
On the Hamiltonian structure of normal forms at
elliptic equilibria of reversible vector fields in R4

Jeroen S.W. Lamba,∗, Mauricio F.S. Limab, Ricardo M. Martinsc,
Marco-Antonio Teixeirac, Jiazhong Yangd

aDepartment of Mathematics, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, UK

bCMCC, UFABC, CEP 09210-580, Santo Andre SP, Brazil
cDepartment of Mathematics, IMECC, UNICAMP, CEP 13083-970, Campinas SP, Brazil

dInstitute of Mathematics, Peking University, Beijing 100871, China

Abstract

This paper addresses the question whether normal forms of smooth reversible
vector fields in R4 at an elliptic equilibrium possess a formal Hamiltonian struc-
ture. In the non-resonant case we establish a formal conjugacy between re-
versible and Hamiltonian normal forms. In the case of non-semi-simple 1 : 1
resonance and p : q resonance with p+q > 2 we establish a weaker form of equiva-
lence, namely that of a formal orbital equivalence to a Hamiltonian normal form
that involves an additional time-reparametrization of orbits. Moreover, in case
p + q > 3 we show that no formal conjugacy to a Hamiltonian normal form
exists.
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1. Introduction and main result

The similarity between certain aspects of the dynamical behaviour of time-
reversible and Hamiltonian dynamical systems, explored already by Poincaré
and Birkhoff, has attracted much attention. Many results that hold for Hamil-
tonian sytems, such as KAM theory and Lyapunov center theorems, have been
shown to hold also for time-reversible systems, see for instance [1, 2, 3, 6, 7, 8,
13, 21] and references therein. At the same time, as should be expected, there
are also many differences between Hamiltonian and reversible systems, see for
instance [13, 20].

In this paper, we address the question whether normal forms of reversible
vector fields in R4 at an elliptic equilibrium point formally have a Hamiltonian
structure. That is, given a reversible vector field with equilibrium 0 and linear
part with two pairs of purely imaginary eigenvalues, we investigate whether there
exists a change of coordinates that renders truncations of the Taylor expansion
of the vector field at any given order to be Hamiltonian.

The question we address here is antipodal to the one addressed before in
[14, 19], concerning the formal reversibility of normal forms at fixed points of
symplectic maps of the plane (which turns out to be almost always true). Some
semi-global obstructions for reversibility of two-dimensional Hamiltonian vector
fields and symplectic diffeomorphisms were presented in [12].

Recall that a vector field X : R4 → R4 has a time-reversal symmetry ϕ ∈
Diffeo(R4) if ϕ∗(X) = −X, i.e. if x(t) is a solution of ẋ = X(x) then so is
ϕx(−t). We also say thatX is ϕ-reversible, or simply reversible. In this paper we
focus on reversible vector fields without additional symmetries and thus assume
that 〈φ〉 ' Z2 (and thus that ϕ2 = id). In the neighbourhood of a ϕ-invariant
equilibrium point, say 0 satisfying X(0) = 0, by Bochner’s Theorem [18] it then
follows that there exist local coordinates in which ϕ is linear and orthogonal.
In this paper we will always assume that we start with such coordinates in the
neighbourhood of the equilibrium. From the assumptions on the eigenvalues of
the linear part of the vector field we then obtain that near an elliptic equilbrium
point dim Fix(ϕ) = 2 where Fix(ϕ) := {x ∈ R4 | ϕ(x) = x}.

A vector field X is called Hamiltonian if there exists a non-degenerate skew-
symmetric bilinear form ω and a function H : R4 → R such that ω(X(x), x) =
dH(x). By the Darboux Theorem, locally (for instance near an equilibrium
point) one can always find coordinates such that X(x) = J∇xH(x), where

J =

(
0 −I2
I2 0

)
,
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and I2 denotes the 2× 2 unit matrix.
The categories of equivalence that we consider in this paper are formal con-

jugacy and formal orbital equivalence. We say that two vector fields are formally
conjugate if there exists a formal change of coordinates transforming one vector
field to the other (to any given order, without concerning the convergence of
the transformation in the limit where the order goes to infinity). Two vector
fields X and Y are said to be formally orbitally equivalent if there is a smooth
function f : R4 → R with no zeros near 0, so that f · X (X multiplied by f)
is formally conjugate to Y . The multiplication by f has the interpretation of
a time-reparametrization of the orbits of X. Formal conjugacy between two
vector fields implies formal orbital equivalence but not vice versa.

Given a reversible vector field X with equilibrium 0 and derivative DX(0)
with eigenvalues (±αi,±βi), we say that the equilibrium of X has a p : q
(p, q ∈ Z) resonance if qα − pβ = 0. Without loss of generality we may take
α, β > 0 and α ≤ β so that p, q ∈ N with p ≤ q and gcd(p, q) = 1. Throughout
this paper we will assume that vector fields are C∞.

The main results of this paper are summarized in the following theorem:

Theorem 1.1 Let X be a reversible vector field in R4 with equilibrium 0 such
that DX(0) has two pairs of purely imaginary eigenvalues (±αi,±βi), with
α, β > 0. Then,

(i) If α : β 6∈ Q, X is generically formally conjugated to an integrable re-
versible Hamiltonian vector field. Moreover, generically this normal form
is formally orbitally five-jet determined: the vector field can be reduced to
a polynomial of degree five by the combination of a change of coordinates
and rescaling of time.

(ii) If α : β = 1 : 1 and DX(0) is not semi-simple (non-semi-simple 1 : 1
resonance1) then X is generically not formally conjugate to a Hamiltonian
vector field. But X is always formally orbitally equivalent to an integrable
Hamiltonian vector field.

(iii) If α : β = 1 : 2 then X is formally orbitally equivalent to an integrable
Hamiltonian vector field.

(iv) If α : β = p : q ∈ Q \ {1 : 1, 1 : 2} (p : q resonance with p + q > 3) then
X is formally orbitally equivalent, but generically not formally conjugate,
to a Hamiltonian vector field.

In Section 3 we state more detailed results from which one can immediately
deduce the senses of genericity we refer to.

We note that Theorem 1.1 leaves us with one open problem, whether gener-
ically the reversible normal form in the case of 1 : 2 resonance is formally

1 We note that generically , in one-parameter families of reversible vector fields, non-
semi-simple 1 : 1 resonances arise persistenty. The semi-simple 1 : 1 resonance has higher
codimension and is not considered here.
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conjugate to a Hamiltonian vector field. We have done extensive computer-
assisted computations to address this problem, but found no persistent counter
examples. In particular, in our proof of formal equivalence in the case of 1 : 2
resonance, we show how to begin the conjugacy process up to the third order,
and then turn the proof to the equivalence setting for the k-jets with k ≥ 4, due
to the apparent lack of freedom while solving some systems.

However, in the presence of additional symmetry (reversing symmetry group
D4) Martins [15, 16] has shown that the formal conjugacy to a Hamiltonian
normal form can generically be achieved up to all orders. It is thus tempting
to conjecture that formal conjugacy can indeed be obtained generically, but in
our experience it is very hard to obtain a proof of this using the methodology
set out in this paper.

The non-semi-simple 1 : 1 resonant case was considered previously by Van
der Meer et al. [17]. There, a similarity between the reversible and Hamiltonian
cases was found after reduction by the S1-equivariance of the normal form that
is generated by the semi-simple part of the derivative at 1 : 1 resonance. Our
results provide an alternative point of view, and illustrate that the reversible
normal form is formally orbitally equivalent to a Hamiltonian vector field.

Similarities between the elliptic points in four-dimensional reversible and
Hamiltonian vector fields have also been observed in the context of local bifur-
cation theory. Indeed, when using Lyapunov-Schmidt reduction, it can be shown
that the reduced bifurcation equations for subharmonic branching at p : q res-
onances in the reversible, Hamiltonian and reversible Hamiltonian contexts are
identical, and thus give rise to identical branching patterns of periodic solutions
[8]. Our results thus illustrate that the formal equivalence of branching patterns
does not imply that the corresponding vector fields are formally conjugate.

Finally, we note that it is of interest to address the question of this paper also
in the opposite direction, namely if the normal form of an elliptic equilbrium
of a Hamiltonian vector field in R4 is formally reversible. This clearly holds
in the non-resonant case (as in the simpler case in R2), but in the presence of
resonances this problem is still open.

2. Preliminaries

In this section we recall some general results and techniques for the normal-
ization of vector fields near an equilibrium solution.

Consider a vector field X on Rn with equilibrium 0. We are interested in
establising coordinates in terms of which (finite order truncations of ) Taylor
expansions have special properties. We recall that the existence of a coordinate
transformations between two vector fields is a conjugacy relation between these
two vector fields. We say that two smooth vector fields X and Y are formally
conjugate if for each order k ≥ 1 there exists a coordinate transformation φ such
that the vector field X and vector field φ∗(Y ) (conjugate to Y ) have the same
Taylor series expansion up to degree k. It is well known that a formal conjugacy
does not always imply a true conjugacy, due to the possibility of divergence of
the coordinate transformations as k →∞.
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Our starting point will often be the well-established result that coordinates
can always be chosen in such a way that the nonlinear terms of a finite order
Taylor expansion of the vector field commute with the transpose of the linear
part of the vector field. This implies in particular that the resulting Taylor
expansion commutes with the (closure of) the group generated by the semi-
simple part (in the sense of Jordan-Chevalley decomposition) of the linear part
of the vector field.

Let L = DX(0) denote the linear part of the vector field X. Then the
Jordan-Chevalley decomposition theorem asserts that J can be written uniquely
as the sum L = S +N where S is semi-simple, N is nilpotent and [S,N ] = 0.

The following normal form theorem is a reversible version of a classical result
by Belitskii [4].

Theorem 2.1 ([11]) Let X be a ϕ-reversible vector field, where ϕ acts linearly
and ϕ2 = Id. Let moreover X have equilibrium 0 and linear part L = DX(0)
with Jordan-Chevalley decomposition L = S+N . Then X is formally conjugate,
by a ϕ-equivarant coordinate transformation, to a ϕ-reversible vector field X̃
with linear part L, satisfying [(X̃−L), LT ] = 0, where LT denotes the transpose
of L.

Corollary 2.2 (Formal normal form symmetry) The normal form X̃ from
Theorem 2.1 is reversible-equivariant with respect to the group G o Z2(ϕ) with
G = {exp(St) | t ∈ R}.

The proof of Theorem 2.1 relies on the analysis of the effect of coordinate
transformations that are derived from the flow of a vector field.

Assume that X and Y are vector fields such that

jk[X,Y ] = 0, and j1Y = 0, (2.1)

where [X,Y ] denotes the Lie bracket of X and Y , and jkX denotes the k-jet of
X (equivalence class of vector fields with the same kth order Taylor expansion
as X). Let φtY denote the time-t flow of Y and X̃ = (φtY )∗X, then we have

jk+1(X̃) = jk+1X + tjk+1[X,Y ]. (2.2)

This implies that if X and X̃ are vector fields such that jkX = jkX̃ and

jk+1[X,Y ] = jk+1(X̃ −X) (2.3)

is solvable with respect to a vector field Y such that j1Y = 0, then there is a
diffeomorphism φ such that

jk+1φ∗X = jk+1X̃. (2.4)

For normalization purposes we usually assume that the linear part of the vector
field has been normalized (often to Jordan normal form), and focus on coordi-
nate transformations with linear part the identity (which are formally identical
to the time-one maps of flows of vector fields).

5



In this paper we carefully examine how within the above framework we can
find Y so that jk+1X̃ is Hamiltonian, which requires an effort that goes well
beyond the proof of Theorem 2.1, where at each order k it suffices to consider
only vector fields Y that are homogeneous of degree k.

Since there also exists a (reversible-equivariant) Hamiltonian version of The-
orem 2.1 we can moreover assume without loss of generality that Y is GoZ2($)
equivariant. Namely, if we would find Y without these properties we could ob-
tain an additional normalization hat preserves the Hamiltonian structure to
yield a G o Z2(ϕ) reversible-equivariant (and Hamiltonian) normal form. It
then follows [11] that such a normal form can also be obtained by a symmetry
preserving (Go Z2($) equivariant) coordinate transformation.

3. Detailed statement of the results

In this section, we present in more detail the results summarized in Theo-
rem 1.1. In each individual case we identify explicitly the Hamiltonian structure
of the normal forms. We will often use the identification C2 ∼= R4, in coordi-
nates zj = xj + iyj , j = 1, 2. The starting point of our study is usually the
normal form of Theorem 2.1, that is characterized by the fact that the non-
linear terms commute with the transpose of the linear part of the vector field.
By Corollary 2.2 this implies that this normal form is equivariant with respect
to the (Lie) group generated by the semi-simple part of the linear part of the
vector field, yielding in the context of this paper a formal symmetry group of the
form S1 × S1 (in the non-resonance case) or S1 (in the case of p : q resonance).
Because of this symmetry, it is useful to introduce the variables A := z1z1,
B := z2z2, C := zq1z2

p and D := C (which are invariant under the relevant
group actions).

3.1. Non-resonant case

Let X be a ϕ-reversible vector field, with ϕ(z1, z2) = (iz̄1,−iz̄2), (z1, z2) ∈
C2, and X(0) = 0, so that DX(0) has eigenvalues (±αi,±βi), with α : β 6∈ Q.
Then our starting point is the reversible-equivariant normal form

X =

αiz1 + iz1

∞∑
j+l=1

aj,lA
jBl

 ∂

∂z1
+

βiz2 + iz2

∞∑
j+l=1

bj,lA
jBl

 ∂

∂z2
,

(3.1)
where due to the ϕ-reversibility all parameters aj,l and bj,l are real. It turns
out that the sign of a0,1b1,0 is invariant under changes of coordinates that do
not change the linear part of the vector field.

Theorem 3.1 (Non-resonant formal conjugacy) Let X be ϕ-reversible and
non-resonant, as detailed above. If, with refererence to (3.1), a0,1b1,0 6= 0, then
X is formally conjugate to a ϕ-reversible Hamiltonian vector field with sym-
plectic form ω(z1, z2) = dz1 ∧ εdz2, with ε := sgn(a0,1b1,0), and Hamiltonian
H = αA+ εβB + h(A,B), where h(0, 0) = ∂Ah(0, 0) = ∂Bh(0, 0) = 0.
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In the orbital equivalence setting, the sign of a0,1b1,0 is no longer invariant.
Nevertheless, it turns out that, in terms of (3.1), the inequalities

a1,0β − b1,0α 6= 0, a0,1β − b0,1α 6= 0 (3.2)

are invariant.

Theorem 3.2 (Non-resonant orbital equivalence) Let X be a ϕ-reversible
vector field given by (3.1) where α and β satisfy (3.2). Then X is formally
orbitally equivalent to a φ-reversible Hamiltonian vector field with symplectic

form ω = dz1 ∧ dz2 and Hamiltonian H = α
2A+ β

2B+ aA
2

2 + bB
2

2 + cA
3

6 . where
a = ±1, b = ±1, and c ∈ R.

3.2. Non-semi-simple 1 : 1 resonance

Our starting point is the S1-equivariant reversible Belitskii normal form

X = (αiz1 + z2 + z1f1(A,B,C,D) + z2f2(A,B,C,D)) ∂
∂z1

+

(αiz2 + z1g1(A,B,C,D) + z2g2(A,B,C,D)) ∂
∂z2

(3.3)

where fj and gj , j = 1, 2, have no constant or linear parts. The functions f
and g moreover satisfy some conditions imposed by the ϕ-reversibility (where
without loss of generality we take ϕ as in the non-resonant case), see §4.2 .

Theorem 3.3 Let X be a 1 : 1 non-semi-simple resonant reversible vector field.
Then its normal form is formally orbitally equivalent to a Hamiltonian vector
field with symplectic form ω and Hamiltonian H = (y21 + y22)/2 + v + f(A, v),
where v = x1y2 − x2y1, A = x21 + x22, and f satisfies f(0, 0) = ∂Af(0, 0) =
∂vf(0, 0) = 0.

However, the normal form is generically not formally conjugate to a Hamil-
tonian vector field.

Remark 3.4 To be more precise about the final claim of Theorem 3.3, let us
give a simple computational argument. Consider the 3-jet of equation (3.3),
reduced by the Belitiskii normal form and reversibility. We can write this system
in real coordinates as

ẋ1 = −x2 + y1 − x2(a1A+ a2v)

ẋ2 = x1 + y2 + x1(a1A+ a2v)

ẏ1 = −y2 − y2(a1A+ a2v) + x1(a3v + a4A)

ẏ2 = y1 + y1(a1A+ a2v) + x2(a3v + a4A),

where A = x21 + x22 and v = x1y2 − x2y1. Define H = H2 + H3 + H4 and Y =
J∇H, where Hk is a homogeneous polynomial of degree k and J is the canonical
sympletic matrix. If X is conjugate to some Hamiltonian vector field, then there
exist such H and a change of coordinates Ψ = Id + ψ, with ψ = o(|x|3), such
that

j3(DΨ(x)X(x)) = j3(Y (Ψ(x)). (3.4)
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In turns out that a solution can be obtained if and only if a3 = −2a1. If this
condition holds, at the next (5th) order a similar condition arises.

3.3. 1:2 resonance

Let X be a ϕ-reversible vector field with equilibrium 0 and linear part that
has eigenvalues (±λi,±2λi), with ϕ(z1, z2) = −(z̄1, z̄2). Then the corresponding
Poincaré-Dulac normal form can be written in the form

ż1 = iλz1 + z1f1(A,B,C,D) + z̄1z2f2(B,D)

ż2 = 2iλz2 + z2g1(A,B,C,D) + z21g2(A,C),

(3.5)

where A = z1z̄1, B = z2z̄2, C = z21 z̄2, and D = C̄.
We are considering the following generical (mutually exclusively satisfied)

conditions:
f2(0, 0)g2(0, 0) < 0
f2(0, 0)g2(0, 0) > 0

(3.6)

The 1 : 2 resonance is unique among other resonances that it has quadratic terms
appearing in the preliminary normal form. Since, as a general rule, the lower
order a nonlinear resonant term has, the more it influences the local dynamical
properties, the appearance of quadratic resonant terms in the 1 : 2 resonance
normal form is of particular importance. In applications, the 1 : 2 resonance is
often described as being the most energetic, see for instance [5] and references
therein for more details.

Theorem 3.5 Let X be a ϕ-reversible vector field with equilibrium 0 and DX(0)
having purely imaginary eigenvalues at 1 : 2 resonance. Then, with reference
to (3.5), if f2(0, 0)g2(0, 0) < 0 then X is formally orbitally equivalent to the
Hamiltonian vector field

ż1 = i
∂H

∂z̄1
, ż2 = i

∂H

∂z̄2
,

where H = λ(A+ 2B) + (C −D)η1(A,B) + η2(A,B).
If f2(0, 0)g2(0, 0) > 0 then X is formally orbitally equivalent to

ż1 = i
∂H

∂z̄1
, ż2 = −i∂H

∂z̄2
,

where H = λ(A− 2B) + (C −D)η1(A,B) + η2(A,B).
In either case, η1 has no constant part and η2 has no constant or linear part.

3.4. p : q resonance

In this section we illustrate the results concerning all the other possible
resonant cases. These mainly include 1 : N (N ≥ 3) resonances and p : q
(p > 1) resonances. We shall not distinguish 1 : N resonance from p : q
although conventionally p : q resonance refers to p > 1.
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Let X be a ϕ time reversible vector field with p : q resonance. Assume that
ϕ takes the form ϕ(z1, z2) = −(z̄1, z̄2), then X can be put into the resonant
normal form:

ż1 = piλz1 + z1f1(A,B,C,D) + z̄q−11 zp2f2(A,B,C,D)

ż2 = qiλz2 + z2g1(A,B,C,D) + zq1 z̄
p−1
2 g2(A,B,C,D),

(3.7)

where A = z1z̄1, B = z2z̄2, C = zq1 z̄
p
2 , D = C̄.

As mentioned previously, all resonant terms in (3.7) are derived from two
kinds of terms. One is from zjA

mBn, and the other is from z̄q−11 zp2∂/∂z1 and

zq1 z̄
p−1
2 ∂/∂z2. Respectively, we call them the first and the second kind of res-

onant terms. The lowest order of the first kind of resonant terms is 3 whereas
the lowest order of the second kind of resonant terms is p + q − 1 which is no
less than 3. Note that the the sign of f2(0, 0, 0, 0)g2(0, 0, 0, 0) is invariant un-
der changes of coordinates and the multiplication of real functions. It is also
interesting to note that the symplectic forms depend only on the second kind
of resonant terms with the lowest order (see [5] and reference therein for more
details on the dynamics of the lowest order terms). Thus generically we have
two cases f2(0, 0, 0, 0)g2(0, 0, 0, 0) > 0 and f2(0, 0, 0, 0)g2(0, 0, 0, 0) < 0.

In this paper, we prove the following

Theorem 3.6 Let X be a ϕ time reversible vector field having p : q resonance
and having a generic nonlinear part. In terms of (3.7), if f2(0, 0, 0, 0)g2(0, 0, 0, 0) <
0, then X is formally orbitally equivalent to a Hamiltonian vector field

ż1 = i
∂H

∂z̄1
, ż2 = i

∂H

∂z̄2
,

where H = pz1z̄1 + qz2z̄2 + · · · . If f2(0, 0, 0, 0)g2(0, 0, 0, 0) > 0, then X is
formally orbitally equivalent to a Hamiltonian vector field

ż1 = i
∂H

∂z̄1
, ż2 = −i∂H

∂z̄2
,

where H = pz1z̄1−qz2z̄2+· · · and the dots denote the higher order terms. More-
over, generically the normal form is not formally conjugate to a Hamiltonian
vector field.

4. Proofs

In this section we present the proofs for the results stated in Section 3, and
summarized in Theorem 1.1.
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4.1. Non-resonant case

4.1.1. Formal conjugacy: proof of Theorem 3.1

We only consider the case a01b10 > 0. The proof in case a01b10 < 0 is similar.
To prove the theorem we need to show that for any fixed k ≥ 0,

X(2k+3) =
−x2

∑
i+j=k+1(ai,jA

iBj ∂
∂x1

+ x1
∑
i+j=k+1 ai,jA

iBj ∂
∂x2

+

−y2
∑
i+j=k+1 bi,jA

iBj ∂
∂y1

+ y1
∑
i+j=k+1 bi,jA

iBj ∂
∂y2

can be so normalized that the following compatibility relations hold.

(j + 1)ak−j,j+1 = (k − j + 1)bk−j+1,j , j = 0, 1, . . . , k. (4.1)

Namely, if these compatibility conditions are satisfied then there exists a gener-
ating function of the form Hk =

∑
i+j=k+2 hi,jA

iBj , where hi,j will be choosen
in an adequate way.

We prove things order-by-order. As the lowest order of resonant terms,
X(3) can be normalized to satisfy (4.1). Namely, in terms of (3.1), we can put
a0,1 = b1,0 by applying linear scalings of z1 and z2, recalling the assumption
that a0,1b1,0 > 0. Moreover, one can scale variables so that a0,1 = b1,0 = ±1.

Next we show that the normalization of X(2k+3) can be done for any k > 0.
Following the methodology of Section 2 we have to show the solvability of Y
from the following homological equation

[X(3), Y ] = X̃(2k+3) −X(2k+3), (4.2)

where X̃ = J∇Hk for some polynomial Hamiltonian Hk : R4 → R of degree
2k + 4.

Note that

X̃(2k+3) =
−x2

∑
i+j=k+1(i+ 1)hi+1,jA

iBj ∂
∂x1

+ x1
∑
i+j=k+1(i+ 1)hi+1,jA

iBj ∂
∂x2

+

−y2
∑
i+j=k+1(j + 1)hi,j+1A

iBj ∂
∂y1

+ y1
∑
i+j=k+1(j + 1)hi,j+1A

iBj ∂
∂y2

Writing Y in the form

Y =


x1
(
αk,0A

k + αk−1,1A
k−1B + . . .+ α1,k−1AB

k−1 + α0,kB
k
)

x2
(
αk,0A

k + αk−1,1A
k−1B + . . .+ α1,k−1AB

k−1 + α0,kB
k
)

y1
(
βk,0A

k + βk−1,1A
k−1B + . . .+ β1,k−1AB

k−1 + β0,kB
k
)

y2
(
βk,0A

k + βk−1,1A
k−1B + . . .+ β1,k−1AB

k−1 + β0,kB
k
)


the left side of (4.2) can be calculated explicitly:

[X(3), Y ] =


−2x2

(
γ0A

k+1 + γ1A
kB + . . .+ γkAB

k + γk+1B
k+1
)

2x1
(
γ0A

k+1 + γ1A
kB + . . .+ γkAB

k + γk+1B
k+1
)

−2y2
(
δ0A

k+1 + δ1A
kB + . . .+ δkAB

k + δk+1B
k+1
)

2y1
(
δ0A

k+1 + δ1A
kB + . . .+ δkAB

k + δk+1B
k+1
)
 , (4.3)

where γ0 = αk,0a1,0, γk+1 = βk,0a0,1, δ0 = αk,0a0,1, δk+1 = β0,kb0,1 and γj =
αk−j,ja1,0 + βk−j+1,j−1a0,1, δj = αk−j,ja0,1 + βk−j+1,j−1b0,1 for j = 1, . . . , k.
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The right side of (4.2) is:

X̃(2k+3) −X(2k+3) =


−x2

(∑
i+j=k+1[(i+ 1)hi+1,j − ai,j ]AiBj

)
x1

(∑
i+j=k+1[(i+ 1)hi+1,j − ai,j ]AiBj

)
−y2

(∑
i+j=k+1[(j + 1)hi,j+1 − bi,j ]AiBj

)
y1

(∑
i+j=k+1[(j + 1)hi,j+1 − bi,j ]AiBj

)

 (4.4)

Now comparing (4.3) and (4.4), we see that to solve [X(3), Y ] = X̃(2k+3) −
X(2k+3) is equivalent to solve, for α’s, β’s and h’s, the following system of
equations: 

2αk,0a1,0 = (k + 2)hk+2,0 − ak+1,0

2βk,0a0,1 = h1,k+1 − a0,k+1

2αk,0a0,1 = hk+1,1 − bk+1,0

2β0,kb0,1 = (k + 2)h0,k+2 − b0,k+1

2[αk−1,1a1,0 + βk,0a0,1] = (k + 1)hk+1,1 − ak,1
...

2[α0,ka1,0 + β1,k−1a0,1] = 2h2,k − a1,k
2[αk−1,1a0,1 + βk,0b0,1] = 2hk,2 − b1,k

...
2[α0,ka0,1 + β1,k−1b0,1] = (k + 1)hk−1,2 − bk,1

We rewrite this system as

2αk,0a1,0 = (k + 2)hk+2,0 − ak+1,0

2αk,0a0,1 = hk+1,1 − bk+1,0

2βk,0a0,1 = h1,k+1 − a0,k+1

2β0,kb0,1 = (k + 2)h0,k+2 − b0,k+1

2[αk−1,1a1,0 + βk,0a0,1] = (k + 1)hk+1,1 − ak,1
2[αk−1,1a0,1 + βk,0b0,1] = 2hk,2 − b1,k

...
2[α0,ka1,0 + β1,k−1a0,1] = 2h2,k − a1,k
2[α0,ka0,1 + β1,k−1b0,1] = (k + 1)hk−1,2 − bk,1

As a0,1 6= 0, the above system has solution. For k = 1, one solution is:

α1,0 = 1/4 (−2 b2,0a0,1 + a1,1a0,1 − a1,0b1,1 + 2 a1,0a0,2)/a20,1,

α0,1 = 1/2 (2 a0,2 − b1,1)/a0,1,

h3,0 = 1/12 (−2 a1,0b2,0a0,1 + a1,0a1,1a0,1 − a21,0b1,1 + 2 a21,0a0,2 + 2 a2,0a
2
0,1)/a20,1,

h2,1 = 1/4 (a1,1a0,1 − a1,0b1,1 + 2 a1,0a0,2)/a0,1,

h1,2 = 1/2 a0,2,

h0,3 = 1/6 b0,2.
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4.1.2. Formal orbital equivalence: Theorem 3.2

Formal conjugacy, as established in the previous section, implies formal or-
bital equivalence. It remains to be shown that in the formal orbital equivalence
setting the resulting Hamiltonian can generically be chosen to be polynomial .
The aim is to show that by a combination of a coordinate transformation and
multiplication of the vector field by a formal power series with no zeros near
0, (3.1) can be normalized to a Hamiltonian vector field, with H given in the
statement of Theorem 3.2 and XH given by

ẋ1 = −αx2 − ax2∆1 − cx2∆2
1

ẋ2 = −αx1 − ax1∆1 − cx1∆2
1

ẏ1 = −βy2 − by2∆2

ẏ2 = βy1 + by1∆2,

, (4.5)

where a = ±1, b = ± and c ∈ R.
We proceed order by order. We start multiplying the 3-jet j3X of X by the

function

h1 = 1− b1,0
β
A− a0,1

α
B

yielding

j3(h1 ·X) = (−αx2 − x2ã1,0A)
∂

∂x1
+ (αx1 + x1ã1,0A)

∂

∂x2

+
(
−βy2 − y2b̃0,1B

) ∂

∂y1
+
(
βy1 + y1b̃0,1B

) ∂

∂y1

where ã1,0 =
(
βa1,0−b1,0α

β

)
and b̃0,1 =

(
αb0,1−a0,1β

α

)
.

Moreover, due to the genericity conditions (3.2), we can scale ã1,0 and b̃0,1
to ±1. We thus may normalize j3X to

(−αx2 − x2ε1A)
∂

∂x1
+(αx1 + x1ε1A)

∂

∂x2
+(−βy2 − y2ε2B)

∂

∂y1
+(βy1 + y1ε2B)

∂

∂y1
(4.6)

where ε1 = ±1, ε2 = ±1. We note that the signs of ε1 and ε2 are independent.
Having normalized j3X to (4.6), next we consider the normalization of the

homogenous terms of degree 5. Let X(5) denote these terms, as obtained after
the previous normalization step. We may write

X(5) = −x2
(
a2,0A

2 + a1,1AB + a0,2B
2
) ∂

∂x1
+ x1

(
a2,0A

2 + a1,1AB + a0,2B
2
) ∂

∂x2

− y2
(
b2,0A

2 + b1,1AB + b0,2B
2
) ∂

∂y1
+ y1

(
b2,0A

2 + b1,1AB + b0,2B
2
) ∂

∂y1

We now multiply the vector field X by a function h2 = 1 + θ1A
2 + θ2AB +

θ3B
2, where θ’s are parameters that will be specified further below.
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The third jet of the resulting vector field h2 ·X is the same of X, and the
terms of h2 ·X of homogeneous degree 5 are

X̃(5) = −x2
(
(a2,0 + θ1)A2 + (a1,1 + θ2)AB + (a0,2 + θ3)B2

) ∂

∂x1

+ x1
(
(a2,0 + θ1)A2 + (a1,1 + θ2)AB + (a0,2 + θ3)B2

) ∂

∂x2

− y2
(
(b2,0 + θ1)A2 + (b1,1 + θ2)AB + (b0,2 + θ3)B2

) ∂

∂y1

+ y1
(
(b2,0 + θ1)A2 + (b1,1 + θ2)AB + (b0,2 + θ3)B2

) ∂

∂y1

We have to pass X̃(5) to

X
(5)
H = −cx2A2 ∂

∂x1
− cx1A2 ∂

∂x2
,

so we we perform a change of coordinates generated by

Y2 = x1(γ1,0A+ γ0,1B) ∂
∂x1

+ x2(γ1,0A+ γ0,1B) ∂
∂x2

y1(δ1,0A+ δ0,1B) ∂
∂y1

+ y2(δ1,0A+ δ0,1B) ∂
∂y2

where γ’s and δ’s are real parameters. Now, just like in the previous case, we

have to solve [X̃(3), Y ] = X(5) − X(5)
H . One can check that a solution of this

system is given by

θ1 = −b2,0
θ2 =

1

6

−2γ1,0a1,0 + 2γ1,0b1,0α− b2,0β + a2,0β

β
θ3 = −a0,2
δ1,0 = −1

2

α(2γ0,1b1,0α+ a1,1β − 2γ0,1a1,0β − b1,1β)

β(b0,1α− a0,1β)

δ0,1 = −1

2

α(−b0,2 + a0,2)

b0,1α− a0,1β

,

with γ1,0, γ0,1 free variables.
Let us now fix the (Hamiltonian) polynomial vector field j5X as obtained by

the above normalization procedure. We proceed to show that all higher order
terms can be eliminated. In order to normalize X(2k+1), k ≥ 3, we first multiply
the vector field by a function of the form

hk = 1 +

k∑
j=0

θk−j,jA
(k−j)Bj , (4.7)

with parameters θk−j,j and subsequently perform a change of coordinates, gen-
erated by a vector field of the form

Yk =

k−1∑
j=0

Ak−1−jBj(αk−1−j,jz1
∂

∂z1
+ βk−1−j,jz2

∂

∂z2
) (4.8)
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where α’s and β’s are parameters. Then (Yk)∗(hkX) takes the form

iz1

1 + ε1A+ cA2 +

k−1∑
j=0

(ak−j,jθk−j,j − 2ε1αk−1−j,j)A
k−jBj + (a0,k + θ0,k)Bk

 ∂

∂z1

+iz2

λ+ ε2B +

k∑
j=1

(bk−j,j + λθk−j,j − 2ε1βk−1−j,j−1)Ak−jBj + (bk,0 + λθk,0)Ak

 ∂

∂z2

.

The elimination of all terms is equivalent to the solvability, with respect to the
parameters θi,j , αi,j and βi,j , of the following system of equations:

ak−j,j + θk−j,j − 2ε1αk−1−j,j = 0, j = 0, . . . , k − 1
bk−j,j + λθk−j,j − 2ε2βk−j,j−1 = 0, j = 1, . . . , k,

a0,k + θ0,k = 0,
bk,0 + λθk,0 = 0,

where ai,j , bi,j ∈ R are constants whose values depend on the details of X(2k+1).
Due to the upper triangular form of this system of the equations, its solvability
is evident.

We remark that we do not need the coefficients β’s (in the same way we did
not used the coefficients γ’s in the normalization of 5-jet). The explanation for
that is easy: while the reparametrization function hk eliminate the monomials
in the first two coordinates, the change of coordinate eliminate the monomials
in the last two equations. �

4.2. Non-semi-simple 1 : 1 resonance: Theorem 3.3

Without loss of generality, we assume that the eigenvalues of the vector fields
are equal to ±i. We start from the reversible Belitskii normal form (which has
its nonlinear terms commuting with the transpose of the linear part)

X = (−x2 + y1 − x2(a1A+ a2v) + · · · ) ∂
∂x1

+ (x1 + y2 + x1(a1A+ a2v) + · · · ) ∂
∂x2

+ (−y2 − y2(a1A+ a2v) + x1(a3v + a4A) + · · · ) ∂
∂y1

+ (y1 + y1(a1A+ a2v) + x2(a3v + a4A) + · · · ) ∂
∂y2

,

where the dots denote the higher order terms and the a’s denote parame-
ters. The 3-jet of the vector field is Hamiltonian with respect to the stan-
dard symplectic form if and only if a3 = −2a1, with Hamiltonian function
H4 = (y21 + y22)/2 + v + a1Av + a2v

2/2− a4A2/4.
The condition a3 = −2a1 can be achieved by a re-scaling of time. After

multiplication of X by f = 1 + αA where α is a parameter, we get:

(fX) =
(
−x2 + y1 − x2((a1 + α)A+ a2v) + y1(αA) · · ·

)
∂
∂x1

+
(
x1 + y2 + x1((a1 + α)A+ a2v) + y2(αA) + · · ·

)
∂
∂x2

+ (−y2 − y2((a1 + α)A+ a2v) + x1(a3v + a4A) + · · · ) ∂
∂y1

+ (y1 + y1((a1 + α)A+ a2v) + x2(a3v + a4A) + · · · ) ∂
∂y2

(4.9)
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Using in turn another coordinate transformation to the Belitskii normal form,
the underlined terms of (4.9) may be eliminated. Moreover, the remaining terms
of (4.9) are not affected because they belong to the complement of the image of
the homological operator; the change of coordinate

Id+


x1((1/2)α∆2) + y2(−αv)
x2((1/2)α∆2)− y1(−αv)

0
0


realize this. So the desired Hamiltonian form is obtained if α ∈ R is chosen such
that a3 = −2(a1 + α).

Starting with the (2k − 3)-jet in Hamiltonian form, with k ≥ 2, we proceed
to normalize the (2k − 1)-jet

X(2k−1) =
(
−x2

∑k
j=1 bjA

k−jvj−1
)

∂
∂x1

+
(
x1
∑k
j=1 bjA

k−jvj−1
)

∂
∂x2

+(
−y2

∑k
j=1 bjA

k−jvj−1 + x1
∑k
j=1 cjA

k−vj−1
)

∂
∂y1

+(
y1
∑k
j=1 bjA

k−jvj−1 + x2
∑k
j=1 cjA

k−jvj−1
)

∂
∂y2

as follows. We first multiply by a function f of the form f = 1+
∑k−1
j=1 θjA

k−jvj−1

to obtain

X̃(2k−1) =
(
−x2

∑k
j=1(bj + θj)A

k−jvj−1 + y1
∑k−1
j=1 θjA

k−jvj−1
)

∂
∂x1

+(
x1
∑k
j=1(bj + θj)A

k−jvj−1 + y2
∑k−1
j=1 θjA

k−jvj−1
)

∂
∂x2

+(
−y2

∑k
j=1(bj + θj)A

k−jvj−1 + x1
∑k
j=1 cjA

k−vj−1
)

∂
∂y1

+(
y1
∑k
j=1(bj + θj)A

k−jvj−1 + x2
∑k
j=1 cjA

k−jvj−1
)

∂
∂y2

.

As above the underlined terms can be killed, without changing the other
terms, by the change of coordinate

Id+


x1f(v,A,B)− y2g(v,A)
x2f(v,A,B) + y1g(v,A)

0
0

 ,

with g(v,A) =
∑k−2
j=0 θk−j−1v

k−j−1Aj and f(v,A,B) = B
∑k−2
j=0 θ1+jA

k−jvj .
So and we may choose θj , j = 1, . . . , k such that

jcj+1 = −2(k − j)(bj + θj), j = 1, . . . , k. �

4.3. 1 : 2 resonance: Theorem 3.5

The aim is to prove that in the case of 1 : 2 resonance, generically the vector
field is formally orbitally equivalent to a Hamiltonian vector field.
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We start with a reversible vector field X with linear part having eigenvalues
(±λi,±2λi). ϕ time reversible, where ϕ(z1, z2) = −(z̄1, z̄2). Therefore X can
be assumed to be in normal form (3.5), where, due to the reversibility, the
coefficients of all odd degree homogenous terms of X (in terms of z1, z̄1, z2, z̄2)
are purely imaginary and the coefficients of all even degree homogenous terms
are real.

We first observe some useful equalities between the variables:

CD = A2B, z̄1z2A
k = z1A

k−1C, z21D
k = z2A

2Dk−1,
z̄1z2C

k = z1ABC
k−1, z21B

k = z2B
k−1C

(4.10)
where k is any positive integer.

Up to linear scalings of z1 and z2, the genericity conditions (3.6) can be
divided into two cases: (i) f2(0, 0) = −2, g2(0, 0) = 1; and (ii) f2(0, 0) = 2,
g2(0, 0) = 1. Below we only consider the first case, i.e., f2(0, 0) = −2 and
g2(0, 0) = 1. The other case can be treated exactly in the same way.

We denote byX(n) = Pn∂/∂z1+Qn∂/∂z2, where Pn andQn are homogenous
polynomial of degree n of their variables. For simplicity, we often use the tuple
(Pn, Qn) to denote the above named X(n). We may write:

X(2) = (−2z̄1z2, z
2
1),

X(3) = (iz1(a2A+ a3B), iz2(b2A+ b3B)),
X(4) = (z1(a4C + a5D) + a6z̄1z2B, z2(b4C + b5D) + b6z

2
1A), . . . .

To express X(n) in an explicit way for general n, one needs to distinguish
the following cases X(6k+j), for j = 1, 2, ..., 6. This is because that A and B are
terms of degree 2 while C and D are terms of degree 3.

Let
X(6k+2n) = (In, IIn), n = 0, 1, 2 (4.11)

with

In = z1
∑k
s=σn

∑3s+n−2
j=0 (fsjC

2k−2s+1 + gsjD
2k−2s+1)A3s+n−2−jBj

+z̄1z2
∑ωn

l=0hlD
2lB3k−3l+n−1

IIn = z2
∑k
s=σn

∑3s+n−2
j=0 (f̃sjC

2k−2s+1 + g̃sjD
2k−2s+1)A3s+n−2−jBj

+z21
∑ωn

l=0h̃lC
2lB3k−3l+n−1

(4.12)
and

X(6k+2n+1) = (In, IIn), n = 0, 1, 2 (4.13)
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where

In = iz1

3k+n∑
j=0

ajA
3k+n−jBj + iz1

k−1∑
s=0

3s+n∑
j=0

(fsjC
2k−2s + gsjD

2k−2s)A3s+n−jBj

+iz̄1z2

νn∑
l=0

hlD
2l+1B3k−3l+n−2

IIn = iz2

3k+n∑
j=0

bjA
3k+n−jBj + iz2

k−1∑
s=0

3s+n∑
j=0

(f̃sjC
2k−2s + g̃sjD

2k−2s)A3s+n−jBj

+iz21

νn∑
l=0

h̃lC
2l+1B3k−3l+n−2

(4.14)
with σn := |

]
2−n
3

[
|, νn :=

[
| k + n−2

3 |
]

and ωn :=
[
| k + n−1

3 |
]

where [| α|] is the
biggest integer smaller than α and |]α[| is the smallest integer greater than α

Moreover, a straightforward calculation gives us the number of resonant
terms in X(n):

X(6k) contains 6k2 + 4k resonant terms;

X(6k+1) contains 6k2 + 6k + 2 resonant terms;

X(6k+2) contains 6k2 + 8k + 2 resonant terms;

X(6k+3) contains 6k2 + 10k + 4 resonant terms;

X(6k+4) contains 6k2 + 12k + 6 resonant terms;

X(6k+5) contains 6k2 + 14k + 8 resonant terms.

It is clear that in the above expressions, we have taken in account the re-
lations (4.10). Observe that when we say numbers of resonant terms we mean
the numbers of mutually different resonant terms.

Note that X(6k+j+1) has 2k + 2 more resonant terms than X(6k+j) for j =
0, 2, 3, 4, 5, whereas X(6k+2) has 2k more terms than X(6k+1)

Here we have to prove that for each k ≥ 2 and assuming the generic condition
(3.6)-1, X(k) can be normalized in the following way

X(k) = i
∂H(k+1)

∂z̄1

∂

∂z1
+ i

∂H(k+1)

∂z̄2

∂

∂z2
(4.15)

where H(k+1) is a function of homogenous degree k + 1 of z1, z̄1 and z2, z̄2.
The validity of the (4.15) for X(1) is trivial, i.e. X(1) = i(∂H(2)/∂z̄1,

∂H(2)/∂z̄2), where H(2) = λ(A + 2B). It is also valid for X(2). In fact, since
X(2) = (−2z̄1z2, z

2
1), one can take H(3) = i(C−D) so that X(2) = i(∂H(3)/∂z̄1,

∂H(3)/∂z̄2). Note that H(3) contains just real terms, since C − D is purely
imaginary. Starting from X(3), below we show that the statement is also true,
without any condition imposed on the higher order nonlinear terms.
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To see the validity of (4.15) for X(3), we assume that X(3) = (iz1(a1A +
a2B), iz2(b1A+ b2B)), where a1,2 and b1,2 are real. We need to show that X(3)

can be transformed to X̃(3), where the corresponding coefficients ã1, ã2, b̃1 and
b̃2 satisfy the equality ã2 = b̃1. Indeed, if so, then we have X̃(3) = i(∂H(4)/∂z̄1,

∂H(4)/∂z̄2), where H(4) = ã1
2 A

2 + ã2AB + b̃2
2 B

2.
To get the equality, we perform a resonant change of coordinates (z1, z2)→

Id+(αz̄1z2, βz
2
1) with inverse (z1, z2)→ Id−(αz̄1z2, βz

2
1)+(αβz1A+α2z1B, 2αβz2A)+

o(4), which obviously keeps X(2) unchanged and brings the following contribu-
tion to the original X(3): (−(α + 2β)z1A − 4αz1B, 2(α + 4β)z2A). In other
words,

ã1 = a1 − (α+ 2β), ã2 = a2 − 4α, b̃1 = b1 + 2(α+ 4β), b̃2 = b2.

Thus it is always possible to choose suitable α (or β) to meet the requirement.
We emphasize that there are now six cases X(6k+j), j = 1, 2, ..., 6 to be

analyzed. We divide our analysis in two cases: i) the polynomial that contains
just even order terms, X(6k+2n) and otherwise ii) X(6k+2n+1).

Consider X(6k+2n) written in the general form (4.11). Next step is to show
that such terms can be normalized in such a way that its first component (ż1,)
takes the form

Ĩn = z1

3k+n−2∑
j=0

[αj(3k + n− 1− j)C − αj(3k + n+ 1− j)D]A3k+n−2−jBj

+2z̄1z2α3k+n−1B
3k+n−1

(4.16)
and the second, corresponding to ż2, is

ĨIn = z2

3k+n−2∑
j=0

[αj+1(j + 2)C + αj+1(J + 1)D]A3k+n−1−jBj

+z21αoA
3k+n−1

(4.17)

If such normalization can be realized then we can take the following function
H(6k+2n+1) as the generating function of the normalized X(6k+2n).

H(6k+2n+1) = −i
3k+n−1∑
j=0

αj (C −D)A3k+n−1−jBj , (4.18)

since one can check directly that X(6k+2n) = (i∂H/∂z̄1, i∂H/∂z̄2).
Similar argument can be used for the second case X(6k+2n+1). In this case

all terms in C and D can be killed. Hence H(6k+2n+2) can be taken having the
form H(A,B).

We back now to the case 6k+ 2n : first of all we show that the independent
terms of C and D with exponents greater than 1 can be killed. After that
we show that the remaining coefficients in (4.12), denoted by fj := fkj , gj :=

gkj , f̃j := f̃kj , g̃j := g̃kj , j = 0, . . . , 3k + n − 3, ho e h̃o, can be selected to
satisfy the following compatibility conditions:
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(j + 2)fj+1 = (3k + n− 2− j)f̃j
(j + 1)gj+1 = (3k + n− j)g̃j , j = 0, . . . , 3k + n− 3

fo = (3k + n− 1)h̃o
2g̃3k+n−2 = (3k + n− 1)ho

(3k + n+ 1− j)fj = −(3k + n− 1− j)gj
(j + 1)f̃j = −(j + 2)g̃j , j = 0, . . . , 3k + n− 2.

(4.19)

To do that we consider a coordinate system given by (z1, z2) 7→ (z1, z2) +
Y (6k+2n−1)(z1, z2) with

Y (6k+2n−1)(z1, z2) = (F (z1, z̄1, z2, z̄2), G(z1, z̄1, z2, z̄2)), (4.20)

where

F = z1
∑3k+n−1
j=0 εjA

3k+n−1−jBj

+z1
∑k−1
s=σ̃n

∑3s+n−1
j=0 (αsjC

2k−2s + βsjD
2k−2s)A3s+n−1−jBj

+z̄1z2
∑ηn
l=0 γlD

2l+1B3k−3l+n−3,

and

G = z2
∑3k+n−1
j=0 ε̃jA

3k+n−1−jBj

+z2
∑k−1
s=σ̃n

∑3s+n−1
j=0 (α̃sjC

2k−2s + β̃sjD
2k−2s)A3s+n−1−jBj

+z21
∑ηn
l=0 γ̃lC

2l+1A3k−3l+n−3.

with σ̃n := |
]
1−n
3

[
| and ηn :=

[
| k + n−3

3 |
]

By doing so we can decouple the system of homological equations in the
following way. We first perform changes of coordinates to eliminate the resonant
terms corresponding to terms containing C and D with exponent bigger than
1. Then we prove that there exists a suitable function of the form f = 1 +∑3k+n−2
j=0 [θjC + ψjD]A3k+n−2−jBj , such that under the multiplication by f

the compatible conditions can be satisfied. Note that the function f does not
create any new resonant terms containing C and D in X(6k+2n). When these
two steps are satisfied the system X(6k+2n) gets the desired normalization.

Recall that X(2) = (−2z̄1z2, z
2
1) and Y (6k+2n−1) is given by (4.20). The

first step of its normalization is based on the Lie bracket [X(2), Y (6k+2n−1)]. A
straightforward calculation yields that

[X(2), Y (6k+2n−1)] = I
∂

∂z1
+ J

∂

∂z2
, (4.21)

where I = I1 + I2, and J = J1 + J2 with
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I1 = O(C1) + z1

k−1∑
s=σ̃n+1

C2k−2s+1
{

(αs,1 + 2γ̃k−s)A
3s+n−2+

+

3s+n−3∑
j=1

[αs−1,j−1(4k − s+ n+ 2− j) + 2α̃s−1,j−1+

+(j + 1)αs,j+1]A3s+n−2−jBj + (3s+ n− 1)αs,3s+n−1B
3s+n−2}+

+z1C
2k−2σ̃n+1

X0(n)

2γ̃k−1A+

1∑
j=0

(j + 1)α1,j+1A
1−jBj

+ X2(n)α0,1


+O(D1)+

z1

k−1∑
σ̃n+1

D2k−2s+1


3s+n−4∑
j=0

[−2βsj(3s+ n− j) + +βs−1,j(2k − 2s+ 2 + j)+

+2β̃sj ]A
3s+n−2−jBj+

+[−6βs,3s+n−3 + β̃s,3s+n−3 + γk−s(2k + s+ n− 1)]AB3s+n−2+

+ [−4βs,3s+n−2 + 2β̃s,3s+n−2]B3s+n−2
}

+

+z1D
2k−2σ̃n+1

X0(n)

2kγk−1A+

1∑
j=0

[−2β1,j(3− j) + 2β̃1,j ]A
1−jBj

 +

+ X2(n)[−4β00 + 2β̃00]
)

and
I2 = z̄1z2(−2ε3k+n−1 + 2ε̃3k+n−1)B3k+n−1+

+z̄1z2

k−1∑
s=σ̃n

(−2βs,3s+n−1 + 2β̃s,3s+n−1)D2k−2sB3s+n−1
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In a similar way, we write J = J1 + J2 where

J1 = O(C1) + z2

k−1∑
s=σ̃n+1

C2k−2s+1
{

[2α̃s,1 − 2αs,1 − 2γ̃k−s(4k − s+ n− 1)]A3s+n−2+

+

3s+n−3∑
j=1

[−2(4k − s+ n+ 1− j)α̃s−1,j−1 + (j + 2)α̃s,j+1−

−2αs,j+1]A3s+n−2−jBj + [(3s+ n)α̃s,3s+n−1 − 2αs,3s+n−1]B3s+n−2}+

+z2C
2k−2σ̃n+1

X0(n)

−8γ̃k−1A+

1∑
j=0

[(j + 2)α̃1,j+1 − 2α1,j+1]A1−jBj


+X2(n)[2α̃0,1 − 2α0,1]) +O(D1)+

+z2

k−1∑
s=σ̃n+1

D2k−2s+1


3s+n−4∑
j=0

[−2(3s+ n− 1− j)β̃sj+

+(3k − 2s+ 3 + j)β̃s−1,j − 2βs−1,j ]A
3s+n−2−jBj

−[4β̃s,3s+n−3 + 2γk−s]AB
3s+n−3 − 2β̃s,3s+n−2B

3s+n−2
}

+

+z2D
2k−2σ̃n+1

X0(n)

−2γk−1A+

1∑
j=0

−2(3− 1− j)β̃1,jA1−jBj


+X2(n)(−2β̃0,0)

)
and

J2 = z21(ε̃0 − 2ε0)A3k+n−1+

+z21

k−1∑
s=σ̃n

(α̃s,0 − 2αs,0)C2k−2sA3s+n−1

where XR is the characteristic function of the set R.
The elimination of the terms having exponents greater than 1 in C and D

in the normal form is equivalent to get the solubility of the following systems:
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αs,1 + 2γ̃k−s = ε
(1)
6k+2n−1

(4k − s+ n+ 2− j)αs−1,j−1 + α̃s−1,j−1 + (j + 1)αs,j+1 = ε
(2)
6k+2n−1

(3s+ n− 1)αs,3s+n−1 = ε
(3)
6k+2n−1

X0(n) (2γ̃k−1 + α1,1) = X0(n)ε
(4)
6k+2n−1

X0(n)α1,2 = X0(n)ε
(5)
6k+2n−1

X2(n)α0,1 = X2(n)ε
(6)
6k+2n−1

2α̃s,1 − 2αs,1 − (4k − s+ n− 1)γ̃k−s = ε
(7)
6k+2n−1

−2(4k − s+ n+ 1− j)α̃s−1,j−1 + (j + 2)α̃s,j+1 − 2αs,j+1 = ε
(8)
6k+2n−1

(3s+ n)α̃s,3s+n−1 − 2αs,3s+n−1 = ε
(9)
6k+2n−1

X0(n)(−8kγ̃k−1 + 2α̃1,1 − 2α1,1) = X0(n)ε
(10)
6k+2n−1

X0(n)(3α̃1,2 − 2α1,2) = X0(n)ε
(11)
6k+2n−1

X2(n)(2α̃0,1 − 2α0,1) = X2(n)ε
(12)
6k+2n−1

α̃s,0 − 2αs,0 = ε
(12+s)
6k+2n−1, s = σ̃n, . . . , k − 1

(4.22)

where ε
(j)
6k+2n−1 are some constants, s = σ̃n + 1, . . . , k − 1, j = 1, . . . , 3s+ n− 3

(except in the last equation) and
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−2(3s+ n− j)βs,j + (2k − 2s+ 2 + j)βs−1,j + β̃s,j = ∗

−6βs,3s+n−3 + β̃s,3s+n−3 + (2k + s+ n− 1)γk−s = ∗

−4βs,3s+n−2 + 2β̃s,3s+n−2 = ∗

X0(n)
(

2kγk−1 − 6β1,0 + β̃1,0

)
= X0(n)∗

X0(n)(−2β1,1 + 2β̃1,1) = X0(n)∗

X2(n)(−4β0,0 + 2β̃0,0) = X2(n)∗

−2(3s+ n− 1− j)β̃s,j + (3k − 2s+ 3 + j)β̃s−1,j − 2βs−1,j = ∗

−4β̃s,3s+n−3 − 2γk−s = ∗

−2β̃s,3s+n−2 = ∗

X0(n)(−2γk−s + 4β̃1,0) = X0(n)∗

X0(n)(−2β̃1,1) = X0(n)∗

X2(n)(−2β̃0,0) = X2(n)∗

−2βs,3s+n−1 + 2β̃s,3s+n−1 = ∗, s = σ̃n, . . . , k − 1

(4.23)

with s = σ̃n+1, . . . , k−1 and j = 0, . . . , 3s+n−4 (except in the last equation).
We analyze now the system (4.22):

Step 1: From the equations 3 and 9 in (4.22) we find the values αs,3s+n−1 and
α̃s,3s+n−1, s = σ̃n + 1, . . . , k − 1.
Step 2: From the equations 1 and 7 in (4.22) we get:

2γ̃k−s = ∗ − αs,1
2α̃s,1 = (−4k + s− n+ 3)αs,1 + ∗

and so once αs,1 for s = σ̃n+ 1, . . . , k−1 is chosen we get the values of α̃s,1 and
γ̃k−s, s = σ̃n + 1, . . . , k − 1.
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Step 3: From the equations 2 and 8 in (4.22) we get:

(j + 1)αs,j+1 = ∗ − 2α̃s−1,j−1 − (4k − s+ n+ 2− j)αs−1,j−1
(j + 2)α̃ = ∗+ 2(4k − s+ n+ 1− j)α̃s−1,j−1 − 4

j+1 α̃s−1,j−1

−2(4k − s+ n+ 2− j)
j + 1

αs−1,j−1

with s = σ̃n + 1, . . . , k − 1 e j = 1, . . . , 3s+ n− 3.
In this way once α̃s−1,j−1 and αs−1,j−1 are chosen we may recursively find

the values of αs,j+1 and α̃s,j+1 for s = σ̃n+1, . . . , k−1 and j = 1, . . . , 3s+n−3.
Observe that the later procedure does not imply in any overlapping with

step 2 and step 1 since the relations j + 1 ≥ 2 and j ≤ 3s+ n− 3 are satisfied
respectively.
Step 4: The fixed parameters in the preceding steps are not an obstruction to
solve the equation 13 in (4.22) since that now we have j = 0.
Step 5: When n = 0 there are four extra equations given by equations 4,5,10
and 11 in (4.22). In this way such equations determine the values α1,2 and
α̃1,2. However there is no overlapping with the step 3 since in that case we have
s ≥ σ̃0 + 1 = 2. Moreover the equations 4 and 10 in (4.22) has solution since
γk−s and α1,1 are not fixed.
Step 6: When n = 2 two extra equations are solved by fixing α0,1 e α̃0,1.

The system (4.23) is solved in a similar way as (4.22).
Hence the following normal form is achieved:

X̃(6k+2n) =

z1 3k+n−2∑
j=0

(fjC + gjD)A3k+n−2−jBj + z̄1z2hoB
3k+n−1

 ∂

∂z1

+

z2 3k+n−2∑
j=0

(f̃jC + g̃jD)A3k+n−2−jBj + z21 h̃oA
3k+n−1

 ∂

∂z2

(4.24)
The goal now is to put the system (4.24) in the Hamiltonian form (see (4.18).

So (4.24) has to satisfy the compatibility conditions (4.19).
We proceed now by multiplying the system X̃(6k+2n) by a function having

the form

f = 1 +

3k+n−2∑
j=0

(θjC + ψjD)A3k+n−2−jBj .

We get then a new system X̃(6k+2n) expressed by:z1 3k+n−2∑
j=0

((fj + λθj)C + (gj + λψj)D)A3k+n−2−jBj + z̄1z2hoB
3k+n−1

 ∂

∂z1
+

+

z2 3k+n−2∑
j=0

((f̃j + 2λθj)C + (g̃j + 2λψj)D)A3k+n−2−jBj + z21 h̃oA
3k+n−1

 ∂

∂z2

24



The compatibility conditions are now expressed by:

(j + 2)[fj+1 + λθj+1] = (3k + n− 2− j)[f̃j + 2λθj ]
(j + 1)[gj+1 + λψj+1] = (3k + n− j)[g̃j + 2λψj ]

(3k + n+ 1− j)[jj + λθj ] = −(3k + n− 1− j)[gj + λψj ]

(j + 1)[f̃j + 2λθj ] = −(j + 2)[g̃j + 2λψj ]

fo + λθo = (3k + n− 1)h̃o
2[g̃3k+n−2 + 2λψ3k+n−2] = (3k + n− 1)ho

(4.25)

where j = 0, . . . , 3k + n− 3 in the first two equations and j = 0, . . . , 3k + n− 2
in the last two equations. Remark that the solutions of the two last equations
can be obtained independently of the values of fo, θo, g̃3k+n−2 e ψ3k+n−2. In
fact, in (4.20) we have:

I2 = z̄1z2(−2ε3k+n−1 + 2ε̃3k+n−1)B3k+n−1 + · · ·
J2 = z21(ε̃o − 2εo)A

3k+n−1 + · · · .

So we may collect εo, ε̃o, ε3k+n−1 and ε̃3k+n−1 in such a way that all
the required conditions on the last two equations are fulfilled. So we find no
incompatibility between the systems (4.22) and (4.23). Therefore our concerning
now is to analize the other equations (namely 1,2,3 and 4) in (4.25). We argue
by recursion and we assume that such equations are solved for all k = 2, 3, .., j.
One sees that equations 3 and 4 for j + 1 are naturally satisfied with respect
to θj+1 and ψj+1 specified by the equations 1 and 2 in the last step. Next we
solve 3 and 4 for θo and ψo. Collecting θj+1 and ψj+1, j = 0, . . . , 3k + n − 3
satisfying equations 1 and 2 in (4.25) we derive that the jet X(6k+2n) takes the
form (4.18).

Consider now the case given by X6k+2n+1 :
First of all, consider a coordinate system given by (z1, z2) 7→ (z1, z2) +

Y (6k+2n)(z1, z2) with

Y (6k+2n)(z1, z2) = (F (z1, z̄1, z2, z̄2), G(z1, z̄1, z2, z̄2)), (4.26)

where

F = z1
∑k
s=σn

∑3s+n−2
j=0 (αsjC

2k−2s+1 + βsjD
2k−2s+1)A3s+n−2−jBj

+z̄1z2
∑ωn

l=0 γlD
2lB3k−3l+n−1,

and

G = z2
∑k
s=σn

∑3s+n−2
j=0 (α̃sjC

2k−2s+1 + β̃sjD
2k−2s+1)A3s+n−2−jBj

+z21
∑ωn

l=0 γ̃lC
2lA3k−3l+n−1.

with σn := |
]
2−n
3

[
| and ωn :=

[
| k + n−1

3 |
]

A straightforward calculation yields that

[X(2), Y (6k+2n)] = I
∂

∂z1
+ J

∂

∂z2
, (4.27)
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where
I = I1 + I2 + I3, and J = J1 + J2 + I3

with I1 =

iz1

k−1∑
s=σn

C2k−2s {(2γ̃k−s + αs+1,1)A3s+n+

+

3s+n−1∑
j=1

[−2(4k − s+ 2− j)αs,j−1 + 2α̃s,j−1+

+(j + 1)αs+1,j+1]A3s+n−jBj + (3s+ n+ 1)αs+1,3s+n+1B
3s+n

}
+

+iz1C
2k

2X1(n)γ̃kA+ X{0,1}(n)

n∑
j=0

(j + 1)α1,j+1A
n−jBj


iz1

k−1∑
s=1

D2k−2s


3s+n−2∑
j=0

[β̃s+1,j − 2(3s+ n+ 2− j)βs+1,j+

+ (2k − 2s+ 1 + j)βs,j ]A
3s+n−jBj + [β̃s+1,3s+n−1 − 2βs+1,3s+n−1+

+(2k + s+ n) γk−s]AB
3s+n−1 + [β̃s+1,3s+n − 2βs+1,3s+n]B3s+n

}
+

+iz1D
2k

X2(n)

β0,0A2 +

2∑
j=0

−2(3− j)β1,jA2−jBj

+

+X{0,1}(n)

n∑
j=0

−2(n+ 1− j)β1,jAn−jBj+

+X{1,2}(n)(2k + n)γkAB
n−1 +

n∑
j=0

(β̃1,j − 2β1,j)A
n−jBj

 ,

I2 = iz̄1z2

k∑
s=σn

[2β̃s,3s+n−2 − 2βs,3s+n−2]D2k−2s+1B3s+n−2

and
I3 = if1(A,B)

In a similar way, we write J = J1 + J2 + J3 where
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J1 = iz2

k−1∑
s=σn

C2k−2s {[2α̃s+1,1 − 2αs+1,1 − 2(4k − s+ n+ 1)γ̃k−s]A
3s+n+

+

3s+n−1∑
j=1

[−2(4k − s+ 1− j)α̃s,j−1 + (j + 2)α̃s+1,j+1−

2αs+1,j+1]A3s+n−jBj + [(3s+ n− 2)α̃s+1,3s+n+1 − 2αs+1,3s+n+1]B3s+n
}

+

+iz2C
2k

X{0,1}(n)

 n∑
j=0

[(j + 2)α̃1,j+1 − 2α1,j+1]An−jBj


+X1(n)[−2(4k + 2)γ̃k]A) +

+iz2

k−1∑
s=σn

D2k−2s


3s+n−2∑
j=0

[(2k − 2s+ 2 + j)β̃s,j − 2βs,j −

−2(3s+ n+ 1− j)βs+1,j ]A
3s+n−jBj+

+ [−2γk−s − 4βs+1,3s+n−1]AB3s+n−1 − 2βs+1,3s+nB
3s+n

}
+

+iz2D
2k

X1(n)(−2γk)A+ X{0,1}(n)

n∑
j=0

−2(n+ 1− j)β1,jAn−jBj
 ,

and

J2 = iz22

k∑
s=σn

(α̃s,0 − 2αs,0)C2k−2s+1A3s+n−1

and
J3 = iz2f2(A,B).

As before, the elimination of the terms that depend on C and D is equivalent
to the solubility of the following system:

27





αs+1,1 + 2γ̃k−s = ∗

−2(4k − s+ 2− j)αs,j−1 + 2α̃s,j−1 + (j + 1)αs+1,j+1 = ∗

(3s+ n+ 1)αs+1,3s+n+1 = ∗

X1(n) (2γ̃k + α1,1) = X1(n)∗

X0(n)α1,1 = X0(n)∗

X0(n)2α1,2 = X0(n)∗

X1(n)2α1,2 = X1(n)∗

2α̃s+1,1 − 2αs+1,1 − 2(4k − s+ n+ 1)γ̃k−s = ∗

−2(4k − s+ 1− j)α̃s,j−1 + (j + 2)α̃s+1,j+1 − 2αs+1,j+1 = ∗

(3s+ n− 2)α̃s+1,3s+n+1 − 2αs+1,3s+n+1 = ∗

X1(n)(−2(4k + 2)γ̃k + 2α̃1,1 − 2α1,1) = X1(n)∗

X1(n)(3α̃1,2 − 2α1,2) = X1(n)∗

X0(n)(2α̃1,1 − 2α1,1) = X0(n)∗

α̃s,0 − 2αs,0 = ∗, s = σn, . . . , k

(4.28)

where s = σn, . . . , k − 1 and j = 1, . . . , 3s+ n− 1 (except in the last equation).
More,
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β̃s+1,j − 2(3s+ n+ 2− j)βs+1,j + (2k − 2s+ 1 + j)βs,j = ∗

β̃s+1,3s+n−1 − 2βs+1,3s+n−1 + (2k + s+ n)γk−s = ∗

β̃s+1,3s+n − 2βs+1,3s+n = ∗

X0(n)
(
−4β1,0 + β̃1,0

)
= X0(n)∗

X1(n)(−6β1,0 + β̃1,0 + (2k + 1)γk) = X1(n)∗

X1(n)(−4β1,1 + β̃1,1) = X1(n)∗

X2(n)(β0,0 − 4β1,0 + β̃1,0) = X2(n)∗

X2(n)(−6β1,1 + β̃1,1 + (2k + 2)γk) = X2(n)∗

X2(n)(−4β1,2 + β̃1,2) = X2(n)∗

(2k − 2s+ 2 + j)β̃s,j − 2βs,j − 2(3s+ n+ 1− j)βs+1,j = ∗

−2γk−s − 4βs+1,3s+n−1 = ∗

−2βs+1,3s+n = ∗

X0(n)(−2β1,0) = X0(n)∗

X1(n)(−2γk − 4β1,0) = X1(n)∗

X1(n)(−2β1,1) = X1(n)∗

−2β̃s,3s+n−2 − 2βs,3s+n−2 = ∗

(4.29)

with s = 1, . . . , k − 1 and j = 0, . . . , 3s+ n− 2 in the three first equations and
s = σn, . . . , k − 1 and j = 0, . . . , 3s+ n− 2 in equations 10, 11 and 12.

The solubility of the last two systems is guaranteed in the same way as done
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for X6k+2n. Hence the following normal form is obtained:

X̃(6k+2n+1) = iz1

3k+n∑
j=0

ajA
3k+n−jBj

∂

∂z1
+ iz2

3k+n∑
j=0

bjA
3k+n−jBj

∂

∂z2
.

To reduce X̃(6k+2n+1) to the Hamiltonian form given by H(A,B) is enough
multiply X̃(6k+2n+1) by

f = 1 +

3k+n+1∑
j=0

θjA
3k+n+1−jBj

and choose suitable θj as done in the even case.
This finishes the proof of the Theorem 3.5. �

4.4. p : q resonance: Theorem 3.6

The proof of formal orbital equivalence in the case of p : q resonance is in
essence similar to the proof to the 1 : 2 case (Theorem 3.5), and therefore we
shall omit some of the details.

If X is a reversible vector field with p : q resonance in normal form (3.7), then
we can use the equalities z̄q−11 zp2A = z1D, z̄q−11 zp2C = z1A

q−1Bp, zq1 z̄
p−1
2 B =

z2C, zq1 z̄
p−1
2 D = z2A

qBp−1 and CD = AqBp to rearrange (3.7) into the follow-
ing form

X =
(
piλz1 + z1f1(A,B,C,D) + z̄q−11 zp2f2(B,D)

)
∂
∂z1

+
(
qiλz2 + z2g1(A,B,C,D) + zq1 z̄

p−1
2 g2(A,C)

)
∂
∂z2

.

We may rescale the coordinates so that f2(0, 0) = −q e g2(0, 0) = p. Only
such coefficients are related with the order p+q−1 of the system. The remaining
independent terms of C and D have the form z1A

mBn ∂
∂z1

and z2A
mBn ∂

∂z2
and

as before can easily be normalized via a canonical time re-scaling.
We deal now with the dependent terms of C and D having exponent equal

to 1. The order of such terms are at least p+ q + 1.
Consider the terms in C or D whose orders are smaller than 2(p+ q). They

are expressed by:

z1(αs,jC + βs,jD)AsBj
∂

∂z1

z2(α̃s,jC + β̃s,jD)AsBj
∂

∂z2
, s+ j < p+ q − 1

We illustrate this setting by taking the terms of order p+ q + 3 :(
z1 [(α1,0C + α1,0D)A+ (α0,1C + β0,1B)] + γoz̄

q−1
1 zp2B

2
) ∂

∂z1(
z2

[
α̃1,0C + α̃1,0D)A+ (α̃0,1C + β̃0,1B)

]
+ γ̃oz

q
1z
p−1
2 A2

) ∂

∂z2

.
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The system X(p+q+3) is in the Hamiltonian form provided that its coeffi-
cients satisfy some further conditions that are in some sense equivalent to those
expressed in (4.25).

The later is achieved via a multiplication by a convenient function. In this
way we get, H(p+q+4) = −i

∑2
j=0 αj(C −D)A2−jBj .

In the general case we proceed in a quite similar way. We get then

H = (C −D)h(A,B).

Concerning the elements of order greater than 2(p + q) − 1 two cases must
be distinguished:
i) p+q is even. In this case it appears just odd terms given by X(2(p+q)k+2n+1) =
(I, II), where

I = z1

(p+q)k+n∑
j=0

ajA
(p+q)k+n−jBj+

+z1

k−1∑
s=0

(p+q)s+n∑
j=0

(fs,jC
2k−2s + gs,jD

2k−2s)A(p+q)s+n−jBj+

+z̄q−11 zp2

k∑
l=1

hlD
2l−1B(p+q)k−(p+q)l+n+2− p+q

2

and

II = z2

(p+q)k+n∑
j=0

bjA
(p+q)k+n−jBj+

+z2

k−1∑
s=0

(p+q)s+n∑
j=0

(f̃s,jC
2k−2s + g̃s,jD

2k−2s)A(p+q)s+n−jBj+

+zq1 z̄
p−1
2

k∑
l=1

h̃lC
2l−1A(p+q)k−(p+q)l+n+1

In the present case the normalization can be done as in the 1 : 2−case. This
means that the independent terms in C and D can be eliminated via canonical
re-scaling. The other terms in C and D are, as before, killed via coordinates
change.

ii) Finally, if p + q is odd we proceed as above. It is worth to point out
that in this case new even terms emerge having a similar form as (4.13). This
finishes the proof. �
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