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Abstract—We consider a communication scenario, in which
an intruder tries to determine the modulation scheme of the
intercepted signal. Our aim is to minimize the accuracy of the
intruder, while guaranteeing that the intended receiver can still
recover the underlying message with the highest reliability. This
is achieved by perturbing channel input symbols at the encoder,
similarly to adversarial attacks against classifiers in machine
learning. In image classification, the perturbation is limited to
be imperceptible to a human observer, while in our case the
perturbation is constrained so that the message can still be
reliably decoded by the legitimate receiver, which is oblivious
to the perturbation. Simulation results demonstrate the viability
of our approach to make wireless communication secure against
state-of-the-art intruders (using deep learning or decision trees)
with minimal sacrifice in the communication performance. On
the other hand, we also demonstrate that using diverse training
data and curriculum learning can significantly boost the accuracy
of the intruder.

Index Terms—secure communication, deep learning, adversar-
ial attacks, modulation classification

I. INTRODUCTION

Securing wireless communication links is as essential as
increasing their efficiency and reliability, for military, commer-
cial, as well as consumer communication systems. The stan-
dard approach to securing communications is to encrypt the
transmitted data. However, encryption may not always provide
full security (e.g., in case of side-channel attacks), or strong
encryption may not be available due to complexity limitations
(e.g., for IoT devices). To further improve security, encryption
can be complemented with other techniques, preventing the
adversary from even recovering the encrypted bits.

As outlined in [2], an adversary implements its attacks on
a wireless communication link in four steps: 1) tunes into the
frequency of the transmitted signal; 2) detects whether there is
signal or not; 3) intercepts the signal by extracting its features;
and 4) demodulates the signal by exploiting the extracted
features, and obtains a binary stream of data. Preventing any of
these steps can strengthen the security of the communication
link. While encryption focuses on protecting the demodulated
bit stream, physical layer security [3], [4] targets the fourth
step by minimizing the mutual information available to the
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intruder. Recently, there has also been significant interest in
preventing the second step through covert communications
[5]. In this work, we instead focus on the third step, and
aim at preventing the adversary from detecting the modulation
scheme used for communications.

Modulation detection is the step between signal detection
and demodulation in communication systems, and thus plays
an important role in data transmission, as well as in detection
and jamming of unwanted signals in military communications
and other sensitive applications [6]. Recently, deep learning
techniques have led to significant progress in modulation-
detection accuracy: methods based on convolutional and other
deep neural networks can detect the modulation scheme di-
rectly from raw time-domain samples [7]–[11], surpassing
the accuracy of conventional modulation detectors based on
likelihood function or feature-based representations (see [6]
for a survey of these approaches).

Our aim in this paper is to prevent an intruder that employs a
state-of-the-art modulation detector from successfully identify-
ing the modulation scheme being used. If the intruder is unable
to identify the modulation scheme, it is unlikely to be able
to decode the underlying information or employ modulation-
dependent jamming attacks to prevent communication. To
achieve this goal, we introduce modifications to the transmitted
signal. The main challenge here is to guarantee that the
intended receiver of the (modified) transmitted signal can still
receive the underlying message reliably, while preventing the
intruder from detecting the modulation scheme being used.
Otherwise, reducing the accuracy of the modulation-detecting
intruder would be trivial at the price of increasing – possibly
by a lot – the bit-error rate (BER) of the intended receiver.
We assume that the intended receiver is oblivious to the
modifications employed by the transmitter, and therefore, the
goal of the transmitter is to introduce as small modifications
to the transmitted signal as possible that are sufficient to fool
the intruder but not larger than the error-correction capabilities
of the intended receiver.

Introducing small variations into the modulation scheme
that can fool an intruder is similar to adversarial attacks on
classifiers, in particular, deep neural networks (DNNs) [12],
[13]. In the literature, adversarial attacks are mostly considered
in the area of image classification, where they pose security
risks by exposing the vulnerabilities of classifiers against very
small changes in the input that are imperceptible to humans
but lead to incorrect decisions. In contrast, we exploit the
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same approach here to defend a communication link against
an intruder that employs DNNs or other standard classification
methods for interception.

In [14], an adversarial attack for a deep-learning-based
modulation classifier has been proposed where the adversary
assumes the availability of noisy symbols received at the mod-
ulation classifier for generating the adversarial attack, which
makes it impractical and limited in scope. A similar method
has been proposed recently in [15], where modifications are
employed by the transmitter to evade a DNN-based jammer,
and the receiver uses another DNN (an autoencoder) to pre-
process the received signal and filter out the modifications.
However, no analysis has been provided on the impact of this
method on the BER of the intended receiver. In contrast to
[15], we do not limit our approach to a DNN-based jammer
and consider a receiver that is completely oblivious to the
modifications in the transmitter. Moreover, we also consider
the impact of the defensive perturbations on the BER at the
legitimate receiver. The results of [15] has been extended in
[16] to the detection of wireless communication protocols, and
targeted adversarial attacks are also considered to generate the
perturbations.1

A number of concurrent works have also appeared in the
literature (parallel or following the original publication of
our preprint on arXiv [18] and the conference version of
our paper [1]). Most similar to ours is [19], which proposes
modifications in the transmitted signal using an adversarial
residual network at the transmitter to evade the modulation
detector at an intruder, while the legitimate receiver is able
to decode the signal with small bit error rate. Compared
to this paper, we use different adversarial attack techniques,
propose different ways of improving the modulation-detection
accuracy of the intruder, and analyze the trade-off between
the code rate and the BER for defensive perturbations and an
improved intruder. Adversarial perturbations have also been
applied to attack a legitimate receiver in [20], [21]. In these
works, the signal at the receiver is perturbed by an over-
the-air attack, i.e., by transmitting an adversarial signal, to
make the modulation classifier at the legitimate receiver fail
(in comparison, in our case the transmitter changes the signal
to fool the intruder). In [20], modifications in the transmitted
signals are also proposed to evade the modulation detector
at the intruder and are evaluated in terms of the BER at the
receiver, but the modifications in the transmitted signals are
not optimized with respect to the BER and induce larger errors
at the legitimate receiver. The over-the-air attack scenario has
been considered in [21], and attack methods of various strength
have been devised under more realistic assumptions about the
capabilities of the attacker, in particular about its information
on the signal received by the modulation classifier (fully
known vs. its distribution being estimated based on samples
available to the attacker) and on the channel noise from the
attacker to the receiver (knowing the exact realization or just
the noise distribution). While these attack methods share the
underlying idea with our defensive perturbations, they face a

1Targeted adversarial attacks [17] aim to modify the data so that the attacked
classifier predicts an incorrect class selected by the attacker.

much easier problem, as the attacks are not constrained by
ensuring a low BER at a distinct receiver.

While we consider adversarial attack methods that affect the
behavior of trained classifiers (i.e., the modulation classifier of
the intruder in our case) by perturbing their input data (these
attacks are known as test-time or evasion attacks), another
class of adversarial machine learning algorithms, called poi-
soning attacks, aim to compromise the training procedure of
classifiers and other machine learning models by modifying
their training data [22]. Poisoning attacks have been used
in launching and avoiding jamming attacks in wireless com-
munication [23]–[25]; however, since these methods address
the training of the machine learning models employed by
the jammer and the transmitter, they are orthogonal to our
developments.

In summary, our main contributions are as follows:
• We propose a novel defense mechanism that modifies

the channel input symbols at the transmitter in order
to reduce the modulation-classification accuracy at the
intruder while maintaining a low BER at the legitimate
receiver.

• We provide a thorough experimental evaluation of the
effect of these modifications on the BER of different
modulation schemes.

• We demonstrate that by using training data obtained from
different SNR values and employing curriculum learning,
an intruder can learn a classifier that is much more
robust against both the channel noise and the defensive
perturbations, improving upon the state of the art in our
experiments when no defense mechanism is applied.

• We also demonstrate that the usual trade-off between
the code-rate and the BER is still achievable under
our defensive modulation schemes, which introduce an
unusual compound noise due to the combined effects
of the introduced perturbations and the channel noise.
More precisely, we show that by using a stronger error
correction code, the BER at the legitimate receiver can
be reduced while the intruder achieves the same or worse
modulation-classification accuracy.

The rest of the paper is organized as follows: The system
model is described in Section II, followed by the description
of our novel modulation perturbation methods in Section III.
Experimental results are presented in Section IV, while con-
clusions are drawn and future work is discussed in Section V.

II. SYSTEM MODEL

Consider a transmitter that maps a binary input sequence
w ∈ {0, 1}m into a sequence of n complex channel input
symbols, x ∈ Cn, employing forward error correction coding.
The input data is first encoded by the channel encoder, and
then modulated for transmission. Formally, the modulated sig-
nal x is obtained as x = Ms(w), where s ∈ S is the employed
modulation scheme with S denoting the finite set of available
modulation schemes, and for any s, Ms : {0, 1}m → Cn
denotes the whole encoder function with modulation s. We
assume that Ms satisfies the power constraint (1/n)‖x‖22 ≤ 1
for any input sequence w. After encoding, signal x is sent over
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a noisy channel, assumed to be an additive white Gaussian
noise (AWGN) channel: baseband signals y1 and y2, received
by the intended receiver and the intruder, respectively, are
given by

yi = Ms(w) + zi = x + zi, i = 1, 2, (1)

where z1, z2 ∈ Cn are independent channel noise (also inde-
pendent of x) with independent zero-mean complex Gaussian
components with variance σ2

1 and σ2
2 , respectively.

The intended receiver, upon receiving the sequence of
noisy channel symbols y1, demodulates the received signal,
and decodes the underlying message bits with the goal of
minimizing the (expected) BER E[(w,y1)], where

e(w,y1) , 1
m

∑m
i=1 I{wi 6= ŵi}, (2)

ŵ is the decoded bit sequence from y1, and the expectation
is over the uniformly random input bit sequence w and the
noise sequence z1.2

The intruder aims to determine the modulation scheme
employed by the transmitter based on its received noisy
channel output y2. The transmitter, on the other hand, wants to
communicate without its modulation scheme being correctly
detected by the intruder, while keeping the BER at an accept-
able level.

Formally, the aim of the intruder is to determine, for any
sequence of channel output symbols y2 ∈ Cn, the modulation
method used by the transmitter. This leads to a classification
problem where the label s ∈ S is the employed modulation
scheme, and the input to the classifier is the received channel
sequence y2 ∈ Cn. We consider the case in which the intruder
implements a score-based classifier, and assigns to y2 the label
ŝ = argmaxs′∈S fθ(y2, s

′), where fθ : Cn × S → R is a
score function parametrized by θ ∈ Rd, which assigns a score
(pseudo-likelihood) to each possible class s′ ∈ S for every
y2, and finally selects the class with the largest score. With a
slight abuse of notation, we denote the resulting class label by
ŝ = fθ(y2). The goal of the intruder is to maximize the proba-
bility Pr(s = ŝ) of correctly detecting the modulation scheme,
which we will also refer to as the success probability of the
intruder.3 For state-of-the-art modulation detection schemes
[7]–[11], fθ is a convolutional neural network classifier, θ
is the vector of the weights of the neural network, while the
fθ(y2, s

′) are the so-called logit values for the class labels
s′ ∈ S.

The performance of both the intended receiver, measured by
the BER, and the intruder, measured by the detection accuracy,
depend on the signal-to-noise ratio (SNR) of the corresponding
channels, 1

σ2
1

and 1
σ2
2

, respectively. We assume that these SNR
values are known by the legitimate receiver and the intruder,
which can employ a specific fθ for each SNR value. We will
also assume that the intruder has access to training data at the
SNR value 1

σ2
2

to train fθ. This can be done offline as the
intruder can generate as much training data as required at a
specific SNR value.

2For any event E, I{E} = 1 if E holds, and 0 otherwise. Furthermore,
for any real or complex vector v, vi denotes its ith coordinate.

3Here we assume an underlying probabilistic model about how the the bit
sequence w and modulation scheme is selected.

III. MODULATION PERTURBATION TO AVOID DETECTION

In this paper we intend to modify the encoding processes
Ms such that, given a modulation scheme s ∈ S, the new en-
coding method M ′s ensures that the intruder’s success probabil-
ity gets smaller, while the BER of the receiver (using the same
decoding procedure for Ms) does not increase substantially.
Our solution is motivated by adversarial attacks for image
classification, where it is possible to modify images such that
the modification is imperceptible to a human observer, but
it makes state-of-the-art image classifiers to err [12], [13].
Adversarial examples are particularly successful in fooling
high-dimensional DNN classifiers. Applying the same idea to
our problem, we aim to find defensive modulation schemes M ′s
such that M ′s(w) ≈Ms(w), but the intruder misclassifies the
new received signal y′2 = M ′s(w)+z2 with higher probability.

A. Adversarial attack in an idealized scenario

Following directly the idea of adversarial attacks on image
classifiers [13], an idealized yet impractical adversarial attack
mechanism is proposed in [14] which modifies a correctly clas-
sified channel output sequence y2 (i.e., for which s = fθ(y2))
with a perturbation δ ∈ Cn such that fθ(y2 + δ) 6= fθ(y2),
the true label, while imposing the restriction ‖δ‖2 ≤ ε for
some small positive constant ε. Thus, to mask the modulation
scheme, the goal is to find, for each correctly classified y2

separately, a perturbation δ that maximizes the zero-one loss:

maximize I{fθ(y2 + δ) 6= s} such that ‖δ‖2 ≤ ε , (3)

where s = fθ(y2) is the true modulation label.
If the maximum is 1, such a δ results in a successful

adversarial perturbation and a successful adversarial example
y2 + δ (i.e., one for which the intruder makes a mistake).
This approach, however, has two limitations. First of all, as
opposed to image classifiers, we are not concerned with the
visual similarity of the perturbed signal y2 + δ to the original
one, y2. The reason for bounding the perturbation δ is instead
to guarantee that the BER at the intended receiver is still
limited. Moreover, in practice we do not have access to y2, as
it does not only depend on x, but also on the channel noise z2,
which is not available at the transmitter. Therefore, the above
mechanism, analyzed in [14], is an oracle scheme working
under some idealized assumptions, and we use it only as a
baseline.

It remains to give an algorithm that finds an adversarial
perturbation δ solving problem (3). However, we note that
the target function I{fθ(y2 + δ) 6= fθ(y2)} is binary, and
so no gradient-based search is directly possible. To alleviate
this, usually a surrogate loss function L(θ,y2, s) to the zero-
one loss is used (which is often also used in training the
classifier fθ), which is amenable to gradient-based (first-order)
optimization. For classification problems, a standard choice
is the cross-entropy loss defined as L(θ,y2, s) = − log(1 +
e−fθ(y2,s)), and one can search for adversarial perturbations
by solving

maximize L(θ,y2 + δ, s) such that ‖δ‖2 ≤ ε. (4)
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Different methods are used in the literature to solve (4)
approximately [13], [17], [26], [27]. In this paper we use the
state-of-the-art projected (normalized) gradient descent (PGD)
attack [28] to generate adversarial examples, which is an
iterative method: starting from y0 = y2, at each iteration t
it calculates

yt = ΠBε(y2)

(
yt−1 + β sign(∇yL(θ,yt−1, s))

)
, (5)

where β > 0 denotes the step size, sign denotes the sign
operation, and ΠBε(y2) denotes the Euclidean projection op-
erator to the L2-ball Bε(y2) of radius ε centered at y2, while
∇ denotes the gradient. The attack is typically run for a
specified number of steps, which depends on the computational
resources; in practice yt is more likely to be a successful
adversarial example for larger values of t. We will refer to this
idealized modulation scheme as the Oracle Scheme (Oracle).

Note that this formulation assumes that we have access to
the logit function fθ of the intruder; these methods are called
white-box attacks. If fθ is not known, one can create adver-
sarial examples against another classifier fθ′ , and hope that it
will also work against the targeted model fθ. Such methods
are called black-box attacks, and are surprisingly successful
against image classifiers [29]. We will also consider black-
box attacks against intruders in our experimental evaluations.

B. Adversarial attack through channel input modification

As mentioned before, the Oracle scheme is infeasible in
practice as the transmitter can only modify the channel input
x = Ms(w) but not y2 directly. Thus, the new modulation
scheme is defined as

M ′s(w) = α(Ms(w) + δ), (6)

where we will consider different choices for δ ∈ Cn, and
the multiplier α =

√
n/‖Ms(w) + δ‖2 is used to ensure

that the new channel input x̄ = M ′s(w) satisfies the average
power constraint (1/n)‖x̄‖22 ≤ 1. The signals received at the
receiver and at the intruder are ȳ1 = x̄+z1 and ȳ2 = x̄+z2,
respectively. The difficulty in this scenario is that the effect of
any carefully designed perturbation δ may be (and, in fact, is
in practice) at least partially masked by the channel noise.
Furthermore, since now the perturbed signal is transmitted
at the actual SNR of the channel, the effective SNR of the
system is decreased, as the transmitted signal already includes
the perturbation δ, which can be treated as noise from the
intended receiver’s point of view.

Our first and simplest method to find a perturbation δ
disregards the effects of the channel noise and the resulting
BER at the receiver.

1) Perturbation-based Defensive Modulation Scheme
(PDMS): In this method, called the PDMS, we aim to solve
the optimization problem (4) with x in place of y2, via (5)
initialized at y0 = x and with projection to Bε(x) (for a
specified number of iterations t and perturbation size ε).

C. BER-aware adversarial attack

Next, we consider methods that also take into account the
BER, e(ȳ1,w) at the receiver (see Eq. 2): that is, instead of
enforcing the perturbation δ to be small and hoping for only
a slight increase in the BER, we optimize also for the latter.
There is an inherent trade-off between these two targets: a
larger δ results in a bigger reduction in the detection accuracy
of the intruder, but will also increase the BER at the receiver.
We consider two methods to handle this trade-off:

In the first one, called BER-Aware Defensive Modulation
Scheme (BDMS); we consider a (signed) linear combination
of our two target functions in order to balance the above two
effects,

Lλ(θ, x̄, s, z1, z2) = L(θ, x̄ + z2, δ)− λe(x̄ + z1,w)

for some λ > 0, where ȳi = x̄+zi, i = 1, 2, and aim to find a
perturbation δ or, equivalently, a modulated signal x̄ = x+ δ
that maximizes the expectation

Ez1,z2 [Lλ(θ,x, s, z1, z2)] (7)

with respect to the channel noise z1, z2. Here we can use
stochastic gradient ascent4 to compute an approximate local
optimum, but in practice we find that enforcing δ to be small
during iterations improves the performance; hence, we use a
stochastic version of PGD optimization (5): starting at x0 = x,
our candidate for x̄ is iteratively updated as

xt = ΠBε(x)

(
xt−1 + β · sign(∇xL(θ,xt−1, s, zt1, z

t
2))
)
,

where zti are independent copies of zi, respectively, for
i = 1, 2, and t = 1, 2, . . .. Although Ez1

[e(x̄ + z1,w)] is
differentiable, e(y,w) for a given fixed value of y is not (since
it takes values from the finite set {0, 1/n, . . . , 1}). Similarly to
[30], we approximate the gradient of the expected error using
simultaneous perturbation stochastic approximation (SPSA)
[31] as

∇̂y e(y,w) ,
1

K

K∑
k=1

e(y+ηrk,w)− e(y−ηrk,w)

2η
r>k , (8)

where r1, . . . , rK are random vectors selected independently
and uniformly from {−1, 1}n (the notation ∇̂ is used to
indicate that this is not a real gradient).

In the alternative BER-Aware Orthogonal Defensive Mod-
ulation Scheme (BODMS), instead of maximizing the com-
bined target (7), we try to maximize the cross-entropy loss
L(θ, ȳ2, s) while not increasing (substantially) the BER
e(ȳ1,w). In order to do so, we maximize L(θ, ȳ2, s) using
stochastic PGD (again, in every step we choose independent
noise realizations), but we restrict the steps in the directions
where the BER does not change. Thus, in every step we update
xt−1 in a direction orthogonal to the gradient of the BER
defined as

∇oL(θ,xt−1 + zt2, s)

, ∇xL(θ,xt−1 + zt2, s)−
〈
∇xL(θ,xt−1 + zt2, s),de

〉
de

4However, similarly to the literature on adversarial attack methods, we often
call these methods gradient descent instead of ascent.
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where de = ∇̂xe(x
t−1 + zt1,w)/‖∇̂xe(x

t−1 + zt1,w)‖2 is the
(approximate) gradient direction of the BER (computed, e.g.,
using SPSA as in Eq. 8).

IV. EXPERIMENTAL EVALUATION

In this section, we test and compare the performance of the
proposed methods through numerical simulations. We assume
that the binary source data is generated independently and
uniformly at random, and is encoded using a rate 2/3 con-
volutional code before modulation. Eight standard baseband
modulation schemes are considered: GFSK, CPFSK, PSK8,
BPSK, QPSK, PAM4, QAM16, QAM64. A square-root
raised cosine filter is used for pulse shaping of the modulated
data with a filter span of 10, roll-off factor of 0.25 and
upsampling factor of 8 samples per symbol and the modulated
data is sent over an AWGN channel with SNR varying between
-20 dB and 20 dB. We consider identical SNRs during both
the training of the intruder and at test time. After hard decision
demodulation, the receiver uses Viterbi decoding to estimate
the original source data.

We follow the setup of [8] for modulation detection: The
intruder has to estimate the modulation scheme after receiving
128 complex I/Q (in-phase /quadrature) channel symbols; this
is because we assume that the modulation detection is only
the first step for the intruder, which then uses this information
for either trying to decode the message or to interfere with its
transmission. Therefore, the modulation detection should be
completed based on a short sequence of channel symbols. As
the classifier, we first consider the deep convolutional neural
network architecture of [8] for the intruder (given in Table I-a),
which operates on the aforementioned 256-dimensional data.
We train this network for 100 epochs with a batch size of 100
samples and use the Adam optimizer [32] with a learning rate
of 0.001.

For each modulation scheme, we generate data resulting
in approximately 245000 I/Q channel symbols (note that for
different modulation schemes this corresponds to different
number of data bits), split into blocks of 128 I/Q symbols
(n = 128), as explained above. The last 300 blocks for each
modulation scheme are reserved for testing the performance
(tests are repeated 20 times), while we train a separate clas-
sifier for each SNR value based on the above data. As shown
in Fig. 1 (see the curve with label NoPerturb), for high SNR
values the accuracy of the modulation classification is close
to 90%. As expected, the classification accuracy degrades as
the SNR decreases (as the noise masks the signal), but even at
-10 dB, the intruder can achieve a 40% detection accuracy (as
opposed to the 12.5% accuracy a completely random detector
would achieve).

In the experiments, we compare this performance with the
following defensive modulation schemes and baselines:
• Our three defensive modulation schemes, PDMS, BDMS,

and BODMS, as well as the Oracle scheme as a baseline;
• Adding uniform random noise of L2-norm ε to a block,

called random noise insertion (RNI), which is then nor-
malized for the power constraints;

• Black-box defensive modulation schemes that do not use
the classifier of the intruder, but calculate PDMS against
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Fig. 1: Modulation-classification accuracy of the intruder as a
function of SNR for different defensive modulation schemes.

(a) PSK8

(b) QAM64

Fig. 2: BER vs SNR for PSK8 and QAM64 modulated signal
for different defensive modulation schemes.

different classifiers. We consider two variants: Black-box
DMS-identical (BB-DMSI ) uses a classifier that has the
same architecture as that of the intruder’s, but is trained
separately (assuming no channel noise). Alternatively,
BB-DMS-non-identical (BB-DMSN ) employs a classifier
with a different architecture than the intruder’s, and is
also trained assuming no channel noise – its architecture
is shown in Table I-b.

All the above schemes, except for RNI, are implemented
using the projected (normalized) gradient descent (PGD) [28]
method from the CleverHans Library [33], with 20 iterations,
β = 0.2 and ε = 3. ε = 3 results in significant reduction in
modulation-classification accuracy without incurring too large
BER at the intended receiver and has been determined by
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Layer Output dimensions
Input 128 x 2
Convolution (128 filters, size 8 x 2) + ReLU 121 x 128
Max Pooling (size 2, strides 2) 60 x 128
Convolution (64 filters, size 16 x1) + ReLU 45 x 64
Max Pooling (size 2, strides 2) 22 x 64
Flatten 1408
Dense + ReLU 128
Dense + ReLU 64
Dense + ReLU 32
Output: Dense + softmax 8

(a)

Layer Output dimensions
Input 128 x 2
Convolution (64 filters, size 4 x 2) + ReLU 125 x 64
Max Pooling (size 2, strides 2) 62 x 64
Convolution (32 filters, size 8 x1) + ReLU 55 x 32
Max Pooling (size 2, strides 2) 27 x 32
Convolution (32 filters, size 8 x1) + ReLU 20 x 32
Max Pooling (size 2, strides 2) 10 x 32
Flatten 320
Dense + ReLU 100
Output: Dense + softmax 8

(b)

TABLE I: Neural network architectures: (a) the architecture of
[8] used for modulation classification; (b) the modified archi-
tecture used in our black-box modulation scheme BB-DMSN .

running experiments over different values of ε. RNI uses the
same ε. Note that a perturbation of this size accounts for
about 7% of the total energy of a block (which is 128 due
to our normalization to the energy constraint). Oracle serves
as an upper bound on the achievable defensive performance
given the parameters, while the role of RNI is to analyze the
effect of carefully crafted perturbations instead of selecting
them randomly. BB-DMSI , and BB-DMSN explore the more
practical situation in which the exact classifier of the intruder
is not known, but its training method and/or a similar classifier
is available to the transmitter.

A. Defensive modulation schemes with norm-bounded pertur-
bations

We first consider defensive modulation schemes with a
bound on the L2 norm of the applied perturbation. Fig. 1 shows
the modulation-classification accuracy for several methods. It
can be seen that adding random noise (RNI) helps very little
compared to no defense at all (NoPerturb). The basic defense
mechanism PDMS and its black-box versions BB-DMSI and
BB-DMSN become effective from about -5 dB SNR, and, as
expected, PDMS outperforms BB-DMSI and BB-DMSN . For
smaller SNR values the classification accuracy is relatively
small (the channel noise already makes classification hard),
and only the Oracle defense gives noticeable improvement.
As expected, the performance of PDMS gets closer to its
lower bound, Oracle, as the SNR increases (note that the
two methods coincide at the limit of infinite SNR). The
similar performance of BB-DMSI , BB-DMSN , and PDMS
for medium SNR values shows a similar transferability of

Modulation NoPerturb PDMS
GFSK 1.0 0.02
CPFSK 1.0 0.963
PSK8 0.986 0.0167
BPSK 1.0 0.76
QPSK 0.996 0.07
PAM4 1.0 0.096
QAM16 0.48 0.376
QAM64 0.526 0.376

TABLE II: Classification accuracy of PDMS for different
modulation schemes with ε = 3 at SNR 20 dB.

adversarial attacks in our situation as was observed in other
machine learning problems, such as in image classification
[29], [34], although this effect deteriorates quickly as the SNR
increases and PDMS becomes more effective. Note that the
two black-box schemes, BB-DMSI and BB-DMSN , perform
very similarly. In a practical scenario, the transmitter may not
know the exact architecture of the intruder’s classifier. Nev-
ertheless, adversarial attacks designed against one classifier
are generally effective against another classifier [29], and the
results in Fig. 1 confirm this observation in our scenario as
well, and demonstrate that black-box defenses are possible
in general. Observe that the classification accuracy of PDMS
increases up to 0 dB SNR, when the channel noise during
both the training phase and test phase is higher than the
defensive perturbation and thus, channel noise is the main
cause of the performance limitation of the intruder, while
the accuracy decreases for higher SNR when the defensive
perturbation is larger compared to the channel noise and the
defense mechanisms start working.

Table II shows the modulation-classification accuracy for
the individual modulation schemes at channel SNR of 20
dB. It can be seen that a defensive perturbation of the same
norm ε affects different modulation schemes differently, where
CPFSK and BPSK appear to be the most robust against
defensive perturbations. Note that QAM16 and QAM64 are
very difficult to classify even without any perturbations, which
is in line with the observation made in [8]. Modulated signals
without any perturbation and PDMS-modulated signals are
presented in Fig. 3, which shows that, even after perturbation,
CPFSK retains the modulated signal constellation and the
perturbed BPSK signals are still different from the output of
any other modulation scheme. On the other hand, it becomes
difficult to distinguish QAM16 and QAM64 signals.

The reduced classification accuracy of the intruder for
PDMS, BB-DMSI , and BB-DMSN is achieved at the cost of
an increased BER at the legitimate receiver. To illustrate this
effect, Fig. 2 shows the BER for PSK8 and QAM64; the
other modulation schemes, except for QAM16, show similar
relative behavior to PSK8, but with the error dropping sharply
for medium SNR values, with a few dB difference among
different modulation schemes (up to about 5 dB for PSK8). On
the other hand, the price of using any defense mechanism on
QAM64 is severe, resulting in a significantly higher BER in
the high SNR regime; QAM16 behaves similarly with some-
what smaller BER values. For the Oracle defensive scheme,
we directly feed the perturbed signal to the decoder to calculate
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(h) QAM64-perturbed

Fig. 3: Original constellation points and the perturbed channel input symbols with PDMS for CPFSK, BPSK, QAM16 and
QAM64 for the first three inputs samples (3× 128 channel symbols) at the modulation classifier.

the BER, which is lower than the BER at the decoder when
the PDMS, BB-DMSI , and BB-DMSN defensive schemes are
employed for PSK8, while these BERs are essentially the
same for QAM64. We observe that BB-DMSI and BB-DMSN
achieve very similar BER performances. Since the two black-
box schemes perform similarly in terms of both the modulation
classification accuracy at the intruder and the BER at the
decoder, we consider only BB-DMSN in the remainder of the
paper, and represent it by BB-DMS for convenience.

This negative effect on the BER can be suppressed if the
perturbation size is decreased, which, at the same time, results
in increased detection accuracy. This is shown in Fig. 4 as a
function of the signal-to-perturbation ratio SPR , n/‖δ‖22
(recall n = 128, and SPR ≈ 11.5dB corresponds to
ε = 3). In every case, PDMS trades off increased BER for
reduced detection accuracy compared to the case when no
defense mechanism is applied. Also, increasing the number
of iterations used in the defensive schemes to compute the
perturbations has limited impact on modulation-classification
accuracy and BER as the total perturbation is limited to have
L2-norm ε.

Fig. 5 shows the trade-off between the average modulation-
detection accuracy of the intruder and the BER for the
individual modulation schemes for an intruder DNN trained
at an SNR of 10 dB (i.e., the training samples are generated
with this channel SNR) when the maximum perturbation norm
ε of PDMS takes values in the range [1, 6] (smaller ε values
correspond to points with smaller BER and larger classification
accuracy on each curve). It can be seen that an effective
perturbation that results in a reduction in the modulation-
classification accuracy also causes an increase in the BER. The
trade-off between the two is different for different modulation
schemes for the same perturbation constraint ε (note that

(a) Modulation-classification accuracy vs SPR.

(b) BER vs SPR.

Fig. 4: Effect of signal-to-perturbation ratio (SPR) on the
modulation-classification accuracy and the BER (QAM64).

the reported classification accuracy is an average computed
over all modulation schemes). It can be seen that an increase
in ε needed to reduce the average modulation-classification
accuracy results in large BER for QAM16 and QAM64. Note
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Fig. 5: Trade-off between the modulation-classification accu-
racy and the BER for PDMS with code rate 2/3, where the
L2 norm of the perturbations is limited by ε ∈ [1, 6]. The
accuracy is averaged over all modulation schemes while the
BER is shown for each modulation scheme separately. BPSK,
QPSK, GFSK and CPFSK have zero error rate for these
perturbations.

that in our experiments BPSK, QPSK, GFSK and CPFSK
have zero error rate for this ε range, hence they are not
included in the figure.

B. BER-aware defense schemes

A more systematic way of improving the BER is to use
our BER-aware modulation schemes BDMS and BODMS. In
the numerical experiments, due to the large computational
overhead of calculating the SPSA gradient estimates in (8)
(with K = 400), we only used 400 signal blocks to measure
the test performance (instead of the 300 × 20 = 6000 blocks
used previously). Also, to keep the required computation
feasible, in (8) we used error rates calculated over 100 signal
blocks (that is, over 12800 perturbed channel input symbols
simultaneously). This approximation allowed us to run Viterbi
decoding once for every hundred blocks, instead of running
it from the beginning for every block, causing a substantial
reduction in computational complexity. The approximate gra-
dient of e computed this way was then used to calculate one
step of the optimization (i.e., the next candidate perturbation)
for each of the 100 blocks simultaneously. The drawback
of this approximation is twofold: (i) instead of taking the
gradient for a single perturbation, for each perturbation the
error gradient is computed as an average coming from per-
turbing each of the 100 blocks simultaneously (this affects
negatively the accuracy of the optimization); (ii) the applied
method introduces delays in the transmission as it assumes
that all signal blocks perturbed together are available at the
transmitter at the same time (this gives some optimistic bias to
the optimization compared to non-delayed real-time encoding).
Nevertheless, we believe that the negative effects are stronger
here, and the performance of our modulation schemes (BDMS
and BODMS) could be improved if the BER of the individual
signal blocks were used for gradient estimation in SPSA.

Fig. 6 and Fig. 7 show, respectively, the modulation-
classification accuracy and the BER for BDMS and BODMS,
also compared to PDMS, RNI and NoPerturb, against a DNN-

based intruder, which is trained with channel input symbols at
specific SNR values. The performance of BDMS is presented
for three different values of λ, namely 1, 103, 106. As before,
the BER is shown for PSK8 and QAM64, as again QAM64
is the modulation scheme most affected by our perturbations,
and except for QAM16 (which is similar to QAM64), and
the error rate for the other modulation schemes is similar to
(in fact smaller than) that of PSK8 and is very small under
any defense mechanisms at high SNR values.

It can be seen that at high SNR (at least 12 dB), all defensive
schemes achieve roughly the same classification accuracy,
while BODMS and BDMS for large λ provide significant
improvement in the BER (shown for PSK8 and QAM64).
Note, however, that the errors are still significantly higher than
for the standard QAM64 modulation with no perturbation.

For larger λ values, the BER of BDMS for QAM64 is
smaller than or approximately the same as for RNI, which adds
uniform random noise of the same perturbation size, while it
significantly outperforms RNI in classification accuracy (for
PSK8, both RNI and BDMS achieve low BER, although it
can be much smaller for RNI). Note that BODMS approaches
the performance of BDMS with a large λ (103−106), without
the need to tune the hyperparameter λ, and these methods
provide a good compromise between the effectiveness of the
defense and the increase in the BER.

In addition to DNN-based detectors at the intruder, we also
examine defense against one of the best standard modulation
detection schemes in the literature, a multi-class decision tree
trained with expert features obtained from [35], [36]. Fig. 8
shows the modulation-classification accuracy and the BER
achieved by employing various defense mechanisms against
this intruder. It can be seen that the BER achieved against
the tree-based classifier is approximately the same as the
one achieved against the DNN-based classifier with BDMS
and BODMS, while the accuracy of the DNN-based classifier
is consistently higher, except for some high SNR values,
when they are approximately the same. This demonstrates
that our observations and conclusions also apply to intruders
employing other types of detection mechanisms.

C. Robustness of the intruder’s classifier

In the previous sections we assumed that the intruder knows
the SNR of its received signals perfectly and trains its classifier
for this SNR value. Although this may not be possible in
practice due to estimation errors or variations in channel
quality, assuming more accurate information at the intruder
should allow us to design stronger defense mechanisms. In this
subsection, we study the robustness of the intruder’s detection
network against errors in its SNR estimate; that is, we study
its modulation-detection accuracy when it is trained for a
specific channel SNR, but tested at different SNR values.
We show in Fig. 9 the results for three cases: (a) when
no defense mechanism is applied (i.e., NoPerturb); (b) when
uniform noise is added (RNI); and (c) when our perturbation-
based defense PDMS is applied. In each figure, we plot the
detection accuracy with respect to the test channel SNR when
the intruder is trained at five different SNR values. Baseline
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Fig. 6: Modulation-classification accuracy of BER-aware de-
fense mechanisms (ε = 3).

(a) PSK8

(b) QAM64

Fig. 7: BER for PSK8 and QAM64 for BER-aware modula-
tion schemes (ε = 3). In figure (a) the BER for RNI is 0 beyond
5 dB, and all BER values are 0 when the SNR is larger than
12 dB.

represents the case in which the test channel SNR matches the
training SNR.

We can observe in Fig. 9a that the intruder network trained
at channel SNR -20 dB is unable to learn any effective
classifier for higher SNR values. As the channel SNR at the
time of training increases, its performance improves for a
larger range of test SNR values as evident from the plots
for SNR -10 dB and 0 dB, but, as one would expect, the
accuracy achieved is below the peak accuracy values in the
Baseline curve. On the other hand, networks trained with high
SNR values of 10 dB and 20 dB achieve higher accuracy,
close to peak accuracy values in the Baseline curve, but tend
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(a) Modulation-classification accuracy

(b) BER

Fig. 8: Modulation-classification accuracy of tree-based in-
truder and BER (QAM64) for BER-aware modulation schemes
(ε = 3).

to breakdown when SNR goes below a certain value (2 dB
and 6 dB for intruder networks trained at 10 dB and 20
dB, respectively). It is due to the fact the DNNs learn the
classifier function from the training data, and for those trained
at high channel SNR, signals with higher noise may lie across
decision boundaries learned from less noisy training data, and
are wrongly classified.

Note that perturbations in Figs. 9b and 9c are generated with
total L2-norm ε = 3.0 for each trained network and at each
SNR value. It can be seen from Fig. 9b that adding random
perturbations does not reduce the modulation-classification
accuracy, yielding similar performance to the case when no
defense mechanism is applied (Fig. 9a).

When PDMS is employed, if the network is trained for a
low SNR value, then test data with lower noise level (higher
SNR) will lie at a larger distance from the decision boundaries
(learned from noisy data), since the decision boundaries are
already accounting for a very high noise level. Therefore, in
this case the total perturbation ε may not be enough to move
the signal to the wrong side of a learned decision boundary of
the intruder, resulting in a higher accuracy. On the other hand,
when the network is trained for a higher SNR value than the
test channel, there is not much variation in the training data
due to the absence of noise, and an attacks with even limited
perturbation is enough to move the data point to the other side
of the learned decision boundary, changing the class label.

In case of PDMS, the intruder networks trained at low
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(a) No defense (NoPerturb)

(b) RNI

(c) PDMS

Fig. 9: Modulation-classification accuracy of the intruder as a
function of the test channel SNR for total perturbation ε = 3.0

channel SNR values of 0 dB and 10 dB are more robust against
PDMS as the decision regions learned by the intruder NN
account for larger channel noise and the perturbation norm ε
is too small compared to this noise at smaller test SNR values
to move a perturbed signal over a decision boundary. Once the
defensive perturbation ε becomes comparable in magnitude to
the test data channel SNR then both intruder networks show
similar performance for test SNR (≥ 5 dB). In the case of an
intruder network trained at SNR 20 dB, perturbation ε is large
compared to channel noise for higher test SNR values, and
thus, results in low modulation-detection accuracy. Also, since
the signal is perturbed before transmission, these defensive
perturbations are partially masked by the channel noise. This
effect of the channel noise is prominent in accuracy curves,
though PDMS perturbations significantly reduce the detection
accuracy as evident in Fig. 9c.
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(b) With curriculum training.

Fig. 10: Modulation-classification accuracy for an intruder
trained with/without curriculum training for a complete dataset
of channel SNR values ranging from -20 dB to 20 dB (ε = 3).

D. Improving intruder’s performance by diversifying the train-
ing data

In this section, we consider the scenario when the intruder
has training data available at different SNR values; more
precisely, we use 21 different SNR levels uniformly spaced
between -20 dB to 20 dB, leading to a total of 21 × 12966
samples. We consider two different training strategies: (i)
randomly shuffle the training data of all channel SNR values
to train the intruder’s DNN; and (ii) curriculum learning [37],
where the training data is arranged in descending order of
their SNR values, and the training is started with samples of
training data from SNR 20 dB, gradually adding samples with
lower SNR values.

Fig. 10a shows that an intruder network trained with
data from all SNR values achieves a higher modulation-
classification accuracy for NoPerturb and against all defensive
modulation strategies compared to the case when only samples
from the same SNR values were used (cf. Fig. 1); this is
most likely due to the approximately 20-fold increase in
the number of training samples used. On the other hand,
we can see in Fig. 10b that curriculum training achieves
even higher robustness against all the defensive modulation
schemes, and even the idealized defensive modulation scheme
Oracle can be detected with more than 60% accuracy. This is
because, in curriculum training, the neural network gradually
learns, starting from easier concepts to more complex ones
(more noisy channels in our case) and generalizes better to
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(b) With curriculum training.

Fig. 11: BER for QAM64 for intruder trained with/without
curriculum training with complete dataset of channel SNR
values ranging from -20 dB to 20 dB (ε = 3).

unseen data including those generated by defensive modulation
schemes. In both cases, the improvement in detection accuracy
is more for higher SNR values. Fig. 11 shows the BER for
QAM64 when defensive perturbations are used against these
intruder modulation classifiers trained over the whole range of
SNR values without and with curriculum training, respectively.
The achieved BERs are similar to those achieved when the
intruder classifiers are trained for a particular SNR in Fig. 2.
This shows that the comparison of the detection accuracy
discussed above is fair (i.e., the improved detection accuracy
is not because the applied defensive perturbations are smaller).

Next, we consider the performance of BER-aware defensive
modulation schemes when the intruder classifiers are trained
with complete training data of all channel SNR values. The
results without any curriculum learning are shown in Fig. 12
for the same DNN-based classifier. It can be seen that the
modulation-classification accuracy is quite high, around 95%,
when no defense mechanism is employed (NoPerturb), and
over 90% when only noise is added (RNI). We can also observe
that, compared to results in Fig. 10a, BDMS is less successful
against this model for large λ (106); on the other hand, the
BER is significantly improved, as demonstrated by comparing
Fig. 11a and Fig. 12b. There is also a significant improvement
in detection accuracy for essentially the same BER compared
to the case when only training data for the same SNR value
is used (cf. Fig. 6 and Fig. 7).

On the other hand, using this larger set of training data
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(a) Modulation-classification accuracy

(b) BER for QAM64

Fig. 12: DNN classifier trained with training data of channel
SNRs -20 dB to 20 dB without any curriculum (ε = 3).

yields no significant improvement in the performance of the
tree-based classifier, and the results are very similar to those
reported in Fig. 8 (hence, they are omitted).

When the DNN-based classifier is trained using the com-
plete dataset with curriculum learning, a significantly higher
modulation-classification accuracy can be achieved against all
defensive modulation schemes, as shown in Fig. 13. Compared
to the non-curriculum learning results in Fig. 12, we can see
that the improved detection accuracy also results in a smaller
BER. This suggests that, for a fair comparison between the two
approaches, we can increase the attack strength in the case of
curriculum learning until we achieve similar BER values as in
Fig. 12.

To this end, we increase the norm of perturbations for
the BDMS scheme against the DNN-based intruder network
trained with curriculum learning. Note that to make the defense
mechanisms work, we need to increase the value of λ, and we
have found that (the surprisingly large) λ = 1020 works well
in our experiments. The results are shown in Fig. 14. It can be
seen that defensive perturbations with larger norms decrease
the modulation-detection accuracy of the intruder, but they
also result in significantly higher BER despite the very large
λ value.

The results in this section showed that using more and
diverse data and curriculum training can significantly improve
the performance of the intruder and its robustness against
various defense mechanisms. While designing better defense
mechanisms against these intruders is an interesting and chal-
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(a) Modulation-classification accuracy

(b) BER for QAM64

Fig. 13: DNN classifier trained with data of channel SNRs -20
dB to 20 dB with curriculum learning (ε = 3).

lenging future research direction, one method that can be
employed directly at the transmitter is to reduce the code rate,
which allows employing stronger attacks at the transmitter.
This is explored in the next section.

E. The effect of the code rate

Error correction codes have been traditionally designed and
tested against independent Gaussian noise, and it is not clear
how they perform in the presence of the adversarial perturba-
tions we introduce, which are statistically very different from
the channel noise. In the experiments below we show that the
conventional trade-off between the code rate and the BER still
applies and can be exploited to achieve the desired BER level
while keeping the adversary’s accuracy low.

In our previous experiments we considered a fixed code rate
of 2/3. To illustrate the effect of the code rate, we evaluate
the performance of our BER-aware defense schemes (with
ε = 3) for a channel code of rate 1/2 against the usual
DNN-based intruder trained for a specific SNR. The results,
shown in Fig. 15 demonstrate that both the BER and the
detection accuracy can be substantially reduced compared to
the case when the code rate is 2/3 (see Fig. 6 and Fig. 7 for
comparison). For example, even for QAM64, BDMS (with
λ = 106) achieves zero BER for high SNR values (at least 16
dB).

The very small BERs (obtained in the previous experiment)
allow the application of more aggressive defensive perturba-
tions when the intruder employs a stronger classifier. Accord-
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(a) Modulation-classification accuracy

(b) BER for QAM64

Fig. 14: Modulation-classification accuracy and BER
(QAM64) for an intruder trained with a dataset of channel
SNR ranging from -20 dB to 20 dB with curriculum learning
(code rate = 2/3, BDMS with λ = 1020).

ingly, we evaluate the BDMS defensive scheme (with a large
λ = 1020) for different perturbation norms against a DNN-
based intruder trained with curriculum learning over a range
of SNR values (the setup is the same as for Fig. 13 except
for the code rate). The results, shown in Fig. 16, demonstrate
that, compared to Fig. 14, using a lower code rate of 1/2, the
modulation-classification accuracy of the intruder trained with
curriculum learning can be reduced without incurring a large
BER at the legitimate receiver.

V. CONCLUSIONS AND FUTURE WORK

We proposed a novel approach to secure wireless communi-
cation by preventing an intruder from detecting the modulation
scheme employed, which is typically the first step of a more
advanced attack. In the proposed scheme, the I/Q symbols of
the modulated waveform at the transmitter are perturbed using
an adversarial perturbation derived against the modulation
classifier of the intruder. The perturbation is designed using
PGD, whose goal is to identify a perturbation with a limited
norm that is sufficient to fool the intruder’s classifier. More
advanced methods are also proposed, whose goal is also
to keep small the BER caused by the perturbation at the
legitimate receiver. Experimental results verify the viability
of our approach by showing that our methods are able to
substantially reduce the modulation-classification accuracy of
the intruder with minimal sacrifice in the communication per-
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(a) Modulation-classification accuracy

(b) BER for QAM64

Fig. 15: Modulation-classification accuracy of DNN-based
intruder and bit error rate (QAM64) for code rate 1/2 for
BER-aware modulation schemes (ε = 3).

formance. We have also shown that the intruder can improve
its detection accuracy significantly by training with a dataset
of samples taken from a range of SNR values, especially when
curriculum learning is also employed. This provides robustness
against channel noise as well as potential defense mechanisms
against the intruder, and has led to improvements upon state-
of-the-art modulation detectors in our experiments. Finally,
we have shown that a better trade-off between the intruder’s
detection accuracy and the BER at the legitimate receiver can
be achieved by sacrificing the communication rate.

An immediate challenge in the implementation of the pro-
posed defense mechanism in practice is the computation of
the proposed perturbations, which may introduce some delay.
While this can be done in an offline fashion and tabularized for
small n, some delay may be unavoidable for large n values,
hence efficient methods to calculate the perturbations are of
natural interest.

Utilizing the rapid advances in the field of adversarial
machine learning, our defense methods can certainly be im-
proved in the future by applying more advanced as well as
more universal (e.g., black-box) adversarial attack methods.
Another interesting avenue for future research is to develop
sophisticated defensive perturbations that can exploit different
channel characteristics both at the intruder and legitimate
receiver. On the other end of the problem, one can develop
better training strategies for the intruder that can achieve more
robust performance against these defense mechanisms, for
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Fig. 16: Modulation-classification accuracy and BER
(QAM64) for an intruder trained with a dataset of channel
SNR ranging from -20 dB to 20 dB with curriculum learning
(code rate = 1/2, BDMS with λ = 1020).

example, by applying adversarial training methods [28].
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