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Significance Statement 

There is currently a limited understanding of the interplay between AKI and CKD in people with type 2 
diabetes and how this compares to the non-diabetic population.  Through development of an algorithm 
which can be applied to routinely collected biochemistry data, this study has quantified the risk of AKI in 
patients with diabetes and how this relates to CKD. These findings have both important epidemiological 
and clinical implications demonstrating that the risk of AKI and associated adverse outcomes in this 
population of patients is currently underestimated. Increasing awareness may allow for implementation 
of simple interventions which prevent the occurrence of AKI thereby improving patient outcomes. 
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Abstract 

Background 

Type 2 diabetes is one of the leading causes of chronic kidney disease (CKD) and an independent risk 

factor for Acute Kidney Injury (AKI). This study aims to evaluate rates of AKI and how this relates to CKD 

status and further renal function decline in patients with and without type 2 diabetes using electronic 

healthcare records.   

Methods 

Study design was a retrospective cohort study. The negative-binomial model for counts with follow-up 

time as offset, adjusted for sex and age was used to evaluate AKI rates in people with and without 

diabetes depending on CKD status.  A mixed effect linear model adjusted for demographic 

characteristics and co-morbidities was developed to evaluate decline in glomerular filtration rate (GFR) 

before and after an AKI event depending on diabetes and CKD status. 

Results 

The cohort was formed of 16700 participants with a median follow-up of 8.2 years. 9417 of these had 

type 2 diabetes and 7283 had no diabetes. 48.6% (N=4580) of participants with diabetes developed AKI 

compared to 17.2% (N=1257) of controls. 46.3% (N=4359) of those with diabetes had CKD vs 17.1% 

(N=1251) of controls. In the absence of CKD, AKI rate was five times higher in people with diabetes than 

controls (121.5 vs 24.6 per 1000 person-years, Rate Ratio RR=4.9, 95% CI 4.4-5.5), whereas for people 

with CKD, rate of AKI was twice higher in people with diabetes than controls (384.8 vs 180.0 per 1000 

person-years, RR=2.1, 95% CI 1.9-2.4 after CKD date and 109.3 vs 47.4 per 1000 person-years, RR=2.3, 

95% CI 1.8-3.0 prior to CKD). Fall in eGFR slope before AKI was steeper in people with diabetes 

compared to those without diabetes. After AKI episodes, loss of eGFR became steeper in people without 

diabetes, but did not increase in those with diabetes and pre-existing CKD.  

Conclusion 
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Rates of AKI are significantly higher in patients with diabetes compared to patients without diabetes, 

and this remains true for individuals with pre-existing CKD.  

 

Keywords: acute kidney injury; chronic kidney disease; type 2 diabetes; epidemiology; incidence.  
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Introduction 1 

Type 2 diabetes is one of the leading causes of chronic kidney disease (CKD) and end-stage renal disease 2 

worldwide 1.  A large proportion of patients who develop CKD experience prior episodes of acute kidney 3 

injury (AKI), with evidence suggesting that kidney function does not fully recover following the AKI 4 

event1. Moreover, CKD is a well-known risk factor for AKI, with recent studies suggesting that there is a 5 

considerable overlap between the pathophysiology underlying the two conditions 2. However the 6 

relationship is likely to be complex and remains poorly understood.  7 

Type 2 Diabetes (T2D) has been reported as an independent risk factor for AKI in previous observational 8 

studies 3,4  and progressive decline in kidney function has also been well described in this population 1.  9 

Both AKI and CKD have been identified as  risk factors for cardiovascular disease 5, which is the most 10 

frequent complication in T2D.   Despite the increased access to routinely collected health care data, 11 

there are few observational studies evaluating the risk of AKI in people with T2D 6,7, and even fewer  12 

simultaneously investigating AKI and CKD in this population 1. As a result, there is a limited 13 

understanding of the interplay between AKI and CKD in people with T2D and how this compares to the 14 

non-diabetic population. 8 Previously, quantification of AKI from routine health care data was limited to 15 

the use of hospitalization and death using International Classification of Diseases (ICD) coding 6. More 16 

recently, the Kidney Disease Improving Global Outcome (KDIGO) definition for AKI based on changes in 17 

serum creatinine (SCr) has been universally adopted which has enabled a more uniform approach 9,10. 18 

However, this approach comes with its challenges, which mainly relate to the application of the KDIGO 19 

definition. In clinical practice AKI can only be identified when previous tests within a time window are 20 

available for comparison, which may not be the case when blood testing is infrequent.  To overcome 21 

this, various time windows to define baseline creatinine have been proposed, including the use of both 22 

prior and post index values 11–16. Despite the numerous definitions, the variation in the intensity of blood 23 

sampling may still lead to misclassification between AKI and CKD 10. This highlights the importance of 24 
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accurate definitions for both AKI and CKD that can be used in database studies to help understand the 25 

contribution of AKI to CKD and CKD progression, as well as the risk of developing AKI in patients with 26 

CKD. 27 

The aim of this study was to develop an algorithm to examine rates of AKI in patients with and without 28 

T2D depending on CKD status using routinely collected healthcare data, and to investigate whether the 29 

association between AKI on GFR decline is different in people with T2D compared to people without 30 

diabetes.  31 

 32 

Methods 33 

Study population 34 

The design is a retrospective cohort study of people from the Tayside region of Scotland (n = 402641 on 35 

1 January 2012) which represents about 8% of the Scottish population. People with and without type 2 36 

diabetes that were matched by age, sex and general practice were recruited in the Genetic of Diabetes 37 

Audit and Research in Tayside Study (GoDARTS) from December 1998 to October 2012 which includes 38 

either at diabetes or eye screening clinics or through their GP 17.  About 50% of the patients with T2D at 39 

that time from Tayside region were recruited into GoDARTS 8. Participants attended a clinic at 40 

recruitment, where a serum sample was collected to allow a number of routine biochemical measures 41 

to be measured. Recruitment was treated as the baseline for this study with participants being followed 42 

up until May 2017 using comprehensive electronic records.  43 

The current study includes participants from GoDARTS with type 2 diabetes at baseline to form the 44 

diabetic group and patients with no diabetes to form the control group. To allow for an accurate 45 

estimation of AKI rate in patients without diabetes, patients from GoDARTS who develop diabetes later 46 

during the follow-up time were not included in the study. Also, patients without SCr measures on or 47 

after recruitment were not included. For the eGFR slope analysis, patients with three or more SCr values 48 
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with at least one-year gap between the first and last measure prior to the first AKI episode (if applicable) 49 

and three or more SCr measures after the AKI episode with at least 90 days gap between the first and 50 

last of these measures were included. Patients with an AKI event prior to analysis were excluded.  51 

 52 

Datasets and variables  53 

The GoDARTS study was linked through an individual-specific anonymised identifier to the following 54 

clinical datasets: information on diabetes including type of diabetes and date of diagnosis was acquired 55 

from the Scottish Care Information – Diabetes Collaboration (SCI-DC) Diabetes Summary and 56 

Longitudinal data 18. SCr values were obtained from the laboratory biochemistry system, comprising of 57 

SCr measures from both primary and secondary care.  The Scottish Renal Registry was used to identify 58 

patients receiving renal replacement therapy (RRT) and date of therapy initiation 19. The Scottish 59 

Morbidity Records 01 (SMR01) for hospital admission was used to evaluate patient comorbidities 60 

including coronary artery disease, congestive heart failure, peripheral vascular disease, cerebrovascular 61 

disease and liver disease based on ICD-10 codes at admissions prior to recruitment. The community 62 

prescribing data was used to assess whether the patient have been prescribed any of the following 63 

classes of anti-hypertensive drugs: diuretics, angiotensin converting enzyme (ACE) Inhibitors, 64 

angiotensin receptor blockers (ARBs), beta-blockers and calcium channel blockers 20. The demographics 65 

dataset was used to determine participant sex and date of birth which was used to calculate age at 66 

recruitment. Patients who had moved out of Tayside health board were treated as lost to follow-up. The 67 

Community Health Index death dataset (CHI - the NHS Scotland population register) was used to obtain 68 

date of death. Follow-up time was defined as the time from recruitment until May 2017, or date of RRT, 69 

or date of death, or date the patient moved out of Tayside health board, which ever occurred first.   70 

 71 

 72 
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Development of an algorithm to identify AKI episode from serum creatinine tests 73 

SCr measures from Jan 1988 to May 2017 were used in the analysis; measures obtained after initiation 74 

of RRT were not included. All assays in the region are done in the same regional laboratory, and SCr 75 

measures were adjusted for changes in assays over time. AKI was defined based on the KDIGO criteria 9. 76 

As testing was infrequent with large time gaps in some patients, leading to a lack of baseline being 77 

calculated , we developed an algorithm to calculate baseline creatinine incorporating both prior and 78 

post index creatinine measurements in the definition of baseline (Table 1). Severity of AKI (Stages 1-3, 79 

Table 1) was defined using KDIGO criteria 9. To identify AKI episodes, SCr that were within seven days 80 

apart were grouped into single episodes of care. Within the episode of care, a 1.2-fold increase in 81 

creatinine from baseline was used to evaluate SCr values measured before and after each Scr value 82 

flagged as AKI case in order to assess AKI initiation and recovery and  determine the start and the end of 83 

the AKI episode 21. Furthermore, if two AKI episodes were within seven days apart then the two 84 

episodes and SCr values in-between were grouped into one AKI episode 21. The length of AKI episode 85 

was calculated based on start and end dates of the AKI episode and was used to assess whether AKI had 86 

progressed to Acute Kidney Disease (AKD), defined as an AKI lasting more than seven days 22. The 87 

highest AKI stage within the episode was used to define the stage of the AKI episode.  88 

 89 

Estimated Glomerular filtration rate (eGFR) and CKD status 90 

The CKD-EPI formula was used to estimate glomerular filtration rate (eGFR) from serum creatinine  23. 91 

Development of CKD was defined according to the CKD-KDIGO guideline as eGFR < 60 ml/min per 92 

1.73m2 present on at least two occasions at least 90 days apart 23.  To avoid misclassification between 93 

AKI and CKD, eGFR values contained within AKI episodes were first removed from the longitudinal data. 94 

The variation in the intensity of blood sampling, led to eGFR estimates either too distant (in healthy 95 

individuals) or too dense over time (in sicker patients). As a result a median smoother was applied to the 96 
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remaining eGFR values based on a set of rules derived from the CKD-KDIGO definition as follows; for 97 

each date of index blood test, three eGFR baseline values were calculated using the median eGFR for the 98 

period 365 to 91 days prior to the index date, then 7 days prior to 7 days after index, and 91 to 365 days 99 

after index date respectively. CKD diagnostic date was established when at least two of the three 100 

medians were below 60 ml/min per 1.73m2 (Table 2).The CKD date was then compared against 101 

recruitment date to determine whether participants had prevalent CKD at recruitment or they 102 

developed incident CKD during follow-up.  103 

 104 

Primary and secondary outcomes 105 

The primary outcome was the number of AKI episodes per person during follow-up, which was used to 106 

calculate AKI episode rates per 1000 patients per year (including recurrent events) and AKI rate ratios in 107 

people with type 2 diabetes vs non-diabetes depending on CKD status. The secondary outcome was 108 

eGFR decline over time calculated as the eGFR slope of the linear regression model per one-year unit 109 

increase. Other outcomes were number of patients experiencing AKI during follow-up, length of AKI 110 

episodes and AKI stage.  111 

 112 

Statistical methods to analyse AKI rates depending on CKD status  113 

Counts and proportions for categorical variables and mean and standard deviation (SD) or median and 114 

inter-quartile range (IQR) for quantitative data were used to describe the demographic characteristics. 115 

These were reported in people with and without diabetes and by CKD status (no-CKD at recruitment or 116 

during follow-up, pre-CKD to account for the period prior to CKD development for those that developed 117 

CKD during follow-up, and post-CKD to include the post- CKD period for those that had CKD at 118 

recruitment or developed CKD during follow-up. The difference between two independent proportions 119 

were calculated based on Wilson’s method 24. The negative-binomial model for counts with log-link and 120 
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follow-up time as offset was used to analyse the primary outcome and to estimate rates of AKI episodes 121 

in cases and controls depending on CKD status. The relationship between the outcome and the 122 

explanatory variable (sex, age and diabetes status) was assumed linear via the log-link function 25.  Un-123 

adjusted AKI rates and rates adjusted for age and sex were provided together with the corresponding 124 

rate ratios (RRs) for association. Further adjustment for co-morbidities at recruitment was performed to 125 

investigate how much of the effect of diabetes on AKI incidence rates can be explained by pre-existing 126 

co-morbidities.   The chi-square test was used to investigate the association between diabetes and AKI 127 

stage and the non-parametric Mann-Whitney test was used to investigate differences in the length of 128 

AKI episodes between the T2D vs control groups. 129 

Sensitivity analyses was conducted to evaluate and compare incidence rates for stages 2 and stage 3 130 

AKIs, and AKIs longer than 48 hrs respectively, as well as for AKIs occurring during hospital admission in 131 

people with diabetes vs controls. 132 

 133 

Statistical methods to analyse of longitudinal eGFR data  134 

EGFR values measured during AKI episodes were first removed from the data and replaced at the start 135 

of the episode with a baseline eGFR calculated as the median eGFR for the seven days prior to the AKI 136 

episode if measures were available, otherwise the median eGFR of values measured between 365 and 8 137 

days prior to the start of the AKI episode was used.  A linear-mixed effect model was used to analyse the 138 

association between AKI and eGFR decline from the longitudinal eGFR data. AKI was included into the 139 

model as a time-varying factor with three levels: no AKI for patient with no AKI event during the follow-140 

up, pre-AKI for patient with an AKI event during follow-up for the period prior to the AKI and post-AKI 141 

for the period after the AKI episode 26. To identify significant changes in eGFR slope pre and post AKI 142 

event and whether these changes differ between people with T2D and controls an interaction term 143 

between AKI, T2D status and time was accommodated into the model. Baseline variables such as sex, 144 
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age (treated as age groups) and presence of cardiovascular diseases were fitted into the model with 145 

both fixed intercept and slope. An interaction between these variable and T2D was also included and 146 

Akaike Information Criterion (AIC) was used for variable selection. Given the strong interaction effects 147 

between AKI, diabetes and CKD status, the analysis was conducted separately for people with no CKD at 148 

recruitment and those that had an established CKD diagnosis prior to recruitment. The mixed model was 149 

fitted with both random intercept and slope per individual before and after the AKI episode (when 150 

applicable), assuming an unstructured covariance matrix for the random effects. 151 

Data linkage and analysis was carried out using SAS® 9.4 (SAS Institute Inc., Cary, NC, USA). 152 

 153 

Results 154 

The cohort  155 

A total of 18306 participants were recruited into the GoDARTS cohort, of which 16700 met the selection 156 

criteria. 9417 of patients had type 2 diabetes at recruitment and 7283 did not have diabetes at 157 

recruitment nor developed it later and formed the control group. 1606 patients were excluded from the 158 

current study, of which 681 had other types of diabetes, 720 developed diabetes after recruitment and 159 

205 did not have SCr tests on or after recruitment (Figure 1). Table 3 shows baseline characteristics of 160 

the cohort. People within type 2 diabetes were older than controls (66.9 vs 60.8 years old, difference 6.0 161 

years, 95% CI 5.7-6.4) and 44.0% were females compared to 51.4% in the control group (difference 162 

7.4%, 95% CI 5.8-8.9). People with T2D had a lower eGFR at baseline compared to controls (76.6 vs 84.3, 163 

difference 7.7, 95% CI (7.1-8.29), 26.6% of people with T2D had CKD at recruitment compared to only 164 

9.1% in the control group (difference 17.5%, 95% CI (16.3-18.6), and there was a higher percentage of 165 

people with cardiovascular disease in the diabetic group compared to control (Table 3). The mean (SD) 166 

follow-up time from recruitment was 8.2 (3.5) years for people with type 2 diabetes vs (2.4) for controls. 167 

 168 
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AKI and AKI episodes 169 

Table 4 shows summary statistics of SCr measures from recruitment and describes the frequency of AKI 170 

in the two groups. A total of 512615 SCr tests were recorded from recruitment; of those 387657 (75.6%) 171 

were from patients with type 2 diabetes. The median (IQR) number of SCr measures per individual 172 

during the follow-up were 31 (19-51) in type 2 diabetes vs 11 (4-21) in controls. Including post AKI 173 

creatinines in order to calculate a baseline value increased the yield of AKI cases from 28306 to 40567.  174 

A breakdown of AKI cases identified using the different baseline SCr definitions using pre and post Index 175 

SCr measures is shown in Table S1 in the supplementary material. After grouping successive tests into 176 

episodes, a total of 13928 AKI episodes were identified from recruitment until end of follow-up. Of these 177 

11647 were experienced by patients with diabetes. AKI occurred in 5837 patients representing 48.6% 178 

(N=4580) of patients with type 2 diabetes vs 17.2% (N=1257) of controls (difference 31.4%, 95% CI 30.0-179 

32.7). More than 50% of patients with diabetes experiencing AKI had recurrent AKI, whereas the 180 

majority of patients in the control group with AKI had only one episode of AKI during follow-up (Table 5).  181 

Overall 54.2% of AKI episodes lasted no more than two days, a further 26.5% between 2 to 7 days, and 182 

the remaining 19.3% of AKI episodes were longer than 7 days resulting in AKD.  Less than five AKI/AKD 183 

episodes were greater than 90 days, however after inspection it was revealed that these occurred 184 

during hospitalisation due to other complications. 76.3% of AKI episodes were stage 1 with the rest 185 

being stage 2 or 3. Diabetes was significantly associated with increased AKI episode length (p-value 186 

<0.001) but not significantly associated with AKI stage (p-value=0.737). 187 

 188 

AKI and CKD 189 

Figure S1 illustrates the complex interplay between AKI/AKD and CKD and the many trajectories evolving 190 

during the course of the disease. The way AKI initiates and develops can take many forms ranging from 191 

one acute kidney insult which improves rapidly with full recovery within seven days (figure a2) to one or 192 
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more acute kidney insults during the course of the disease which progress to AKD requiring more than 193 

seven days to resolve. There are also cases when serum creatinine does not fully reverse after an AKI 194 

episode leading to the development of CKD (Figure d2). This further shows that, while some patients 195 

fully recover following an episode of AKI and never develop CKD (Figure a1-a3), others may experience a 196 

rapid kidney decline following an AKI episode (figure d1-d3). At the same time there is also the 197 

possibility to develop CKD without prior AKI episodes, and only experience AKI later as superimposed on 198 

CKD (figures b1-b3, c1-c3).  199 

Table 6 describes the characteristics of people with diabetes vs controls in terms of their sex, age and 200 

follow-up time as well as frequency of AKI during follow-up depending on CKD status. 26.6% (N=2504) of 201 

people with diabetes had CKD at recruitment and further 19.7% (n=1855) developed the condition 202 

during follow-up leading to a total of 46.3% (n=4359) people with CKD in the diabetic group compared 203 

to 17.1% (n=1251) in the control group (difference 29.2%, 95% CI 27.8-30.4). In people with diabetes 204 

and CKD, 50.3% were female (n=2192) compared to only 38.6% (n=1954) in those without CKD 205 

(difference 11.7%, 95% CI 9.7-13.7). Also, people with diabetes developed CKD at a younger age 206 

compared to people in the control group (mean age 74.1 vs 77.6 years, difference 3.5 years, 95% CI 3.0-207 

4.0) 66.1% (n=2883) of people with diabetes who developed CKD experienced AKI superimposed on CKD 208 

in the diabetic group compared to 45.5% (n=569) in the control group (difference=20.6%, 95% CI 17.5-209 

23.8). Additionally, 26.6% (n=493) of people with diabetes who developed CKD after recruitment had at 210 

least one episode of AKI prior to development of CKD, the corresponding figure in the control group 211 

being 9.9% (n=58, difference 16.7%, 95% CI 13.3-19.8).  The proportion of people experiencing AKI was 212 

significantly higher in the diabetic group compared to the control group for those patients who did not 213 

have CKD at recruitment nor develop it later; 31.7% (n=1602)  vs 10.8% (n=651) in the control group 214 

(difference 20.9%, 95% CI 19.4-22.4).  215 

 216 
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Estimating AKI episode rates in people with and without diabetes  217 

Table 6 shows estimates of AKI episode incidence rates and rate ratios for people with diabetes vs 218 

control un-adjusted and adjusted for sex and age at recruitment.  Regardless of CKD status, adjusted AKI 219 

rates were 4.7 times higher in people with diabetes compared to controls (adjusted rate 179.0 vs 38.4 220 

per 1000 person-years, RR=4.7, 95% CI 4.3-5.0). In particular, people with diabetes and no CKD 221 

experienced AKI at a rate almost five times higher than people with no diabetes (adjusted rate 121.5 vs 222 

24.6 per 1000 person-year, RR=4.9, 95% CI 4.4-5.5), whereas in people with CKD rate of AKI for those in 223 

the diabetic groups was twice higher than in the corresponding control (adjusted rate 384.8 vs 180.0 per 224 

1000 person-year, RR=2.1, 95% CI 1.9-2.4). Similarly, people with diabetes who develop CKD after 225 

recruitment experience episodes of AKI at a rate twice higher than those in the control group (adjusted 226 

rate 109.3 vs 47.4 per 1000 person-year, RR=2.3, 95% CI 1.8-3.0). It is noteworthy that the AKI rate in 227 

people with diabetes in the absence of CKD was very close to AKI rate prior to development of CKD 228 

(121.5 vs 109.0 per 1000 person year). 229 

Additional model adjustment for other co-morbidities at baseline only partially reduced the association 230 

between diabetes and AKI incidence rates (Table S4 in Supplementary material, RR=3.85, 95%CI 3.44-231 

4.32 in people with no CKD at recruitment or during follow-up, and RR=2.01 95%CI 1.82-2.22 in people 232 

with CKD at recruitment or during follow-up time). 233 

 234 

Sensitivity analysis for the AKI rate analysis 235 

The sensitivity analysis conducted to estimate rates for stage 2 and 3 AKIs show consistent results with 236 

the main analysis (Tables S2 in the supplementary material). The results show that people with diabetes 237 

and no CKD experience stage 2 and 3 AKIs at a rate that is over five time higher than people in the 238 

control group (adjusted mean rate 30.6 vs 5.5 per 1000 person-year, RR=5.5, 95% CI 4.6-6.6) whereas in 239 

people with CKD rate of AKI for those in the diabetic groups was twice higher than in the corresponding 240 
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control group (adjusted mean rate 76.5 vs 38.9 per 1000 person-year, RR=2.1, 95% CI 1.8-2.5). Similarly, 241 

analysis of rates of AKIs lasting over 48hrs or AKIs during hospital admission show consistent results with 242 

the main analysis (Table S3 and Table S4). 243 

 244 

Estimating the effect of AKI on eGFR slope over time 245 

Of the 16700 people included in the initial analysis, there were 3250 people with AKI prior to 246 

recruitment which were not included in the eGFR analysis. A further 2558 people did not meet the 247 

selection criteria of which 1324 had an AKI post recruitment (738 with T2D and 386 with no diabetes). 248 

As a result a total of 10892 people with 279391 SCr measures were included in the eGFR longitudinal 249 

data analysis. Of these 5665 had T2D and 5227 were from the control group (Figure 1, Tables S6 and S7 250 

in the supplementary material). Of the 10892, 2470 people experienced an AKI during follow-up of 251 

which 1859 had T2D and 611 had no diabetes. People with no CKD at recruitment had a significant 252 

higher decline in eGFR in the period pre-AKI compared to no-AKI regardless of diabetes status, but rate 253 

of decline was significantly higher  in people with diabetes (Figure 2, Table S6 in the supplementary 254 

material: eGFR slope pre-AKI vs no-AKI =-1.14, 95% CI (-1.24 to -1.03) in people with T2D and -0.29, 255 

95%CI (-0.45 to -0.11) in controls, slope difference=-0.85, 95%CI (-1.05 to -0.65)).  A further decrease in 256 

rate was observed in the control group in the period post-AKI compared to pre-AKI in both T2D and 257 

control groups, the increase in rate of decline was only marginally significant in people with T2D (eGFR 258 

slope post-AKI vs pre-AKI =-0.29, 95% CI (-0.59 to 0.01)), whereas it was significant in the control group 259 

(eGFR slope post-AKI vs pre-AKI =-0.55, 95% CI (-1.08 to -0.03)), however the difference between T2D 260 

group and control was not significant (slope difference=0.26, 95%CI (-0.34 to 0.86)). Sex was significantly 261 

associated with eGFR with males having a higher mean eGFR than females in people with T2D and lower 262 

in control. No change in eGFR slope was observed between male and females in any of the subgroups. 263 

An increase in age was associated with a reduction in eGFR at baseline regardless of diabetes status, but 264 
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significant differences in eGFR slope among the different age groups were observed only in people with 265 

T2D. Furthermore, people with peripheral vascular disease and hypertension had a significant further 266 

decline in eGFR slope regardless of diabetes status. 267 

People with CKD at recruitment show a higher rate decline in eGFR in the period pre-AKI compared to 268 

no-AKI and this result was significant in the T2D group  and marginally significant in the control group, 269 

but the difference between the two groups was not significant  (Figure 2,Table S7 in the supplementary 270 

material: eGFR slope pre-AKI vs no AKI =-0.79, 95% CI (-1.05 to -0.52) in people with T2D and -0.40, 271 

95%CI (-0.85 to 0.05) in controls, slope difference=-0.38 (-0.90 to 0.14)). The decline in eGFR rate post 272 

AKI compared to pre-AKI did not change in people with T2D diabetes (eGFR slope post AKI vs pre 273 

AKI=0.23, 95% CI (-0.24 to 0.71)), whereas AKI was associated with further eGFR decline post AKI 274 

compared to pre AKI period in controls (eGFR slope post AKI vs pre AKI =-0.84, 95% CI (-1.73 to 0.06)), 275 

with the post-AKI effect being significantly different between T2D and control groups (slope 276 

difference=1.07, 95%CI (0.06 to 2.08)). There was no significant eGFR difference between males and 277 

females in people with CKD at recruitment regardless of diabetes status. An increase in age was 278 

associated with a reduction in eGFR at baseline regardless of diabetes status, and older people with 279 

diabetes appeared to have a lower eGFR decline than younger ones. None of the cardiovascular diseases 280 

were significantly associated with eGFR at baseline or eGFR slope, however their effect was an 281 

important one as reflected in the model AIC and therefore they were retained in the model. 282 

 283 

Discussion 284 

In our study, we have quantified rates of AKI in patients with and without diabetes demonstrating the 285 

extent of the risk. Rates of AKI are significantly higher in patients with type 2 diabetes compared to 286 

those without with a 4.7 fold increase in AKI rate. In people with diabetes and preserved renal function, 287 

rate of AKI is 4.9 fold higher than people without diabetes whereas in people with CKD rate of AKI for 288 
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those in the diabetic group is 2 fold higher than in non-diabetics. More than 50% of the patients with 289 

diabetes who develop AKI will suffer from recurrent events. Rates of CKD are also higher in patients with 290 

Type 2 diabetes with 46.3% developing CKD compared to 17.1% in those without diabetes.   291 

Fall in eGFR slope before AKI was steeper in people with diabetes compared to those without diabetes. 292 

After AKI episodes, loss of eGFR became steeper in people without diabetes, but did not increase in 293 

those with diabetes and pre-existing CKD.  294 

In comparison to other studies, progressive decline leading to CKD has been well described in people 295 

with type 2 diabetes 1, but AKI in diabetes mellitus have been less investigated 6,7,27,28. Girman et al 296 

examined 119 966 patients with diabetes and 1 794 516 patients without diabetes from the General 297 

Practice Research Database. AKI incidence was markedly higher in  their cohort:  198 per 100,000 298 

person-years in patients with Type 2 diabetes compared with 27 per 100,000 patients-years among 299 

patients without diabetes (crude hazard ratio 8.0, 95% CI 7.4-8.7) 6. They did not utilise a biochemical 300 

definition for AKI relying on clinical coding which can lead to significant under ascertainment 29 . In 301 

addition, a meta-analysis by James et al showed that the hazards rations for AKI were higher in 302 

participants with diabetes compared to those without diabetes at any level of eGFR 30. Once again, the 303 

definition for AKI relied on administrative codes in these studies thereby under estimating milder forms 304 

of AKI.  There are very few studies that have examined AKI and CKD simultaneously and recurrent AKI in 305 

this group of patients 31.  306 

Our results are consistent with existing evidence indicating that diabetes is an independent risk factor 307 

for AKI 3,6,27. However, reported AKI rates in people with diabetes vary greatly depending on the 308 

population studied (e.g. different specialist settings, age range) and the methods used for AKI 309 

identification (e.g. medical history, ICD10 coding or changes in SCr) 10. Most of the prior studies have 310 

reported AKI incidence of new AKI cases within a given time window and therefore estimates relate to 311 

number of patients experiencing AKI. The algorithm developed in this study allows quantification of AKI 312 
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rates based on number of AKI episodes including recurrent AKI. Our findings have important clinical 313 

implications. AKI is associated with adverse patient outcomes including increased mortality, future 314 

development of CKD and increased length of hospital stays 3,32,33. It therefore places a significant 315 

financial burden on healthcare resources 34. In our study over 75% of AKI were Stage 1 reflecting a mild, 316 

transient increase in serum creatinine. This may be of clinical significance as there is an increasing 317 

evidence  showing that even mild, transient (lasting less than 24 hours ) AKI is associated with poorer 318 

long term outcomes  35,36 compared to those who do not have AKI. There are currently no effective 319 

treatments for AKI once it is established and so earlier detection and prevention is vital. It is, however, 320 

important to note that there may be misclassification of chronic decline in renal function in patients 321 

with diabetes accounting for some of the observed increased rates of AKI.  We have shown that rates of 322 

AKI are higher in patients with diabetes both with and without CKD with more than half developing 323 

recurrent episodes. To our knowledge, there has been no previous work looking at eGFR slopes prior to 324 

developing AKI. We found that those who develop AKI with diabetes have a greater decline in eGFR 325 

slope prior to developing AKI than those who do not. These findings are expected as a declining kidney 326 

would be more susceptible to episodes of AKI. However, it is surprising that there is less additional 327 

decline in eGFR in those with diabetes compared to those without following an episode of AKI compared 328 

to prior to an AKI episode. It remains unclear what the mechanism underlying AKI is in diabetic patients. 329 

A predisposing factor in these patients may be generalised or intrarenal atherosclerosis. In addition, 330 

patients with diabetes are likely to have glomerular hyperfiltration which is masking structural renal 331 

damage thereby rendering them more susceptible to AKI than those without diabetes due to their 332 

reduced repair capacity and so are susceptible to fluctuations in serum creatinine. A further suggested 333 

mechanism is that tubular growth in response to hypergylcemia promotes inflammation, senescence, 334 

and tubulointerstitial fibrosis which enhance the susceptibility of the diabetic kidney to episodes of AKI 335 

37. It also remains unclear whether prevention of AKI in these patients would prevent or delay 336 



20 
 

progression of CKD. However, it would seem sensible that these patients are more closely monitoring 337 

during intercurrent illnesses with a greater awareness of avoiding high risk medicines such as non-338 

steroidal anti-inflammatories and aminoglycosides. There is currently a lack of awareness among 339 

patients with diabetes of the risk of AKI and so patient education on the importance of hydration may 340 

play an important in role.  We have also shown that in patients with both hypertension and diabetes, 341 

there is an additional decline in eGFR highlighting the importance of blood pressure control in addition 342 

to ensuring good glycaemic control in this patient group. 343 

 344 

An important strength of the study is the refinement of KDIGO definition enabling a more sensitive 345 

estimation of AKI rates which has allowed us to demonstrate the high risk of AKI in patients with 346 

diabetes regardless of CKD status. We developed an algorithm to identify AKI episodes from SCr 347 

measures. A number of definitions to detect AKI cases based on changes in SCr have been used 348 

previously 16, and NHS England has implemented an algorithm which applies the KDIGO definition to 349 

routinely collected SCr tests to automatically produce AKI alerts to support clinical investigations 15. This 350 

algorithm, defines baseline creatinine levels based on SCr one year prior to the index date, potentially 351 

leading to undetected AKI when such measurements are not available. The proposed algorithm utilises 352 

SCr values both prior and after the index date. Whilst this may not be useful for AKI detection in clinical 353 

practice, it may improve AKI detection for epidemiological purpose when applying to routinely collected 354 

datasets allowing for a more sensitive estimation of AKI incidence. Our study shows that at least one 355 

third of AKI cases remains undetected when baseline creatinine is only based on tests prior to the index 356 

date.  Previous epidemiological studies of AKI from routinely collected SCr reported AKI cases in 357 

isolation, with episodes being defined using either fixed time periods such as 30 days 14 or admission and 358 

discharge dates for hospitalized patients 31. The current study is novel through the development of an 359 

algorithm which examines consecutive SCr measures to detect the start and the end of an AKI episode, 360 
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which can be used to calculate the length of the episode and further assess whether the AKI has 361 

resolved quickly or it has progressed to AKD. The grouping of AKI cases into AKI episodes was 362 

particularly important to allow an accurate estimate of AKI rates when applied to routinely collected 363 

data.  Identification of the AKI episode start and end dates was also used in the study to clean the SCr 364 

data in order to allow assessment of CKD status and correctly determine the CKD onset date, which 365 

represents another strength of the study. Another important strength of the study is the development 366 

of a statistical framework for the analysis of the eGFR longitudinal data to evaluate decline in eGFR 367 

before and after an AKI event depending on diabetes and CKD status.  368 

One of the main limitations of the study relates to the nature of routine healthcare data where blood 369 

measurements are infrequent, which makes it difficult to calculate baseline creatinine for assessment of 370 

AKI. As a result some of the AKI in the longitudinal data might remain undetected leading to 371 

misclassification between AKI and progressive CKD.  This variation in the intensity of blood sampling may 372 

also lead to ascertainment bias in AKI estimation due to more tests that are being performed in sicker 373 

patients. In our study, blood tests were performed on average three times more often in people with 374 

diabetes than people in the control group. This may partially explain the high AKI rate in people with 375 

diabetes compared to controls.  It could however be argued that increased testing was performed in 376 

response to clinical indication and similarly lack of testing in those who were deemed well.  The 377 

possibility that the increased AKI is being driven by the increased testing rather than the other way 378 

round is diminished by the analysis of more severe (stage 2 and stage 3) AKIs and AKIs lasting more than 379 

48hrs, for which a high AKI rate ratio between people with diabetes compared to controls in the 380 

absence of CKD were obtained. In addition, diabetes status confers a substantially increased risk for AKI 381 

in individuals with pre-existing CKD, where the testing rate is high regardless of diabetes status.  These 382 

results demonstrates a profoundly increased clinical burden of acute kidney disease in diabetes patients. 383 

Another limitation of the study is the potential of selection bias due to the use of consented data from 384 
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the GoDARTs cohort, a characteristic of most observational studies using consented data, which may 385 

lead to AKI rate estimates that are not generalizable. Furthermore calculation of slopes required a 386 

number of creatinine measures over a specified time period and so a significant number of patients 387 

were excluded from the analysis. This could introduce selection bias which may have affected our 388 

findings. However, it is difficult to eliminate this issue when examining eGFR slopes using observational 389 

data. 390 

In conclusion, we have quantified the risk of AKI in patients with diabetes and its relationship as both a 391 

precursor and a consequence of CKD. The risk of AKI in this population of patients is currently 392 

underestimated and associated adverse outcomes following AKI are not well understood. Further work 393 

to evaluate the pathogenesis for AKI and the risk factors associated with the increased AKI rate in 394 

patients with diabetes such as use of medication is required to allow for development and 395 

implementation of interventions which both prevent the occurrence of AKI and reduce decline in eGFR 396 

thereby improving patient outcomes.  397 
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  566 
Table 1. Definition of AKI cases, AKI episodes and AKI stages  

 

Definition of AKI cases using the NHS algorithm (one of the three criteria) (19):  

Criterion 1: Serum creatinine ≥ 1.5 times higher than median of all creatinine measures in the 8-
365 days prior to index. 

Criterion 2: Serum creatinine ≥ 1.5 times higher than the lowest creatinine in the 7 days prior to 
index. 
Criterion 3: Serum creatinine > 26 μmol/L higher than the lowest creatinine in the 48 hours prior 

to index. 

Definition of AKI cases using the modified algorithm (one of the four criteria): 
Criterion 1: Serum creatinine ≥ 1.5 times higher than median of all creatinine measures in the 8-

365 days prior to index 
Criterion 2: Serum creatinine ≥ 1.5 times higher than the lowest creatinine in the 7 days prior to 

or post index 
Criterion 3: Serum creatinine > 26μmol/L higher than the lowest creatinine in the 2 days prior to 

or post index 
Criterion 4: Serum creatinine ≥ 1.5 times higher than median of all creatinine measures in the 8-

365 days post index 

Definition of AKI episode: grouping AKI cases into episodes 

Step 1: Serum creatinine tests measured within 7 days were grouped into episodes of care 

Step2: If any value within an episode of care was flagged as AKI then the whole episode was 
flagged as AKI 

Step3: Within each episode of care Serum creatinine values before and after an AKI case 
that were greater that 1.2 fold increase in baseline were included in the AKI 
episodes and used to determine the start and the end of the AKI episode 

Step 4 AKI episodes occurring within 7 days further linked to assess AKD 

Step 5: AKD of length greater than 90 days flagged as potential CKD 

Classification criteria for AKI stages (19): 
Stage 1 Rise in creatinine > 26μmol/L within 48 h (2 days) or 1.5≤index/baseline<2 

Stage 2 2 ≤ index/baseline < 3 

Stage 3 index/baseline ≥ 3 

  567 
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Table 2. Establishing CKD date and CKD status from the longitudinal eGFR data. 568 

 569 

 570 
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 582 

 583 

Implementation of the median smoother to the eGFR data to ascertain CKD 

Step 1: eGFR values contained within AKI episodes were removed from the data 

Step 2: Calculate the median eGFR for the 91 to 365 days prior to index: Median91-365d prior. 

Step 3: Calculate the median eGFR for the 7 days prior to 7 days post index: Median7d prior-7d post. 

Step 4: Calculate the median eGFR for the 91 to 365 days post index: Median91-265d post. 

Sept 5: Define MedianeGFR as the median of the three medians defined in steps 2-4  

Step 6: CKD date establish when at least two of the medians in steps 2-4 are available and less 
than 60 ml/min per 1.73m2 

 

Definition of CKD status 

No CKD At recruitment or during follow-up. 

Pre-CKD The period from recruitment until development of CKD, for those people that 
developed CKD later. 

Post-CKD The period after recruitment, for those that had CKD at recruitment, or post 
CKD, for those that developed the condition later, until end of follow-up.   
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Figure 1: Flow chart of patient selection in the current study  584 
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The GoDarts cohort
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Patients with at least one SCr after recruitment
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T2DM 
at recruitment

N=9417

No diabetes at 
recruitment or 

during follow-up 
N=7283

T1DM 
at recruitment

N=509

Diabetes 
diagnosis 

during follow-up
N=720

Other type 
of diabetes 

at recruitment
N=172

No AKI prior 
to recruitment

N=6684

No AKI prior to 
recruitment 

N=6766 *Three or more SCr values with at least one year gap 
between the first and last measure prior to the first 
AKI episode (if applicable) and three or more SCr
measures after the AKI episode with at least 90 days 
gap between the first and last of these measures.Included in the 

eGFR slope analysis*

N=5227

Included in the 
eGFR slope analysis*

N=5665
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Figure 2: Visual representation of the eGFR slope estimates in people without AKI (No AKI), prior to the AKI (Pre AKI) and after the AKI event 598 
(Post AKI) depending on diabetes status and CKD status at recruitment (aReference group includes: No AKI during follow-up, female, 49 and 599 
below, no cardiovascular disease; bReference group includes: No AKI during follow-up, female, 50 to 64, no cardiovascular disease) 600 

 601 

  602 
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 603 

  All patients 
(N=16700) 

T2DM         
(N=9417) 

Control     
(N=7283) 

Sex:  Female N (%) 7888 (47.2) 4146 (44.0) 3742 (51.4%) 

Age at recruitment: mean (SD) 64.3 (12.5) 66.9 (11.3) 60.8 (13.3) 

eGFR at recruitment: mean (SD)a 79.9 (19.7) 76.6 (21.0) 84.3 (16.9) 

CKD at recruitment: N(%)b 3168(18.9) 2503 (26.6) 665 (9.1) 

Cardiovascular disease at recruitment       
     Coronary Artery Disease (CAD): N (%) 3271 (19.6) 2489 (26.4) 782 (10.7) 
     Congestive Heart Failure (CHF): N (%) 670 (4.0) 587 (6.2) 83 (1.1) 
     Peripheral Vascular Disease (PVD): N (%) 636 (3.8) 540 (5.7) 95 (1.3) 

     Cerebrovascular Disease (CD): N (%) 786 (4.7) 644 (6.8) 142 (1.9) 

     Hypertension: N (%) 9863 (59.1) 7271 (77.2) 2592 (35.6) 
aeGFR at recruitment was missing for 145 people   
b 2442 additional participants developed CKD during follow-up   

 604 

Table 3. Baseline characterises of the cohort broken down by diabetes status605 
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  All patients 
(N=16700) 

Type 2 
diabetes         

(N=9417 ) 

Control        
(N=7283) 

Number of SCr  tests  512615 387657 124958 

       Number of SCr tests per patient: median (IQR) 22 (10-39.5) 31 (19-51) 11 (4-21) 

Number of SCr tests flagged as AKI    
        Old algorithm ( retrospective tests) 28306 24257 4049 

        Modified algorithm (retrospective and prospective tests) 40567 34469 6098 

Number of AKI episodes 13928 11647 2281 

        Number of SCr tests within AKI episodes 65316 55401 9915 

Number of patients with AKI during follow-up  5837 4580 (48.6) 1257 (17.2) 

         Number of episodes per person:  median (IQR) 2 (1-3) 2 (1-3) 1 (1-2) 

Length of AKI episode: median (IQR) 3 (1-7) 3 (1-7) 3 (1-6) 

         AKI episode ≤ 2days 7544 (54.2) 6237 (53.6) 1307 (57.3) 

         AKI episode> 2days and  ≤ 7days 3697 (26.5) 3114 (26.7) 583 (25.6) 

         AKI episode > 7days  2687 (19.3) 2296 (19.7) 392 (17.2) 

AKI stages    
         Stage 1 10633 (76.3) 8895 (76.4) 1738 (76.2) 

         Stage2 2285 (16.4) 1901 (16.3) 387 (16.8) 

         Stage 3 1010 (7.3) 851 (7.3) 159 (7.0) 
 

Table 4. Descriptive statistics showing number of SCr tests from recruitment, number of SCr test flagged 

by AKI using the NHS England algorithm vs the modified algorithm, number of AKI episodes and number 

of patients experiencing AKI during the follow-up time as well as characteristics of the AKI episodes in 

terms of length and severity in the diabetic and control groups. 
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*from recruitment until end of follow-up (RRT/death/out with HB/May 2017 whichever happened first). 
†from recruitment until development of CKD. 
‡from development of CKD/recruitment, whichever happened last, until end of follow-up. 
§Age at recruitment or development of CKD, whichever happened last. 
 

Table 5. Descriptive statistics showing sex, age, follow-up time and number of SCr tests as well as number of patients experiencing AKI and 

number of AKI episodes in the diabetic vs control groups depending on CKD status.

Patients' groups 
Sex          

Female 
number (%) 

Age at 
recruitment 

Follow-up 
time (years)           
Mean (SD) 

Number of SCr 
tests per patient 

per year:   
median (IQR) 

 AKI patients            
N (%) 

Number of 
AKI episodes 

All patients (N=16700) 7888 (47.2) 64.3 (12.5) 8.8 (3.2)* 2.6 (1.2-5.2) 5837(35.0) 13928 

   Control  (N=7282) 3742 (51.4) 60.8 (13.3) 9.6 (2.4) 1.1 (0.4-2.3) 1257 (17.3) 2281 

   Type 2 diabetes (N=9417) 4146 (44.0) 66.9 (11.3) 8.2 (3.5) 3.8 (2.4-7.4) 4580 (48.6) 11647 

No CKD (N=11090) 5089 (45.9) 59.9 (11.8) 9.2 (2.9)* 1.8 (0.8-3.2) 2263 (20.4) 3952 

   Control   (N=6032) 3135 (52.0) 57.9 (12.1) 9.8 (2.3) 0.9 (0.4-1.7) 651(10.8) 951 

   Type 2 diabetes (N=5058) 1954 (38.6) 62.4 (11.0) 8.4 (3.4) 2.9 (2.0-4.7) 1602 (31.7) 3001 

CKD (N=5610) 2799 (49.9) 72.8 (8.9) 8.1 (3.4)* 5.1 (3.0-9.4) 3584 (63.9) 9976 

   Control   (N=1251) 607 (48.5) 75.3 (8.1) 8.7 (3.0) 3.3 (2.0-6.4) 606 (48.4) 1330 

   Type 2 diabetes (N=4359) 2192 (50.3) 72.1 (9.0) 8.0 (3.5) 5.7 (3.4-10.3) 2978 (68.3) 8646 

Prior to CKD diagnosis (N=2442) 1114 (45.6) 69.2 (8.9) 4.42 (3.1)† 2.9 (1.8-4.6) 571 (23.4) 942 

    Control   (N=587) 273 (46.5) 72.7 (8.2) 4.7 (2.9) 1.8 (1.1-3.3) 58 (9.9) 120 

    Type 2 diabetes (N=1855) 841 (45.3) 68.2 (8.9) 4.3 (3.1) 3.2 (2.2-5.0) 493 (26.6) 822 

Post CKD diagnosis  (N=5610) 2799 (49.9) 74.9 (8.3)§ 6.2 (3.5)‡ 5.7 (3.2-11.1) 3352 (59.8) 9034 

    Control   (N=1251) 607 (48.5) 77.6 (7.7) 6.5 (3.5) 4.0 (2.3-7.5) 569 (45.5) 1210 

    Type 2 diabetes (N=4359) 2192 (50.3) 74.1 (8.3) 6.1 (3.5) 6.3 (3.6-12.0) 2883 (66.1) 7824 
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Patients' groups 

AKI episodes per 1000 person-years   

Un-adjusted Adjusted for age and sex 

Mean rate (SE) Rate ratio 
(95%CI) Mean rate (SE) Rate ratio 

(95% CI) 
All patients (N=16700) 131.6 (126.8-136.6) - 114.8 (110.5-119.5) - 

   Control  (N=7282) 38.2 (36.0-40.5) 1.0 38.4 (36.2-40.8) 1.0 

   Type 2 diabetes (N=9417) 204.8 (196.4-213.6) 5.4 (5.0-5.8) 179.0 (171.5-186.9) 4.7 (4.3-5.0) 

No CKD (N=11090) 54.6 (51.4-58.0) - 66.3 (61.1-72.1) - 

   Control   (N=6032) 18.0 (16.6-19.6) 1.0 24.6 (22.3-27.2) 1.0 

   Type 2 diabetes (N=5058) 101.1 (93.9-108.8) 5.6 (5.0-6.3) 121.5 (111.0-133.0) 4.9 (4.4-5.5) 

CKD (N=5610) 276.0 (265.1-187.3) - 267.0 (252.1-282.8) - 

   Control   (N=1251) 148.5 (135.8-162.3) 1.0 130.1 (117.7-143.8) 1.0 

   Type 2 diabetes (N=4359) 312.6 (299.2-326.6) 2.1 (1.9-2.3) 299.3 (282.4-317.2) 2.3 (2.1-2.5) 
Prior to CKD diagnosis 
(N=2442) 93.8 (85.4-108.0) - 92.9(81.0-106.1) - 

    Control   (N=587) 45.8 (36.7-57.2) 1.0 47.4 (37.2-60.5) 1.0 

    Type 2 diabetes (N=1855) 109.9 (99.3-121.6) 2.4 (1.9-3.1) 109.3 (94.8-126.1) 2.3 (1.8-3.0) 

Post CKD diagnosis  (N=5610) 337.2 (323.3-351.7) - 350.8 (321.8-382.5) - 

    Control   (N=1251) 187.3 (170.5-205.8) 1.0 180.0 (159.1-203.8) 1.0 

    Type 2 diabetes (N=4359) 379.2 (362.1-397.1) 2.0 (1.8-2.2) 384.8 (353.1-419.3) 2.1 (1.9-2.4) 
 

 
 

Table 6. AKI episode rates and rate ratios in the diabetic and non-diabetic groups depending on the CKD status
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