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The GTEx Consortium atlas of genetic regulatory effects across human tissues 

The GTEx Consortium 

Abstract 

The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects 
on the transcriptome across human tissues, and to link these regulatory mechanisms to trait and 
disease associations. Here, we present analyses of the v8 data, examining 17,382 RNA-sequencing 
samples from 54 tissues of 948 post-mortem donors. We comprehensively characterize genetic 
associations for gene expression and splicing in cis and trans, showing that regulatory associations 
are found for almost all genes, and describe the underlying molecular mechanisms and their 
contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large 
diversity of tissues, we provide insights into the tissue-specificity of genetic effects and show that 
cell type composition is a key factor in understanding gene regulatory mechanisms in human 
tissues.  

Introduction 

A pressing need in human genetics remains the characterization and interpretation of the 
function of the millions of genetic variants across the human genome. This is essential for 
identifying the molecular mechanisms of genetic risk for complex traits and diseases, which are 
mainly driven by non-coding loci with largely uncharacterized regulatory functions. To address 
this challenge, several projects have built comprehensive annotations of genome function across 
tissues and cell types (1, 2), and mapped the effects of regulatory variation across large numbers 
of individuals, primarily from whole blood and blood cell types (3-5). The Genotype-Tissue 
Expression (GTEx) project provides an essential intersection where variant function can be studied 
across a wide range of both tissues and individuals.  

The GTEx project was launched in 2010 with the aim of building a catalog of genetic 
effects on gene expression across a large number of human tissues in order to elucidate the 
molecular mechanisms of genetic associations with complex diseases and traits, and improve our 
understanding of regulatory genetic variation (6). The project set out to collect biospecimens from 
~50 tissues from up to ~1000 postmortem donors, and to create standards and protocols for 
optimizing postmortem tissue collection and donor recruitment (7, 8), biospecimen processing (7), 
and data sharing (www.gtexportal.org).  

Following the GTEx pilot (9) and mid-stage results (10), we present a final analysis of the 
v8 data release from the GTEx Consortium. We provide a catalog of genetic regulatory variants 
affecting gene expression and splicing in cis and trans across 49 tissues, and describe patterns and 
mechanisms of tissue- and cell type specificity of genetic regulatory effects. Through integration 
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of GTEx data with genome-wide association studies (GWAS), we characterize mechanisms of 
how genetic effects on the transcriptome mediate complex trait associations.  

QTL discovery 

The GTEx v8 data set consists of 948 donors and 17,382 samples from 52 tissues and two 
cell lines, with 838 donors and 15,253 samples having both RNA sequence (RNA-seq) and 
genotype data from whole genome sequencing (WGS) (Fig. 1A, and figs. S1 and S2). The 838 
donors were 85.3% European American, 12.3% African American, and 1.4% Asian American. Of 
the 54 tissues, 49 had samples from at least 70 individuals and were used for analyses of 
quantitative trait loci (QTL) (15,201 samples total). WGS was performed for each donor to a 
median depth of 32x, resulting in the detection of a total of 43,066,422 single nucleotide variants 
(SNVs) after QC and phasing (10,008,325 with MAF ≥ 0.01) and 3,459,870 small indels (762,535 
with MAF ≥ 0.01) (fig. S3 and table S1, (11)). The mRNA of each of the tissue samples was 
sequenced to a median depth of 82.6 million reads, and alignment, quantification and quality 
control were performed as described in (11) (figs. S4, S5, and S6).  

The resulting data provide a broad survey of individual- and tissue- specific gene 
expression, enabling a comprehensive view of the impact of genetic variation on gene regulation 
(Fig. 1B). We mapped genetic loci that affect the expression (eQTL) or splicing (sQTL) of protein-
coding and lincRNA genes, both in cis and trans. Genes with an eQTL or sQTL are called eGenes 
and sGenes, and significant variants eVariants and sVariants, respectively. Across all tissues, we 
discovered cis-eQTLs (5% FDR, per tissue (11) with 1% FDR results shown in fig. S7) for 18,262 
protein coding and 5,006 lincRNA genes (23,268 total genes with a cis-eQTL, or cis-eGenes, 
corresponding to 94.7% of all protein coding and 67.3% of all detected lincRNA genes detected 
in at least one tissue), with a total of 4,278,636 genetic variants (43% of all variants with MAF ≥ 
0.01) that were significant in at least one tissue (cis-eVariants) (Fig. 2A, figs. S7 and S8, and table 
S2). The discovered eQTLs had a high replication rate in external datasets (fig. S12 and S13). Cis-
eQTLs for all long non-coding RNAs (lncRNAs), which include lincRNAs and other types, are 
characterized in a companion analysis (12). The genes lacking a cis-eQTL were enriched for those 
lacking expression in the tissues analyzed by GTEx, including genes involved in early 
development (fig. S9). While most of the discovered cis-eQTLs had small effect sizes measured 
as allelic fold change (aFC), across tissues an average of 22% of cis-eQTLs had an over 2-fold 
effect on gene expression (fig. S14). We mapped splicing QTLs (sQTLs) in cis with intron excision 
ratios from LeafCutter (11, 13), and discovered 12,828 (66.5%) protein coding and 1,600 (21.5%) 
lincRNA genes (14,424 total) with a cis-sQTL (5% FDR, per tissue) in at least one tissue (cis-
sVariants) (Fig. 2A, table S2, with 1% FDR results shown in fig. S7). As expected (10), cis-QTL 
discovery was highly correlated with the sample size for each tissue (Spearman’s rho = 0.95 for 
cis-eQTLs, 0.92 for cis-sQTLs). The increased cis-eQTL discovery in larger tissues is primarily 
driven by additional power to discover small effects, with discovery of cis-eGenes with over two-
fold effect saturating at ~1500 genes in tissues with >200 samples (fig. S14).  



Previous studies have shown widespread allelic heterogeneity of gene expression in cis, 
i.e., multiple independent causal eQTLs per gene (4, 14, 15). We mapped independent cis-eQTLs 
and cis-sQTLs using stepwise regression, where the 5% FDR threshold for significance was 
defined by the single cis-QTL mapping (10). We observed widespread allelic heterogeneity, with 
up to 50% of eGenes having more than one independent cis-eQTL in the tissues with the largest 
sample sizes (Fig. 2B, and fig. S10). Our analysis captured a lower rate of allelic heterogeneity for 
cis-sQTLs, which can be a result of both underlying biology and lower power in cis-sQTL mapping 
(fig. S10). These results highlight gains in cis-eQTL mapping with increasing sample sizes even 
when the discovery of new eGenes in specific tissues starts to saturate. 

Interchromosomal trans-eQTL mapping yielded 143 trans-eGenes (121 protein coding and 
22 lincRNA at 5% FDR assessed at the gene level, separately for each gene type), after controlling 
for false positives due to read misalignment (11, 16) (table S13). The number of trans-eGenes 
discovered per tissue is correlated with sample size (Spearman’s rho = 0.68), and to the number of 
cis-eQTLs (rho = 0.77), with outlier tissues such as testis contributing disproportionately to both 
cis and trans (Fig. 2C). We identified a total of 49 trans-eGenes in testis, with 47 found in no other 
tissue even at FDR 50%. Over two-fold effect sizes on trans-eGene expression were observed for 
19% of trans-eQTLs (fig. S14). Trans-sQTLs mapping yielded 29 trans-sGenes (5% FDR, per 
tissue), including a replication of a previously described trans-sQTL (3) and visual support of the 
association pattern in several loci (11) (fig. S11, table S14). These results suggest that while trans-
sQTL mapping is challenging, we can discover robust genetic effects on splicing in trans. 

We produced allelic expression (AE) data using two complementary approaches (11). In 
addition to the conventional AE data for each heterozygous genotype, we produced AE data by 
haplotype, integrating data from multiple heterozygous sites in the same gene, yielding 153 million 
gene-level measurements (≥8 reads) across all samples (17). Allelic expression reflects differential 
regulation of the two haplotypes in individuals that are heterozygous for a regulatory variant in 
cis; indeed, cis-eQTL effect size is strongly correlated with allelic expression (median rho = 0.82) 
(10). We hypothesized that cis-sQTLs could also partially contribute to allelic imbalance even if 
only for parts of transcripts. However, there is drastically less signal of increased allelic imbalance 
among individuals heterozygous for cis-sQTLs (median Spearman’s rho = -0.05) (fig S15). This 
indicates that allelic expression data primarily captures cis-eQTL effects, and that genetic splicing 
variation in cis is not strongly reflected in gene-level AE data.  

Genetic regulatory effects across populations and sexes 

Variability in human traits and diseases between sexes and population groups is likely to 
partially derive from differences in genetic effects (18-20). To study whether genetic regulatory 
variants manifest this, we analyzed variable cis-eQTL effects between males and females, as well 
as between individuals of European and African ancestry. Since external replication data sets are 
sparse, we developed an allelic expression approach for validation with an orthogonal data type 
from the same samples (17): allelic imbalance in individuals heterozygous for the cis-eQTL allows 
individual-level quantification of the cis-eQTL effect size (21), and can be correlated with the 



interaction terms used in cis-eQTL analysis to validate modifier effects of the cis-eQTL association 
(fig. S16).  

To characterize sex-differentiated genetic effects on gene expression in GTEx tissues, we 
mapped sex-biased cis-eQTLs (sb-eQTLs). Analyzing the set of all conditionally independent cis-
eQTLs, we identified eQTLs with significantly different effects between sexes by fitting a linear 
regression model and testing for a significant genotype-by-sex (G×S) interaction (11). Across the 
44 GTEx tissues shared among sexes, we identified 369 sb-eQTLs (FDR ≤ 25%), characterized 
further in (22). Sex-biased eQTL discovery had a modest correlation with tissue sample size 
(Spearman’s rho = 0.39, p = 0.03), with most sb-eQTLs discovered in breast but also in muscle, 
skin and adipose tissues. In some cases, the cis-eQTL signal — identified with males and females 
combined — seems to be driven exclusively by one sex. For example, the cis-eQTL association of 
rs2273535 with the gene AURKA in skeletal muscle (cis-eQTL p = 6.92x1024) is correlated with 
sex (pG×S = 9.28x10-12, Storey qG×S = 1.07x10-7, AE validation p = 1.15x10-11) and present only in 
males (Fig. 2D, and fig. S17). AURKA is a member of the serine/threonine kinase family involved 
in mitotic chromosomal segregation that has been widely studied as a risk factor in several cancers 
(23-26) and has been recently shown to be involved in muscle differentiation (27). 

We also characterized population-biased cis-eQTLs (pb-eQTLs), where a variant’s 
molecular effect on gene expression differs between individuals of European and African ancestry, 
controlling for differences in allele frequency, linkage disequilibrium (LD) and covariates (11). 
Analyzing 31 tissues with sample sizes >20 in both populations, we mapped genes with a different 
eQTL effect size measured by aFC. After applying stringent filters to remove differences 
potentially explained by LD or other artifacts (fig. S18A), we identified 178 pb-eQTLs for 141 
eGenes (FDR ≤ 25%) that show a moderate degree of validation in allele-specific expression data 
(fig. S18C,D, table S10). While some of the pb-eQTL effects are tissue-specific, there are also 
effects that are shared across most tissues (fig. S18E). Fig. 2E shows an example of a pb-eQTL for 
the SLC44A5 gene involved in transport of sugars and amino acids, and expressed at different 
levels between epidermis of lighter and darker skin (reconstructed in vitro) (28, 29). In Europeans, 
the derived allele of rs4606268 decreases expression of the gene in esophagus mucosa (aFC = -
4.82), but this effect is significantly lower in African Americans (aFC = -2.85, permutation p-value 
= 1.2x10-3, AE validation p = 0.002, fig. S18C).  

Altogether, despite the relaxed FDR, we discovered only a few hundred sex- or population-
biased cis-eQTLs out of tens of thousands of cis-eQTLs in GTEx. This indicates that there are few 
regulatory variants with major modifier effects, and that these associations continue to be 
challenging to identify without a much larger sample size. However, the discovered effects can 
provide insights in to sex- or population-specific regulatory effects on gene expression. 
Importantly, factors correlated with sex or population, e.g., cell type composition or environmental 
exposures, may contribute to sex- or population-biased cis-eQTLs. These effects are described in 
detail in (22). 



Fine-mapping 

A major challenge of all genetic association studies is to distinguish the causal variants 
from their LD proxies. We applied three different statistical fine-mapping methods — CaVEMaN 
(30), CAVIAR (31), and dap-g (32) — to infer likely causal variants of cis-eQTLs in each tissue 
(Fig. 3A) (11). For many cis-eQTLs the causal variant can be mapped with a high probability to a 
handful of candidates: the 90% credible set for each cis-eQTL consists of variants that include the 
causal variant with 90% probability; using dap-g, we identified a median of 6 variants in the 90% 
credible set for each cis-eQTL (fig. S19). Furthermore, 9.3% of the cis-eQTLs have a variant with 
a posterior probability > 0.8 according to dap-g, indicating a single likely causal variant for those 
cis-eQTLs. We defined a consensus set of 24,740 cis-eQTLs across all tissues (7,709 unique 
variants), for which the posterior probability was >0.8 across all three methods (fig. S20). Fine-
mapped variants were significantly more highly enriched among experimentally validated causal 
variants from MPRA (33) and SuRE (34), compared to the lead eVariant across all eGenes (Fig. 
3B). The highest enrichment was observed for the consensus set although with overlapping 
confidence intervals (Fig. 3B). This demonstrates how careful fine-mapping facilitates the 
identification of likely causal regulatory variants. 

Knowing the likely causal variant enables greater insights into the molecular mechanisms 
of individual eQTLs, including the mechanisms of their tissue-specific effects. Fig. 3C shows an 
example of an eQTL for the gene CBX8 that colocalizes with breast cancer risk and birth weight 
(posterior probability 0.68 for both in lung). One of the three variants in the confident set overlaps 
the binding site and disrupts the motif of the transcription factor EGR1 (1) (fig. S21). The role of 
EGR1 as an upstream driver of this eQTL is further supported by a cross-tissue correlation of the 
effect size of the eQTL and the expression level of EGR1 (Spearman’s rho = -0.69) (Fig. 3D).  

Functional mechanisms of QTL associations 

Quantitative trait data from multiple molecular phenotypes, integrated with the regulatory 
annotation of the genome (table S3), offer a powerful way to understand the molecular mechanisms 
and phenotypic consequences of genetic regulatory effects. As expected, cis-eQTLs and cis-sQTLs 
are enriched in functional elements of the genome (Fig. 4A). While the strongest enrichments are 
driven by variant classes that lead to splicing changes or nonsense-mediated decay, these account 
for relatively few variants. Cis-sQTLs are enriched almost entirely in transcribed regions, while 
cis-eQTLs are enriched in transcriptional regulatory elements, as well. Previous studies (4, 35) 
have indicated that cis-eQTL and cis-sQTL effects on the same gene are typically driven by 
different genetic variants. This is corroborated by the GTEx v8 data, where the overlap of cis-
eQTL credible sets of likely causal variants, from CAVIAR analysis, have only a 12% overlap 
with cis-sQTL credible sets (fig. S22). Functional enrichment of overlapping and non-overlapping 
cis-eQTLs and cis-sQTLs, using stringent LD filtering, showed that the patterns characteristic for 
each type — such as enrichment of cis-eQTL in enhancers and cis-sQTLs in splice sites — are 
even stronger for distinct loci (fig. S22). 



We hypothesized that eVariants and their target eGenes in cis are more likely to be in the 
same topologically associated domains (TADs) that allow chromatin interactions between more 
distant regulatory regions and target gene promoters (36). To test this, we analyzed TAD data from 
ENCODE (1) and cis-eQTLs from matching GTEx tissues (table S3). Compared to matching 
random variant-gene pairs and controlling for distance from the transcription start site, cis-
eVariant-eGene pairs were significantly enriched for being in the same TAD (median OR 4.55; all 
p<10-12) (fig. S23).  

Trans-eQTLs are enriched in regulatory annotations that suggest both pre- and post-
transcriptional mechanisms (Fig. 4B). Unlike cis-eQTLs, trans-eQTLs are enriched in CTCF 
binding sites, suggesting that disruption of CTCF binding may underlie distal genetic regulatory 
effects, potentially via its effect on interchromosomal chromatin interactions (36). Trans-eQTLs 
are also partially driven by cis-eQTLs (37, 38). Indeed, we observed a significant enrichment of 
lead trans-eVariants tested in cis being also cis-eVariants in the same tissue (5.9x; two-sided 
Fisher’s exact test p = 5.03x10-22, Fig. 4C). A lack of analogous enrichment suggests that cis-
sQTLs are less important contributors to trans-eQTLs (p = 0.064), and trans-sVariants had no 
significant enrichment of either cis-eQTLs (p = 0.051) or cis-sQTLs (p = 0.53). A further 
demonstration of the important contribution of cis-eQTLs to trans-eQTLs is that, on the basis of 
mediation analysis, 77% of lead trans-eVariants that are also cis-eVariants (corresponding to 
31.6% of all lead trans-eVariants) appear to act through the cis-eQTL (Fig. 4D, and fig. S24). 
Colocalization of cis-eQTLs and trans-eQTLs was widespread and often tissue-specific, with Fig. 
4E showing cis-eQTLs with at least ten nominally significant colocalized trans-eQTLs each (PP4 
> 0.8 and trans-eQTL p-value < 10-5), pinpointing how local effects on gene expression can 
potentially lead to downstream regulatory effects across the genome (fig. S25 and table S16). The 
many remaining trans-eQTLs that do coincide with a cis-eQTL may arise due to mechanisms 
including undetected cis effects in specific cell types or conditions, protein coding changes, effects 
on cell type heterogeneity, or more complex causality such as a variant that influences a trait with 
downstream consequences on gene expression.  

Genetic regulatory effects mediate complex trait associations 

In order to analyze the role of regulatory variants in genetic associations for human traits, 
we first asked whether variants in the GWAS catalog were enriched for significant QTLs, 
compared to all variants tested for QTLs (11).  We observed a 1.46-fold enrichment for cis-eQTLs 
(63% vs 43%) and 1.86-fold enrichment for cis-sQTLs (37% vs 20%). The enrichment was even 
stronger, 6.97-fold (0.029% vs 0.0042%) for trans-eQTLs, consistent with other analyses (39) 
(Fig. 5A, fig. S26, tables S5 and S6). Cell type proportion may influence detection of trans-eQTLs 
in heterogeneous tissues, and may also be reflected in GWAS associations for blood cell count 
phenotypes and other complex traits. To minimize the possible impact of cell type heterogeneity 
on these enrichment statistics, we repeated these analyses among traits excluding blood cellularity 
traits. The resulting enrichments were 5.21-fold for trans-eQTLs, 1.43-fold for cis-eQTLs, and 
1.81 for cis-sQTLs, largely preserving the patterns observed using the full set of GWAS traits. 



This approach does not leverage the full power of genome-wide GWAS and QTL 
association statistics, nor account for LD contamination, a situation wherein the causal variants for 
QTL and GWAS signals are distinct but LD between the two causal variants can suggest a false 
functional link (40). Hence, for subsequent analyses (below) we selected 87 Genome Wide 
Association Studies (GWAS) representing a broad array of binary and continuous complex traits 
that have summary results available in the public domain (11, 41), and cis-QTL statistics calculated 
from the European subset of GTEx donors to match the ancestry of GWAS studies (fig. S29). The 
analyses were performed for all pairwise combinations of 87 phenotypes and 49 tissues, and are 
summarized using an approach that accounts for similarity between tissues and variable standard 
errors of the QTL effect estimates, driven mainly by tissue sample size (fig. S27, and tables S4 
and S11 (11)).  

To analyze the mediating role of cis-regulation of gene expression on complex traits (35, 
42), we used two complementary approaches, QTLEnrich (43) and stratified LD score regression 
(S-LDSC) (11, 44). To rule out the possibility that enrichment is driven by specific features of cis-
QTLs such as allele frequency, distance to the transcription start site, or local level of LD (number 
of LD proxy variants; r2 ≥ 0.5), we used QTLEnrich. We found a 1.46-fold (SE=0.006) and 1.56-
fold (SE=0.007) enrichment of trait associations among best cis-eQTLs and cis-sQTLs, 
respectively, adjusting for enrichment among matched null variants (Fig. 5A, table S7). The fact 
that these enrichment estimates differ little from those derived from the GWAS catalog overlap 
(above), even after accounting for the potential confounders, indicates how relatively robust these 
estimates are. Next, we used S-LDSC adjusting for functional annotations (44) to confirm the 
robustness of these results and to analyze how GWAS enrichment is affected by the causal 
e/sVariant being typically unknown (11). We computed the heritability enrichment of all cis-
QTLs, fine-mapped cis-QTLs (in 95% credible set and posterior probability > 0.01 from dap-g), 
and fine-mapped cis-QTLs with maximum posterior inclusion probability as continuous 
annotation (MaxCPP) (45) (Fig. 5A). The largest increase in GWAS enrichment was for likely 
causal cis-QTL variants (11.1-fold (SE=1.2) for cis-eQTLs and 14.2-fold (SE=2.4) for and cis-
sQTLs, for the continuous annotation), which is strong evidence of shared causal effects of cis-
QTLs and GWAS, and for the importance of fine-mapping.  

Joint enrichment analysis of cis-eQTLs and cis-sQTLs shows an independent contribution 
to complex trait variation from both (fig. S28, (11)), consistent with their limited overlap (fig. 
S22). The relative GWAS enrichments of cis-sQTLs and cis-eQTLs were similar (Fig. 5A; not 
significant for the robust QTLEnrich and LDSC analyses), but the larger number of cis-eQTLs 
discovered (Fig. 2) suggests a greater aggregated contribution of cis-eQTLs. 

While these enrichment methods are powerful for genome-wide estimation of the QTL 
contribution to GWAS signals, they are not informative of regulatory mechanisms in individual 
loci. Thus, to provide functional interpretation of the 5,385 significant GWAS associations in 
1,167 loci from approximately independent LD blocks (46) across the 87 complex traits, we 
performed colocalization with enloc (32) to quantify the probability that the cis-QTL and GWAS 
signals share the same causal variant. We also assessed the association between the genetically 



regulated component of expression or splicing and complex traits with PrediXcan (11, 41, 47). 
Both methods take multiple independent cis-QTLs into account, which is critical in large cis-eQTL 
studies with widespread allelic heterogeneity, such as GTEx. Of the 5,385 GWAS loci, 43% and 
23% were colocalized with a cis-eQTL and cis-sQTL, respectively (Fig. 5B). A large proportion 
of colocalized genes coincide with significant PrediXcan trait associations with predicted 
expression or splicing (median of 86% and 88% across phenotypes respectively; figs. S30, S31, 
S32, S33, tables S8, S15), with the full resource available in (41). While colocalization does not 
prove a causal role of a QTL in any given locus nor a genome-wide proportion of GWAS loci 
driven by eQTLs, these results suggest target genes and their potential molecular changes for 
thousands of GWAS loci, sometimes including both cis and trans targets (fig. S34). 

Having multiple independent cis-eQTLs for a large number of genes allowed us to test 
whether mediated effects of primary and secondary cis-eQTLs on phenotypes — the ratio of 
GWAS and cis-eQTL effect sizes — are concordant. To make sure that concordance is not driven 
by residual LD between primary and secondary signals, we used LD-matched cis-eGenes with low 
colocalization probability as controls (11, 41), and observed a significant increase in primary and 
secondary cis-eQTL concordance for colocalized genes (correlated t-test  p-value < 10-30; Fig. 5C). 
Additionally, colocalization of a cis-eQTL increased the colocalization of an independent cis-
sQTL in the same locus (OR = 4.27, Fisher’s exact test p < 10-16), and correspondingly 
colocalization of a cis-sQTL increased cis-eQTL colocalization (OR = 4.54, Fisher’s exact test p 
< 10-16; figs. S35 and S36). This indicates that multiple regulatory effects for the same gene often 
mediate the same complex trait associations. Furthermore, genes with suggestive rare variant trait 
associations in the UK Biobank (48) have a substantially increased proportion of colocalized 
eQTLs for the same trait (Fig. 5D, and fig. S37), showing concordant trait effects from rare coding 
and common regulatory variants (49). These genes, as well as those with multiple colocalizing cis-
QTLs, represent bona fide disease genes with multiple independent lines of evidence. 

The growing number of genome and phenome studies has revealed extensive pleiotropy, 
where the same variant or locus associates with multiple organismal phenotypes (50). We sought 
to analyze how this phenomenon can be driven by gene regulatory effects. First, we calculated the 
number of cis-eGenes of each fine-mapped and LD-pruned cis-eVariant per tissue at local false 
sign rate (LFSR) < 5%, with cross-tissue smoothing of effect sizes with mashr (11, 51). We 
observed that a median of 57% of variants were associated with more than one gene per tissue, 
typically co-occurring across tissues, indicating widespread regulatory pleiotropy. Using a binary 
classification of cis-eVariants with regulatory pleiotropy defined as those associated with more 
than one gene, we observed that they are more significantly associated with complex traits 
compared to matched cis-eVariants (fig. S38). This could be due to the fact that if a variant 
regulates multiple genes, there is a higher probability that at least one of them affects a GWAS 
phenotype. However, cis-eVariants with regulatory pleiotropy also have higher GWAS complex 
trait pleiotropy (50) than cis-eVariants with effects on a single gene (Fig. 5E). This observation 
suggests a mechanism for complex trait pleiotropy of genetic effects where the expression of 
multiple genes in cis, rather than a single eGene effect, translates into diverse downstream 



physiological effects. Furthermore, GWAS pleiotropy is higher for tissue-shared (41) than tissue-
specific cis-eQTLs, indicating that regulatory effects affecting multiple tissues are more likely to 
translate to diverse physiological traits (Fig. 5E). 
 

Tissue-specificity of genetic regulatory effects 

The GTEx data provide an opportunity to study patterns and mechanisms of tissue-
specificity of the transcriptome and its genetic regulation. Pairwise similarity of GTEx tissues was 
quantified from gene expression and splicing, as well as allelic expression, eQTLs in cis and trans, 
and cis-sQTLs (Fig. 6A, and fig. S41, (11)). These estimates show consistent patterns of tissue 
relatedness, indicating that the biological processes that drive transcriptome similarity also control 
tissue sharing of genetic effects (Fig. 6B). As seen in earlier versions of the GTEx data (9, 10), the 
brain regions form a separate cluster, and testis, LCLs, whole blood, and sometimes liver tend to 
be outliers, while most other organs have a notably high degree of similarity among each other. 
This indicates that blood is not an ideal proxy for most tissues, but that some other relatively 
accessible tissues, such as skin, may better capture molecular effects in other tissues.  

The overall tissue specificity of QTLs ((11)) follows a U-shaped curve recapitulating 
previous GTEx analyses (9, 10), where genetic regulatory effects tend to be either highly tissue-
specific or highly shared (Fig. 6C), with trans-eQTLs being more tissue-specific than cis-eQTLs 
(fig. S40). Cis-sQTLs appear to be significantly more tissue specific than cis-eQTLs when 
considering all mapped cis-QTLs, but this pattern is reversed when considering only those cis-
QTLs where the gene or splicing event is quantified in all tissues (Fig. 6C, and fig. S39). This 
indicates that splicing measures are more tissue-specific than gene expression, but genetic effects 
on splicing tend to be more shared, consistent with pairwise tissue sharing patterns (fig. S41). This 
is important for understanding effects that disease-causing splicing variants may have across 
tissues, and for validation of splicing effects in cell lines that rarely are an exact match to cells in 
vivo. Next, we analyzed the sharing of allelic expression (AE) across multiple tissues of an 
individual, which is a metric of sharing of any heterozygous regulatory variant effects in that 
individual. Variation in AE has been useful for analysis of rare, potentially disease-causing 
variants (52). Using a clustering approach (11), we found that in 97.4% of the cases, AE across all 
tissues forms a single cluster. This suggests that in AE analysis, different tissues are often relatively 
good proxies for one another, provided that the gene of interest is expressed in the probed tissue. 
(fig. S42). 

We next computed the cross-tissue correlation of eQTL effect size and eGene expression 
level — often a proxy for gene functionality — and discovered that 1,971 cis-eQTLs (7.4%; FDR 
5%) had a significant and robust correlation between eGene expression and cis-eQTL effect size 
across tissues (Fig 6D, and fig. S43). These correlated cis-eQTLs are split nearly evenly between 
negative (937) and positive (1,034) correlations. Thus, the tissues with the highest cis-eQTL effect 
sizes are equally likely to be among tissues with higher or lower expression levels for the gene. 



Trans-eQTLs show a different pattern, being typically observed in tissues with high expression of 
the trans-eGene relative to other tissues (fig. S43).  

These observations raise the question of how to prioritize the relevant tissues for eQTLs in 
a disease context. To address this, we chose a subset of GWAS traits with a strong prior indication 
for the likely relevant tissue(s) (table S12). Analyzing colocalized cis-eQTLs for 1,778 GWAS 
loci (11), we discovered that the relevant tissues were significantly enriched in having high 
expression and effect sizes (paired Wilcoxon sign test p<1.5e-4), but the relatively weak signal 
indicates that pinpointing the likely relevant tissue GWAS loci is challenging (figs. S44, S45, table 
S9). This indicates that both effect sizes and gene expression levels are important for interpreting 
the tissue context where an eQTL may have downstream phenotypic effects.  

The diverse patterns of QTL tissue-specificity raise the question of what molecular 
mechanisms underlie the ubiquitous regulatory effects of some genetic variants and the highly 
tissue-specific effects of others. To gain insight into this question, we modeled cis-eQTL and  cis-
sQTL tissue specificity using logistic regression as a function of the lead eVariant’s genomic and 
epigenomic context (11). Cis-QTLs where the top eVariant was in a transcribed region had overall 
higher sharing than those in classical transcriptional regulatory elements, indicating that genetic 
variants with post- or co-transcriptional expression or splicing effects have more ubiquitous effects 
(Fig. 6E). Canonical splice and stop gained variant effects had the highest probability of being 
shared across tissues, which may benefit disease-focused studies relying on likely gene-disrupting 
variants. We also considered whether varying regulatory activity between tissues contributed to 
tissue-specificity of genetic effects, and found that shared chromatin states between the discovery 
and query tissues were associated with increased probability of cis-eQTL sharing and vice-versa 
(Fig. 6F). cis-eQTLs and cis-sQTLs followed similar patterns. Since cis-sQTLs are more enriched 
in transcribed regions and likely arise via post-transcriptional mechanisms (Fig. 4A), this is likely 
to contribute to their higher overall degree of tissue-sharing (Fig. 6C). In comparison to cis-eQTLs, 
cis-sQTLs are more often located in regions where regulatory effects are shared.  

These data indicate a possible means by which we can predict if a cis-eQTL observed in a 
GTEx tissue is active in another tissue of interest, using the variant’s annotation and properties in 
the discovery tissue (11). After incorporating additional features including cis-QTL effect size, 
distance to transcription start site, and eGene/sGene expression levels, we obtain reasonably good 
predictions of whether a cis-QTL is active in a query tissue (median AUC = 0.779 and 0.807, min 
= 0.703 and 0.721, max = 0.807 and 0.875 for cis-eQTLs and cis-sQTLs, respectively; fig. S46). 
This suggests that it is possible to extrapolate the GTEx cis-eQTL catalog to additional tissues and 
potentially developmental stages, where population-scale data for QTL analysis are particularly 
difficult to collect. 

From tissues to cell types 

The GTEx tissue samples consist of heterogeneous mixtures of multiple cell types. Hence, 
the RNA extracted and QTLs mapped from these samples reflect a composite of genetic effects 
that may vary across cell types and may mask cell type-specific mechanisms. To characterize the 



effect of cell type heterogeneity on analyses from bulk tissue, we used the xCell method (53) to 
estimate the enrichment of 64 reference cell types from the bulk expression profile of each sample 
(11). While these results need to be interpreted with caution given the scarcity of validation data 
(54), the resulting enrichment scores were generally biologically meaningful with, for example, 
myocytes enriched in heart left ventricle and skeletal muscle, hepatocytes enriched in liver, and 
various blood cell types enriched in whole blood, spleen, and lung, which harbors a large leukocyte 
population (fig. S47). Interestingly, the pairwise relatedness of GTEx tissues derived from their 
cell type composition is highly correlated with tissue-sharing of regulatory variants (cis-eQTL 
versus cell type composition Rand index = 0.92; Fig. 6B, and figs. S48 and S41), suggesting that 
similarity of regulatory variant activity between tissue pairs may often be due to the presence of 
similar cell types, and not necessarily shared regulatory networks within cells. This highlights the 
key role that characterizing cell type diversity will have for understanding not only tissue biology 
but genetic regulatory effects as well.  

Enrichment of many cell types shows inter-individual variation within a given tissue, 
partially due to tissue sampling variation between individuals. This variation can be leveraged to 
identify cis-eQTLs and cis-sQTLs with cell type specificity, by including an interaction between 
genotype and cell type enrichment in the QTL model (11, 55). We applied this approach to seven 
tissue-cell type pairs with robustly quantified cell types in the tissue where each cell type was most 
enriched (Fig. 7A; an additional 36 pairs are described in (54)). The largest numbers of cell type 
interacting cis-eQTLs and cis-sQTLs (ieQTLs and isQTLs) were 1120 neutrophil ieQTLs and 169 
isQTLs in whole blood and 1087 epithelial cell ieQTLs and 117 isQTLs in transverse colon (Fig. 
7A). Of these ieQTLs, 76 and 229, respectively, involved an eGene for which no QTL was detected 
in bulk tissue. We validated these effects using published eQTLs from purified blood cell types 
(56), where neutrophil eQTLs had higher neutrophil ieQTL effect sizes than eQTLs from other 
blood cell types (fig. S49). For other cell types, external replication data was not available. Thus, 
we verified the robustness of the ieQTLs by the allelic expression validation approach that was 
used for sex- and population-biased cis-eQTL analyses: for ieQTL heterozygotes, we calculated 
the Spearman correlation between cell type enrichment and ieQTL effect size from AE data, and 
observed a high validation rate (54). It is important to note that ie/isQTLs should not be considered 
cell type-specific QTLs, because the enrichment of any cell type may be (anti-)correlated with 
other cell types (fig. S50). While full deconvolution of cis-eQTL effects driven by specific cell 
types remains a challenge for the future, ieQTLs and isQTLs can be interpreted as being enriched 
for cell type-specific effects.  
In most subsequent analyses to characterize the properties of ieQTLs and isQTLs, we focused on 
neutrophil ieQTLs, which are numerous and supported by external replication data. Functional 
enrichment analyses of these QTLs show that these largely follow the enrichment patterns 
observed for bulk tissue cis-QTLs (Fig. 7B). However, ieQTLs are more strongly enriched in 
promoter flanking regions and enhancers, which are known to be major drivers of cell type specific 
regulatory effects (2). Epithelial cell ieQTLs yielded similar patterns (fig. S51).   



We hypothesized that the widespread allelic heterogeneity observed in the bulk tissue cis-
eQTL data could be partially driven by an aggregate signal from cis-eQTLs that are each active in 
a different cell type present in the tissue. Indeed, the number of cis-eQTLs per gene is higher for 
ieGenes than for standard eGenes, especially in skin and blood (Fig. 7C). While differences in 
power could contribute to this pattern, it is corroborated by eGenes that have independent cis-
eQTLs (r2 < 0.05) in five purified blood cell types (56) also showing an increased amount of allelic 
heterogeneity in GTEx whole blood (Fig. 7C and D). Thus, quantifying cell type specificity can 
provide mechanistic insights into the genetic architecture of gene expression, and may be 
leveraged to improve the resolution of complex patterns of allelic heterogeneity where we can 
distinguish effects manifesting in different cell types. 

Next, we analyzed how cell type interacting cis-QTLs contribute to the interpretation of 
regulatory variants underlying complex disease risk. GWAS colocalization analysis of neutrophil 
ieQTLs (11) revealed multiple loci (111, ~32%) that colocalize only with ieQTLs and not with 
whole blood cis-eQTLs (Fig. 7E), even though 75% (42/56) of the corresponding eGenes have 
both cis-eQTLs and ieQTLs. Improved resolution into allelic heterogeneity appears to contribute 
to this. For example, the absence of colocalization between a platelet count GWAS signal and bulk 
tissue cis-eQTL for SPAG7 appears to be due to the whole blood signal being an aggregate of 
multiple independent signals (fig. S52). The neutrophil ieQTL analysis uncovers a specific signal 
that mirrors the GWAS association, suggesting that platelet counts are affected by SPAG7 
expression only in specific cell type(s). Thus, in addition to previously undetected colocalizations 
pinpointing potential causal genes, ieQTL analysis has the potential to provide insights into cell 
type specific mechanisms of complex traits. 

Discussion 

 
The GTEx v8 data release represents a deep survey of both intra- and inter-individual 
transcriptome variation across a large number of tissues. With 838 donors and 15,253 samples — 
approximately twice the size of the v6 release used in the previous set of GTEx Consortium papers 
— we have created a comprehensive resource of genetic variants that influence gene expression 
and splicing in cis. This significantly expands and updates the GTEx catalog of sQTLs, doubles 
the number of eGenes per tissue, and saturates the discovery of eQTLs with over 2-fold effect sizes 
in ~40 tissues. The fine-mapping data of GTEx cis-eQTLs provides a set of thousands of likely 
causal functional variants. While trans-QTL discovery, as well as characterization of sex-specific 
and population-specific genetic effects, are still limited by sample size, analyses of the v8 data 
provide important insights into each. Cell type interacting cis-eQTLs and cis-sQTLs, mapped with 
computational estimates of cell type enrichment, constitute an important extension of the GTEx 
resource to effects of cell types within tissues. The strikingly similar tissue-sharing patterns across 
these data types suggests shared biology from cell type composition to transcriptome variation and 
genetic regulatory effects. Our results indicate that shared cell types between tissues may be a key 
factor behind tissue-sharing of genetic regulatory effects, which will constitute a key challenge to 



tackle in the future. Finally, GWAS colocalization with cis-eQTLs and cis-sQTLs provides rich 
opportunities for further functional follow-up and characterization of regulatory mechanisms of 
GWAS associations.  
  
Given the very large number of cis-eQTLs, the extensive allelic heterogeneity – multiple 
independent regulatory variants affecting the same gene – is unsurprising. With well-powered cis-
QTL mapping, it becomes possible and important to describe and disentangle these effects; the 
assumption of a single causal variant in a cis-eQTL locus no longer holds true for data sets of this 
scale. Similarly, we highlight cis-eQTL and cis-sQTL effects on the same gene, typically driven 
by distinct causal variants (4, 35). The joint complex trait contribution of independent cis-eQTLs 
and cis-sQTLs, and cis-eQTLs and rare coding variants for the same gene highlights how different 
genetic variants and functional perturbations can converge at the gene level to similar 
physiological effects. This orthogonal evidence pinpoints highly likely causal disease genes, and 
these associations could be leveraged to build allelic series, a powerful tool for estimating dosage-
risk relationship for the purposes of drug development (57). Finally, we provide mechanistic 
insights into the cellular causes of allelic heterogeneity, showing the separate contributions from 
cis-eQTLs active in different cell types to the combined signal seen in a bulk tissue sample. With 
evidence that this increased cellular resolution improves colocalization in some loci, cell type 
specific analyses appear particularly promising for finer dissection of genetic association data.  
  
Integration of GTEx QTL data and functional annotation of the genome provides powerful insights 
into the molecular mechanisms of transcriptional and post-transcriptional regulation that affect 
gene expression levels and splicing. A large proportion of cis-eQTL effects are driven by genetic 
perturbations in classical regulatory elements of promoters and enhancers. However, the 
magnitude of these enrichments is perhaps surprisingly modest, which likely reflects the fact that 
only a small fraction of variants in these large regions have true regulatory effects, leading to a 
lower resolution of annotating functional variants compared to the nucleotide-level annotation of, 
e.g., nonsense or canonical splice site variants. Context-specific genetic effects of tissue-specific 
and cell-type interacting cis-eQTLs are enriched in enhancers and related elements and their 
variable activity across tissues and cell types. While cis-eQTLs are enriched for a wide range of 
functional regions, the vast majority of cis-sQTL are located in transcribed regions, with likely co-
/post-transcriptional regulatory effects. Interestingly, these appear to be less tissue-specific, which 
likely contributes to the higher tissue-sharing of cis-sQTLs than cis-eQTLs. The higher tissue-
sharing of all co/post-transcriptional regulatory effects may facilitate interpretation of potentially 
disease-related functional effects of (rare) coding variants triggering nonsense-mediated decay or 
splicing changes, even when the disease-relevant tissues are not available.  

Approximately a third of the observed trans-eQTLs are mediated by cis-eQTLs, demonstrating 
how local genetic regulatory effects can translate to effects at the level of cellular pathways. All 
types of QTLs that were studied are strong mediators of genetic associations to complex traits, 
with a higher relative enrichment for cis-sQTLs than cis-eQTLs, with trans-eQTLs having the 



highest enrichment of all (35). With large genome- and phenome-wide (GWAS/PheWAS) studies 
having uncovered extensive pleiotropy of complex trait associations, the GTEx data provide 
important insights into the molecular underpinnings of this observed pleiotropy: variants that affect 
the expression of multiple genes and multiple tissues have a higher degree of complex trait 
pleiotropy, indicating that some of the pleiotropy arises at the proximal regulatory level. Dissecting 
this complexity and pinpointing truly causal molecular effects that mediate specific phenotype 
associations will be a considerable challenge for the future. 

This study of the GTEx v8 data has provided insights into genetic regulatory architecture and 
functional mechanisms. The catalog of QTLs and associated data sets of annotations, cell type 
enrichments, and GWAS summary statistics requires careful interpretation but provides insights 
into the biology of gene regulation and functional mechanisms of complex traits. We demonstrate 
how QTL data can be used to inform on multiple layers of GWAS interpretation: potential causal 
variants from fine-mapping, proximal regulatory mechanisms, target genes in cis, pathway effects 
in trans, in the context of multiple tissues and cell types. However, our understanding of genetic 
effects on cellular phenotypes is far from complete. We envision that further investigation into 
genetic regulatory effects in specific cell types, study of additional tissues and developmental time 
points not covered by GTEx, incorporation of a diverse set of molecular phenotypes, and continued 
investment in increasing sample sizes from diverse populations will continue to provide 
transformative scientific discoveries.  
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Figure Legends 
 
Figure 1. Sample and data types in the GTEx v8 study. (A) Illustration of the 54 tissue types examined 
(including 11 distinct brain regions and 2 cell lines), with sample numbers from genotyped donors in 
parentheses and color coding indicated in the adjacent circles. Tissues with ≥70 samples were included in 
QTL analyses. (B) Illustration of the core data types used throughout the study. Gene expression and 
splicing were quantified from bulk RNA-seq of heterogenous tissue samples, and local and distal genetic 
effects (cis-QTLs and trans-QTLs, respectively) were quantified across individuals for each tissue. 
 
 
Figure 2. QTL discovery. (A) The number of genes with a cis-eQTL (eGenes) or cis-sQTL (sGenes) per 
tissue, as a function of sample size. See Fig. 1A for the legend of tissue colors. (B) Allelic heterogeneity of 
cis-eQTLs depicted as proportion of eGenes with ≥1 independent cis-eQTLs (blue stacked bars; left y-axis) 
and as a mean number of cis-eQTLs per gene (red dots; right y-axis). The tissues are ordered by sample 
size. (C) The number of genes with a trans-eQTL as a function of the number of cis-eGenes. (D) Sex-biased 
cis-eQTL for AURKA in skeletal muscle, where rs2273535-T is associated with increased AURKA 
expression in males (p = 9.02x10-27) but not in females (p = 0.75). (E) Population-biased cis-eQTL for 
SLC44A5 in esophagus mucosa (allelic fold change = -2.85 and -4.82 and in African Americans (AA) and 
European Americans (EA), respectively; permutation p-value = 1.2x10-3). 
 
 
Figure 3. Fine mapping of cis-eQTLs. (A) Number of eGenes per tissue with variants fine-mapped with 
>0.5 posterior probability of causality, using three methods. The overall number of eGenes with at least 
one fine-mapped eVariant increases with sample size for all methods. However, this increase is in part 
driven by better statistical power to detect small effect size cis-eQTLs (aFC or allelic fold change ≤1 in 
log2 scale; see also fig. S14) with larger sample sizes, and the proportion of well fine-mapped eGenes 
with small effect sizes increases more modestly with sample size (bottom vs. top panels), indicating that 
such cis-eQTLs are generally more difficult to fine-map. (B) Enrichment of variants among 
experimentally validated regulatory variants, shown for the cis-eVariant with the best p-value (top 
eVariant), and those with posterior probability of causality >0.8 according to each of the three methods 
individually or all of them (consensus). Error bars: 95% CI. (C) The cis-eQTL signal for CBX8 is fine-
mapped to a credible set of three variants (red and purple diamonds), of which rs9896202 (purple 
diamond) overlaps a large number of transcription factor binding sites in ENCODE ChIP-seq data and 
disrupts the binding motif of EGR1. (D) The potential role of EGR1 binding driving this cis-eQTL is 
further supported by correlation between EGR1 expression and the CBX8 cis-eQTL effect size across 
tissues. 
 
 
Figure 4. Functional mechanisms of genetic regulatory effects. QTL enrichment in functional 
annotations for (A) cis-eQTLs and cis-sQTLs and for (B) trans-eQTLs. cis-QTL enrichment is shown as 
mean ± s.d. across tissues; trans-eQTL enrichment as 95% C.I. (C) Enrichment of lead trans-e/sVariants 
that have been tested for in cis-QTL effects being significant also cis-e/sVariants in the same tissue. * 
denotes significant enrichment, p < 10-21. (D) Proportion of trans-eQTLs that are significant cis-eQTLs or 
mediated by cis-eQTLs. (E) Trans associations of cis-mediating genes identified through colocalization 
(PP4 > 0.8 and nominal association with discovery trans-eVariant p < 10-5). Top: associations for four 
Thyroid cis-eQTLs (indicated by gene names); bottom: cis-mediating genes with ≥5 colocalizing trans-



eQTLs. 
 
 
Figure 5. Regulatory mechanisms of GWAS loci. (A) GWAS enrichment of cis-eQTLs, cis-sQTLs, and 
trans-eQTLs measured with different approaches: enrichment calculated from GWAS summary statistics 
of the most significant cis-QTL per eGene/sGene with QTLEnrich and LD Score regression with all 
significant cis-QTLs (S-LDSC all cis-QTLs), simple QTL overlap enrichment with all GWAS catalog 
variants, and LD Score regression with fine-mapped cis-QTLs in the 95% credible set (S-LDSC credible 
set) and using  posterior probability of causality as a continuous annotation (S-LDSC causal posterior). 
Enrichment is shown as mean and 95% CI. (B) Number of GWAS loci linked to e/sGenes through 
colocalization (ENLOC) and association (PrediXcan), aggregated across tissues. (C) Concordance of 
mediated effects among independent cis-eQTLs for the same gene, shown for different levels of regional 
colocalization probability (RCP (32)), which is used as a proxy for the gene's causality. As the null, we 
show the concordance for LD matched genes without colocalization. (D) Proportion of colocalized cis-
eQTLs with a matching phenotype for genes with different level of rare variant trait association in the UK 
Biobank (UKB). (E) Horizontal GWAS trait pleiotropy score distribution for cis-eQTLs that regulate 
multiple vs. a single gene (left), and for cis-eQTLs that are tissue-shared vs. specific.  
 
 
Figure 6. Tissue-specificity of cis-QTLs. (A) Tissue clustering with pairwise Spearman correlation of cis-
eQTL effect sizes. (B) Similarity of tissue clustering across core data types quantified using median 
pairwise Rand index calculated across tissues. (C) Tissue activity of cis expression and splicing QTLs, 
where an eQTL was considered active in a tissue if it had a mashr local false sign rate (LFSR, equivalent 
to FDR) of < 5%. This is shown for all cis-QTLs and only those that could be tested in all 49 tissues (red 
and blue). (D) Spearman correlation (corr.) between cis-eQTL effect size and eGene expression level across 
tissues. cis-eQTL counts are shown for those not tested due to low expression level, tested but without 
significant (FDR < 5%) correlation (uncorrelated), a significant correlation but effect sizes crossed zero 
which made the correlation direction unclear (uninterpretable), positively correlated, and negatively 
correlated. (E-F) The effect of genomic function on cis-QTL tissue sharing modeled using logistic 
regression with functional annotations (E) and chromatin state (F). CTCF Peak, Motif, TF Peak, and DHS 
indicate if the cis-QTL lies in a region annotated as having one of these features in any of the Ensembl 
Regulatory Build tissues. For chromatin states, model coefficients are shown for the discovery and 
replication tissues that have the same or different chromatin states.  
 
 
Figure 7. Cell type interacting cis-eQTLs and cis-sQTLs. (A) Number of cell type interacting cis-eQTLs 
and cis-sQTLs (ieQTLs and isQTLs, respectively) discovered in seven tissue-cell type pairs, with shading 
indicating whether the ieGene or isGene was discovered by cis-eQTL/cis-sQTL analysis in bulk tissue. 
Colored dots are proportional to sample size. (B) Functional enrichment of neutrophil ieQTLs and isQTLs 
compared to cis-eQTLs and cis-sQTLs from whole blood. (C) Proportion of conditionally independent cis-
eQTLs per eGene, for eGenes that do or do not have ieQTLs in GTEx, and for eGenes that have shared (= 
eQTLs) or non-shared (≠ eQTLs) cis-eQTL across five sorted blood cell types. (D) Whole blood cis-eQTL 
p-value landscape for NCOA4, for the standard analysis (top row, Unconditional) and for two independent 
cis-eQTLs (bottom rows). In a data set of 5 sorted cell types (56), analyses of all cell types yielded a lead 
eVariant, rs2926494 (left), which is in high LD with the first independent cis-eQTL but not the second. The 
lead variant in monocyte cis-eQTL analysis, rs10740051, is in high LD with the second conditional cis-
eQTL, indicating that this cis-eQTL is active specifically in monocytes. Thus, the full GTEx whole blood 
cis-eQTL pattern and allelic heterogeneity is composed of cis-eQTLs that are active in different cell types. 



(E) COLOC posterior probability (PP4) of GWAS colocalization with whole blood ieQTLs and eQTLs of 
the same eGene. 349 gene-trait combinations across 132 genes and 36 GWAS traits showed evidence of 
colocalization (PP4 > 0.5) with an ieQTL and/or eQTL. 
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