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HIV has fuelled increasing tuberculosis (TB) incidence in sub-Saharan Africa.

Better control of TB in this region may be achieved directly through TB

programme improvements and indirectly through expanded use of antiretro-

viral therapy (ART) among those with HIV. We used a mathematical model

of TB and HIV in South Africa to examine the potential epidemiological

impact in scenarios involving improvements in three dimensions of TB

programmes: coverage, diagnosis and treatment effectiveness, as well as

expanded ART use through broadened eligibility. We projected the effect of

alternative scenarios on TB prevalence, incidence and TB-related mortality

over 20 years. Of the three dimensions of TB programme improvement,

expanding coverage would produce the greatest reduction in TB burden.

Compared with current performance, combined TB programme improve-

ments were projected to decrease TB incidence by 30% over 5 years and

46% over 20 years, and decrease TB-related mortality by 45% over 5 years

and 69% over 20 years. Expanded ART eligibility was projected to decrease

TB incidence by 22% over 5 years and 45% over 20 years, and TB-related mor-

tality by 22% over 5 years and 50% over 20 years. We found that over a

20-year horizon, TB-specific and HIV-specific programme changes contribute

equally to incidence reductions, whereas the TB-specific changes produce a

majority of the mortality benefits. An aggressive expansion of ART alongside

traditional TB-specific control measures has the potential to greatly reduce TB

burden, with the different elements of a combined approach having a

synergistic effect in reducing long-term TB incidence and mortality.
1. Introduction
HIV has led to a large increase in the incidence of tuberculosis (TB) in sub-Saharan

Africa. There is consensus that additional TB control efforts, extending beyond those

needed in other settings, must be adopted to control TB in areas of high HIV preva-

lence [1]. Among other options, expanded TB control activities may include more

intensive case finding, improved diagnostics and more effective TB treatment.

While improvements to the TB control programme will reduce disease

burden, other health interventions may also contribute to better TB outcomes.

In particular, antiretroviral therapy (ART) to treat HIV has been shown to

reduce TB risk, and a number of modelled analyses have suggested the potential

for substantial reductions in TB burden associated with ART in settings with HIV-

fuelled TB epidemics [2–7]. Recent research findings suggest additional benefits

of ART, including the HPTN 052 trial results that demonstrated almost complete
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interruption of HIV transmission for patients on ART [8], and a

meta-analysis revealing how the effect of ART on TB risk is

modified by CD4 cell count [9]. In addition, the interventional

options for TB and HIV control are changing, with the avail-

ability of improved TB diagnostics [10,11] and the promise of

new TB drug regimens [12], as well as a growing commitment

to expanded ART access [13,14]. A less welcome development

is rising TB drug resistance in settings with high TB and HIV

prevalence [15,16]. Given these changes in the scientific under-

standing, epidemiological features and programmatic context

of HIV and TB control, it is useful to revisit the comparative

effect of ART and traditional TB control interventions on TB

outcomes in settings of high HIV burden. Expanded access

and increased eligibility for ART have recently been predicted

to be cost-effective for the control of HIV in the general popu-

lation (or the high-risk population in concentrated epidemics)

[17], and to produce a significant reduction of the TB burden

in HIV-positive patients in a high-burden setting [18].

In this study, we use a mathematical model of TB and

HIV to investigate how expanded ART provision, accounting

for its impact on reducing HIV transmission, compares with

more direct efforts to control TB through improved access to

TB care, use of more sensitive diagnostics such as Xpert, and

more effective TB treatment that could result from the

introduction of new treatment regimens.

We developed a dynamic compartmental model of TB–

HIV epidemiology, adapted from a previously published

model [19]. The model, described in detail in the Material

and methods, simulates the progression and transmission of

both TB and HIV, as well as the effect of disease control

activities on epidemiology and health outcomes. We used a

Bayesian approach [20–22] to calibrate the model to available

epidemiological data, combining data on historical trends in

TB and HIV epidemiology with prior information about model

parameters, updated based on recent research findings which

include evidence on the impact of ART initiation on HIV trans-

mission risks [8], the magnitude of reductions in TB incidence

among HIV-infected individuals initiating ART [9] and the per-

formance of new TB diagnostic technology [23]. We used the

calibrated model to investigate the impact of changes in HIV

and TB control policy, both separately and in combination,

their differential contribution to various TB outcomes, and the

time horizon over which benefits accrue, contrasting between

short-term (5-year) and long-term (20-year) outcomes. We

expect the results to be relevant to settings with a high burden

of TB and HIV and rapid ART expansion.
2. Results
2.1. Modelled scenarios and outcomes
The annual TB incidence in South Africa rose from approxi-

mately 300 per 100 000 in 1990 to approximately 1000 per

100 000 in 2010 [24], an increase that has been attributed lar-

gely to the HIV epidemic. We modelled a baseline scenario,

and two sets of alternative scenarios reflecting intensified

strategies for TB and HIV control. The baseline scenario

assumed continuation of current TB and HIV control policy

and programme functioning. In this scenario, ART coverage

under the 2010 eligibility criteria (all individuals with a

CD4 count less than 350 cells per ml or active TB) plateaus

at 80% by 2017. In addition, only smear microscopy is used

for the diagnosis of TB and the national TB programme
continues to perform at its current levels both in terms of

patient coverage and treatment effectiveness.

The first set of alternative scenarios examined TB pro-

gramme improvements along three dimensions: coverage,

diagnosis and treatment. The second set of alternative scenarios

examined ART expansion in terms of both eligibility and treat-

ment scale-up. These alternative scenarios were designed so as

to provide an upper bound on what might be possible through

improvements in a given intervention area.

We compared the epidemiological outcomes of baseline

and alternative intervention scenarios over short-term

(5-year) and long-term (20-year) time horizons, and quanti-

fied the effects on TB prevalence, TB incidence, prevalence

of multidrug-resistant TB (MDR-TB), and mortality in

individuals with active TB.

In our baseline scenario, both the TB prevalence and TB

incidence continue rising for 5 years before stabilizing

around 1%. The annual TB mortality rate, which we defined

to include mortality from HIV-related TB, essentially stays

constant at around 400 deaths per 100 000, whereas the preva-

lence of MDR-TB continues to rise slowly over the entire time

horizon, such that close to 5% of all active TB cases have

MDR-TB after 20 years.

To understand the potential impact of improvements along

three distinct dimensions of the TB programme (i.e. access,

diagnosis and treatment), we first examined the separate effects

of improving performance within each dimension (figure 1).

Across the various outcome measures, the relative benefits

owing to improvements in access to care were two to eight

times greater than those owing to improved diagnostics, and

two to four times greater than those owing to improvements

in treatment.

We also considered ART programme expansion, which

combines universal ART eligibility with an increase in the

rate of ART initiation (by 0.5 per year) for those eligible for

treatment. We found that the potential benefits of ART scale-

up were comparable to the combined effects of the direct TB

programme improvements in the first set of alternative scen-

arios (figure 2). Expanded ART was predicted to reduce TB

incidence and mortality by almost a quarter relative to the

baseline over 5 years, and by nearly half over 20 years. The

reduction in TB incidence and mortality produced by combin-

ing all TB programme improvements exceeds the effects of

ART expansion for all outcomes over 20 years except for

incidence, in which ART expansion has a larger effect.

To consider the potential for combinations of programme

improvements in both TB and HIV control, we conducted a

threshold analysis in which we assessed the levels of improve-

ment in direct TB programme outcomes required to produce

equivalent overall benefits to those expected from scale-up of

ART. We created three isocline plots (figure 3) indicating the

degree of TB expansion along different dimensions required

to match the ART expansion impact on the following outcomes:

(i) short-term TB incidence, (ii) long-term TB incidence, and

(iii) short-term TB-related mortality. Results are not shown for

long-term TB incidence, as we found that for this outcome the

impact produced by expanded ART programmes could not

be matched even at the maximum level of improvement

along each of the three dimensions of TB expansion.

Figure 4 shows the projected outcomes of the baseline,

ART programme expansion, maximally implemented TB pro-

gramme improvement and a combined ART/TB programme

expansion scenario. Our results suggest that an aggressive
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Figure 1. TB outcomes under different TB programme improvement strategies at 5 and 20 years. (Online version in colour.)
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approach to TB programme expansion results in large early

reductions in TB prevalence and TB-related mortality. These

dramatic reductions in TB prevalence lead to subsequent

declines in TB incidence as a result of decreased transmission.

While control of TB continues to advance over the 20-year

horizon under assumptions of a greatly improved TB control

programme, the vast majority of the benefit occurs within the

first decade of the change in programme performance, after

which the level of benefit appears to plateau.

In contrast, ART programme expansion results in improve-

ment in TB outcomes that accrues progressively over the

20-year horizon. While TB programme expansion results in a

greater reduction of TB prevalence, ART expansion results in

a greater reduction of TB incidence (figure 4). The impacts of

the interventions also differ according to the patients’ HIV

status. Thus, the incidence of TB in HIV-negative patients is

reduced more effectively with the TB programme expansion

than with ART expansion, whereas the incidence of TB in
HIV-positive patients is reduced more effectively with ART

expansion than with the TB programme expansion, at both 5

and 20 years. Both TB mortality and MDR-TB prevalence are

projected to attain lower values under TB programme expan-

sion, but the trend suggests that the long-term equilibrium

MDR-TB prevalence may be similar for both interventions.

The fraction of prevalent TB cases that are MDR remained in

the 95% credible interval between 2% and 5% after 5 years,

and between 3% and 7% after 20 years, regardless of the par-

ticular scenario we investigated. Finally, combining ART and

TB programme expansion strategies leads to a dramatic decline

of the TB epidemic over the 20-year horizon.
2.2. Sensitivity analysis
To quantify the uncertainty in our predictions, we con-

structed 95% credible intervals around each of our model

outcomes. These credible intervals are shown in figures 1



rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150146

5
and 2, as well as in electronic supplementary material, table

S2. The corresponding 95% credible intervals on each of the

model parameters are shown in electronic supplementary

material, table S3. Our qualitative conclusions are robust to

parameter uncertainty, as the rank order of the scenarios

we considered with respect to each outcome remained

unchanged for the majority of the resampled parameter

sets. For instance, over 99% of all our parameter sets support

the conclusion that TB programme improvements are more

effective than ART expansion in reducing long-term TB

prevalence and mortality, but less effective in reducing

long-term TB incidence.

In order to further evaluate the robustness of our results,

we performed several sensitivity analyses. We computed

partial rank correlation coefficients of the decline in long-

term TB incidence relative to the status quo with each of

the model parameters, and examined the 10 most influential

model parameters for this decline in TB care accessibility,

diagnostic tool improvement, TB programme improvement

and ART expansion (electronic supplementary material,

figure S2). We also examined the effect of the time required

to bring TB interventions to scale. We found that if TB pro-

gramme scale-up requires 5 years instead of 2, the absolute

reductions in long-term TB incidence and mortality with respect

to the baseline each drop by 6%. If TB programme scale-up

requires 10 years instead of 2, the reductions each drop by

14%. We also examined the sensitivity of results to more conser-

vative assumptions about ART effectiveness for preventing HIV

transmission, and about the rate of ART scale-up under the ART

expansion scenario. If the effectiveness of ART for preventing

HIV transmission were halved from 96% to 48%, the reductions

in long-term TB incidence and mortality with respect to the

baseline would decrease by 9% and 7%, respectively. If the

rate of ART scale-up under the ART expansion scenario were

halved, the reductions in TB incidence and mortality projected

for this scenario would each drop by 15%.
3. Discussion
In this work, we examined the potential impact of different

control measures on the TB epidemic in a high-burden setting.

These measures included direct improvements in the TB con-

trol programme in terms of coverage, diagnosis and

treatment effectiveness, as well as indirect improvements

through expanded ART access. We found that TB programme

improvements as well as ART expansion can make important

and complementary contributions to TB control. Improve-

ments made to the TB programme act to lower TB prevalence

and mortality, with secondary reductions to TB incidence.

ART expansion, by lowering the vulnerability of the HIV-

affected population to the risk of TB disease after infection [9]

and preventing further HIV transmission [8], facilitates control

of TB over a longer time horizon.

Of the different dimensions of the direct TB programme

changes, we found that expanding programme coverage

would have the largest impact on TB control. Importantly, we

found that improvements to both the TB and HIV programmes

are likely to produce complementary benefits for TB control

since these interventions target different drivers of the TB epi-

demic. Model projections demonstrate the potential for

improvements in tuberculosis programmes for reducing the

burden of MDR-TB; we note that these projections assume
that the biological costs associated with resistance are fixed at

a single value. If higher fitness resistant strains are preferentially

transmitted, then these simulations will underestimate the effort

necessary to reduce the burden of MDR-TB [25].

This work expands upon previous modelling studies in two

significant ways. First, the introduction of new diagnostics such

as Xpert and the prospect of novel treatment regimens highlight

the rapid change in the tools available for strengthening differ-

ent dimensions of TB programmes. By considering alternative

target elements for improving TB control programmes, we

were able to quantify the relative magnitude of improvements

that could be achieved by each approach. Second, understand-

ing of the impact of ART on reducing the risk of TB as well as on

reducing HIV transmission has improved [8] since earlier mod-

elled analyses were published. We incorporated this new

evidence into our estimates, capturing lowered risks of TB

among people on ART and reduced rates of HIV transmission

to their sexual partners. As demonstrated in the sensitivity

analysis, the effect of ART in reducing HIV transmission is

large, and particularly important over the long term, with the

effect of ART scale-up on TB incidence and mortality rates

growing progressively over time. In contrast, despite recent

evidence on diagnostics with improved performance character-

istics, improving access to services appears to represent the area

with greatest potential for improvement.

Currie et al. [5] modelled the TB–HIV epidemics in three

African countries and found that TB programme expansion

was the most effective means of controlling the TB epidemic

over 10 years, whereas ART coverage needed to substantially

increase relative to baseline levels before significant reductions

in TB incidence could occur [8]. At the time, trial evidence on

the reduction in HIV transmission following ART initiation

was not available. By incorporating this new evidence, our

work suggests that ART expansion is an effective way of redu-

cing HIV incidence, and thus HIV-associated TB incidence,

over the long term. Williams et al. [3] considered the impact

of different ART initiation times among HIV-positive people

on control of the TB epidemic in nine African countries.

Their work does not investigate the potential effects of TB pro-

gramme improvements. Our results were consistent with their

work in concluding that frequent HIV testing combined with

immediate treatment initiation will substantially decrease the

burden of HIV-associated TB over the long term. Our work

also showed that delaying TB programme improvement

erodes these potential benefits, complementing the results of

the prior analyses that examined how delaying ART expansion

will reduce its potential impact.

Recently, Dodd et al. examined the consequences of

expanding ART guidelines [26], and found that increased

access to ART may paradoxically lead to a rebound of TB inci-

dence in the long term owing to an increased life expectancy in

people living with HIV. Their work assumes that the TB pro-

tection afforded by ART declines over time, and that HIV

incidence is independent of ART coverage. When we also

assumed an HIV incidence independent of ART coverage,

we found that TB incidence declined more slowly than in

our main results, but did not rebound (electronic supplemen-

tary material, figure S3), suggesting that a declining

immunological response to ART underlies this rebound in

TB. This difference in predictions highlights the importance

of the durable effects of ART to long-term TB outcomes.

For the scenarios describing programme expansion in one

or more dimension, we attempted to define the maximal level
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of expansion to represent the limit of what might be possible.

The choice of these limits is essentially arbitrary, but the

range defined by these limits and continuation of the status

quo should encompass the spectrum of options relevant for

decision-makers, and so readers can interpret the results in

light of their own beliefs about what is plausible. Our analysis

neither estimated resource consumption nor calculated sum-

mary measures of health benefit (e.g. DALYs averted), and

was not intended to describe the optimal intervention approach.

Instead, our aim was to consider the effects of various TB control

approaches, given our improved understanding of intervention

effects and the current salience of ART as a TB control interven-

tion. We also did not attempt to model additional coordination

between the HIV and TB programmes, which had been posited

to be an important structural intervention for controlling the TB

epidemic in South Africa [27,28]. Recently, the South African

national HIV programme announced a change in the eligibility

threshold for initiating ART, broadening eligibility from a CD4

count of 350 cells per ml to a count of 500 cells per ml. We expect

that this policy change will realize some of the TB-related

benefits of expanding ART demonstrated in our results,

though less than would be achieved by the policy we investi-

gated, which assumed universal ART eligibility and scaled-up

testing programmes.

Our findings suggest that, despite the considerable enthu-

siasm generated by improved TB diagnostics and novel TB

treatment regimens, it is programme coverage expansion

that would produce the largest impact on various metrics

of TB burden, whereas diagnosis and treatment improve-

ments each would produce no more than half of the

improvement possible with increased coverage. Although it

might be easier to focus attention on those patients who

already have access to the health system, increasing access

to extend coverage may be the most effective means of con-

trolling the TB epidemic. This finding of course needs to be

balanced against the fact that increasing coverage becomes

costlier and more logistically challenging as higher levels of

coverage are attained, especially in a resource-limited setting

like South Africa. Achieving high levels of coverage may

require increased intensity of existing intervention strate-

gies (with higher marginal cost), but may also require novel

intervention strategies (or technologies) with substantially

increased unit costs compared with current approaches. As a

consequence, the results of this analysis, describing magnitude

of impact on various epidemiological outcomes, should not

be taken as a proxy for the relative priority of these different

interventions within a resource allocation framework.

Our results further suggest that ART expansion can be a

more effective route to controlling HIV-fuelled TB epidemics

when it is combined with TB programme improvements.

These two interventions work in complementary ways, with

ART expansion protecting HIV patients from developing TB

as well as dramatically lowering transmission of HIV in the

population, and TB programme improvements reducing the

prevalence and mortality among TB patients. The joint

impact of these interventions substantially exceeds that of

each individual intervention on various metrics of TB burden.

Our findings also underscore the importance of consider-

ing the long-term impacts of different interventions, rather

than just the short-term ones; indeed, while we found that

TB expansion would outperform ART expansion in the first

5 years after its introduction, the benefits of ART would

accrue over time, suggesting that control of the HIV epidemic
represents a critical dimension in an overall strategy to

improve long-term TB outcomes in settings experiencing a

high burden of both diseases.
4. Material and methods
4.1. Model structure
The model divides the population into a set of discrete compart-

ments and simulates transitions between these compartments

representing infection, progression and treatment for TB and

HIV. In addition to the core model structure capturing TB infec-

tion and natural history, TB compartments are further

subdivided to track the development and propagation of TB

drug resistance phenotypes, and to track prior TB treatment his-

tory. A detailed description of model states and parameters is

provided in the electronic supplementary material.

4.2. Model calibration
We sampled the parameter value space defined by prior distri-

butions specified around all model parameters and calibrated

the model as described in [19]. Because the model runs determi-

nistically once the parameters are chosen, we defined a likelihood

function to estimate the goodness-of-fit of a particular parameter

set to the calibration data, which included notification data, his-

torical TB incidence and prevalence (including MDR-TB) and

HIV prevalence. In the likelihood function, we considered the

prevalence and incidence of TB at 5-year intervals between

1990 and 2010, the prevalence of HIV at 3-year intervals between

2002 and 2008, the prevalence of MDR-TB in 2002, and the noti-

fication data every year from 1990 to 2010, as independent

outcomes. We constructed a probability distribution around

each one (a beta distribution around the prevalence of MDR-

TB and of HIV, and a normal distribution around the other out-

comes) and multiplied the resulting density values to obtain the

final likelihood. Figure 5 illustrates the result of model calibration

for one outcome, TB incidence.

We used the sampling importance resampling (SIR) approach

[22]. In the first (‘sampling’) stage, we created 500 000 parameter sets

sampled from the prior distribution using Latin Hypercube

Sampling [29]. For each of these sets, we computed the likelihood

by comparing the model outcomes to calibration data. In the

second (‘resampling’) stage, we created a new sample to represent

the posterior distribution of model parameters by assigning weights

to each parameter set proportional to its likelihood. Electronic sup-

plementary material, table S3 presents the range, posterior mean

and 95% credible intervals of the posterior distribution of each

model parameter.

4.3. Modelled scenarios
Our baseline scenario assumed the maintenance of current TB

and HIV control policies and programmes. In this scenario, ART

coverage among eligible groups, modelled as all individuals

with CD4 , 350 cells per ml or active TB, is projected to increase

smoothly using a logistic growth curve until it reaches a plateau

at 80% in 2017, and to stay essentially constant thereafter.

The first set of alternative scenarios (‘TB programme improve-

ment’) represents accelerated progress in three dimensions of

traditional TB control programmes:

(1) Improved healthcare coverage for individuals experiencing

TB symptoms, operationalized as reducing the average

delay from disease development to clinic attendance to a

minimum of one-third of its current value.

(2) More accurate TB diagnosis, operationalized by replacing a

proportion of tests using smear microscopy with a more
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sensitive and specific diagnostic test, the GeneXpert MTB/RIF

assay. At the maximum, this scenario would have 100% of TB

diagnosis undertaken with an Xpert-based algorithm.

(3) Improved TB treatment, operationalized as

(i) reduced primary default after diagnosis (to an extremum

of 0% primary default),

(ii) improved cure rates (to an extremum of 100% cure),

(iii) improved identification of treatment failure (to an extre-

mum of 100% identification of treatment failure), and

(iv) reduced treatment default (to an extremum of 0% treat-

ment default).

As a consequence of the multiple changes described for

improved TB treatment, the maximal level for this dimension would

imply that all individuals receiving a positive TB diagnosis would

be successfully treated for TB.

We parametrized each TB programme expansion scenario by

three numbers, each between 0 and 1, where a 0 corresponds to

the baseline value for each of the three dimensions described

above (coverage, diagnosis and treatment) and a 1 corresponds

to the best possible value for this dimension.

The second set of alternative scenarios (‘ART expansion’)

represents the combination of universal ART eligibility for HIV-

positive patients with an increased ART initiation rate for all

HIV-positive individuals. We operationalize this increase by

adding 0.5 per year to the rate of ART initiation achieved in the

baseline scenario, separately for each CD4 category (high,

medium and low) as well as the category of those on TB treatment.

We assumed that any changes in current programme strategy

would be introduced progressively over the period between

2012 and 2014 and then maintained until 2032. The speed of

intervention improvements was varied in our sensitivity analysis.
4.4. Outcomes
To compare the overall potential for direct and indirect interven-

tions to control TB, we examined the levels of improvement that

would be required along each of the three dimensions of

improved TB control to attain a comparable benefit to that

attained through ART programme expansion.

To find the set of points (X1, X2, X3) that matched the ART

intervention for a particular outcome, we fixed a resolution

(usually 1/128) and then created a two-dimensional grid in

which two of the dimensions were equally spaced from 0 to 1 at

this resolution. We then filled this grid with values of the third

coordinate that yielded a matching value of the outcome by per-

forming root-finding along that coordinate with the secant
method, relying on the fact that the outcome varies monotonically

with each dimension to bound the values from above and below.

This procedure produces the isocline plots shown in figure 3.

4.5. Sensitivity analysis
We computed partial rank correlations using the prcc function in

the epiR package for the R statistical computing language [30].

The partial rank correlation is an estimate of the relative influence

of each model parameter on the outcome of interest when all the

other parameters are being held constant, and is always between

21 and 1.

We estimated the effects of the rate of TB programme scale-up

by changing the transition from initial levels to target levels of the

set of parameters describing TB programme improvements to take

place over 5 or 10 years instead of 2 years. For each parameter, the

transition was modelled by a linear function. We estimated

the effects of the parameters governing ART effectiveness and

ART coverage expansion by halving their values.

To compare our results with the approach adopted by Dodd

et al. [26], in which one of the key projections assumes that HIV

incidence does not change over time, we modified our model by

adopting the HIV incidence trend from the baseline scenario and

using this for each of the interventions. Accordingly, this reduces

the impact of ART on HIV control, which results in a higher inci-

dence and mortality of TB. The approach our model normally

uses is to take the time-varying contact rate from the baseline

scenario and use that to infer the HIV incidence by taking the

average of the distribution of HIV-positives across disease and

treatment stages weighted by their relative infectivity. This

results in a significantly lower TB incidence relative to the

baseline scenario when ART is scaled up aggressively.
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Appendix A. Model overview and structure
Analyses were conducted using a dynamic compartmental

model of TB and HIV in adult populations. The model

simulates transitions between health states deterministically,
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recalculating the population distribution across states in dis-

crete monthly time steps. The model was constructed and

run using R statistical computing software [30]. The model fol-

lows the conventions of earlier TB models [31–37], with

additional detail to accommodate evaluation of alternative

TB programme improvement strategies and ART expansion.

The model structure is defined by a set of core TB states,

and these states are further subdivided to account for:

(i) aspects of HIV infection, progression and treatment

relevant to TB epidemiology, (ii) multiple circulating TB

strains, with different drug resistance profiles, and (iii) track-

ing of TB treatment history. Electronic supplementary

material, figure S1 illustrates the model structure, described

in further detail below.
 Interface
12:20150146
A.1. Core tuberculosis states
The core TB states capture important features of TB trans-

mission, natural history and treatment. Eight states are

included. Individuals who have never been infected reside in

the susceptible state. Those who are infected but do not have

active disease are in the latent infection/recovered state.

Active disease is categorized as smear-negative or smear-

positive. Smear-negative or smear-positive active cases may

be treated either through the national TB control programme

(DOTS), or through providers outside of the national

programme (non-DOTS).
A.2. Human immunodeficiency virus subdivisions
HIV co-infection can alter the rate of progression of TB disease,

with HIV-infected individuals having a higher probability of

primary progressive TB upon initial infection [38,39], a

higher rate of breakdown from latent infection to active TB

[40], a lower probability of smear-positivity among those

with active disease [41–43] and higher mortality rates

[41,44,45]. The HIV part of the model draws on structure

and assumptions from an array of published HIV models

[46–49]. There are seven HIV subdivisions. Individuals may

be HIV-negative, they may be in one of three categories reflect-

ing untreated HIV infection with a specified CD4 cell count

(greater than 350, 200–350 and less than 200 cells per ml), or

they may be receiving ART in one of three categories

distinguished by the CD4 count at treatment initiation.
A.3. Drug resistance subdivisions
Five subdivisions were created to account for differences in

drug resistance among circulating TB strains, including

(i) pan-sensitive TB, (ii) isoniazid (INH) mono-resistant TB,

(iii) rifampicin (RIF) mono-resistant TB, (iv) resistance to

both isoniazid and rifampicin (MDR-TB), and (v) resistance

to isoniazid and rifampicin plus one or more second-line

drugs (MDRþ/XDR-TB).
A.4. Treatment history subdivisions
A final subdivision of model states distinguishes treatment-

naive from treatment-experienced individuals, as diagnostic

algorithms may dictate different confirmatory tests depending

on an individual’s history of prior treatment.
A.5. Summary of model structure
At any point in time, all individuals in the model are categor-

ized by the combination of their TB status and their status

with respect to each of the three subdivisions. Thus, each of

the eight core states is ‘exploded’ into 70 unique substates

(resulting from seven HIV categories � five drug resistance

categories � two treatment history categories), which yields

a total of 8 � 70 ¼ 560 unique compartments in the model.

Fifty-six of these 560 compartments, namely those corre-

sponding to susceptible individuals with a TB strain having

a specific drug resistance profile, are null.
Appendix B. Transitions between model states
and subdivisions
The model transitions may be represented by a set of difference

equations. Electronic supplementary material, table S1 defines

the general notation used in the formal description of the

model that follows.
B.1. Transitions between core tuberculosis states
We begin with a set of model equations that describe changes

in the population distribution across the eight core TB states

between one timestep and the next. In the following

equations, Xi indicates the number of residents in state i at

time t, and _Xi (with a dot above the X ) indicates the

number of residents in state i at time t þ 1.

_X1 ¼ X1 þ ht � X1lt � X1m1t

_X2 ¼ X2 þ X1lt(1� p)� X2(1�m)ltpþ X3sþ X4s

þ X5k5g5t þ X6k6g6t þ X7k7g7t þ X8k8g8t � X2m2t � X2t

_X3 ¼ X3 þ X1ltp(1� f)þ X2t(1� f)þ X2(1�m)ltp(1� f)
þ X5k5(1� g5t)(1� v)þ X6k6(1� g6t)(1� v)þ X5d5t

þ X6d6t � X3m3t � X3s� X3a

� X3gDtyD3t(1� hD3t)� X3gNtyN3t(1� hN3t)

_X4 ¼X4 þ X1ltpf þ X2tf þ X2(1�m)ltpf
þ X7k7(1� g7t)(1� v)þ X8k8(1� g8t)(1� v)þ X7d7t

þ X8d8t � X4m4t � X4sþ X3a

� X4gDtyD4t(1� hD4t)� X4gNtyN4t(1� hN4t)

_X5 ¼X5 þ X3gDtyyD3t(1� hD3t)

� X5k5(1� v(1� g5t))� X5m5t � X5d5t

_X6 ¼X6 þ X3gNtyyN3t(1� hN3t)

� X6k6(1� v(1� g6t))� X6m6t � X6d6t

_X7 ¼X7 þ X4gDtyyD4t(1� hD4t)

� X7k7(1� v(1� g7t))� X7m7t � X7d7t

_X8 ¼X8 þ X4gNtyyN4t(1� hN4t)

� X8k8(1� v(1� g8t))� X8m8t � X8d8t:

The total population is given by

N ¼
X8

i¼1

Xi:

Individuals enter the model in the susceptible state

(X1), where they face a time-varying risk of TB infection.
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Formally, the force of infection, lt, describes the hazard rate

(at time t) by which a susceptible individual acquires TB.

The population is assumed to mix randomly with density-

independent contact rates, so transmission is modelled as

frequency-dependent. The force of infection allows for

varying infectivity across different categories of disease,

and for temporal trends in contact rates, which yields the fol-

lowing formulation in the simple case of a single circulating

TB strain:

lt ¼
X

i

Xi

N
btqi,

where bt is the transmission parameter for those with

untreated, smear-positive, active disease at time t, and qi is

the infectivity of individuals in core state i relative to those

with untreated, smear-positive active disease.

Upon infection, individuals progress either to latent infec-

tion (X2) or directly to active disease. Individuals with latent

infection may subsequently progress to active TB, or they

may be re-infected at a rate that is subject to the partial immu-

nity conferred by an existing infection. Active disease is

categorized as smear-negative (X3) or smear-positive (X4).

Smear-negative cases may progress to smear-positive, and all

individuals with active disease may spontaneously self-cure,

which returns them to the latent/recovered state. An individ-

ual with active disease can be diagnosed as a TB case,

according to the characteristics of the diagnostic algorithm,

and initiated on treatment. Treatment may be provided

either through DOTS, the national TB control programme

(X5 for smear-negative and X7 for smear-positive cases), or

through non-DOTS providers outside of the national pro-

gramme (X6 for smear-negative and X8 for smear-positive

cases). Treated individuals may complete treatment, default

(returning to active disease) or die. Those who complete treat-

ment are categorized as failures (returning to active disease) or

cures (returning to the latent/recovered state). In addition to

these transitions, all individuals in the model are subjected

to a background mortality rate which is updated in each

time step based on demographic data, and to TB-related

mortality specific to each active disease state.
B.2. Transitions between human immunodeficiency
virus subdivisions

Rates of transition from one HIV subdivision to another

are based on estimates of HIV incidence, disease progression

and treatment initiation (see appendix C.4 and electronic sup-

plementary material, table S3). These rates are assumed

independent of core TB states and other subdivisions. HIV

incidence is modelled as a transition from the HIV-negative

category to the HIV-positive, CD4 . 350 category, with

time-varying incidence rates defined as exogenous model

parameters. HIV-positive individuals not on ART may

progress over time to lower CD4 counts. Untreated HIV-

positive individuals transition onto ART at rates specific to

CD4 category, which are allowed to vary over time to capture

changing eligibility criteria and coverage of testing and refer-

ral. HIV-related mortality occurs at rates specific to each

subdivision. Certain parameters governing the natural history

of TB vary with respect to HIV status, as indicated in electronic

supplementary material, table S3.
B.3. Transitions between drug resistance subdivisions
Transitions between TB strain subdivisions occur through

infection, superinfection and acquired resistance. First, we

elaborate the specification for the force of infection to allow

for multiple circulating strains distinguished by their drug

resistance profiles. Individuals may be infected by any of the

five types of strains. When calculating the force of infection

for a particular strain (ls for strain s), we allow for differential

fitness across strains, for example indicating lower transmissi-

bility among drug-resistant strains relative to drug sensitive

ones. The total force of infection is a weighted sum of the

five strain-specific forces of infection. The general formulation

for the force of infection is thus given by

lt ¼
X

s
(1� rs)

X

i

Xis

N
btqi,

where rs is the relative reduction in fitness for strain s com-

pared with the corresponding pan-sensitive strain. An

individual in the susceptible state who is newly infected

with TB transitions to the subdivision of the infecting strain.

An individual with latent TB who is superinfected by a differ-

ent strain transitions to the subdivision of the superinfecting

strain. Following Lipsitch et al. [50], we allow for superinfec-

tion by the same strain in order to preserve model neutrality

with respect to strain distribution.

Individuals may also develop acquired drug resistance

during TB treatment. Individuals with pan-sensitive TB can

develop mono-INH resistance, mono-RIF resistance or MDR-

TB directly. Individuals with mono-INH or mono-RIF can

develop MDR-TB, and individuals with MDR-TB can develop

MDRþ/XDR-TB. Cases of acquired resistance arise as individ-

uals default from or fail treatment, with rates of acquiring

resistance specified for each combination of current strain

and specific treatment regimen (electronic supplementary

material, table S3).

B.4. Transitions between treatment history subdivisions
Individuals enter the model in the treatment-naive category.

Treatment-naive individuals move into the treatment-experi-

enced category upon the first transition out of any of the TB

treatment states (X5, X6, X7 or X8) in the core model.
Appendix C. Model parametrization
C.1. Initialization
The model was used to estimate TB prevalence and incidence

starting in 1950 onwards, with this long historical projection

allowing the simulation of a realistic TB epidemic as well as

providing prevalence and incidence estimates for the recent

past to compare with independent data in the calibration pro-

cedure. First, we simulated a virgin epidemic, in which one

infectious source case is introduced into a population of sus-

ceptibles. This epidemic was run to equilibrium, which was

assumed to represent the starting conditions in 1950. The

model was then run from 1950 through the end of 2011 to

produce a historical time trend in TB epidemiology, with

time-varying parameter values capturing changes in birth

rates, background mortality rates, TB contact rates, access to

TB and HIV treatment interventions, and treatment success

and default rates. Electronic supplementary material, table S3
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summarizes estimates and ranges for all model parameters.

Following is a description of key data sources used to derive

these values and ranges.
oyalsocietypublishing.org
J

C.2. Demographics
Historical estimates and future projections for population growth

were obtained from the United Nations Population Division [51].

Historical estimates for mortality excluding HIV were obtained

from the World Health Organization (WHO), and future

background mortality was held constant at current values.
 .R.Soc.Interface
12:20150146
C.3. Tuberculosis epidemiology, diagnosis and
treatment

Estimates for transition rates between TB-related health states

were drawn from the literature and chosen to be consistent

with prior TB modelling work [25,33–35,52,53]. ART delays

the immunosuppression associated with HIV, thereby reducing

the effect of HIV on TB disease progression. We operationalized

this as an ART effectiveness parameter (z); the values of TB

natural history parameters for individuals on ART were calcu-

lated as weighted sums of parameter values for HIV-negative

and untreated HIV-positive individuals, with weights z and

1 2 z, respectively.

Individuals receiving TB treatment were assumed to have

reduced infectiousness compared with untreated individuals,

with the reduction in infectiousness approximated as the comp-

lement of the failure probability for each regimen–strain pair.

Diagnostic algorithms were based on current practice and on

WHO guidelines for Xpert implementation [54]. Values for the

sensitivity and specificity for each diagnostic test were derived

from the published literature [55–57]. As the model distinguishes

between smear-negative and smear-positive TB, the sensitivity of

smear was defined as 0% and 100%, respectively, for these two

groups. As sputum culture is considered the gold standard for

diagnosis the sensitivity of this test was assumed to be 100%.

Few data are available on the percentage of individuals testing

negative on smear microscopy who subsequently have this diag-

nosis confirmed by sputum culture. Dowdy et al. [52] estimated

this percentage as 5% and 37% for treatment-naive and treat-

ment-experienced individuals, respectively, based on 2004

South African data. It is likely that access to sputum coverage

will have risen since then, and we assumed starting values for

these parameters of 20% and 80%, respectively. In addition,

80% of individuals who are diagnosed positive with a history

of prior treatment were assumed to receive drug susceptibility

testing (DST).

Parameters relating to treatment programme coverage and

performance were based on routine monitoring data aggre-

gated by the WHO Stop TB Department [58]. Access to

DOTS TB programmes (parametrized as the rate at which

those with active TB attend a health centre providing TB diag-

nosis and treatment) was estimated from reported trends in the

case detection rate (CDR). First, a simple time trend was fit to

national CDR data using a logistic regression model. As the

CDR more closely approximates a probability rather than a

rate, we transformed the predicted CDR (CDRp) to calculate

the attendance rate, whereby rate ¼ 1 2 exp(2CDRp). For

the pre-1990 period, the rate of attendance for DOTS diagnosis

was assumed to increase from zero to the 1990 value over a

4-year period. For future years, the attendance rate was held
constant at the most recent value for which data were available.

The imperfections of the CDR as a measure of the probability of

detection are well understood [59], and this uncertainty was

reflected in the analysis by assuming a wide prior distribution

for the attendance rate, with a range spanning from zero to two

times the point estimate. There is little information on non-

DOTS diagnosis, but this was assumed to start earlier (1970)

and to continue at a low level in the future (rate of 0.2 per

year, also varying within a range spanning zero to two times

the point estimate). The volume of non-DOTS care was

calibrated to produce observed drug resistance levels.

Rates of treatment default were based on reported pro-

gramme outcomes [58] and calculated in a similar fashion

to the attendance rate, by fitting a simple time trend to the

national programme data using a logistic regression model,

and transforming the estimated probability of default to

obtain the annualized default rate. TB-specific excess mor-

tality rates were assumed to persist for the first two months

of treatment before dropping to zero, and the treatment mor-

tality rates produced by this assumption were consistent with

reported programme outcomes.

The probability of treatment success (probability of cure or

completion among all individuals finishing a treatment regi-

men) are determined by the appropriateness of the drug

regimen as well as other characteristics of the treatment pro-

gramme—such as quality of adherence support—which

might change over time. To capture the influence of these

other programme characteristics, we assumed that the efficacy

of the first-line regimen in pan-sensitive TB was equivalent to

the fraction of all individuals cured or completing treatment

estimated from national programme data. This was operatio-

nalized as a time trend fit to the observed data in a logistic

regression model. The probabilities of treatment success for

other strain–regimen combinations were assumed to be

fixed proportions of this value, shown in electronic

supplementary material, table S3.

We assumed that diagnosis and treatment were more lim-

ited in the early years of TB control programmes. This

assumption was operationalized in the model as a linear

increase in the availability of culture, DST and second-line regi-

mens over the past 20 years, from an initial scenario in which

there was no access to advanced tests or second-line regimens.

Little information is available to estimate rates of acquired

resistance by regimen and initial strain. We based our esti-

mates on data reported in Lew et al. [60], adjusted for the

prevalence of resistance to other first-line drugs (streptomy-

cin, ethambutol) not tracked in the model (values shown in

electronic supplementary material, table S3).
C.4. Human immunodeficiency virus epidemiology
and treatment

Estimates for HIV incidence and ART coverage were obtained

from UNAIDS (2015, unpublished data). For future years,

HIV incidence was assumed to decline at an exponential

rate estimated from the past 7 years of incidence data.

Untreated HIV-positive individuals in the model transition

onto ART at rates calculated to match national reporting

data on ART programme scale-up. ART coverage (the frac-

tion of eligible individuals receiving ART) was assumed to

increase from current levels to the WHO universal access

target of 80% coverage [61] over the course of 10 years.
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Early HIV treatment guidelines suggested a CD4 count cri-

terion of less than 200 cells per ml for initiating ART [62],

whereas the 2010 revisions to the guidelines have raised

this CD4 criterion to less than 350 cells per ml [63]. For this

reason, all ART initiations prior to 2010 were assumed to

come from the CD4 , 200 group, and for 2010 onwards,

the fraction of HIV initiations coming from the 350 .

CD4 . 200 group was assumed to rise such that by 2015 indi-

viduals in the 350 . CD4 . 200 and CD4 , 200 groups

would have equal probability of initiation on ART. The

most recent guidelines, adopted after this work was under-

way, suggest that ART be initiated in all HIV-positive

individuals with a CD4 count less than 500 cells per ml

[64]; we do not model individuals with CD4 count above

and below this new threshold separately. Estimates for

HIV-specific mortality rates (with and without ART) were

drawn from the literature [65–70].
 2:20150146
Appendix D. Model calibration
We adopted a Bayesian approach to calibrate the model, fol-

lowing the prior work of Raftery and co-workers [20,21]. The

approach enables the synthesis of multiple sources of infor-

mation on the values of model outputs, and allows for

characterization of the uncertainty in model results using

Bayesian posterior intervals and similar metrics.

The disease model (M) can be considered a deterministic

mapping from the parameter space of the model inputs (Q)

to that of the model outputs (F), such that M : u! w. For

some of these outputs (w1), we have external data (X ) related

to w1 through a defined probability model. An example of w1

would be model projections of MDR-TB prevalence for 2010,

and an example for X would be the estimate for MDR-TB

prevalence obtained from a population-based survey con-

ducted in the same year. For other outputs (w2)—generally

those we would like to make inferences about—we have no

external data, but can estimate their distribution based on the

prior information about u and w2, relying on the deterministic

disease model to link these three sets of parameters. As we

have probabilistic prior information on u and w1, we can use

this information to estimate the posterior density of u

Pr (ujX)/ Pr (u) � L(ujX),

where Pr(ujX ) is the prior distribution of the model inputs, and

L(ujX ) is the likelihood function for u constructed with the

external data X. While this likelihood function cannot be esti-

mated directly, we can transform u into the output parameter

space to estimate the likelihood

Pr (ujX)/ Pr (u) � L(M(u)jX)/ Pr (u) � L(w1jX):

Having obtained a posterior distribution for the model

inputs, we can then estimate the posterior density of w2

through the model, as M(Pr(ujX )). An analytic solution can

be difficult or impossible to calculate for disease models of

moderate or greater complexity, but the posterior distri-

butions can be approximated using numerical methods.

Following Alkema et al. [20], we used an SIR algorithm [22].

— We quantified the prior uncertainty for each model par-

ameter. Each range was assumed to represent the 95%

CI for a lognormal distribution (for parameters defined

over positive numbers, e.g. rates) or logit-normal
distribution (for parameters defined over the interval

[0,1], e.g. probabilities).

— We constructed a likelihood function to calibrate the

model, based on (i) WHO estimates [58] for TB prevalence

and incidence in 1990, 2000 and 2010, (ii) results from a

2002 TB drug resistance survey [71], and (iii) HIV preva-

lence estimates from national seroprevalence surveys in

2002, 2005 and 2008 [72]. These data are summarized in

electronic supplementary material, table S5. A normal

likelihood was adopted for each TB prevalence and inci-

dence estimate, centred at the reported value and with

variance calculated from the width of the reported confi-

dence intervals. A multinomial likelihood was adopted

for the distribution of TB drug resistance (summarized

into four categories: pan-sensitive TB, mono-INH resist-

ant, mono-RIF resistant and MDR-TB), with separate

likelihoods constructed for treatment-naive and treat-

ment-experienced cases, and assuming a design effect of

2 for the survey sample. A binomial likelihood was

adopted for the HIV prevalence estimates, constructed

using the survey results. These likelihood functions were

assumed to be mutually independent, and multiplied to

create a joint likelihood function.

— We used Latin Hypercube Sampling to draw 500 000

random parameter sets, and a separate simulation con-

ducted for each of these parameter sets. A likelihood

statistic was calculated for each of these model runs by

applying the joint likelihood function to the model

outputs produced by a particular parameter set.

— We then resampled the 500 000 parameter sets from the first-

stage sample with replacement to create a final array of

parameter sets, using the likelihoods as sampling weights.

A sample size of 10 000 was used for this second sample.

— We calculated results by running the model for the resampled

array of parameter sets. For each quantity of interest from the

model, the point estimate was calculated as the mean of

the results for the second stage sample, and 95% posterior

intervals (the Bayesian equivalent of confidence intervals)

calculated from the 2.5th and 97.5th percentiles of the

simulation results for each quantity of interest.

Figure 5 shows the results of the calibration for TB

incidence, overlaid with the WHO estimates.

Appendix E. Sensitivity analyses
We adopted three approaches to investigate the sensitivity of

our results to changes in model inputs.

E.1. Ranking variability analysis
In order to understand the robustness of our qualitative

conclusions, we examine the resampled parameter sets indivi-

dually to determine whether they rank pairs of interventions

consistently or inconsistently with the posterior mean for each

outcome. The fraction of the probability mass assigned to the

resampled parameter sets which produce a consistent ranking

provides a measure of the robustness of our conclusions.

E.2. Analysis of partial rank correlation coefficients
Partial rank correlation coefficients (PRCCs) represent a comp-

lementary approach for investigating uncertainty, providing
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information on the relative influence that individual par-

ameters have on model outcomes based on the results of a

probabilistic sensitivity analysis [35,73,74]. We calculated

PRCCs using the resampled parameter sets produced by the

calibration procedure. Results for the 10 parameters having

the greatest influence on the TB incidence reduction over

20 years are shown in electronic supplementary material,

figure S2.

E.3. Fixed incidence instead of fixed contact rate
Our model’s baseline HIV incidence is normally used to com-

pute a time-dependent contact rate, which is then used in all
alternative scenarios to compute the new incidence. Both of

these are computed using the equation

It ¼ Ct

X

j

rj
X jt

N
,

where It is the incidence at time t, Ct is the contact rate, rj is

the infectiousness of the jth HIV state relative to the untreated

HIV-positive state with CD4 . 350, and Xjt is the fraction of

people in HIV state j at time t. In order to compare our

model with that of Dodd et al. [26], we use the baseline inci-

dence in all of our scenarios, effectively turning off the impact

of ART expansion on HIV incidence.
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