 369.22 0.01
30 2215.70 3592.44 2.84 3594.41 2.63 3601.67 3.03 3079.53 1.98

Average 540.82 0.25 541.61 0.24 443.70 0.18 365.30 0.11

Table 2 shows the computational results obtained with the four different strategies, all
using the setting o« = 0.9, where each line is an average of five instances. The column ‘Best
UB’ shows, the smallest average objective value obtained by any of the four strategies. The
table also presents, for each strategy, the average computational time (in seconds) required
to solve the corresponding instance under column ‘Time’, and the average final optimality
gap (in percent) under column ‘Gap’. An optimality gap less than 0.01% for a given strategy
indicates that all five instances with | V’| customers were solved to optimality within the time
limit by that strategy. The smallest average solution times in each line are indicated in bold.
Further details on each strategy, such as the number of cuts added, the number of nodes in
the branch and bound tree, and the lower bounds obtained at the root node are presented in
the appendix, for each individual instance.
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Table 3 Computational results with BC4 and « € {0.6, 0.8, 0.9}

V'] a =0.60 a =0.80 a=0.90
Gap/Time D/W Gap/Time D/W Gap/Time D/W

5 0.02 100.0/0.0 0.02 93.4/6.6 0.02 2.2/97.8
6 0.01 96.8/3.2 0.05 96.8/3.2 0.04 2.0/98.0
7 0.03 100.0/0.0 0.07 71.4/28.6 0.04 3.4/96.6
8 0.03 100.0/0.0 0.13 47.6/52.4 0.05 3.6/96.4
9 0.04 96.6/3.4 0.09 89.9/10.1 0.13 2.9/97.1
10 0.03 97.4/2.6 0.16 64.8/35.2 0.30 3.5/96.5
11 0.04 100.0/0.0 0.25 49.8/50.2 0.32 3.0/97.0
12 0.04 100.0/0.0 0.29 65.3/34.7 0.47 4.9/95.1
13 0.07 100.0/0.0 0.61 46.0/54.0 1.06 1.6/98.4
14 0.11 97.8/2.2 0.44 47.8/52.2 1.00 1.5/98.5
15 0.07 99.9/0.1 1.27 57.7/142.3 3.43 3.3/96.7
16 0.09 99.9/0.1 3.12 47.8/52.2 2.00 2.8/97.2
17 0.12 100.0/0.0 1.65 46.1/53.9 5.44 1.8/98.2
18 0.10 100.0/0.0 1.85 45.8/54.2 6.08 2.0/98.0
19 0.27 100.0/0.0 4.58 31.7/68.3 185.75 3.8/96.2
20 0.21 100.0/0.0 7.49 33.0/67.0 45.80 2.4/97.6
21 0.14 100.0/0.0 2.10 51.9/48.1 0.04% 1.8/98.2
22 0.18 97.2/2.8 2.69 48.6/51.4 61.14 3.3/96.7
23 0.52 99.9/0.1 20.29 30.9/69.1 44.61 2.2/97.8
24 0.11 100.0/0.0 6.72 36.3/63.7 167.52 2.2/97.8
25 0.32 100.0/0.0 27.49 35.4/64.6 201.58 1.5/98.5
26 0.36 100.0/0.0 24.34 27.8/72.2 175.97 1.2/98.8
27 0.48 98.2/1.8 6.79 29.0/71.0 0.10% 2.3/97.7
28 0.49 98.2/1.8 42.06 48.9/51.1 0.54% 4.3/95.7
29 0.34 100.0/0.0 12.71 51.7/48.3 333.33 2.7/97.3
30 0.62 100.0/0.0 244.99 30.1/69.9 1.97% 3.8/96.2

The results shown in Table 2 suggest that, for relatively small-sized instances (i.e., those
with |V'| < 14), BC1 and BC2 provide optimal solutions quicker than the other variants,
but BC3, and more so BC4 present a superior performance as the instance size increases,
either in terms of the computational time or the final optimality gap. Whilst a great majority
of instances have been optimally solved, the difficulty of solving others of up to 30 nodes
suggests that the complexity of this problem is well beyond that of the VRP. Overall, BC4
yields the smallest average optimality gap and the fastest solution time) for all instances, for
which reason it is used in the remainder of the experiments.

Next, we investigate the impact of changing the multiplier o on the total driving and
walking times in the resulting solutions. To this end, we test the values in the set « €
{0.6, 0.8, 0.9}. The results are given in Table 3, where each row shows the average results
for the group of five instances with |V’| customers. The column titled ‘Gap/Time’ shows
either the average solution time (in seconds), or the average optimality gap (appended by
‘%) if optimality was not attained within the one hour time limit. For gaps that are strictly
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positive, the best solutions obtained were used to analyse the results. The column ‘D/W’
shows the percentage split between the total time spent driving (D) and that of walking (W)
in the resulting solutions. To provide a meaningful figures, the stem driving time, defined as
the time taken to drive (and back) from the depot to the closest customer and equal to 1897 s
in our data set, has been excluded in the calculation of the driving time in all instances.

As Table 3 shows, all instances using the setting o« = 0.6 have been solved to optimality.
In this case, the majority of instances yielded optimal solutions that only make use of driving,
which corresponds to the initial solutions used in the BC algorithm for upper bounds. The
amount of driving is reduced using the settings « = 0.8 and @ = 0.9, but this increases
the difficulty of solving the model to optimality. In the case of @ = 0.9, for example, the
algorithm has failed to find optimal solutions for some instances with 21, 27, 28 and 30
customers, although the optimality gap for these instances remains within 2%, and generally
below 1%. The results also indicate that, using @ = 0.6, an average of 99.3% of the deliveries
are done by driving, whichisreduced to 51% when o« = 0.8 and furtherto2.7% wheno = 0.9,
showing the significant effect that the parameter « has on the resulting solutions.

For illustrative purposes, we provide a sample visualisation of solutions for an instance
with 28 addresses in Fig. 3 using different values for ¢, namely 0.6, 0.8 and 0.9. It should
be kept in mind that the routes shown in the figure are designed with respect to the capacity
and volume restrictions of the items and based on street-level distance matrices.

5 Conclusions

This paper proposes that a combined driving and walking delivery system could be a viable
alternative to last-mile delivery problems in urban areas to mitigate the adverse effects of
more traditional means of distribution, such as traffic congestion and use of kerbside space.
Our primary contribution has been to describe such a system, to propose a mathematical
model along with valid inequalities, and an optimisation algorithm to prescribe solutions for
such a system to operate in practice. Computational experience suggests that, for instances
of up to 30 customers, the algorithm is able to either provide optimal solutions, or those that
are within a reasonable gap to the optimal value. The results also suggest that the complexity
of the problem increases not only with an increased number of deliveries but also when the
relative weighting of one mode over the other changes. In particular, the problem becomes
more difficult to solve with increased amount of walking, which may be explained by the
additional constraints, such as weight and volume restrictions, required to model the walking
paths.

5.1 Practical considerations

One practical consideration that may arise in the implementation of the proposed model
relates to the application of the model to larger areas. In reality, carriers divide up geographical
areas into sub-rounds which consist of postcode patches that are linked together by the road
network. Once this segmentation is undertaken, each patch and their postcode constituent
parts would be identified to create rounds using the proposed system for a single driver
operating on that patch. The specific elements of the round would lend to walking routes
where drop-off points for the van would be identified, and from where the walking routes
would start and finish.
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One other practical aspect concerns the walking routes. Practical work undertaken by
the authors (Allen et al. 2018) suggested that many drivers preferred walking as opposed
to continually moving the vehicle very small distances while trying to find parking spaces.
This crucially depends on the average size of parcel being delivered as the number of trips
needed back and forth to the van will increase as package size increases. Our previous surveys
undertaken in London showed drivers walking up to 10 km on a round. As deliveries were all
within a relatively small area, it would be feasible to walk the entire round. For this reason,
the amount of walking undertaken was not constrained for the application context considered
here, particularly as the objective of the problem, in part, serves to minimise the length of the
walking tours. Also, for larger areas (and less dense deliveries), driving would naturally take
precedence as being a faster mode of delivery over longer distances. However, it is possible
to introduce constraints into the model, if the walking distances were considered to be too
great.

5.2 Future research directions

The nature of day-to-day parcel delivery operations within urban areas present further chal-
lenges that may form the basis of future work. First, and further to the discussion in Sect. 2,
it is possible to introduce time window constraints into the model described in this paper to
account for time-sensitive parcels. Such constraints, however, may result in non-linearities
for particular types of formulations (Nguyén et al. 2019), and whilst they can be linearised,
the additional constraints needed can significantly increase the complexity of solving the
model to optimality. Alternative formulations or solution methods that can effectively deal
with time window constraints is one possible avenue for further research. Second, traffic con-
ditions within urban areas present a degree of uncertainty which impacts on driving times,
whereas there is very little uncertainty associated with walking times. Incorporating such par-
tial stochasticity falls within the class of stochastic vehicle routing problems (Gendreau et al.
2016), which are considerably more difficult to solve compared to their deterministic coun-
terparts. Third, whilst a great majority of the deliveries are known and planned for ahead of
the actual operations, there are occasional requests (e.g. collections) that dynamically arise.
Accounting for such requests would result in a dynamic routing problem (Psaraftis et al.
2016), which is also significantly harder to solve than the static variants. Fourth, whereas
capacity limitations have been explicitly represented in our model, this has assumed a two-
dimensional treatment of the parcels. Practical requirements may dictate that both the weight
and the volume of the parcels would need to be explicitly represented, and that capacity is
modelled as a three-dimensional constraint. Finally, the problem as described in this paper
can be extended to allow multiple vehicles for applications in larger areas.
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Appendix

This section presents further details on the computational tests for the different strategies
BCl1, BC2, BC3 and BC4 (Tables 4, 5, 6, 7) used within the branch-and-cut algorithm as
explained in Sect. 4, using @ = 0.9. For a given |V’|, five instances are generated, where
the name of each instance follows the convention n|V’|_r# and where 8 = 0, ..., 4 is the
instance number.

In each of the (Tables 4, 5, 6, 7), we report the total number of nodes explored in the
branch-and-cut tree (Nodes), the total runtime of the algorithm (Time), the total separation
time (S-Time), the total number of cuts added (Ncuts), the total number of cuts at the root
node (Ncuts0), the total amount of driving (Driving, in seconds), the best lower bound (LB)
and the best upper bound (UB) upon termination of the algorithm, and the final percentage
optimality gap (Gap).

In Table 8 we present the full results for solving all instances with BC4, and where the
value of « is varied. The results include the time for walking and driving in the solutions
obtained, and include the stem driving times.
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