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Abstract
Much research has been carried out on the bacterial bioremediation of soil contaminated with petroleum hydrocarbons and toxic
metals but much less is known about the potential of fungi in sites that are co-contaminated with both classes of pollutants. This
article documents the roles of fungi in soil polluted with both petroleum hydrocarbons and toxic metals as well as the mechanisms
involved in the biotransformation of such substances. Soil characteristics (e.g., structural components, pH, and temperature) and
intracellular or excreted extracellular enzymes and metabolites are crucial factors which affect the efficiency of combined
pollutant transformations. At present, bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals is
mostly focused on the removal, detoxification, or degradation efficiency of single or composite pollutants of each type. Little
research has been carried out on the metabolism of fungi in response to complex pollutant stress. To overcome current bottle-
necks in understanding fungal bioremediation, the potential of new approaches, e.g., gradient diffusion film technology (DGT)
and metabolomics, is also discussed.

Key points
• Fungi play important roles in soil co-contaminated with TPH and toxic metals.
• Soil characteristics, enzymes, and metabolites are major factors in bioremediation.
• DGT and metabolomics can be applied to overcome current bottlenecks.

Keywords Fungi . Bioremediation . Petroleum hydrocarbons . Toxic metals

Co-contamination in the soil environment

With the accelerating pace of industrialization and urbaniza-
tion, soil contamination has become a critical worldwide con-
cern because of the threat to natural ecosystems and human
health and much research has been carried out on innovative
and cost-effective remediation technologies (Dong et al. 2013;
Khan et al. 2018; Song et al. 2017). Soils co-contaminated
with petroleum hydrocarbons and toxic metals are one of the

major challenging problems in petroleum-producing coun-
tries, such as Qatar (Freije 2015), China (Cheng et al. 2019;
Dong et al. 2013), and Russia (Kuyukina et al. 2018).
Petroleum hydrocarbons and associated by-products found
in soil are usually generated from accidental spills of crude
oil, fuel contamination, refining processes, and subsequent
problems associated with distribution and utilization. Spilled
contaminants penetrate into soil pores and adsorb onto soil
particles, moving vertically with capillary and gravitational
forces which alters chemical, physical and biological proper-
ties, and composition (Czarny et al. 2020; dos Santos and
Maranho 2018). Alkanes, aromatic compounds, nitrogen-
sulfur-oxygen-containing compounds, and asphaltene are the
major constituents of total petroleum hydrocarbons (TPH).
The aromatic fraction refers to those compounds with benzene
rings including polycyclic aromatic hydrocarbons (PAHs),
which contain multiple fused aromatic rings, and are listed
as priority pollutants due to their carcinogenic, mutagenic,
and toxic properties as well as environmental recalcitrance
(Czarny et al. 2020; Khan et al. 2018).
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Toxic metals found in petroleum-contaminated soils in-
clude As, Ba, Cd, Cr, Pb, Hg, Ni, V, and Zn, and these are
mainly associated with petroleum extraction and refining, and
combustion of fuel for heat and transport (Adeniyi and
Afolabi 2002; Klimek et al. 2016; Kuyukina et al. 2018;
Muniz et al. 2004). The heavy oils in Russia are enriched with
V and Ni, and trace amounts of Cd, Pb, and Zn (Kuyukina
et al. 2018). More than 20 soil samples collected from
petroleum-producing sites in China contained Cd, Ni, Cr,
and Zn at concentrations ranging from 0.08–8.18, 21.6–40.7,
25.9–71.5, and 36.7–226.0 mg/kg dry weight, respectively
(Cheng et al. 2019).

Remediation of soil co-contaminated with organic and in-
organic pollutants is a complex problem as these two pollutant
classes need to be treated differently (Gadd 2004). The pres-
ence of toxic metals in co-contaminated soil can inhibit petro-
leum biodegrading microorganisms, affecting growth and me-
tabolism, nitrogen and sulfur conversions, and dehalogenation
(Biswas et al. 2015; El-Azeem et al. 2013; Sandrin and Maier
2003). Toxic metal species may exert a plethora of toxic ef-
fects depending on metal concentration and speciation, phys-
icochemical factors, and the organism’s ability to respond to
metal stress through intrinsic or induced mechanisms (Gadd
1993; Gadd 2007; Rangel et al. 2018). Metals can exert tox-
icity in many ways, e.g., inhibition of enzymes, displacement
or substitution of essential metals, disruption of cell and
organellar membranes, and interaction with normal cellular
homeostatic and stress response systems (Gadd 1993; Gadd
2007; Sullivan and Gadd 2019). For example, toxic metal
cations may substitute for essential metal co-factors within
an enzyme (e.g., Cd2+ may substitute for Zn2+) resulting in
enzyme dysfunction (Sandrin and Maier 2003). Petroleum
hydrocarbons in toxic metal-contaminated soils are hydropho-
bic materials with low water solubility and preferentially at-
tach to the soil matrix which reduces the bioavailability of
toxic metals to potential bioremediating microorganisms
(Lai et al. 2009). Although research has been carried out on
the bioremediation of co-contaminated soil with bacterial sys-
tems, much less attention has been paid to the potential roles
of fungi in soils contaminated with petroleum hydrocarbons
and toxic metals.

Fungi in soil co-contaminated with petroleum
hydrocarbons and toxic metals

Fungi are ubiquitous chemoorganotrophic (heterotrophic) or-
ganisms (Gadd 2008; Gadd 2017), and are one of the three
major clades of eukaryotic life that independently evolved
multicellular organization (Stajich et al. 2010). The coloniza-
tion of soil by fungal mycelium results in enmeshment and
aggregation of soil particles and improvement of soil struc-
ture, sometimes facilitating contaminant bioavailability

(Harms et al. 2011). Compared with bacteria, filamentous
fungi show some advantages in the transport or translocation
of essential substances, including nutrients and water, and the
pollutant itself, over significant distances (Boswell et al. 2003;
Furuno et al. 2012; Boswell et al. 2002; Harms et al. 2011;
Jacobs et al. 2002; Worrich et al. 2018). It is also significant
that fungal mycelia can act as “highways” in facilitating the
transport of pollutant-degrading bacteria over distance in soil
which can enhance bioremediation (Banitz et al. 2013;
Kohlmeier et al. 2005; Wick et al. 2007).

Many fungi can survive and grow in the presence of toxic
metals and this depends on intrinsic biochemical and structur-
al properties, physiological and/or genetic adaptation, includ-
ing morphological changes, and environmental modification
of metal speciation, bioavailability, and toxicity (Gadd 1993;
Gadd 2010; Glasauer et al. 2004; Sullivan and Gadd 2019).
Filamentous fungi, e.g., Aspergillus and Penicillium spp.,
have been investigated for the degradation of aliphatic hydro-
carbons, chlorophenols, and polycyclic aromatic hydrocar-
bons, with the organic pollutants serving as carbon and energy
sources (Harms et al. 2011; Hofrichter et al. 1994; Pinedo-
Rivilla et al. 2009) (Table 1). The ability of ureolytic fungi,
such as Neurospora crassa, to immobilize metals has been
investigated because, when incubated in urea-supplemented
media, toxic metals are precipitated as carbonates and/or ox-
ides (Li et al. 2015; Li and Gadd 2017a; Li and Gadd 2017b;
Li et al. 2019; Li et al. 2016; Li et al. 2014). When grown in
urea-containing media supplemented with heavy oil and Ca2+,
such mineral precipitation tended to aggregate along the edge
of the heavy oil which may provide an additional carbon or
energy source during the biomineralization process (Fig. 1).
Moreover, fungi are primary decomposers of organic matter
and plant biomass in soil with the chemical structure of lignin
polymers of wood being comparable with the aromatic struc-
ture of PAHs (Haritash and Kaushik 2009; Vanholme et al.
2010) (Fig. 2). Because of this, many lignin-degrading fungi,
e.g., Phanerochaete chrysosporium, have been investigated
for degradation of PAHs and other aromatic compounds be-
cause of the wide range of substances that can be attacked by
such organisms (Gadd 2004; Gadd 2001). Some fungi convert
high-molecular-mass PAHs such as the highly carcinogenic
benzo[α]pyrene into water-soluble products using non-
specific detoxification mechanisms (Harms et al. 2011).
Fusarium solani and Hypocrea lixii isolated from petrol sta-
tion soil were investigated for the degradation of pyrene and
tolerance to copper and zinc. These organisms degraded more
than 60% of the supplied pyrene and could also accumulate
Cu and Zn (Hong et al. 2010). In co-contaminated soil, Fe(III)
coordinating fungal siderophores could play an important role
not only by binding metals other than Fe(III), e.g., Cd, Cu, Ni,
Pb, Zn, Th (IV), U(IV), and Pu (IV) (Ahmed and Holmström
2014) but also by facilitating the biodegradation of petroleum
hydrocarbons by satisfying the Fe requirement for the
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degrading microorganisms in Fe-limited habitats. In co-
contaminated soil, PAHs may interact with lipophilic compo-
nents of the fungal cytoplasmic membrane, changing the per-
meability, which can result in penetration of toxic metals into
cells and resulting effects/on cellular functions. Shen et al.
(2005) investigated the effects of Cd and phenanthrene (Phe)
on the growth of certain soil fungi and showed that growth
was strongly inhibited in soil containing Cd and Phe com-
pared with soil containing only Cd. Examples of selected fun-
gal species interacting with PAHs and toxic metals are pre-
sented in Table 2.

Factors affecting the efficiency of fungal
bioremediation

Soil characteristics

Soil components, pH, and temperature are key factors in fun-
gal bioremediation and metal speciation and affect the trans-
portation and bioavailability of contaminants (Liu et al. 2017;
Rangel et al. 2018). Organic matter and clay minerals signif-
icantly reduce the solution-phase concentration of metal ions.
It was reported that in mineral-dominated soil, 0.01-mg L−1

Cd2+ inhibited the dechlorination of trichloroaniline (TCA)
while 0.2-mg L−1 Cd2+ was necessary in an organic-
dominated soil, which correlated with the metal-binding ca-
pacity of the organic material (Zhang et al. 2016). Clay min-
erals, e.g., montmorillonite, possess high cation exchange ca-
pacities (CECs), and can efficiently reduce metal bioavailabil-
ity and toxicity (Sandrin and Maier 2003). Moreover, metals
in soil may react with the organic pollutants to affect the

speciation, bioavailability, and toxicity of the metal and the
organic pollutant (Ceci et al. 2019).

The pH is another crucial factor in determining the bio-
degradation of petroleum hydrocarbons and biotransforma-
tion of toxic metals. Changes in pH can alter fungal, and
bacterial, community structure and enzyme activities as
well as affecting metal speciation. Such effects of pH on
the speciation of metal ions can be simulated using geo-
chemical modeling software, e.g., Geochemists’ work-
bench (GWB) (Carrillo-Chávez et al. 2014; Li et al. 2019),
MINEQL+ (Cloutier-Hurteau et al. 2007; Kocaoba 2020),
and PHREEQC (Ceci et al. 2015; Liang et al. 2016b). For
example, the speciation and solubility of Zn2+ in a simulated
fungal system for metal remediation calculated using GWB
showed that smithsonite (ZnCO3) (pH = 1.7–3.2) and
Zn3(PO4)2∙4H2O (pH = 3.2–14) were the main mineral
phases over different pH ranges (Fig. 3).

Temperature can influence the bioremediation of co-
contaminated soil by affecting the chemistry of pollutants
and fungal biodiversity (Rangel et al. 2018). The viscosity
of petroleum increases at low temperatures and volatility is
reduced which results in retardation of biodegradation. The
highest degradation rates for hydrocarbon pollutants generally
occur around 30–40 °C in the soil environment (Das and
Chandran 2011). At higher temperatures, the solubility of
PAHs and toxic metal ions increases which improves their
bioavailability, although such high temperatures will also af-
fect microbial community structure and activity. Compared
with effects at 20 °C and 40 °C, 30 °C was found to be the
optimum temperature for metal removal by Beauveria
bassiana due to increased biomass production which provided
more metal-binding sites (Gola et al. 2016).

Table 1 Some examples of degradation of petroleum hydrocarbons by different fungal species

Species Hydrocarbons Formula Structure Removal efficiency (%) Treatment length (d) Reference

Penicillium sp. Decane C10H22 49.0 28 Govarthanan et al. (2017)

Aspergillus sp. N-hexadecane C16H34 86.3 10 Al-Hawash et al. (2018)

Fusarium sp. N-octadecane C18H38 89 60 Hidayat and Tachibana (2013)

Phomopsis 

liquidambari
Phenanthrene C14H10 77.4 10 Fu et al. (2018)

Irpex lacteus Anthracene C14H10 60 25 Drevinskas et al. (2016)

Pleurotus ostreatus Anthracene C14H10 56 23 Drevinskas et al. (2016)

Ganoderma lucidum Pyrene C16H10 99.6 30 Agrawal et al. (2018)

Polyporus sp. Chrysene C18H12 65 30 Hadibarata et al. (2009)
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Importance of metabolites and enzymes

Many transforming interactions between fungi and different
pollutants depend on a variety of extracellular excreted sub-
stances and metabolites (Gadd 2004; Kirtzel et al. 2020).
Fungi are capable of degrading petroleum hydrocarbons by
secreting enzymes (e.g., laccases, tyrosinases, manganese per-
oxidases, cytochrome P450 monooxygenases, reductive
dehalogenases), and affecting metal speciation by excretion
of a variety of other metabolites (e.g., organic acids, amino
acids, siderophores, extracellular proteins, etc.) (Fig. 4).

Petroleum hydrocarbons can be used by several fungal
species as a carbon and energy source and assimilated into
fungal biomass. Fungal taxa including Amorphoteca,
Neosartorya, Talaromyces, Aspergillus, Fusarium,
Paecilomyces , Sporobolomyces , Cephalosporium ,
Penicillium, and Graphium have all been reported to include
poten t ia l degraders of pe t ro leum hydrocarbons
(Chulalaksananukul et al. 2006; Das and Chandran 2011;
Varjani 2017). Some species can oxidize pollutants (e.g., phe-
nols and aromatic amines) extracellularly by the production of
laccases (Martínková et al. 2016), manganese peroxidases
(Zhang et al. 2016), or lignin peroxidases (Falade et al.
2017; Grossart and Rojas-Jimenez 2016). Moreover, fungal
cell membranes are permeable to many organic pollutants and
these can be degraded by intracellular enzymes, e.g., cyto-
chrome P450 (Ostrem Loss and Yu 2018), reductive
dehalogenases (Stella et al. 2017), and nitroreductases
(Tripathi et al. 2017; Xu and Zhou 2016), to simpler organic
compounds, followed by further metabolism such as β-
oxidation and entry into the tricarboxylic acid (TCA) cycle
(Varjani 2017). Degradation of petroleum hydrocarbons con-
sists of several different enzymatic steps with biodegradability
depending on the chemical structure and other factors that
affect fungal growth and metabolism, and pollutant chemistry
and speciation. In general, biodegradation efficiency can be
ranked as linear alkanes > branched alkanes > small aromatics
> cyclic alkanes (Das and Chandran 2011; Guermouche
M’rassi et al. 2015; Varjani 2017).

In co-contaminated soil, petroleum hydrocarbons may pro-
vide a carbon and energy source for certain fungal species while
toxic metals can also exert significant effects on fungal popula-
tions and activity. Despite the potential toxicity of many metal
species, many fungi can flourish in contaminated conditions
although there may be shifts in species composition (Fomina
et al. 2005; Gadd 2005; Gadd 2007). The major survival mech-
anisms involved can be explained as changes in toxic metal
mobility resulting from various tolerance and resistance mech-
anisms (Gadd 2007; Gadd 2010). Fungi possess many mecha-
nisms or properties that influence metal toxicity and mobility,
including the production of metal-binding proteins, organic and
inorganic precipitation, active transport, and intracellular com-
partmentalization, while cell walls and associated pigments andTa
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polysaccharides have significant metal-binding abilities (Gadd
1993; Gadd 2007). The secretion of fungal metabolites (e.g.,
metal-binding peptides, polysaccharides, amino acids, organic
acids) is particularly important for metal and mineral transfor-
mations playing roles in both mobilization and immobilization

of metal species (Gadd 2007; Gadd et al. 2014). Moreover,
fungal phenolic polymers and melanin possess many potential
metal-binding sites with oxygen-containing groups, such as
carboxyl, phenolic and alcoholic hydroxyl, carbonyl, and
methoxyl groups (Fomina and Gadd 2014). Fungal surface

Fig. 1 Fungal biomineralization
of carbonates in media amended
with heavy oil. Neurospora
crassa was incubated on solid
agar medium, supplemented with
40-mM urea and 50-mM CaCl2,
at 25 °C in the dark for 5 days.
Four wells (5-mm diameter) were
made in the agar medium using a
sterile cork borer and filled with
heavy oil prior to fungal
inoculation. Scale bars = 200 μm
(Li et al., unpublished data)

Fig. 2 Chemical structure of
some commonly studied PAHs
and three constitutive monomers
of lignin. PAHs are aromatic
hydrocarbons with two or more
fused benzene rings. a
Naphthalene. b Fluorene. c
Pyrene. d Benzo(b)fluoranthene.
Lignin results from the enzymatic
copolymerization of three
phenolic monomers
(monolignols): e p-coumaryl
alcohol, f coniferyl alcohol, and g
sinapyl alcohol
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complex formation may be related to the coordination of metal
ions with oxygen donor atoms and proton release (Gadd 2009):

S‐OHþ Cu2þ⇌ S ‐ OCuþ þ Hþ

Bidentate surface complexation may also result:

Metal immobilization appears particularly relevant to bio-
remediation approaches and fungi are capable of mediating
precipitation of metals as insoluble oxalates, oxides, carbon-
ates, and phosphates (Fomina et al. 2008; Gadd et al. 2014;
Liang and Gadd 2017; Suyamud et al. 2020). For example, the
liberation of phosphate from organic or inorganic phosphate
hydrolysis proved to be an efficient method for metal immo-
bilization, including Zn, Pb, La, and U, which were precipi-
tated on and around hyphal surfaces (Ezawa and Saito 2017;
Fomina et al. 2008; Liang et al. 2016a; Liang and Gadd 2017;
Liang et al. 2015; Suyamud et al. 2020). Urease-positive fungi
(e.g., Neurospora crassa , Pestalotiopsis sp., and
Myrothecium gramineum) are promising candidates for the
immobilization of toxic metals because the mechanism in-
volved is associated with urea degradation. Such fungi grown

Fig. 4 Simplified diagram of fungal interactions with petroleum
hydrocarbons and toxic metals. Fungal cell membranes are permeable
to petroleum hydrocarbons or simpler organic compounds oxidized by
extracellular enzymes, which can undergo further metabolism including
hydrolysis, dehalogenation, β-oxidation, and entry into the tricarboxylic
acid cycle. Toxic metals can accumulate on fungal cell surfaces through

biosorption, which can result in nucleation and subsequent precipitation
of biominerals. Some metals can be intracellularly accumulated by active
transport or diffusion through the cell membrane, and localized within
vacuolar or other organellar compartments and/or be sequestered by
sulfide, metal-binding proteins/peptides, and other macromolecules

Fig. 3 Geochemical simulation of Zn2+ versus pH in a simulated fungal
system at 25 °C. The chemical parameters were set at 0.33-MCO3

2−, 6.1-
mM Cl−, 0.83-mM SO4

2−, 0.66-M NH4
+, 4-mM K+, 0.8-mMMg2+, 1.7-

mM Na+, 0.2-mM Ca2+, 0.02-mMMn2+, and 9-μm Fe3+. The letter a on
the y-axis represents the effective concentration of a given chemical
species in the mixture (Li et al., unpublished data)
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in urea-containing medium hydrolyze urea producing ammo-
nia and free carbonate which results in the precipitation of
metals as carbonates, e.g., BaCO3, CdCO3, CoCO3,
Cu2(OH)2CO3, La2(CO3)3, and NiCO3 (Li and Gadd 2017b;
Li et al. 2019; Liang and Gadd 2017; Liu et al. 2019; Rautaray
et al. 2004). Fungi can produce a variety of metal oxalates on
interacting with metals and metal-bearing minerals including
those of Ca, Cd, Co, Cu, Mg, Mn, Sr, Zn, Ni, and Pb (Gadd
et al. 2014). Extracellular proteins, amino acids, and polysac-
charides also play an important role in toxic metal immobili-
zation. Extracellular nickel precipitation was associated with
the removal of extracellular protein (Li et al. 2019), and it has
been demonstrated that extracellular protein may act as a tem-
plate for mineral formation, influencing the size of the resul-
tant biominerals (Li and Gadd 2017a; Li et al. 2019; Liu et al.
2019).

Future perspectives and conclusions

At present, bioremediation of soil co-contaminated with pe-
troleum hydrocarbons and toxic metals is mostly focused on
the removal, detoxification, or degradation efficiency of single
or composite pollutants of each type. Little research has been
carried out on the metabolism of fungi in response to complex
pollutant stress. Fungal responses to petroleum hydrocarbons
can be reflected by differences in metabolic responses, en-
zyme induction and synthesis, and extracellular metabolite
production, which will also affect the migration and transfor-
mation of toxic metals. This is clearly a complex problem,
affected by many variables, and sometimes limited by the
availability of appropriate analytical techniques. For example,
understanding the spatial distribution of toxic metals in the
soil and/or the migration and transformation processes medi-
ated by different fungal species depends on the sampling and
analysis methods used. Sampling technology can be the main
bottleneck that limits understanding due to heterogeneity of
the soil in vertical and horizontal dimensions. In fact, toxic
metals may show different gradient distributions over very
small interfaces. Conventional techniques are also based on
sampling and subsequent transport to the laboratory for anal-
ysis, but there may be subsequent changes during collection
and storage due to, e.g., contamination and changes in envi-
ronmental conditions (e.g., metabolic activity, pH, dissolved
oxygen, Eh), which conceal the dynamic changes in biodiver-
sity or chemical speciation that may occur in contaminated
soil. To overcome these difficulties, new technology, includ-
ing microbial metabolomics (Dombrowski et al. 2016; Tian
et al. 2018) and proteomics, needs to be applied to the study of
fungal bioremediation in co-contaminated soil, which could
inform about metabolic responses under multiple pollutant
conditions. This could provide scientific explanations for fun-
gal responses to multiple contaminants at the molecular level
(Aydin et al. 2017; Wang et al. 2017). Further, to obtain high-

resolution spatial distribution characteristics of toxic metals
and reveal interface reaction processes of soil-metals-fungal
interactions, new methods such as gradient diffusion film
technology (DGT) combined with laser ablation-inductively
coupled plasma mass spectrometry could be applied to ana-
lyze dynamic changes in toxic metal speciation at soil-
microbe interfaces (Challis et al. 2018; Feng et al. 2016;
Koppel et al. 2020; Wang et al. 2018). Such approaches will
further clarify fungal transformation mechanisms in soil con-
taminated with petroleum hydrocarbons and toxic metals and
may contribute to more effective strategies for fungal
bioremediation.
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