
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

A tree-style one-pass tableau for an extension of ECTL+

Bolotov, A., Hermo, M. and Lucio, P.

A paper presented at the 25th Workshop on Automated Reasoning: Bridging the Gap

between Theory and Practice, University of Cambridge, Apr 2018, University of

Cambridge.

The WestminsterResearch online digital archive at the University of Westminster aims to

make the research output of the University available to a wider audience. Copyright and

Moral Rights remain with the authors and/or copyright owners.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/334592769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A tree-style one-pass tableau for a extension of ECTL+.
Alexander Bolotov1 Montserrat Hermo2 Paqui Lucio2

1 University of Westminster, W1W 6UW, London, UK.
2 University of the Basque Country, 20018-San Sebastián, Spain.

Abstract: Only restricted versions of fairness are expressible in the well-known branching temporal logics
ECTL and ECTL+, while the full expressiveness of branching-time logic in CTL? makes this logic extremely
challenging for the application of the tableau technique. Tree-shaped one-pass tableaux are well suited for the
automation and are amenable for the implementation. We present here a sound and complete method of tree-
style one-pass tableau for a sub-logic of CTL? which is more expressive than the logic ECTL+allowing the
formulation of some fairness constraints with ‘until’ operator. The provided example follows by an algorithm
for constructing a systematic tableau that enables to prove completeness.

1 Introduction

For the specification of the reactive and distributed sys-
tems, or, most recently, autonomous systems, where the
modelling of the possibilities ‘branching’ into the future is
essential, the branching-time logics (BTL) give us an ap-
propriate framework. The most used class of formalisms
are ‘CTL’ (Computation Tree Logic) type logics: CTL it-
self, ECTL (Extended CTL) [2] that was defined to enable
simple fairness constraints but not their Boolean combi-
nations and ECTL+ ([3]) which further extends ECTL al-
lowing Boolean combinations of ECTL fairness constraints
(but not permitting their nesting). The literature on fairness
constraints, even in linear-time setting, lacks the analysis of
their formulation with a ‘stronger’ temporal operator - U
(‘until’) such as �(AU B) or AU �B. Here we bridge

Lamport Notation / Formulae expressible
CTL-type name here but not above

B(U ,◦) / CTL

B(U ,◦,�♦)/ ECTL E(�♦q)
B+(U ,◦,�♦) / ECTL+ E(�♦q ∧ �♦r)
B+(U ,◦, U �) A((pU �q) ∧ (sU �¬q))
B?(U ,◦) / CTL? A♦(◦p ∧ E◦¬p)

Figure 1: BTL classification.

this gap, providing an analysis of such complex fairness
constraints with U (also allowing the nesting of temporal
operators) in the branching-time setting weaker than CTL?.
Thus, we consider the logic that extends ECTL+ with the
modalities �U and U �. While the addition of the former
does not increase the ECTL+ expressiveness1, AU (�B)
cannot be expressed in the ECTL+ language. The fairness
constraint A(pU �q) can be read as ‘q is true along all paths
of the computation except possibly their finite initial inter-
val, where p is true’.

In Figure 1 we fit our logic into the hierarchy of
branching-time logics: ‘B’ is used for ‘Branching’, fol-
lowed by the set of only allowed modalities as parame-

1�(AU B) can be expressed in ECTL+ by �(A ∨B) ∧ �♦B.

ters; B+ indicates admissible Boolean combinations of the
modalities and B? reflects ‘no restrictions’ in either con-
catenations of the modalities or Boolean combinations be-
tween them. We present a tree-style one-pass tableau for
the logic B+(U ,◦, U �) continuing the analogous devel-
opments in linear-time case [4].
B+(U ,◦, U �) language is defined with linear-time

temporal operators � (always), ◦ (next time), and U (un-
til), and path quantifiers - A (on all future paths) and E (on
some future path). The state (σ) and path (π) formulae are
defined below (state formulae are wff).
σ ::= L | σ1 ∧ σ2 | σ1 ∨ σ2 | Aπ | Eπ
π ::= π1 ∧ π2 | π1 ∨ π2 | ◦σ | σ U σ | σ U (�σ) | �σ |

�(σ U σ)

2 The tableau method

While our tableaux are AND-OR trees with nodes labelled
by sets of state formulae, the only rule which introduces
AND-nodes is the next-state rule:

Σ,A◦Φ1, . . . ,A◦Φn,E◦Ψ1, . . . ,E◦Ψm

AΦ1, . . . ,AΦn,EΨ1 & . . . & AΦ1, . . . ,AΦn,EΨm

Figure 2: NEXT-STATE RULE. (Σ is a (possibly empty) set
of literals; Φi,Ψi are non-empty sets of formulae.)

The next-state rule labels a branch that splits into m
branches, at the node labelled by the premise of this rule.
The conclusion of this rule uses the & symbol to reflect to
generation of m AND-successor nodes. We also apply α-
and β-rules: an α-rule expands a branch at the node labelled
by its premise, with a node labelled by the conclusion; a β-
rule splits a branch by two or three OR-nodes labelled by
the formulae in its conclusion (separated by |).

We handle inputs in a new, branching-time, setting in
‘analytic" way, extending similar construction for linear-
time logic [4]. This extension is possible due to the defini-
tion of the ‘context’ in which eventualities are to be fulfilled
in this new setting. Our β+-rules are characteristic (and
crucial!) for our construction. They tackle difficult cases
of formulae in B+(U ,◦, U �). The β+-rules, similarly to

Σ,E(�(σ1 U σ2) ∧Π)

Σ,E((σ1 U σ2) ∧ ◦�(σ1 U σ2) ∧Π)

Figure 3: α-RULE (E�U). (Σ is a (possibly empty) set of
state-formulae and Π is a (possibly empty) conjunction of
path-formulae.)

Σ,A((�σ) ∨Π)

Σ, σ,A((◦�σ) ∨Π) | Σ,AΠ

Figure 4: β-RULE (A�σ). (Σ, σ is a set of state-formulae
and Π is a (possibly empty) disjunction of path-formulae.)

β-rules, split a branch into two or three branches; these are
the only rules that utilise ‘context’ to force the soonest sat-
isfaction of the eventualities. The context is given by the
sets of state (Σ) and path (Π) formulae. While, the outer-
context was already used in the linear-time tableaux [4], for
branching-time, the new concept of the ‘inner-context’ is
introduced. Figure 5 shows a β+ rule that handles a dis-
junction of formulae, including U in the scope of the A
quantifier.

Σ,A((σ U σ′) ∨Π)

Σ, σ′ | Σ, σ′,A(◦((σ ∧ (¬Σ ∨ ϕΠ))U σ′) ∨Π) | Σ,AΠ

Figure 5: β+-RULE (AU σ)+. (Σ, σ, σ′ is a set of state-
formulae and Π is a (possibly empty) disjunction of path-
formulae, ϕΠ is the state-formula introduced by Def. 1.)

Definition 1 Let Π be a disjunction of path-formulae of the
three forms �σ,σ U �σ′ and �(σ U σ′) where σ and σ′ are
state-formulae. The formula ϕΠ to be the following dis-
junction of state-formulae:∨

�σ∈Π

σ ∨
∨

σ U �σ′∈Π

σ′ ∨
∨

�(σ U σ′)∈Π

E(TU σ′).

3 Examples

Our example of an open tableau illustrates the use of the
inner context (see Fig. 6). This tableaux is constructed by
a systematic algorithm that keeps (along a branch) exactly
one –if there is some– marked eventuality forcing its ful-
filment. In Fig. 6, the semicolon inside the A-quantifier
stands for disjunction, the marked eventuality is in black-
boxes and (Q◦) is the next-state rule. Note that Π consists
of a path-formula �p, so ϕΠ is just p. Since the marked
eventuality is TU ¬p and the outer-context Σ is empty, the
subformula (σ ∧ (¬Σ ∨ ϕΠ) in the conclusion of the rule
in Fig. 5 is just p. It is notable that this inner-context p en-
ables the central branch to loop, given a model of the initial
formula that –in this branch– does not force the eventuality,
but satisfies the other disjunct in the A-quantifier: �p.

Figure 6: Open Tableau

4 Conclusion

We presented a tree-style one pass tableaux method for
a new logic in the family of BTL – B+(U ,◦, U �) –
which extends the expressiveness of ECTL+ fairness by
a new class of fairness constraints utilising the U opera-
tor. The full details and the correctness proof are given in
[1]. The tableaux rules that invoke the inner-context, en-
abled us to handle a particularly difficult class of formu-
lae: A-disjunctive formulae with eventualities. The proof
of correctness of β+-rules is based on identifying relevant
state-formulae inside specific path-modalities. This opens
the prospect to study more expressive logics (eg CTL?)
by identifying subformulae that do not affect the ‘context’
which allows to simplify given structures. The presented
technique, being the extension of a similar one for the
linear-time setting, is amenable for implementation. In the
refinement and implementation of our new algorithm we
will rely on similar techniques used in the implementation
of its linear-time analogue.

References

[1] A. Bolotov, M. Hermo, and P. Lucio. Ex-
tending fairness expressibility of ECTL+:
a tree-style one-pass tableau approach,
http://www.sc.ehu.es/jiwlucap/techreport18.pdf.
Technical report, February 2018.

[2] E. A. Emerson and J. Y. Halpern. Decision procedures
and expressiveness in the temporal logic of branch-
ing time. Journal of Computer and System Sciences,
30(1):1 – 24, 1985.

[3] E. A. Emerson and J. Y. Halpern. Sometimes and not
never revisited: On branching versus linear time tem-
poral logic. J. ACM, 33(1):151–178, January 1986.

[4] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and
F. Orejas. Dual systems of tableaux and sequents for
PLTL. Journal of Logic and Algebraic Programming,
78(8):701–722, 2009.

