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Abstract
Digital polymerase chain reaction (dPCR) is
a mature technique that has enabled scien-
tific breakthroughs in several fields. However,
this technology is primarily used in research
environments with high-level multiplexing rep-
resenting a major challenge. Here, we pro-
pose a novel method for multiplexing, referred
to as amplification and melting curve analy-
sis (AMCA), which leverages the kinetic infor-
mation in real-time amplification data and the
thermodynamic melting profile using an afford-
able intercalating dye (EvaGreen). The method
trains a system comprised of supervised ma-
chine learning models for accurate classifica-
tion, by virtue of the large volume of data from
dPCR platforms. As a case study, we develop a
new 9-plex assay to detect mobilized colistin re-
sistant (mcr) genes as clinically relevant targets
for antimicrobial resistance. Over 100,000 am-
plification events have been analyzed, and for
the positive reactions, the AMCA approach re-
ports a classification accuracy of 99.33± 0.13%,
an increase of 10.0% over using melting curve
analysis. This work provides an affordable
method of high-level multiplexing without fluo-

rescent probes, extending the benefits of dPCR
in research and clinical settings.

Introduction
Detecting and quantifying nucleic acids are im-
portant tasks in several fields, where the real-
time polymerase chain reaction (qPCR) re-
mains the most common technique.1–7 More re-
cently, the use of digital PCR (dPCR) has been
flourishing due to the several advantages over
conventional qPCR, such as: (i) lack of refer-
ences or standards; (ii) high precision in quan-
tification; (iii) tolerance to inhibitors; and (iv)
the capability to analyze complex mixtures.8–11
Therefore, dPCR has enabled scientific break-
throughs in clinical microbiology, gene expres-
sion and precision cancer research, among oth-
ers.12–14
Multiplex assays provide a practical solu-

tion for nucleic acid detection in a single re-
action, reducing the time, cost and amount
of sample required, at the expense of techni-
cal complexity.15,16 Current approaches based
on fluorescent probes are expensive and require
lengthy optimization which is challenging for
high-throughput applications.17,18 Intercalating
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Figure 1: Concept of the proposed method. Amplification and melting curve data from real-time dPCR instrument
(e.g. Fluidigm BioMark HD) is extracted. Subsequently, machine learning models are trained to classify multiple
targets for both datasets individually. For high-level multiplexing, both methods provide insufficient accuracy
(indicated by overlapping data distributions highlighted by the shaded regions). However, the proposed method,
referred to as amplification and melting curve analysis, or AMCA, takes into account both kinetic and thermodynamic
information in order to classify the targets accurately. Note: Three targets have been used to simplify the illustration
of the concept.

dyes provide a suitable and alternative chem-
istry which is affordable and does not require in-
silico design. However, since intercalating dyes
bind to any double-stranded DNA, the prospect
of non-specific amplification are typically ad-
dressed with further post-PCR analyzes such
as gel electrophoresis, melting curve analysis or
sequencing methods.
Current multiplex dPCR methods that are

dependent on intercalating dyes are either lim-
ited to analyzing real-time amplification data
or performing melting curve analysis, since
gel electrophoresis or sequencing is not possi-
ble.19,20 Since most commercially available plat-
forms (such as Fluidigm EP1, Bio-Rad QX200
and Stilla Naica systems) do not have real-time
data acquisition, the most common approach
for multiplexing uses the final fluorescent in-
tensity (FFI) of the amplification curve to dis-
tinguish between targets.18 Reported studies
showed that specific target identification could
be achieved through adjusting primer concen-
tration to modulate the FFI value.19 However,
extensive optimization is required and the num-
ber of targets is limited due to the variation of

FFI values. In an effort to reduce the need for
lengthy optimization, a new method called am-
plification curve analysis (ACA) was recently
proposed, to extract target-specific kinetic in-
formation from real-time amplification data us-
ing supervised machine learning.21 However, for
the ACA approach, there is currently no sys-
tematic method of shaping the amplification
curve and this presents a challenge for high-
level multiplexing. Alternatively, some dPCR
instruments offer the capability of melting curve
analysis (MCA), providing a post-PCR method
to identify specific targets with established lit-
erature and tools to assist assay design.22 Sim-
ilar to ACA, high-level multiplexing with MCA
also requires complex assay design to distin-
guish between close melting curve peaks.21
Although the ACA and MCA methods are

analyzing the same amplification product, they
take advantage of different information to dis-
tinguish between targets. The amplification
curve encodes target-specific kinetic informa-
tion (i.e. complex reaction efficiency from cycle-
to-cycle) while the melting curve is the result
of thermodynamic properties of the amplicon
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(e.g. GC content and length). Recently, it was
shown that kinetic and thermodynamic param-
eters can be combined to detect non-specific
amplification product in real-time digital loop-
mediated isothermal amplification (LAMP).23
However, there has been no report of enhanc-
ing multiplexing capabilities by combining the
amplification and melting curves.
In this paper, we explore this concept using

a commercially available dPCR platform (Flu-
idigm’s BioMark HD) with an intercalating dye
(EvaGreen) to demonstrate that non-mutual
information from amplification and melting
curves can improve multiplexing accuracy. The
proposed method, referred to as amplification
and melting curve analysis (AMCA), leverages
the large volume of data from real-time dPCR
and trains a “three-step” machine learning sys-
tem, as depicted in Figure 1. The first step
trains a model on the entire real-time amplifi-
cation data and the seconds step trains a model
using melting curve information. The final step
combines the resulting outputs into a final clas-
sification for each amplification event.
As a case study, this work applies the AMCA

method to the global challenge of antimicrobial
resistance.24 In particular, colistin is a “last-
line” antibiotic, reserved for the treatment of
severe bacterial infections. The rise of mobi-
lized colistin resistance (mcr) has been reported
in over 40 countries across five different conti-
nents.25–27 Colistin resistant genes are often co-
localized on highly transmissible plasmids with
carbapenemase genes and are readily shared
between bacterial species, providing the ideal
conditions for multi-drug resistant organisms,
and raising the possibility of untreatable infec-
tions.28,29 Incorrect diagnosis delays appropri-
ate intervention, increases financial burdens for
the healthcare system and complicates antimi-
crobial stewardship efforts.30 Therefore, detect-
ing variants of mcr is important to help treat
and understand this emerging antimicrobial re-
sistance. In this study, we develop the first 9-
plex PCR assay to detect mcr -1 to mcr -9.
Our vision is that by sharing this new method,

researchers and practitioners can use affordable
multiplex assays, compatible with dPCR plat-
forms, for their clinically relevant applications.

Moreover, extending this methodology to con-
ventional qPCR instruments will be beneficial
for the wider scientific community.

EXPERIMENTAL SECTION

DNA Templates

Double-stranded synthetic DNA (gBlock Gene
fragments) containing the entire coding se-
quences of mcr -1 to mcr -9 were used. The ac-
cession numbers from the NCBI GenBank web
site for each target are shown in Table 1. The
gBlocks were purchased from Life Technologies
(ThermoFisher Scientific) and re-suspended in
Tris-EDTA buffer to 10 ng/µL stock solutions
(stored at −80 ◦C until further use). The con-
centrations of all DNA stock solutions were de-
termined using a Qubit 3.0 fluorimeter (Life
Technologies).

Multiplex Primer Design

To perform the (in-silico) design for the 9-
plex, the first step was to conduct an NCBI
blast (https://blast.ncbi.nlm.nih.gov) to
ensure that each primer set binds to a con-
served region. For each target, the blast was
able to retrieve an average of 1000 sequences,
which have been used to identify variation in
the nucleotide sequence for all possible inclusive
targets within the same gene and exclude po-
tential cross-reactivity sequences (either within
the mcr family or from a different species).
Alignments were performed using the MUSCLE
algorithm,31 in Geneious Prime® 2020.1.2.32
Primer characteristics were analyzed through
the IDT OligoAnalyzer software using the J.
SantaLucia thermodynamic table for melting
temperature (Tm) evaluation.33 Moreover, to
avoid secondary structure formation such as
hairpin and primer-dimer (including self-dimer
and cross-primer), the Multiple Primer Ana-
lyzer (ThermoFisher Scientific) was used.34 The
Tm of the amplification product of each primer
set was determined by the Melting Curve
Predictions Software (uMELT) package.35 All
primers were synthesized by Life Technologies
(ThermoFisher Scientific). Primer sequences,
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Table 1: Primer sequences and relevant meta data regarding the amplicon for all nine mcr targets.

Target Forward primer Reverse primer Amplicon Amplicon
(accession number) (5’→ 3’) (5’ → 3’) length (bp) GC cont. (%)
mcr -1 (KP347127.1) TGGCGTTCAGCAGTCATTATGC CAAATTGCGCTTTTGGCAGCTTA 516 50.0
mcr -2 (LT598652.1) CTGTATCGGATAACTTAGGCTTT ATACTGACTGCTAAATAGTCCAA 407 47.9
mcr -3 (KY924928.1) AGACACCAATCCATTTACCAGTAA GCGATTATCATCAAACTCCTTTCT 136 47.1
mcr -4 (MF543359.1) TTGCAGACGCCCATGGAATA GCCGCATGAGCTAGTATCGT 207 45.4
mcr -5 (KY807921.1) GGTTGAGCGGCTATGAAC GAATGTTGACGTCACTACGG 207 56.0
mcr -6 (MF176240.1) GTCCGGTCAATCCCTATCTGT ATCACGGGATTGACATAGCTAC 556 46.9
mcr -7 (MG267386.1) TGCTCAAGCCCTTCTTTTCGT TTGGCGACGACTTTGGCATC 466 56.2
mcr -8 (NG_061399.1) CGAAACCGCCAGAGCACAGAATT TCCCGGAATAACGTTGCAACAGTT 617 42.9
mcr -9 (NG_064792.1) TATAAAGGCATTGCTTACCGTT GGAAAGGCACTTTAGTCGTAAA 202 45.0

All primers have been fully developed in-house and published for the first time in this study.

amplicon length and GC content of the prod-
uct are listed in Table 1.

PCR Reaction Conditions

Real-time Digital PCR.

Each amplification reaction was performed in
4 µL of final volume with 2 µL of 2× Sso-
Fast EvaGreen Supermix with Low ROX (Bio-
Rad, UK), 0.4 µL of 20× GE Sample Load-
ing Reagent (Fluidigm PN 85000746), 0.4 µL of
10× multiplex PCR primer mixture containing
the nine primer sets (5 µM of each primer), and
1.2 µL of different concentrations of synthetic
DNA (or controls). PCR amplifications con-
sisted of a hot start step for 10 min at 95 ◦C,
followed by 45 cycles at 95 ◦C for 20s, 66 ◦C for
45s, and 72 ◦C for 30s. Melting curve analy-
sis was performed with one cycle at 65 ◦C for 3s
and reading from 65 to 97 ◦C with an increment
of 0.5 ◦C. We used the integrated fluidic cir-
cuit controller to prime and load qdPCR 37K™

digital chips and Fluidigm’s Biomark HD sys-
tem to perform the dPCR experiments, follow-
ing manufacturer’s instructions. More specifi-
cally, each digital chip contains 48 inlets, where
each inlet is connected a panel consisting of
770 wells (0.85nL well volume).36 In this study,
we used 3 digital chips, totalling 144 pan-
els (110880 wells), with experiments equally
distributed across all mcr variants and neg-
ative controls. The number of positive reac-
tions for each mcr variant is as follows: mcr-1
(N=6767), mcr-2 (N=6889), mcr-3 (N=6159),
mcr-4 (N=6520), mcr-5 (N=6424), mcr-6
(N=6447), mcr-7 (N=5919), mcr-8 (N=6884)
and mcr-9 (N=6589).

Real-time PCR.

Each amplification reaction was performed in
10 µL of final volume with 5 µL of 2× SsoFast
EvaGreen Supermix with Low ROX (BioRad,
UK), 3 µL of PCR grade water, 1 µL of 10×
multiplex PCR primer mixture containing the
nine primer sets (5 µM of each primer), and 1 µL
of different concentrations of synthetic DNA (or
controls). The reaction consisted of 10 min at
95 ◦C, followed by 45 cycles at 95 ◦C for 20s,
66 ◦C for 45s, and 72 ◦C for 30s. Melting curve
analysis was performed with one cycle at 65 ◦C
for 60s, and reading from 65 to 97 ◦C with an
increment of 0.2 ◦C. The PCR machine used in
this study was the Light Cycler 96 Real-Time
PCR System (Roche Diagnostics, Germany).

Data Analysis

Multiplexing based on FFI.

Final fluorescent intensity values were extracted
from each amplification curve (as in19) and used
to train a logistic regression classifier to distin-
guish targets. It is important to stress that the
primer mix concentration was not optimized to
improve classification, therefore we do not ex-
pect high performance.

Amplification Curve Analysis,

or ACA, consists of training a supervised ma-
chine learning model to distinguish targets
based on the entire real-time amplification
curve.21 In this study, a deep neural network
was chosen based on cross-validation score. In
particular, the neural architecture consists of
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two convolutional layers in order to extract
temporal dynamics of the curve whilst keep-
ing training times low (compared to recurrent
architectures such as long short-term memory
or gated recurrent unit networks). The first
layer consists of 16 filters (kernel size of 5) and
the second layer has 8 filters (kernel size of 3),
where both layers have a rectified linear unit ac-
tivation function. Prior to training the model,
amplification curves were pre-processed using
background subtraction (removing the mean of
the first 5 fluorescent measurements) and sub-
sequently calling positive/negative curves based
on an arbitrary threshold.

Melting Curve Analysis,

or MCA, consists of distinguishing the thermo-
dynamic profile (i.e. −dF

dT
) of the amplification

product. In this study, and conventionally, this
is achieved by distinguishing the melting peak,
Tm, although methods have also been proposed
to consider the entire curve.37,38 After peak de-
tection, negative reactions can be confirmed by
identifying curves with no peak. Subsequently,
a supervised machine learning model can be
trained to distinguish the Tm values. In this
study, logistic regression was chosen as a clas-
sifier based on cross-validation.

The Proposed Method,

amplification and melting curve analysis, or
AMCA, trains a supervised machine learning
model to combine the predictions of ACA and
MCA. This process is visualized in Figure 2.
The output of ACA and MCA are probabilities
for the amplification event belonging to each
target of interest. In the training process, these
probabilities are concatenated and used to train
a model. In this study, a logistic regression
classifier was chosen. It is important to note
that this classifier is tuned with its own cross-
validation step in order to avoid over-fitting.

Statistical Analysis

Performance of the models were evaluated
based on out-of-sample classification accuracy,
as determined by 10-fold cross-validation (using

Real-time Data Melting Curves

Background
Subtraction

Remove
Negatives

Peak Detection

Remove
Negatives

XACA XMCA

Known Labels

ACA Model MCA Model

AMCA Model

Concatenate

YACA-proba YMCA-proba

XAMCA

ypredict

Figure 2: Flowchart to visualize the data process-
ing workflow for the proposed method. Known labels
(marked with a dashed line) are only required for train-
ing the models, as opposed to testing unknown samples.
The input to the machine learning models are denoted
as XACA, XMCA and XAMCA. The output probabilities
of ACA and MCA are denoted as YACA, YMCA. The
final classification is given by ypredict. Vectors are given
as lower case letters while matrices are upper case.

stratified splits). In order to assess the perfor-
mance as a function of the volume of training
data, a shuffled stratified split was performed
5 times, with 5000 test samples. The two-
sided t-test with unknown variances was used
to determine statistical significance for compar-
ing the classification accuracy of different mod-
els. Prior to this test, a Lilliefors test was used
to determine normality of the distributions and
the Bartlett test for equal/unequal variances.
A p-value of 0.05 was used as a threshold for
statistical significance for all tests.

Data & Code availability

All data and code used in this study can
be found at https://github.com/am5113/
pyAMCA.
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RESULTS

A new multiplex assay for mobi-
lized colistin resistance which is
highly sensitive and efficient

To date, there has been no report of multi-
plexing mcr -1 to mcr -9. Here, a new 9-plex
has been designed and validated using a con-
ventional qPCR platform. Figure 3 (A)-(C)
show the real-time amplification curves, melt-
ing peak distributions (extracted from melting
curves) and standard curves for a serial dilu-
tion of each mcr target. Figure S1 and S2 show
the raw melting curves before peak extraction
and conventional standard curves, respectively.
From Figure 3 (A), it can be observed that the
final fluorescence and shape can vary between
targets, although the precise overlap cannot be
visualized. On the other hand, as in Figure 3
(B), the melting peak distributions have dis-
tinct mean Tm values, although some targets
(e.g. mcr -1 and mcr -5) have overlapping distri-
butions, compromising MCA multiplexing clas-
sification. Figure 3 (C) demonstrates that the
multiplex assay is highly efficient (all > 95%)
with a lower limit of detection (LoD) down to
10 copies per reaction for all targets (excluding
mcr -9 which showed an LoD of 100 copies per
reaction). All negative controls did not amplify
before 45 cycles. The data suggests that the co-
presence of mcr variants, by virtue of the over-
lapping Tm distributions, raise the possibility
of a single melting peak with multiple amplifica-
tion products - leading to unavoidable misclas-
sification using MCA. This motivates the use of
digital PCR due to physical (single-molecule)
partitioning.

Classification accuracy of FFI,
ACA and MCA in dPCR is lim-
ited

To assess the performance of previously
reported methods for dPCR multiplexing,
110,880 amplification reactions were analyzed,
of which 58,598 are considered positive. To
train the ACA model to be invariant to tem-

plate concentration, experiments included con-
centrations ranging from single-molecule (dig-
ital pattern) to bulk reactions (saturated pan-
els). Figure 3 (D) and (E) show the amplifica-
tion and Tm distributions resulting from the
dPCR platform, respectively. It is interesting
to observe that the amplification curves and
melting peak distributions resemble the qPCR
data (within 0.8 ◦C), highlighting the consis-
tency and reproducibility of the PCR chemistry
and multiplex assay across platforms. The dis-
crepancy between the distributions from qPCR
to dPCR can be explained by the change in in-
strument resolution (from 0.2 ◦C to 0.5 ◦C) and
the volume of data. The reason for selecting
a lower resolution in dPCR, was such that a
manageable volume of data was extracted via
the Fluidigm digital PCR analysis software.
Figure 4 (A) and (B) show the confusion ma-

trices, comparing the true and predicted targets
for ACA and MCA, and the overall classifica-
tion performance is 82.31 ± 1.47% and 89.34 ±
0.33%, respectively. Furthermore, a naive clas-
sification based on FFI gives an overall accuracy
of 24.59 ± 0.52% (confusion matrix and FFI
distributions are provided in Figure S3). As
the results indicate, the FFI performance has
low accuracy, although better than a random
classifier (i.e. 11.1%), due to single-parameter
usage, which contains little information spe-
cific to each target. Therefore, optimization
for primer concentration must be performed to
achieve acceptable classification accuracy, as in
McDermott et al. (2013), although this is nei-
ther trivial nor guaranteed for a 9-plex.19 On
the other hand, analyzing the entire amplifica-
tion curves (without normalizing for FFI) us-
ing a neural network boosts performance by
57.7%, extracting relevant kinetic information
from each event. The third method, MCA, an-
alyzed thermodynamic information encoded in
the melting profiles, showing a further increase
of 7.0% in classification accuracy. It is inter-
esting to observe that there is no obvious mis-
classification of any target which is common in
both ACA and MCA, suggesting that the two
methods extract non-mutual information.
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A) Real-time Amplification Curves from qPCR Instrument

B) Melting Curve Peak Distribution from qPCR Instrument

C) Standard curves

Target--- mcr-1 mcr-2 mcr-3 mcr-4 mcr-5 mcr-6 mcr-7 mcr-8 mcr-9
Slope--- -3.079 -3.446 -3.366 -3.327 -3.088 -3.369 -3.172 -3.209 -3.343

Constant--- 32.581 35.035 37.381 35.499 34.139 35.187 34.510 33.890 36.767
Efficiency--- 111.263 95.089 98.200 99.809 110.788 98.082 106.641 104.954 99.109
R-square--- 0.995 0.997 0.996 0.998 0.996 0.993 0.997 0.995 0.996

mcr-1 mcr-2 mcr-3 mcr-4 mcr-5 mcr-6 mcr-7 mcr-8 mcr-9

Cq

D) Real-time Amplification Curves from dPCR Instrument

E) Melting Curve Peak Distribution from dPCR Instrument
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Figure 3: Analysis of real-time amplification and melting curves from qPCR and dPCR instruments. A) Real-time
amplification curves from qPCR instrument. B) Melting curve peak distribution from qPCR instrument showing the
probability density function (PDF) for each target. The mean ± std of mcr -1 to mcr -9 is 87.6±0.2◦C, 86.0±0.1◦C,
82.6 ± 0.4◦C, 82.9 ± 0.1◦C, 88.0 ± 0.1◦C, 85.5 ± 0.1◦C, 89.4 ± 0.2◦C, 84.4 ± 0.1◦C, 84.1 ± 0.2◦C, respectively. C)
Visualization and statistics of standard curves for a serial dilution of each target in qPCR using 9-plex assay. D)
Real-time amplification curves from dPCR instrument. E) Melting curve peak distribution from dPCR instrument.
The mean ± std of mcr -1 to mcr -9 is 87.7±0.3◦C, 86.6±0.2◦C, 82.7±0.2◦C, 83.6±0.2◦C, 88.5±0.2◦C, 86.3±0.2◦C,
89.7± 0.2◦C, 84.8± 0.3◦C, 84.3± 0.3◦C, respectively. Raw melting curves are shown in Figure S1.
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AMCAmethod increases classifica-
tion accuracy compared to ACA or
MCA individually

Figure 4 (C) shows the confusion matrix com-
paring the predicted classification from the
AMCA method to the true labels. It can be ob-
served that the accuracy is 99.33 ± 0.13% and
that no target is misclassified more than 1.7%,
showing a significant improvement from ACA
or MCA individually (p-value « 0.01). Since
the chosen supervised machine learning model
for AMCA is linear, the coefficients can be in-
vestigated to understand how it weighs the pre-
dictions from ACA and MCA. More specifically,
the output of AMCA is defined by:

y = ŴACA yACA + ŴMCA yMCA (1)

Where yACA ∈ R9 and yMCA ∈ R9 are the prob-
ability vectors outputted from the ACA and
MCA models, ŴACA ∈ R9×9 and ŴMCA ∈
R9×9 are the model coefficients, respectively.
Figure 4 (D) and (E) show the ACA and MCA
coefficients in the form of a heatmap, respec-
tively. It is interesting to observe that AMCA
weighs the prediction from ACA more heav-
ily for targets which show poor classification in
MCA, and vice-versa. For example, MCA mis-
classifies 1515 mcr -9 reactions as mcr -8, there-
fore the AMCA positively weighs the ACA pre-
diction by 3.1 and negatively weights the MCA
prediction by -2.1. Similarly, ACA misclassifies
1846 mcr -9 reactions as mcr -2 and the coeffi-
cients compensate for this phenomenon.

A) B) C)

D) E) F)
AMCA

MCA

ACA

FFI

Figure 4: Performance of all methods for multiplexing the 9 mcr targets. A, B, C) Confusion matrices illustrating
the predictions from ACA, MCA and AMCA (proposed method), respectively. Values indicate the number of
amplification events with diagonal entries corresponding to correct predictions. D, E) Coefficients of the AMCA
model weighting the predictions from the ACA and MCA methods, respectively. Darker colors indicate more positive
weighting. F) The effect of the number of training data points on the overall classification accuracy for all methods.
The shaded regions correspond to ± 1 standard deviation.
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AMCA method reaches high accu-
racy with only 1000 training data
points

From a practical perspective, it is important
to understand the volume of training data re-
quired for the AMCA model, denoted by ntrain,
for accurate classification. Figure 4 (F) shows
the classification performance on 5000 out-of-
sample data points (repeated 10 times) where
ntrain is between 1.0 × 102 and 5.3 × 104 for
all models. It can be observed that all of the
models perform better given more training data
points. Since AMCA weighs ACA and MCA,
it is unlikely to perform worse than either of
its constituents with sufficient data. In fact,
the AMCA model consistently outperforms the
other models for all training data sizes and re-
peats. Through observing the enhanced multi-
plexing accuracy, it can be concluded that the
target-specific kinetic information (provided by
ACA) and thermodynamic information (pro-
vided by MCA) is non-mutual.

AMCA method shows promising
classification accuracy in conven-
tional real-time PCR platform

The same methodology (as in Figure 2) was
applied to the qPCR data presented in Fig-
ure 3 (A) and (B). The classification accuracy
for ACA, MCA and AMCA was shown to be
84.40 ± 6.7%, 82.74 ± 5.5% and 95.98 ± 3.4%,
respectively. The confusion matrices for each
method and the model coefficients for AMCA
are provided in Figure S4. These results sug-
gest that the AMCA method works across real-
time platforms, both quantitative and digital,
although a further study to fully characterize
the reliability in qPCR instruments (outside the
scope of this manuscript) is required.

DISCUSSION
The AMCA method was shown to enhance the
capability of high-level multiplexing in real-
time digital PCR platforms, increasing the clas-
sification accuracy by combining kinetic infor-

mation (through ACA) and thermodynamic in-
formation (through MCA). Currently, most in-
strument that have melting curve capabilities
also integrate a real-time system for extracting
amplification curves, which allows this method
to be widely applicable to many labs. Further-
more, this method shows that even a non-ideal
multiplex based on ACA or MCA may in fact
contain sufficient information when combined
together to perform accurate multiplexing, re-
ducing the need for further time and resource
consuming optimization .
On the other hand, the AMCA method re-

quires training a supervised machine learning
model which raises its own challenges. Firstly,
since 3 models are required to be trained, espe-
cially if a neural network is used, this may take
time and expertise in data science to perform.
However, computational resources have negligi-
ble cost given the wide variety of open-source
tools available for machine learning (such as
tensorflow and scikit-learn). Secondly, it is
important to ensure reproducibility of the ex-
periment from a chemistry perspective in or-
der for the training and testing data to be con-
sistent. More specifically, if the instrument or
laboratory approach show variability between
experiments, then this needs to be accounted
for from a data perspective (e.g. more data,
pre-processing or data augmentation) or exper-
imental procedures (i.e. consistent processes in
the lab). However, since it was shown in this
study that only 1000 amplification curves were
required to achieve accurate multiplexing, it is
possible to run training data within an experi-
ment to avoid inter-experiment variations. For
example, the Fluidigm qdPCR 37K digital chip
contains 48 sample inlets (each connected to a
panel of 770 wells), of which 9 panels can be
used to generate the training data, one for each
target. Assuming a digital occupancy of 80%, 9
panels translates to 5544 training data points,
which based on Figure 4 (F), is expected to give
an accuracy of 99.1%. From a practical point of
view, this means that a single digital chip could
accommodate screening 39 samples against 9
targets, whereas conventional spatial multiplex-
ing (with single-plex assays) would only manage
to screen 5 samples against the 9 targets.
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As reported in a previous study, the ACA
performance is degraded as a result of a phe-
nomenon called ‘co-amplification’, which refers
to the co-presence of multiple targets in a sin-
gle chamber in dPCR instruments. This prob-
lem can be solved by keeping the occupancy
of the digital panel (using Poisson statistics)
within acceptable bounds in order to simul-
taneously reduce co-amplification and retain
sufficient quantification precision. For exam-
ple, for mcr genes, the vast majority of stud-
ies report the presence of a single mcr vari-
ant, and only few studies have reported the
co-presence of 2 mcr variants in the same sam-
ple.39 Therefore, as in Moniri et al. (2020), con-
sidering the co-presence of 2 targets and under
the constraint of 36960 chambers (Fluidigm®

37K chip), the quantification uncertainty is be-
low 5% between 16.7% and 99.3% digital occu-
pancy.21 Currently, there is no method of iden-
tifying co-amplification events in qPCR plat-
forms using only the real-time amplification
profile. However, melting curves can be used
to circumvent this issue, although MCA is also
limited when two melting peaks are close, e.g.
within 1.0 ◦C. Recent studies show that using
the entire melting profile using machine learn-
ing methods can be beneficial for classification
purposes.37,38
This study raises several interesting questions

for future directions: (i) Is it possible to iden-
tify co-amplification events in a single well us-
ing the entire melting curve profile? (ii) What
is the highest number of targets AMCA can
accurately and reliably multiplex? (iii) Does
this method translate to other amplification
chemistries including isothermal methods?

CONCLUSION
In conclusion, we propose a new method for
high-multiplexing in real-time digital PCR in-
struments with melting curve capabilities. This
approach is based on training supervised ma-
chine learning algorithms to extract kinetic and
thermodynamic information together, to en-
hance the classification accuracy in multiplex-
ing. We successfully show a 99.3% accuracy for

identifying 9 clinically relevant targets, namely
mobilized colistin resistance, using a new multi-
plex assay based on an affordable intercalating
dye. Observing that the AMCA classification
accuracy is better than solely analyzing am-
plification or melting curves demonstrates that
the underlying biological factors driving these
methods for target identification are fundamen-
tally different. This biological insight is seen in
the parameters of the machine learning model,
which characterize the contribution of ACA and
MCA across all targets to optimize the final
classification of each amplification event. The
implications of this method motivate further re-
search in maximizing the value of nucleic acid
amplification data, by uniquely merging molec-
ular biology and data science. Extending this
to conventional qPCR instruments and isother-
mal chemistries will be extremely beneficial for
the wider scientific community.
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