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Abstract. The interannual to decadal variability in the trans-
port of anthropogenic CO2 (Cant) across the subpolar North
Atlantic (SPNA) is investigated, using summer data of the
FOUREX and OVIDE high-resolution transoceanic sections,
from Greenland to Portugal, occupied six times from 1997
to 2010. The transport of Cant across this section,Tcanthere-
after, is northward, with a mean value of 254± 29 kmol s−1

over the 1997–2010 period. We find thatTcant undergoes
interannual variability, masking any trend different from 0
for this period. In order to understand the mechanisms con-
trolling the variability of Tcant across the SPNA, we pro-
pose a new method that quantifies the transport of Cant
caused by the diapycnal and isopycnal circulation. The di-
apycnal component yields a large northward transport of
Cant (400± 29 kmol s−1) that is partially compensated by a
southward transport of Cant caused by the isopycnal compo-
nent (−171± 11 kmol s−1), mainly localized in the Irminger
Sea. Most importantly, the diapycnal component is found to
be the main driver of the variability ofTcantacross the SPNA.
Both the Meridional Overturning Circulation (computed in
density coordinates, MOCσ ) and the Cant increase in the wa-
ter column have an important effect on the variability of the
diapycnal component and ofTcant itself. Based on this anal-
ysis, we propose a simplified estimator for the variability of
Tcant based on the intensity of the MOCσ and on the differ-
ence of Cant between the upper and lower limb of the MOCσ

(1Cant). This estimator shows a good consistency with the
diapycnal component ofTcant, and help to disentangle the ef-
fect of the variability of both the circulation and the Cant

increase on theTcant variability. We find that1Cant keeps
increasing over the past decade, and it is very likely that the
continuous Cant increase in the water masses will cause an
increase inTcant across the SPNA at long timescale. Nev-
ertheless, at the timescale analyzed here (1997–2010), the
MOCσ controls theTcant variability, blurring anyTcant trend.
Extrapolating the observed1Cant increase rate and consid-
ering the predicted slow-down of 25 % of the MOCσ , Tcant
across the SPNA is expected to increase by 430 kmol s−1 dur-
ing the 21st century. Consequently, an increase in the storage
rate of Cant in the SPNA could be envisaged.

1 Introduction

The ocean acts as an important sink for the CO2 emitted by
human activities. It has stored approximately one third of the
total anthropogenic CO2 (Cant hereafter) emissions since the
beginning of the industrial era (Sabine et al., 2004). Cant is
uptaken by the air–sea interface and its distribution depends
on mixing processes and transport into the ocean interior;
this is the reason why Cant generally decreases with increas-
ing depth. The storage of Cant in the deep ocean depends on
the ventilation and formation of intermediate and deep wa-
ters (Tanhua et al., 2006; Rhein et al., 2007; Steinfeldt et al.,
2009).

Among all oceans, the highest rate of Cant storage is found
in the North Atlantic, mainly in the subpolar region (Sabine
et al., 2004; Khatiwala et al., 2013). An increase in Cant
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storage is associated with an increase in the Cant concen-
tration of the water masses. The rate at which the Cant con-
centration increases in the different water masses depends on
both their ages and their positions in the water column. In the
subpolar North Atlantic (SPNA hereafter), the upper layers
that contain the Subantartic Intermediate Water (SAIW), the
Subpolar Mode Water (SPMW) and the North Atlantic Cen-
tral Water (NACW) present the highest Cant increase trends,
changing from average values of 35–40 µmol kg−1 in 1991–
1993 up to 55 µmol kg−1 in 2006 (Pérez et al., 2010). Be-
sides, the production of Labrador Sea Water (LSW) fosters
a fast injection of Cant in the intermediate and deep waters,
so that this water mass also presents a high trend of Cant
increase. Otherwise, the deeper water masses of the Eastern
North Atlantic show no significant tendencies in their Cant
content between 1991 and 2006 (Pérez et al., 2010).

In the North Atlantic the highest air–sea fluxes of Cant are
detected at mid-latitude (Mikaloff Fletcher et al., 2006). Be-
sides, Pérez et al. (2013) have inferred that Cant is the main
component of the air–sea CO2 fluxes at mid-latitude in the
North Atlantic, while the natural component is the dominant
one in the subpolar region. They also detected a decrease in
the storage rate of Cant between 1997 and 2006 in the sub-
polar region that was related to the reduction in the inten-
sity of the Meridional Overturning Circulation (computed in
density coordinates, MOCσ ). Based on those findings, they
elucidated the important contribution of the lateral advection
of Cant from middle to high latitudes to the Cant storage in
the SPNA. The other important element of the Cant storage
in the SPNA is the advection of water masses recently ven-
tilated such as the different vintages of Labrador Sea Water.
Consequently, how Cant is transported in the SPNA is a cru-
cial issue for understanding how the ocean is storing Cant
and for modeling the future role of the ocean damping the
atmospheric CO2 increase caused by mankind.

Nowadays, there is an important international effort in un-
derstanding how the ocean uptakes, distributes and stores
Cant. On the one hand, there are estimations of CO2 fluxes
computed from sea surface pCO2 measurements, ocean
(model) inversion, atmospheric inversion and/or ocean bio-
geochemical models. On the other hand, some of these meth-
ods also provide an estimation of the transport of Cant (Tcant
hereafter) in the ocean (see Mikaloff Fletcher et al., 2006;
Gruber et al., 2009; Tjiputra et al., 2010), but unfortunately,
direct estimations ofTcantare not abundant and they are con-
centrated in the Atlantic Ocean. In the North Atlantic,Tcant
has been estimated from observational data across 24◦ N and
across a transversal section between 40◦ N and 60◦ N. Tcant
is larger at mid-latitudes than in the northernmost section
(see Table 1). There are large differences between the un-
certainties given for theTcant estimations in Table 1. These
differences are very likely due to the different methods used
to compute the volume transport since most of theTcant er-
rors come from the volume transport uncertainties. Com-
paring the observation-basedTcant and Tcant estimated by

ocean (model) inversions or by biogeochemical models, the
observation-based estimations are in general larger than the
others (see Table 1), but all of them present large errors. This
shows that further improvements are necessary to provide
more realisticTcant estimations. To bridge the gap between
observations and models, it is necessary to understand better
which circulation mechanisms controlTcant and its tempo-
ral variability. For example, following the results of Pérez et
al. (2013), it seems crucial that models reproduce a realistic
variability of the Atlantic Meridional Overturning Circula-
tion.

In this work, in order to analyze theTcantvariability across
the SPNA, data measured between 1997 and 2010 from
Greenland to Portugal (FOUREX and OVIDE sections, see
Fig. 1) were used. The circulation across this section was
described by Lherminier et al. (2007, 2010) and Mercier et
al. (2013). Briefly, at gyre scale, the structures intersecting
the section are a cyclonic circulation in the Irminger Sea, a
cyclonic circulation in the Iceland Basin, the North Atlantic
Current (NAC) flowing directly northward east of Eriador
Seamount, and lastly, an anticyclonic circulation dominating
the West European Basin. Beside this gyre-scale circulation,
the MOCσ is an important feature of the circulation across
the OVIDE section. It transports warm, Cant-laden surface
water northward in its upper limb, mainly by the NAC. North
of the section, waters are transformed in cold waters that are
poorer in Cant and flow southwards at depth (the lower limb)
mainly close to Greenland, in the Deep Western Boundary
Current (DWBC). The limit between the upper and lower
limbs of the MOCσ is defined byσ1 (potential density refer-
enced to 1000 dbar) equal to 32.14± 0.03 kmol m−3 (called
σMOC, Mercier et al., 2013).

The MOCσ has been identified as the element of the
circulation mainly driving the heat transport across several
transoceanic sections in the North Atlantic; meanwhile, the
isopycnal transport has a minor impact (Ganachaud and
Wunsch, 2003; Mercier et al., 2013). Recently, Pérez et
al. (2013) evaluated the Cant storage rate and theTcant vari-
ability across the subpolar gyre, finding a significant impact
of the MOCσ on both of them.

Following Pérez et al. (2013) and using a longer time se-
ries, we want to go further. First, we evaluate for the first
time the variability ofTcant across the SPNA at interannual
to decadal timescales. Second, we propose a new method in
order to evaluate the effect of the different elements of the
ocean circulation on theTcant variability. Third, we propose
a simplified estimator forTcantacross the SPNA based on the
factors chiefly responsible of its variability. Finally, we ana-
lyze the influence of the increase in Cant in the ocean in the
Tcant variability. The paper is organized as follows: data and
the main water masses circulating across the OVIDE section
are detailed in section 2;Tcant computation as well as a new
method to clarify the effect of the different component of the
circulation onTcant are explained in Sect. 3; the main results
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Table 1. Estimations of transport of Cant (Tcant) in the North Atlantic from the literature.Tcant is often given in Pg C yr−1

(1 Pg C yr−1 = 2642 kmol s−1).

Reference Latitude Time Method Tcant
(kmol s−1)

Mikaloff Fletcher et al. (2006) 18◦ N 1765-1995 Ocean (model) inversion 317± 26
Gruber et al. (2009) 24.5◦ N 1765–1995 Ocean (model) inversion 211
Tjiputra et al. (2010) 24.5◦ N 1990s–2000s Biogeochemical model 396± 106
Roson et al. (2003) 24.5◦ N 1992 Observations 634± 211
Macdonald et al. (2003) 24.5◦ N 1992–1998 Observations 502± 211
Pérez et al. (2013) 40–60◦ N 2002–2006 (referred to 2004) Observations 195± 24
Mikaloff Fletcher et al. (2006) 49◦ N 1765–1995 Ocean (model) inversion 53± 26
Tjiputra et al. (2010) 49◦ N 1990s–2000s Biogeochemical model ∼ 100
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Fig. 1. Schematic circulation in the North Atlantic. The main pathways of warm and salty waters originating from the subtropical Atlantic
Ocean are shown in red lines while the deep currents are displayed in dark blue. The cyan lines represent the fresh and cold currents over
the shelves (Eastern Greenland Coastal Current (EGCC) and Labrador Current (LC)). The grey lines indicate the spreading of the Labrador
Sea Water (LSW). OVIDE and FOUREX sections are represented with dotted lines. The background displays the bathymetry. The other
abbreviations are DSOW = Denmark Strait Overflow Water, ISOW = Iceland Scotland Overflow Water, WBC = Western Boundary Current,
NAC = North Atlantic Current, GS = Gulf Stream, ESM = Eriador Seamount, and IAP = Iberian Abyssal Plain.

of this work are exposed in Sect. 4; finally, results are dis-
cussed in Sect. 5.

2 Data sets

The data used in the study were acquired during the
FOUREX and OVIDE cruises (Table 2, Fig. 1), where full-
depth hydrographic stations were carried out between Green-
land and Portugal. An overview of the instruments and cali-
brations associated with the physical parameters is presented

by Mercier et al. (2013) and summarized hereafter. The
CTDO2 measurement accuracies are better than 1 dbar for
pressureP , 0.002◦C for temperature T, 0.003 for salinity
S and 1 µmol kg−1 for dissolved oxygen O2 (Billant et al.,
2004; Branellec and Thierry, 2013). The current velocities
perpendicular to the section were estimated by combining
the geostrophic currents and the velocities measured by the
vessel-mounted acoustic Doppler current profilers in an in-
verse model using the generalized least squares (Mercier,
1986; Lux et al., 2000). The specificities associated with
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Table 2.Hydrographic cruises.

Cruise name Month/Year Vessel Reference

FOUREX 1997 08–09/1997 R/VDiscovery Alvarez et al. (2002)
OVIDE 2002 06–07/2002 N/OThalassa Lherminier et al. (2007)
OVIDE 2004 06–07/2004 N/OThalassa Lherminier et al. (2010)
OVIDE 2006 05–06/2006 R/VMaria S. Merian Gourcuff et al. (2011)
OVIDE 2008 06–07/2008 N/OThalassa Mercier et al. (2013)
OVIDE 2010 06–07/2010 N/OThalassa Mercier et al. (2013)

the OVIDE section are detailed by Lherminier et al. (2007,
2010).

The measurements relative to the CO2 system were all ob-
tained from bottle samples. The pH was determined with a
spectrophotometric method (Clayton and Byrne, 1993), re-
sulting in an accuracy of 0.003 pH units or better. The to-
tal alkalinity (AT) was analyzed with potentiometric titration
and determined by single point titration (Pérez and Fraga,
1987; Mintrop et al., 2000), with an accuracy of 4 µmol kg−1.
The total inorganic carbon (CT) was calculated from the pH
and totalAT, following the recommendations and guidelines
from Velo et al. (2009). Then the concentration of anthro-
pogenic CO2 (Cant) is determined fromCT, AT, oxygen,
nutrients,T andS, applying theϕCt◦ method (Pérez et al.,
2008; Vázquez-Rodríguez et al., 2009). A random propaga-
tion of the errors associated with the input variables yielded
an overall uncertainty of± 5.2 µmol kg−1 in the Cant con-
centration.

The vertical sections of properties (potential temperature
(θ), S, Cant) are shown for 2002 and 2010 in Fig. 2. They
show the gradient of surface properties from cold, fresh wa-
ters in the Irminger Sea to warm, salty and Cant-rich waters
toward Portugal. The strongest surface fronts east of the Eri-
ador Seamount (ESM) mark the branches of the North At-
lantic Current (NAC, see Lherminier et al, 2010). Note how-
ever that the penetration of Cant in the first 1000 m is com-
parable in the Irminger Sea and in the Iberian Abyssal Plain.

At intermediate depth, the minimum of salinity marks the
Labrador Sea Water (LSW) and is observed from the Green-
land slope to the Azores–Biscay Rise. Following Yashayaev
et al. (2007), we will distinguish two vintages of the LSW:
the upper LSW (uLSW), also called LSW2000 (32.32<

σ1 < 32.37), and the classical LSW (cLSW), also called
LSW1987−1994 (32.40< σ1 < 32.44). Both classes of LSW
are marked by a relative maximum in Cant, due to their recent
ventilation in the Labrador Sea, although it is much less clear
for the cLSW in 2010, consistent with the fact that this water
mass was not ventilated between 1994 and 2008 (Yashayaev
and Loder, 2009).

Deep and bottom waters below the LSW have very dif-
ferent properties in the SPNA and in the inter-gyre region.
Northwest of the ESM, those waters are rich in overflow wa-
ters coming from the Nordic Sea: the Iceland–Scotland Over-

flow Water (ISOW, below cLSW) and the Denmark Strait
Overflow Water (DSOW, belowσ1 = 32.53 kg m−3, Tanhua
et al., 2005). Southeast of the ESM, the deep and bottom wa-
ters are rich in Antarctic Bottom Water (AABW), which has
not been in contact with the atmosphere for several decades
and presents the lowest concentration of Cant in the whole
section. This distribution creates a horizontal gradient of
Cant at the bottom, from Cant-free water in the southeast
to intermediate Cant concentration in overflow waters in the
northwest.

Between 2002 and 2010, the concentration of Cant in-
creased dramatically over the whole section (see Fig. 2), ex-
cept in the AABW-derived water where Cant concentration
is very low. As we will see in the results, this increase has a
big impact on the variability of the transport of Cant across
the section.

All the trends given in this work were estimated fitting a
straight line by means of least squares. Confidence intervals
were calculated considering aT student distribution at the
95 % confidence level. The mean values estimated for a pe-
riod of time are given with the standard error, i.e.,±σ/

√
N ,

whereN is the number of cruises.

3 Method: transport of anthropogenic CO2 and its
decomposition

The transport of any property across the Greenland to Portu-
gal section can be computed as

Tprop =

Portugal∫
Greenland

surface∫
bottom

vρ[PROP]dxdz, (1)

wherev is the velocity orthogonal to the section,ρ is the
in situ density and [PROP] is the concentration of any prop-
erty. Note thatx is the horizontal coordinate along the section
andz is the vertical coordinate. The error of the transport of
any property is calculated taking into account the co-variance
matrix of errors of the volume transport obtained from the
inverse model; therefore, the errors in the transport of any
property come mainly from the volume transport uncertain-
ties.
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6.18,2002 to 7.10,2002
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Fig. 2.OVIDE sections of 2002 and 2010 of(a, d)potential temperature in◦C, (b, e)salinity and(c, f) anthropogenic CO2 in µmol kg−1. The
depth of the isopycnals referenced in the manuscript are plotted in all the figures; their specific values are indicated in(b) and(e). All the water
masses cited in the manuscript are localized in the section in(c) and(f): DSOW = Demark Strait Overflow Water, ISOW = Iceland Scotland
Overflow Water, LSW = Labrador Sea Water, MW = Mediterranean Water, AABW = Antarctic Bottom Water. The other abbreviations in(a)
and(d) are RR = Reykjanes Ridge, ESM = Eriador Sea Mount and ABR = Azores–Biscay Ridge. The numbers at the top of each plot indicate
the station numbers corresponding to each survey.
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6.10,2010 to 6.30,2010
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Fig. 2.Continued.
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Understanding the processes by which the ocean trans-
ports heat, freshwater and Cant is an important issue in cli-
mate modeling. In order to evaluate the elements of the cir-
culation that influence the heat transport across transoceanic
sections, several authors, for example Böning and Herrman
(1994) or Bryden and Imawaki (2002), suggested the decom-
position of heat transport into three parts. This methodology
has been widely applied for both heat and salt fluxes in the
majority of the oceans, but in the case of Cant, it has only
been applied by Alvarez et al. (2003). Following the previous
authors, for a transoceanic section velocity (V ), Cant can be
split into

V (x,z) = V0 + 〈v〉(z) + v′(x,z) (2)

Cant(x,z) = 〈Cant〉(z) + Cant′(x,z), (3)

wherev = V (x,z)−V0, V0 representing the section-averaged
velocity corresponding to the net transport across the section.
〈v〉(z) is the mean vertical profile of velocity anomalies and
〈Cant〉(z) is the mean vertical profile of Cant.v′(x,z) and
Cant′(x,z) are the deviations from the corresponding mean
vertical profiles. In the same way the transport of Cant (Tcant,
Eq. 1) can be decomposed into three components (Eq. 4)
where the overbar denotes the area integration:

Tcant=ρV0〈Cant〉(z)+ρ〈v〉(z) 〈Cant〉(z)+ρv′(x,z)Cant′(x,z). (4)

Alvarez et al. (2003) carried out the decomposition ofTcant
across the FOUREX section (see Fig. 1) using pressure as a
vertical coordinate, the same way as heat and salt transport
decompositions are usually done. Because of the strong hor-
izontal density gradient and the general circulation patterns
across the section, we think that it is preferable to do the de-
composition in a density coordinate (z = σ1). Indeed, along
the OVIDE section, the upper and lower branches of the
Meridional Overturning Circulation, namely, the northward
North Atlantic Current (NAC) and the southward Western
Boundary Current (WBC), respectively, overlap in the depth
coordinate, while they have nearly distinct density properties.
Therefore, when the Meridional Overturning Circulation is
computed in a pressure coordinate, its intensity is underes-
timated (Lherminier et al. 2010; Mercier et al., 2013). Thus,
we think thatTcantcomputation and decomposition should be
done in a density coordinate.

It is the very first time that theTcant decomposition ex-
posed in Eq. (4) is computed in a density coordinate. Regard-
ing the order of the different terms, Eq. (4) can be written as

Tcant= T net
cant+ T

diap
cant + T

isop
cant, (5)

where

T net
Cant= ρV0〈Cant〉(σ1) (6)

T
diap
Cant = ρ〈v〉(σ1) 〈Cant〉(σ1) (7)

T
isop
Cant= ρv′(x,σ1)Cant′(x,σ1). (8)

Therefore,T net
Cant is the net transport of Cant across the sec-

tion related to a northward transport of about 1 Sv associated
with the Arctic mass balance (Lherminier et al., 2007).T

diap
Cant

is the transport of Cant linked to the diapycnal circulation
that accounts for the light to dense water mass conversion
north of the section (Grist et al., 2009) related to the overturn-
ing circulation. Lastly,T isop

Cant quantifies the transport of Cant
due to the isopycnal circulation, i.e., the integration of how
Cant and transport co-vary in each layer. This term is usually
called horizontal circulation when the decomposition is done
in pressure coordinates (e.g., Bonning and Herrmann, 1992);
however, in our case, it is not the horizontal circulation, since
isopycnals present important slopes all along the section (see
Fig. 2).

Using the same methodology as Alvarez et al. (2003) but
changing the vertical coordinate from pressure to density lev-
els, we expect to find a larger contribution of the overturning
component to the totalTcant in the same way that the Merid-
ional Overturning Circulation intensity across the section in-
creases when it is computed in density space.

4 Results

4.1 Transport of anthropogenic CO2 across the
Greenland–Portugal section

The transport of Cant (Tcant) across the Greenland–Portugal
section from 1997 to 2010 is shown in Fig. 3 (black line).
The mean value for the whole period is 254± 29 kmol s−1.
The standard deviation is 71 kmol s−1 (while the errors in
each estimate average to 48 kmol s−1). Note that a positive
Tcantvalue means a northward transport of Cant while a neg-
ative value points to a southward transport. At the beginning
of the period, in 1997,Tcant was 289± 32 kmol s−1. This
value is far off the one estimated by Alvarez et al. (2003,
116± 126 kmol s−1). Because both results correspond to the
same data, the difference between them comes from the
methodology: on the one hand because the constrains con-
sidered for computing the volume transport across the section
in Alvarez et al. (2003) and in the present work are different
(Lherminier et al., 2007); on the other hand because they did
not use theϕCt◦ approximation for calculating Cant. Later,
Pérez et al (2013) computedTcant across the OVIDE section
between 2002 and 2006; their mean value for that period is
195± 24 kmol s−1. For the same period, we obtain a mean
value of 208± 40 kmol s−1, a compatible result considering
the error bars.

The evolution ofTcant between 1997 and 2010 (black
line in Fig. 3) presents an interannual variability, with a
decrease from 1997 to the mid-2000s (see the mean value
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mean value (2002–2006) and the error bars ofTcant representative
of the mid-2000s.

for 2002–2006 displayed in cyan in Fig. 3) and a recovery
hereafter. Note that thisTcant recovery and the significant
highest value in 2010 (380± 64 kmol s−1) have never been
published before. The trend for the whole period of time is
4.0± 15.5 kmol s−1 yr−1. This result is statistically not dif-
ferent from 0 since the interannual variability blurs the longer
timescale variability, at least over this 14-year period of time.

4.2 Decomposition of the transport of anthropogenic
CO2 across the Greenland–Portugal section

The evolution of each of the diapycnal (T
diap
cant ), isopycnal

(T isop
cant) and net (T net

cant) transports of Cant are also displayed in
Fig. 3. The sum of these three components is exactly the to-
tal Cant flowing across the OVIDE section. The 1997–2010
mean values ofT diap

cant , T
isop
cant andT net

cant are 400± 29 kmol s−1,
−171± 11 kmol s−1 and 26± 9 kmol s−1, respectively. For
all the years,T diap

cant is larger thanTcant; meanwhile,T isop
cant is

always negative. Finally, the net transport is the smallest con-
tribution toTcant since the net transport of volume across the
section is very low, less than 1 Sv, and because the section
average of Cant is around 26 µmol kg−1.

By definition,T isop
cant is the transport of Cant along isopy-

cnals. It is the area integration of the co-variance of the
anomalies of volume transport and Cant at each station and
density level across the section; see Eq. (8). We observe
that T

isop
cant shows a non-negligible southward transport of

Cant across the OVIDE section. The result contrasts with
the isopycnal transport of heat (Mercier et al., 2013) that
has a minor contribution to the total heat flux in the North
Atlantic (Ganachaud and Wunsch, 2003). In the following,

we analyze the spatial distribution ofT isop
cant to understand

the origin of its southward resultant. Figure 4a displays the
mean value ofT isop

cant over 1997–2010, accumulated from
Greenland to Portugal and from the bottom to each den-
sity level. For water denser than 32.14 kg m−3 the accumu-
latedT

isop
cant is −150 kmol s−1, which is the 87 % of the to-

tal (−171 kmol s−1). It shows that, for the whole section, the
transport of Cant along isopycnals occurs mainly in the dense
waters. To locate the main region contributing toT

isop
cant, the

latter is vertically integrated and horizontally accumulated
from Greenland to each station along the section (Fig. 4b).
The maximum negative value is reached approximately 200
km from Greenland, exactly where the maximum negative
value of volume transport is found (Fig. 4c). From that point
eastward, a northward transport of Cant caused by the recir-
culation in the Irminger Sea diminished the total southward
T

isop
cant in this basin (Fig. 4b). In the intermediate and deep

waters (deeper thanσ1 equal to 32.14 kg m−3) east of Reyk-
janes Ridge, anomalies of Cant in isopycnal layers are quite
small, resulting in a weak contribution toT isop

cant (Fig. 4b).
Instead, taking into account the whole water column, there
is a southwardT isop

cant in the Western European Basin (WEB,
Fig. 4b) mainly explained by a northward advection (Fig. 4c)
of a negative anomaly of Cant in the intermediate layers. In-
deed, the shallow isopycnal layers in the Irminger Sea are
richer in Cant than the same layers found deeper in the West-
ern European Basin (WEB) and the Iberian Abyssal Plain
(IAP; see Fig. 2). We can then conclude that southward trans-
port of Cant associated with the isopycnal component mainly
occurs in the Irminger Sea. In order to identify the water
masses mainly responsible for this transport, the transport
of Cant associated with the isopycnal component is hori-
zontally but not vertically integrated (Fig. 4d). Two differ-
ent ranges of densities are identified as the major contribu-
tions toT

isop
cant; the lower lobe (32.48< σ1 < 32.55 kg m−3)

corresponds to the overflow waters (DSOW and ISOW),
while the upper lobe corresponds to intermediate and sur-
face waters of the Irminger Sea (note the shallow position of
σ1 = 32.14 kg m−3 in the Irminger Sea, Fig. 2). In this basin,
the waters corresponding to the density range of both lobes
contain high concentrations of Cant (see Fig. 2) due to their
recent formation and/or ventilation. To summarize, the south-
ward resultant ofT isop

cant is mainly localized in the Irminger
Sea where the southward transport of Cant caused by the
Western Boundary Current (WBC) is partially compensated
by the northward transport caused by the inner recircula-
tion in this basin. Concerning water masses, only LSW has
a minor contribution toT isop

cant; it will be discussed further in
Sect. 5.

The transport of Cant across isopycnals, that isT
diap
cant , is de-

composed in terms of mean profiles of anomalies of volume
transport (Fig. 5a) and Cant concentration (Fig. 5b) com-
puted in isopycnal layers (with a resolution of 0.01 kg m−3);
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see Eq. (7). The upper and lower MOCσ limbs can be iden-
tified in Fig. 5a, with northward (southward) volume trans-
ports above (below)σMOC. The vertical profile of Cant con-
centration averaged in density layers is displayed in Fig. 5b;
as expected, we observe a decrease in Cant with increasing
depth. The profile of transport of Cant (Fig. 5c) follows per-
fectly the vertical profile of volume transport. The vertical
integration of the diapycnal component of the volume trans-
port (Fig. 5a) is equal to 0 Sv. However, because the Cant
concentration is larger in the upper limb of the MOCσ than
in the lower one (see Fig. 5b),T

diap
cant results in a strong posi-

tive value once vertically integrated (see Fig. 3).
The Ekman transport has been estimated separately from

wind stress data averaged over the months of the cruises (see
Mercier et al., 2013) and equally distributed in the first 30 m.
After that, it has been added to the absolute geostrophic ve-
locity across the section and analyzed together. It has not
been considered as the fourth element of the circulation
because it is dispatched between the diapycnal, isopycnal

and net transport. Nevertheless, it is worth mentioning that
the Ekman transport causes a southward transport of Cant
(see the dashed grey line in Fig. 3), whose mean value is
−50± 8 kmol s−1 and the standard deviation is 21 kmol s−1.

4.3 Variability of the transport of Cant

In this part of the paper, theTcant variability across the
OVIDE section is analyzed. We expect that changes in both
the circulation and the Cant concentration of water masses
have a certain influence on theTcant variability. In the previ-
ous section we separatedTcant caused by three different ele-
ments of the ocean circulation. In this section we are going to
evaluate which elements of the circulation have a major in-
fluence on theTcantvariability and whether the Cant increase
in the water masses affects theTcant variability.
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the data represented in this figure are the averages of the six surveys
analyzed in this work. In the formulation,A means the area of each
density layer along the section and replaces the overbar given in
Eq. (7), since there is no vertical integration in the data displayed
there.

4.3.1 Variability of the components of Tcant

It is observed that the variability ofTcant and T
diap
cant (the

black and blue lines in Fig. 3) is very well correlated
(r = 0.99, p value = 0.0002). By contrast,T isop

cant presents a
small variability that is not correlated withTcant (r =−0.44,
p value = 0.38), and the same is true forT net

cant (r = 0.40,
p value = 0.43). From this we can say that the diapycnal com-
ponent mainly drives the variability ofTcant.

In terms of volume transport, the diapycnal component is
directly related to the MOCσ . Perez et al. (2013) suggested
that the weakening of the lateral advection of Cant between
1997 and 2006, caused by the slow-down of the MOCσ , is
responsible for the decrease in the Cant storage rate during
that period. However, during the period of time studied in
this work (1997–2010), the MOCσ intensity (Fig. 6a) is cor-
related neither withTcant (r = 0.58,p value = 0.23) nor with
T

diap
cant (r = 0.68,p value = 0.13). These results suggest that,

although the diapycnal circulation is related to the MOCσ ,
in the case ofTcant there is another factor acting on theT

diap
cant

variability. It is very likely that the Cant concentration change
is the other factor controlling the variability ofT

diap
cant , and thus

the variability ofTcant.
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(C) Time evolution of anomalies ofTcant (black line),T diap
cant (blue

line), T
◦

cant (cyan line), the anomalies in relation to the mean value
computed over 1997–2010.

4.3.2 A simplified estimator for the variability of the
transport of Cant

The overturning circulation has been identified as the compo-
nent of the circulation mainly driving the heat flux variability
across the subpolar gyre (Mercier et al., 2013). After defining
the MOCσ as the maximum of the transport streamfunction
computed in density coordinates, these authors approximated
the heat transport variability across the OVIDE section, tak-
ing into account the temperature difference between the up-
per limb and the lower limb of the MOCσ and the intensity of
the MOCσ . This method applied toTcantcould help us to clar-
ify the effect of both circulation changes and Cant increase
on theTcant variability. Therefore we propose the following
estimator:

T
◦

cant= 1Cant· ρ · MOCσ (9)

where1Cant is the difference between the mean value of
Cant in the upper and lower limbs of the MOCσ , ρ is the
in situ density and MOCσ is the intensity of the Merid-
ional Overturning Circulation computed in density coordi-
nates (Mercier et al., 2013). The time evolution of MOCσ

and1Cant is shown in Fig. 6a.
We expect this estimatorT

◦

cant to be a good approximation

of T
diap
cant because it takes into account the diapycnal circula-

tion via the MOCσ intensity and not the isopycnal compo-
nent of the circulation. Furthermore, by using the difference
in Cant concentration between both limbs of the MOCσ , we
take into account the Cant increase in waters flowing through
the OVIDE section that we expect to have an important role
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in theT
diap
cant variability. As a matter of fact, the estimatorT

◦

cant

is quite similar toT diap
cant (blue and cyan lines in Fig. 6b) and

they are well correlated (r = 0.82,p value = 0.04).
To compare their variability, the anomalies ofTcant, T

diap
cant ,

andT
◦

cant time series are plotted in Fig. 6c. Although we see
by eye similar patterns betweenTcant and T

◦

cant anomalies,
the correlation (r = 0.75,p value = 0.09) is not as good as
betweenT diap

cant andT
◦

cantsince the estimator does not consider
the isopycnal contribution.

In conclusion,Tcantcannot be totally inferred from the pro-
posed estimator (T

◦

cant) since the isopycnal component has
a non-negligible contribution, but it is a good estimation of
T

diap
cant . As T

diap
cant mainly drives theTcant variability across the

OVIDE section,T
◦

cant is, at least, a fairly good indicator of the
variability of Tcant across the section. Moreover, it will help
us to disentangle the relative contribution of the circulation
and the Cant increase in the variability ofTcant.

4.3.3 The effect of Cant concentration changes on the
variability of the transport of Cant

In the OVIDE section during the period 1997–2010,
the section-average Cant has increased at a rate of
0.29± 0.21 µmol kg−1 yr−1, which means an increase of
4 µmol kg−1 between 1997 and 2010. The Cant increase
in the upper limb of the MOCσ , which imports Cant into
the subpolar region, is larger than the increase in the
lower limb, which exports Cant from the subpolar region:
0.63± 0.27 µmol kg−1 yr−1 and 0.20± 0.25 µmol kg−1 yr−1,
respectively; see Fig. 7.

In the previous section we presented an estimator,T
◦

cant,
which is a good indicator of theTcant variability across the
OVIDE section. Using this estimator, if a steady circulation
hypothesis is considered (MOCσ constant, e.g., 16 Sv),T

◦

cant
increases at a rate of 7.0± 1.6 kmol s−1 yr−1. It means that
the Cant increase in the ocean waters yields an increase in
the northward transport of Cant across the OVIDE section.
However, the overturning circulation has an important role
in the Tcant variability, and it introduces a larger variability
than the Cant increase at the interannual timescale. This is
why the “real” trend estimated forTcant for the period 1997–
2010 is positive but not statistically different from 0.

To assess the relative role of the Cant concentration
and circulation inTcant and to compare it with the analy-
sis of Pérez et al. (2013), we choose to study the period
between 1997 and 2006. During that period, the MOCσ

intensity across the OVIDE section decreased (Mercier
et al., 2013) at a rate of 0.68± 0.65 Sv yr−1. Simultane-
ously,Tcant decreased at a rate of 9.3± 11.7 kmol s−1 yr−1,
while the Cant concentration increased at a rate of
0.48± 0.56 µmol kg−1 yr−1 and 0.01± 0.42 µmol kg−1 yr−1

in the upper and lower limbs of the MOCσ , respectively. All
these trends are not statistically different from 0, likely due
to the low number of data, only 4, but they give insights that
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circles), and lower limb of the MOCσ (empty black triangles).

Cant increased in the upper limb of the MOCσ ; meanwhile it
hardly changed in the lower limb. Taking into account these
results we conclude that, in the period between 1997 and
2006, the MOCσ decrease prevailed on theTcant variabil-
ity. Indeed, using the proposed estimator (T

◦

cant ), if a steady
circulation was considered,Tcant would increase at a rate of
7.8± 3.2 kmol s−1 yr−1 during the period 1997–2006. How-
ever, if Cant is maintained constant between 1997 and 2006,
Tcant would decrease at a rate of 15.3± 14.6 kmol s−1 yr−1,
that is, the slow-down of the MOCσ would cause a decrease
in Tcant statistically different from 0.

Over the whole studied period, 1997–2010, we found that
the trends inTcant andT

◦

cant are not significant. In the hypo-
thetical case of a steady circulation,T

◦

cant increases at a rate of
7.0± 1.6 kmol s−1 yr−1 since1Cant is continuously increas-
ing. Conversely, if1Cant remains constant,T

◦

cant variability
follows the MOCσ variability with no trend.

All these results suggest that, at interannual to decadal
timescales, the variability of the MOCσ mainly drives the
Tcant variability across the OVIDE section. Nonetheless, the
Cant increase also causes a long-term increase inTcant that,
at the timescale analyzed here, is blurred by the interannual
variability caused by the MOCσ variability.

5 Discussion and conclusions

The continuous increase in CO2 concentration in the atmo-
sphere due to human activities is softened by the oceanic
CO2 uptake. The question is how long the ocean will act as
a sink for this greenhouse gas. Therefore, it is really impor-
tant to quantify and understand the mechanisms acting in its
transport and storage in the oceans. It is well known that the
North Atlantic presents the highest storage rate of Cant of
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the global oceans, mainly in the SPNA (Sabine et al., 2004).
Recently, it has been demonstrated that the lateral advection
provides the main supply of Cant to the SPNA (Pérez et al.,
2013). In the last decade, the estimations ofTcant by obser-
vational data and models have yielded quite different results:
models tend to show lower values than data (Table 1). In this
work we have focused in the physical aspect of the transport
of Cant in order to understand the mechanisms drivingTcant
across the SPNA and to describe for the first time its interan-
nual to decadal variability.

In agreement with previous works (Alvarez et al., 2003
and Pérez et al., 2013), we obtained a northwardTcant across
the section. The mean value for the period 1997–2010 is
254± 29 kmol s−1; its standard deviation is 71 kmol s−1. No
significant long-term changes have been identified during
this period, due to the clear decrease between 1997 and the
mid-2000s (cyan values in Fig. 3) and the recover thereafter.
We have observed that the initial decrease was due to the
slow-down of the MOCσ and that the increase that follows
was mainly due to the increase in the Cant concentration in
the ocean waters.

Splitting Tcant into its different components, we have ob-
served that the isopycnal component causes a non-negligible
southward transport (see Fig. 3), mainly localized in the
Irminger Sea (see Fig. 4). It contrasts with the heat fluxes
across the North Atlantic Ocean, for which the isopycnal
component has a minor contribution to the total heat flux
(Ganachaud and Wunsch, 2003); across the OVIDE section
specifically, the isopycnal heat flux accounts for less than
10 % of the total heat flux (Mercier et al., 2013). The differ-
ent behavior betweenTcantand heat fluxes across the OVIDE
section is due to the differences in the horizontal gradient
of Cant and temperature: Cant markedly decreases eastward
due to the age of the water masses; meanwhile the tempera-
ture presents a subtle increase (see Fig. 2). As a result, high
positive anomalies of Cant are found in the Irminger Sea,
while the temperature anomalies are close to 0◦C. Therefore,
the isopycnal contribution is more important in theTcant than
in the heat flux.

To go further in the analysis of the isopycnal transport of
Cant in the Irminger Sea, we found that the overflow waters
(DSOW and ISOW) and intermediate and surface waters are
mainly responsible for the southward transport (Fig. 4d). The
fact that intermediate and surface waters of the Irminger Sea
have a high contribution toT isop

cant is because its high Cant con-
centration as compared to the waters with the same density
range in the WEB and IAP as for example Mediterranean
Water (see Fig. 2). The high Cant content in the intermediate
waters of the Irminger Sea is likely due to the recent venti-
lation of these waters. Indeed, Våge et al. (2009) observed a
700 m-deep mixed layer in winter 2007–2008. In the case of
the overflow waters, the relatively high Cant concentration is
mainly due to the entrainment of Cant-rich thermocline wa-

ter at the sills during the process of overflow (Sarafanov et
al., 2010).

Once the waters mainly responsible forT
isop
cant have been

identified, the question is: why does the LSW, both upper and
classical, yield a minor contribution toT isop

cant (see Fig. 4)? The
answer is likely related to changes in the formation rate of
these water masses and their spreading all along the OVIDE
section. On the one hand, during the first half of the 90s,
cLSW was abundantly formed in the Labrador Sea (Rhein et
al., 2002), so it was enriched in Cant. In the mid-90s there
was a shut-down in the formation of this water mass that
was compensated by an enhanced production of uLSW in the
Labrador Sea and possibly in the Irminger Sea (Yashayaev et
al., 2007; Kieke et al., 2007; Rhein et al., 2011). Thence-
forth, cLSW was exported to the Irminger Sea and northeast
Atlantic, taking between 6 months (Sy et al., 1997) to 2 years
(Straneo et al., 2003) to reach the Irminger Sea and 3–6 years
to get to the Mid-Atlantic Ridge (Kieke et al., 2009). Be-
cause of this spreading, cLSW was homogenized all along
the OVIDE section, resulting in small Cant anomalies. On
the other hand, the evolution ofT isop

cant in the uLSW density
range during the period 1997–2010 displays more temporal
variability (not shown), probably due to the intermittent ven-
tilation of this water mass over the 2000s and to the advection
timescales that are comparable to those of the cLSW. How-
ever, the average ofT isop

cant in the density range of uLSW for
the 1997–2010 period is close to zero; this is why we identify
a minor contribution of uLSW toT isop

cant, and a more detailed
analysis of its variability is out of the scope of this study.

The decomposition ofTcantalso shows that the overturning
component (T diap

cant ) is the major contribution toTcant, whose
mean value over the period 1997–2010 is 400± 29 kmol s−1.
Moreover, as in the case of heat flux, it drives the variability
of Tcant. T

diap
cant is related to the MOCσ that transports warm

and enriched Cant waters northward in its upper limb and
denser, colder and poorer in Cant waters southward in its
lower limb. The estimatorT

◦

cant is a schematic representation
of this mechanism and indeed we found a good correlation
betweenT

◦

cantandT
diap
cant . It also offers a simple proxy for test-

ing numerical models. However, we are aware thatT
◦

cantdoes
not represent all the processes involved in the transport of
Cant in the SPNA.

It is well known that the MOCσ presents a high seasonal
variability. For example, Mercier et al. (2013) showed that
it has a seasonal amplitude of 4.3 Sv. The data analyzed in
this work were measured during summer months. Mercier
et al. (2013) show that the MOCσ at the OVIDE section
presents its yearly minimum in summer, but their results also
show that the interannual variability of the MOCσ can be
reliably represented by summer data. Therefore, we expect
that the interannual variability ofTcant will be well captured
by our study, although the magnitudes given in the present
work are likely to be weaker than the annual means.
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To get an order of magnitude of the relative importance
at long timescales of the Cant content and the circulation on
Tcantacross the SPNA, we useT

◦

cant. On the one hand, Cant is
increasing faster in the upper limb of the MOCσ than in the
lower limb, showing trends of 0.63± 0.27 µmol kg−1 yr−1

and 0.20± 0.25 µmol kg−1 yr−1, respectively, during the pe-
riod 1997–2010. It means that, in the SPNA, there is more
Cant being imported in the upper limb than being exported
in the lower limb, resulting in an accumulation of Cant in
the SPNA, in agreement with Sabine et al. (2004) and Pérez
et al. (2010). The minor increase in Cant in the lower limb
is due to the dilution of the convected and overflow wa-
ters rich in Cant with the deep waters poor in Cant. We
expect that the Cant concentration in both limbs will be
linked to the MOCσ variability, although we do not know at
which timescale. Indeed, it depends on the advection of wa-
ter from the subtropical areas in the upper limb, and on the
processes of deep and intermediate water formation in the
lower limb. However, it is striking that1Cant keeps increas-
ing independently of the MOCσ variability at a mean rate
of 0.43± 0.10 µmol kg−1 yr−1 (see the pink line in Fig. 6a).
This increasing rate is going to cause an augmentation in
Tcant across the OVIDE section, and consequently, an in-
crease in the storage rate in the SPNA. On the other hand,
models have predicted a slow-down of 25 % of the MOCσ

at the end of the present century (IPCC, 2007) indepen-
dently of the interannual to decadal variability observed by
Mercier et al. (2013). Taking into account the predicted
slow-down of the MOCσ and the positive trend of1Cant
computed in this work,T

◦

cant would increase at a rate of
4.3± 0.1 kmol s−1 yr−1 during the 21st century. It means an
increase of 430 kmol s−1 of Tcant in 100 years, despite the
predicted slow-down of the MOCσ . To conclude, the faster
increase in Cant in the upper limb than in the lower limb
will cause an augmentation of the northwardTcant across the
SPNA at long timescales. Nevertheless, at the timescale an-
alyzed in this work (1997–2010), the interannual variability
of the MOCσ blurs the long-term increase inTcant caused by
the1Cant increase. Furthermore, this result is quite specula-
tive since (i) we suppose that the trend in1Cant will remain
constant and (ii) we rely on the models for the decrease in the
MOCσ . However, it gives an interesting order of magnitude.

We suspect that the long-term increase inTcant would
cause an increase in the storage rate of Cant in the SPNA.
Pérez et al. (2013) observed a decrease in the storage rate
of Cant in the SPNA between 1997 (high MOCσ ) and 2002–
2006 (low MOCσ ). They reported a change in the storage rate
from 0.083± 0.008 Gt C yr−1 to 0.026± 0.004 Gt C yr−1 be-
tween both periods. However, because of the short time span,
the 1Cant increase was too small to compensate for the
large intra-decadal decrease in the MOCσ that caused the
decrease in theTcant across the OVIDE section and conse-
quently the decrease in the Cant storage rate reported by
Pérez et al. (2013). Calculating the storage rate for 1997–
2010 is the subject of a future work.

To sum up, although the isopycnal transport has a con-
siderable contribution toTcant across the OVIDE section,
the major contribution toTcant is the diapycnal component,
which is also the main driver of its variability. In both com-
ponents of the transport, the Cant concentration plays an im-
portant role: the horizontal gradient of Cant across the sec-
tion is responsible for the southward transport of Cant by the
isopycnal component, while the Cant-laden waters flowing
northward are responsible for the large positive values of the
diapycnal component. Finally, we have shown that the vari-
ability of the MOCσ dominates the variability ofTcant at in-
terannual to decadal scales, but that the Cant increase seems
to control theTcant change at longer timescales. Therefore,
in spite of the predicted slow-down of the MOCσ by 2100,
an increase in the storage rate of Cant in the SPNA would be
expected.

Acknowledgements.We are grateful to the captains, staff and
researchers who contributed to the acquisition and processing
of hydrographic data. The research leading to these results was
supported through the EU FP7 CARBOCHANGE “Changes in
carbon uptake and emissions by oceans in a changing climate”
project, which received funding from the European Commission’s
Seventh Framework Programme under grant agreement no. 264879.
For this work P. Zunino was supported by the former project and
by the Ifremer postdoctoral program. M. I. Garcia-Ibáñez was
supported by the Spanish Ministry of Economy and Compet-
itiveness (BES-2011-045614) through the CATARINA project
(CTM2010-17141) co-funded by the Fondo Europeo de Desarrollo
Regional 2007-2012 (FEDER); this article is going to be part of
her PhD that is attached to the framework of the “Marine Science,
Technology and Management” (DO*MAR) doctoral program of
the University of Vigo. P. Lherminier was supported by the French
Institute for Marine Science (Ifremer), H. Mercier by the French
National Center for Scientific Research (CNRS), and A. F. Rios and
F. F. Pérez by the Consejo Superior de Investigaciones Científicas
(CSIC). We also acknowledge the anonymous reviewers for their
help in improving the manuscript.

Edited by: L. Bopp

The publication of this article is
financed by CNRS-INSU.

References

Alvarez, M. F., Bryden, H. L., Pérez, F. F., Rios, A. F., and Roson,
G.: Physical and biogeochemical fluxes and net budgets in the
subpolar and temperate North Atlantic, J. Mar. Res., 60, 191–
226, 2002.

Alvarez, M., Rios, A. F., Pérez, F. F., Bryden, H. L., and Roson, G.:
Transports and budgets of total inorganic carbon in the Subpo-

www.biogeosciences.net/11/2375/2014/ Biogeosciences, 11, 2375–2389, 2014



2388 P. Zunino et al.: Variability of the transport of Cant at the OVIDE section

lar and Temperate North Atlantic, Global Biogeochem. Cy., 17,
1002, doi:10.1029/2002GB001881, 2003.

Billant, A., Branellec, P., and Mercier, H.: Campagne OVIDE 2002:
Rapport de données CTD-O2, Tech. Rep. DRO/DOPS/04-01,
2004.

Böning, C. W. and Herrmann, P.: Annual cycle of poleward heat
transport in the ocean: results from high-resolution modeling of
the north and equatorial Atlantic, J. Phys. Oceanogr., 24, 91–107,
1994.

Branellec, P. and Thierry, V.: Campagne OVIDE 2010: Rapport de
données CTDO2, Tech. Rep. ODE/OPS/LPO/13-01, 2013.

Bryden, H. and Imawaki, S.: Ocean heat transport, in: Ocean Circu-
lation and Climate, edited by: Siedler, G., Church, J., and Gould,
J., Academic Press, 2001.

Clayton, T. D. and Byrne, R. H.: Calibration of m-cresol purple on
the total hydrogen ion concentration scale and its application to
CO2-system characteristics in seawater, Deep-Sea Res. Pt. I, 40,
2115–2129, 1993.

Ganachaud, A. and Wunsch, C.: Large-Scale Ocean Heat and Fresh-
water Transports during the World Ocean Circulation Experi-
ment, J. Climate, 16, 696–705, 2003.

Gourcuff, C., Lherminier, P., Mercier, H., and Le Traon, P.
Y.: Altimetry combined with hydrography for ocean trans-
port estimation, J. Atmos. Ocean. Tech., 28, 1324–1337,
doi:10.1175/2011JTECHO818.1, 2011

Grist, J. P., Marsh, R., and Josey, S. A.: On the relationship be-
tween the North Atlantic meridional overturning circulation and
the surface-forced overturning streamfunction, J. Climate, 22,
4989–5002, doi:10.1175/2009JCLI2574.1, 2009.

Gruber, N. et al.: Oceanic sources, sinks, and transport of atmo-
spheric CO2, Global Biogeochem Cy, 23, GB1005 (2009).

Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M.,
Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A.,
Murata, A., Ríos, A. F., and Sabine, C. L.: Global ocean stor-
age of anthropogenic carbon, Biogeosciences, 10, 2169–2191,
doi:10.5194/bg-10-2169-2013, 2013.

Kieke, D., Rhein, M., Stramma, L., Smethie, W. M., Bullister, J. L.,
and LeBel, D. A.: Changes in the pool of Labrador Sea Water
in the subpolar North Atlantic, Geophys. Res. Lett., 34, L06605,
doi:10.1029/2006GL028959, 2007.

Kieke, D., Klein, B., Stramma, L., Rhein, M., and Koltermann,
K. P.: Variability and propagation of Labrador Sea Water in the
southern subpolar North Atlantic, Deep-Sea Res. Pt. I, 56, 1656–
1674, 2009.

Lherminier, P., Mercier, H., Gourcuff, C., Alvarez, M., Bacon,
S., and Kermabon, C.: Transports across the 2002 Greenland-
Portugal Ovide section and comparison with 1997, J. Geophys.
Res., 112, C07003, doi:10.1029/2006JC003716, 2007.

Lherminier, P., Mercier, H., Huck, T., Gourcuff, C., Perez, F. F.,
Morin, P., Sarafanov, A., and Falina, A.: The Atlantic Meridional
Overturning Circulation and the subpolar gyre observed at the
A25-OVIDE section in June 2002 and 2004, Deep-Sea Res. Pt.
I, 57, 1374–1391, doi:10.1016/j.dsr.2010.07.009, 2010.

Lux, M., Mercier, H., and Arhan, M.: Interhemispheric exchanges
of mass and heat in the Atlantic Ocean in January–March 1993,
Deep-Sea Res. Pt. I, 48, 605–638, 2000.

Macdonald, A. M., Baringer, M. O., Wanninkhof, R., Lee, K., and
Wallace, D. W. R.: A 1998–1992 comparison of inorganic carbon

and its transport across 24.51◦ N in the Atlantic, Deep-Sea Res.
Pt. II, 50, 3041–3064, 2003.

Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye,
A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda,
A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-
C.: Global Climate Projections, in: Climate Change 2007: The
Physical Science Basis.Contribution of Working Group I to the
Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Solomon, S., Qin, D., Manning, M.,
Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller,
H. L., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2007.

Mercier, H.: Determining the general circulation of the ocean: a non
linear inverse problem, J. Geophys. Res., 91, 5103–5109, 1986.

Mercier, M., Lherminier, P., Sarafanov, A., Gaillard, F., Daniault,
N., Desbruyères, D., Falina, A., Ferron, B., Gourcuff, C., Huck,
T., and Thierry, V.: Variability of the meridional overturning cir-
culation at the Greenland-Portugal OVIDE section from 1993 to
2010, Prog. Oceanogr., doi:10.1016/j.pocean.2013.11.001, 2013.

Mikaloff-Fletcher, S. E., Gruber, N., Jacobson, A. R., Doney, S.
C., Dutkiewicz, S., Gerber, M., Follows, M., Joos, F., Lindsay,
K., Menemenlis, D., Mouchet, A., Müller, S. A., and Sarmiento,
J. L.: Inverse estimates of anthropogenic CO2 uptake, transport,
and storage by the ocean, Global Biogeochem. Cy., 20, GB2002,
doi:10.1029/2005GB002530, 2006.

Mintrop, L., Pérez, F. F., Gonzalez-Davila, M., Santana-Casiano,
M. J., and Kortzinger, A.: Alkalinity determination by poten-
tiometry: Intercalibration using three different methods, Ciencias
Marinas, 26, 23–37, 2000.

Pérez, F. F. and Fraga, F.: A precise and rapid analytical procedure
for alkalinity determination, Mar. Chem., 21, 169–182, 1987.

Pérez, F. F., Vázquez-Rodríguez, M., Mercier, H., Velo, A., Lher-
minier, P., and Ríos, A. F.: Trends of anthropogenic CO2 storage
in North Atlantic water Masses, Biogeosciences, 7, 1789–1807,
doi:10.5194/bg-7-1789-2010, 2010.

Pérez, F. F., Mercier, H., Vázquez-Rodríguez, M., Lherminier, P.,
Velo, A., Pardo, P. C., Rosón, G., and Ríos, A. F.: Atlantic Ocean
CO2 uptake reduced by weakening of the meridional overturning
circulation, Nat. Geosci., 6, 146–152, doi:10.1038/NGEO1680,
2013.

Rhein, M., Fischer, J., Smethie Jr., W. M., Smythe-Wright, D.,
Weiss, R. F., Mertens, C., Min, D.-H., Fleischmann, U., and
Putzka, A.: Labrador Sea Water: pathways, CFC-inventory and
formation rates, J. Phys. Oceanogr., 32, 648–665, 2002.

Rhein, M., Kieke, D., and Steinfeldt, R.: Ventilation of Up-
per Labrador Sea Water, 2003–2005, Geophys. Res. Lett., 34,
L06603, doi:10.1029/2006GL028540, 2007.

Roson, G., Rios, A. F., Lavin, A., Bryden, H. L., and
Pérez, F. F.: Carbon distribution, fluxes and budgets in the
subtropical North Atlantic, J. Geophys. Res., 108, 3144,
doi:10.1029/1999JC000047, 2003.

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullis-
ter, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R.,
Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and
Rios, A. F.: The oceanic sink for anthropogenic CO2, Science,
305, 367–371, 2004.

Sarafanov, A., Mercier, H., Falina, A., Sokov, A., and Lherminier,
P.: Cessation and partial reversal of deep water freshening in the

Biogeosciences, 11, 2375–2389, 2014 www.biogeosciences.net/11/2375/2014/

http://dx.doi.org/10.1029/2002GB001881
http://dx.doi.org/10.1175/2011JTECHO818.1
http://dx.doi.org/10.1175/2009JCLI2574.1
http://dx.doi.org/10.5194/bg-10-2169-2013
http://dx.doi.org/10.1029/2006GL028959
http://dx.doi.org/10.1029/2006JC003716
http://dx.doi.org/10.1016/j.dsr.2010.07.009
http://dx.doi.org/10.1016/j.pocean.2013.11.001
http://dx.doi.org/10.1029/2005GB002530
http://dx.doi.org/10.5194/bg-7-1789-2010
http://dx.doi.org/10.1038/NGEO1680
http://dx.doi.org/10.1029/2006GL028540
http://dx.doi.org/10.1029/1999JC000047


P. Zunino et al.: Variability of the transport of Cant at the OVIDE section 2389

northern North Atlantic: observation-based estimates and attri-
bution, Tellus A, 62, 80–90, 2010.

Steinfeldt, R., Rhein, M., Bullister, J. L., and Tanhua, T: Inventory
changes in anthropogenic carbon from 1997–2003 in the Atlantic
Ocean between 20◦ S and 65◦ N, Global Biogeochem. Cy., 23,
GB3010, doi:10.1029/2008GB003311, 2009.

Straneo, F., Pickart, R. S., and Lavender, K.: Spreading of Labrador
sea water: an advective-diffusive study based on Lagrangian
data, Deep-Sea Res. Pt. I, 50, 701–719, doi:10.1016/S0967-
0637(03)00057-8, 2003.

Sy, A., Rhein, M., Lazier, J. R. N., Koltermann, K. P., Meincke,
J., Putzka, A., and Bersch, M.: Surprisingly rapid spreading
of newly formed intermediate waters across the North Atlantic
Ocean, Nature, 386, 675–679, 1997.

Tanhua, T., Biastoch, A., Körtzinger, A., Lüger, H., Böning, C., and
Wallace, D. W. R.: Changes of anthropogenic CO2 and CFC in
the North Atlantic between 1981 and 2004, Global Biogeochem.
Cy., 20, GB4017, doi:10.1029/2006GB002695, 2006.

Tjiputra, J. F., Assmann, K., and Heinze, C.: Anthropogenic car-
bon dynamics in the changing ocean, Ocean Sci., 6, 605–614,
doi:10.5194/os-6-605-2010, 2010.

Treguier, A.-M., Gourcuff, C., Lherminier, P., Mercier, H., Barnier,
B., Madec, G., Molines, J.-M., Penduff, T., Czeschel, L., and
Böning, C. W.: Internal and forced variability along a section be-
tween Greenland and Portugal in the CLIPPER Atlantic model,
Ocean Dynam., 56, 568–580, 2006

Våge, K., Pickart, R., Thierry, V., Reverdin, G., Lee, C., Petrie, B.,
Agnew, T., Wong, A., and Ribergaard, M. H.: Surprising return
of deep convection to the subpolar North Atlantic Ocean in win-
ter 2007–2008, Nat. Geosci., 2, 67–72, doi:10.1038/NGEO382,
2009.

Vázquez-Rodríguez, M., Padin, X. A., Ríos, A. F., Bellerby, R.
G. J., and Pérez, F. F.: An upgraded carbon-based method
to estimate the anthropogenic fraction of dissolved CO2 in
the Atlantic Ocean, Biogeosciences Discuss., 6, 4527–4571,
doi:10.5194/bgd-6-4527-2009, 2009.

Velo, A., Pérez, F. F., Lin, X., Key, R. M., Tanhua, T., de la
Paz, M., Olsen, A., van Heuven, S., Jutterström, S., and Ríos,
A. F.: CARINA data synthesis project: pH data scale unifica-
tion and cruise adjustments, Earth Syst. Sci. Data, 2, 133–155,
doi:10.5194/essd-2-133-2010, 2010.

Yashayaev, I., van Aken, H. M., Holliday, N. P., and Bersch,
M.: Transformation of the Labrador Sea Water in the sub-
polar North Atlantic, Geophys. Res. Lett., 34, L22605,
doi:10.1029/2007GL031812, 2007

Yashayaev, I. and Loder, J. W.: Enhanced production of Labrador
Sea Water in 2008, Geophys. Res. Lett., 36, L01606,
doi:10.1029/2008GL036162, 2009.

www.biogeosciences.net/11/2375/2014/ Biogeosciences, 11, 2375–2389, 2014

http://dx.doi.org/10.1029/2008GB003311
http://dx.doi.org/10.1016/S0967-0637(03)00057-8
http://dx.doi.org/10.1016/S0967-0637(03)00057-8
http://dx.doi.org/10.1029/2006GB002695
http://dx.doi.org/10.5194/os-6-605-2010
http://dx.doi.org/10.1038/NGEO382
http://dx.doi.org/10.5194/bgd-6-4527-2009
http://dx.doi.org/10.5194/essd-2-133-2010
http://dx.doi.org/10.1029/2007GL031812
http://dx.doi.org/10.1029/2008GL036162

