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Adaptive real-time identification of motor unit
discharges from non-stationary high-density surface

electromyographic signals
Chen Chen, Shihan Ma, Xinjun Sheng∗, Dario Farina, and Xiangyang Zhu∗

Abstract—Objective. Estimation of the discharge pattern of
motor units by electromyography (EMG) decomposition has been
applied for neurophysiologic investigations, clinical diagnosis,
and human-machine interfacing. However, most of the methods
for EMG decomposition are currently applied offline. Here, we
propose an approach for high-density surface EMG decompo-
sition in real-time. Methods. A real-time decomposition scheme
including two sessions, offline training and online decomposition,
is proposed based on the convolutional kernel compensation
algorithm. The estimation parameters, separation vectors and the
thresholds for spike extraction, are first computed during offline
training, and then they are directly applied to estimate motor
unit spike trains (MUSTs) during the online decomposition.
The estimation parameters are updated with the identification
of new discharges to adapt to non-stationary conditions. The
decomposition accuracy was validated on simulated EMG signals
by convolving synthetic MUSTs with motor unit action potentials
(MUAPs). Moreover, the accuracy of the online decomposition
was assessed from experimental signals recorded from forearm
muscles using a signal-based performance metrics (pulse-to-noise
ratio, PNR). Main results. The proposed algorithm yielded a
high decomposition accuracy and robustness to non-stationary
conditions. The accuracy of MUSTs identified from simulated
EMG signals was > 80% for most conditions. From experimental
EMG signals, on average, 12±2 MUSTs were identified from
each electrode grid with PNR of 25.0±1.8 dB, corresponding
to an estimated decomposition accuracy > 75%. Conclusion
and Significance. These results indicate the feasibility of real-
time identification of motor unit activities non-invasively during
variable force contractions, extending the potential applications
of high-density EMG as a neural interface.

Index Terms—real-time decomposition, motor unit, surface
EMG, high-density

I. INTRODUCTION

The motor unit, comprising a motor neuron together with
all the muscle fibers it innervates, is the smallest functional
unit in the neuromuscular system [1]. The discharges by the
motor neuron correspond to action potentials of the innervated
muscle fibers (muscle unit) [2] and therefore they can be
identified by processing and decomposing electromyography
(EMG) signals. Decomposition of EMG has found applications
in neurophysiology [3], clinical diagnosis [4], and human-
machine interfacing (HMI) [5]–[7].
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The ensemble of motor neurons discharges contains the
neural drive transferred from the spinal cord to the innervated
muscle and provides direct information on the functional
tasks associated to muscle activation [3], [8], [9]. Moreover,
information on motor unit behavior has also contributed to
better understanding the pathophysiological mechanisms of
tremor [4], stroke [10], as well as the neural determinants
of training and aging [11], [12]. As to HMI, interfaces based
on EMG decomposition has shown better performance than
classic myocontrol systems [5], [6], [13]. Farina et al have
applied EMG decomposition for prosthetic control on patients
following targeted muscle reinnervation, showing superior
performance compared with conventional EMG-based control
methods. [5]. Moreover, precise identification of wrist and
finger movements has been proven feasible following EMG
decomposition [7], [13], [14].

Motor unit activities can be decoded with electrodes either
placed inside the muscle or mounted on the skin surface.
Needle/wire electrodes have been used for this purpose since
the 1920s [15]. Automatic algorithms for processing intramus-
cular signals have been proposed in the 1970s [16], [17] and
progressively improved over time [18]–[20]. However, because
of the high selectivity, intramuscular EMG (iEMG) can only
identify relatively small samples of motor units, with fibers
located close to the recording electrodes. Alternatively, motor
unit activities can be identified in a non-invasive way by
identifying action potentials from interference surface EMG
signals through blind source separation [20]–[23] or template
matching with machine learning [24], [25]. The surface EMG
recording modality allows to measure motor unit properties
that are difficult to access with invasive recordings (e.g.,
muscle fiber conduction velocity or location of end plates) and
may increase the number of identified motor units compared
to iEMG signals [26].

The decomposition approaches for surface EMG signal-
s have been extensively validated in several muscles and
contraction conditions [27]–[31]. However, currently most
decomposition methods work offline because of the compu-
tational cost of the decomposition [4], [5], [9]. It is of utmost
importance to achieve a real-time decomposition system for
actual implementations such as prosthetic control and clinical
diagnosis. Although several decomposition methods have been
generalized to online conditions by pre-training the separation
matrix, they are all limited within isometric contractions [32],
[33]. In such conditions, the EMG signals are regarded as
stationary and the non-stationarities are not taken into con-
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Fig. 1. The flow chart of the real-time decomposition algorithm.

sideration (e.g., excitation variation or muscle shortening).
Recently, a decomposition method robust to changes of motor
unit action potential (MUAP) has been proposed and can be
used for the identification of motor unit firings during dynamic
contractions. However, this method was still implemented
offline.

Here, we propose a real-time decomposition approach for
high-density surface EMG signals that can work online and
on non-stationary signals. The performance of the proposed
decomposition algorithm was tested with simulated and ex-
perimental EMG signals.

II. ALGORITHM

The decomposition algorithm includes two sessions, offline
training and online decomposition (Fig.1). The estimation
parameters, separation vectors for MUST estimation, and the
thresholds for spike extraction, are first calculated in the offline
session. In the online session, the spike trains are estimated in
a sliding window by multiplying the separation vectors by the
pre-processed EMG signals. Then the discharges are extracted
depending on the trained thresholds. The estimation parame-
ters are updated based on the newly identified discharges to
adapt to non-stationary conditions.

A. Offline EMG decomposition
The surface EMG signals are first decomposed into MUSTs

using the convolutional kernel compensation (CKC) algorithm
in the offline session [23], [34]. The decomposition procedure
is described in detail in [20], [34] and a brief explanation of
its basic working principles is provided here.

The generation model of multi-channel surface EMG signals
can be described as a convolutive mixture of a series of im-
pulses, representing the discharge pattern of motor units [20].

The impulse responses of the filters in this mixture model are
the action potentials of the motor units, which have a finite
duration [23]. The mixing process can be written in matrix
form as:

y(n) = Hs̄+ ω(n) (1)

where y(n) = [y1(n), ..., yM (n)]T is the EMG signals for M
channels, n is the sample point, ω(n) is the additive noise
commonly modeled as a stationary and spatially while zero-
mean Gaussian random process [23], s̄(n) = [s1(n), s1(n −
1), ..., s1(n−L+1), ..., sN (n), sN (n−1), ..., sN (n−L+1)]T

is the extended vector from N sources, L is the length of action
potentials, and H is the mixing matrix. The CKC method
compensates the unknown mixing matrix H in equation (1)
and estimates the spike train of the jth motor unit as:

ŝj(n) = cTsj ȳC
−1
ȳȳ ȳ(n) (2)

where ȳ(n) = [y1(n), y1(n − 1), ..., y1(n − K +
1), ..., yi(n), yi(n− 1), ..., yi(n−K + 1), ..., yM (n), yM (n−
1)..., yM (n − K + 1))]T is the extended EMG signals by
adding K delayed versions, yi(n) is the EMG signals of
ith channel, K is the extending length and was set as 10
in this work. The EMG signals are extended to increase the
ration between the number of observations (EMG channel)
and the number of sources (MUST) [20], [23], [35]. Cȳȳ =
E(ȳ(n)ȳT (n)) is the correlation matrix of the extended EMG
signals, csj ȳ = E(ȳ(n)sTj (n)) is the cross-correlation vector,
and E(·) denotes mathematical expectation. Suppose

wj = C−1
ȳȳ csj ȳ (3)

the estimation of spike train (equation (2)) can be written as:

ŝj(n) = wT
j ȳ(n) (4)
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where wj is the separation vector for the jth motor unit. In this
study, csj ȳ is estimated iteratively using the natural gradient
descent algorithm [34].

The discharge pattern of each motor unit is extracted from
the estimated spike trains using the Kmeans++ algorithm [20],
[36]. The silhouette measurement (SIL) is used to quantify
the clustering quality [20]. During offline decomposition, only
MUSTs with SIL > 0.8 are kept for the following online
decomposition.

After the offline decomposition, the cross-correlation vec-
tors (csj ȳ), the correlation matrix of EMG signals (Cȳȳ), and
the cluster centroids are stored for later use in the online
decomposition procedure.

B. Online EMG decomposition

During the offline decomposition, the iteration for MUST
estimation and the clustering for spike extraction are time
consuming and therefore cannot be implemented online. For
real-time decomposition, the spike trains are estimated ac-
cording to Eq. 2, where csj ȳ and Cȳȳ are obtained from the
offline session. Then the motor unit discharges are extracted
from ŝj(n) by comparing the Euclidian distance to the cluster
centroids.

Application of the separation vectors obtained in the of-
fline phase to the online decomposition would assure EMG
decomposition in the online phase only if the signal properties
remain similar between the offline and online phases, i.e. if
the signal is stationary. Conversely, in general conditions, the
initial separation vectors need continuous adaptation.

In order to adapt to non-stationary conditions, we propose
a method for adapting the separation vector wj each time a
new discharge is identified. For this purpose, the components
to calculate the separation vector (csj ȳ and Cȳȳ) are updated
as:

Cȳȳ = Cȳȳ + C4ȳ4ȳ (5)

csj ȳ = csj ȳ + ` · 1

card(Ψj)

∑
nk∈Ψj

4ȳ(nk) (6)

where Ψj = {n1, n2, ...} is the group of the newly identified
discharges. ` is the learning rate, which was set as 0.1
empirically in this study. 4ȳ is the extended EMG signals
in the sliding window.

The cluster centroids are also updated as:

Tij =
w1Tij + w2T

′

ij

w1 + w2
, i = 1, 2 (7)

where Tij is the previous centroid of discharges (i = 1) or
noise (i = 2) for the jth MUST, T

′

ij is the new centroid ob-
tained in the sliding window, w1 and w2 are the weights added
on the centroids. In this study, w1 was set as 5, empirically, and
w2 was set as the number of the newly identified discharge
or noise timings. Fig.2 illustrates an example result of the
MUST estimation and spike extraction during a simulated non-
isometric contraction.

The pseudocode of the proposed adaptive decomposition
method is shown in Algorithm 1.

VaryingMUAP_SNR20_Exc0.1_Dataset1.mat，
type3，xlim0-10，mu1

fully shortenedfully extended fully extended

0 102 4 6 8
Time (s)

(a)

(b)

(c)

Fig. 2. Spike extraction under non-isometric contractions. (a) A 10-s-long
EMG signal during a simulated dynamic contraction with changes in muscle
length. (b) A spike train estimated from the simulated signals with the
proposed update strategy. (c) The spike train same as (b) but estimated without
the update strategy.

III. METHODS

In this study, the proposed decomposition algorithm was
first validated on synthetic EMG signals under multiple condi-
tions. The synthetic EMG signals were obtained by convolving
simulated MUSTs with MUAPs. Then the proposed algorithm
was tested on experimental signals.

A. Simulated EMG signals

The MUAPs were simulated with a multi-layer cylindrical
volume conductor model, compromising three layers (muscle,
fat, and skin) [37]. The simulated muscle tissue comprised
> 4000 fibers with an average diameter of 56 µm. The
fibers were grouped into 100 muscle units, with a number of
fibers in the range 25-2500. The motor units had a normally
distributed conduction velocity of 4.0±0.35 m/s, with the
slowest velocity assigned to the smallest motor unit [38].
The simulated detection system was a grid of 11×11 circular
electrodes (radius 1 mm) with inter-electrode distance of 2.5
mm along both directions. For the results presented here, 64
channels (8×8) in the grid center were used.
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Algorithm 1 The proposed real-time decomposition method
1: Decode the MUSTs offline (given that N motor units were

identified, ST1, ST2, ..., STN ).
2: Load the estimation parameters, csj ȳ , Cȳȳ , T1j (the jth

centroid for the spikes), T2j (the jth centroid for the base-
line noise).

3: while Acquiring EMG signals do
4: Extract the EMG signals of 200 ms.
5: Filter the signals and extend the EMG signals (4ȳ).
6: Calculate the correlation matrix of 4ȳ, Cȳȳ =
E(4ȳ(n)4 ȳT (n)).

7: Update the correlation matrix, Cȳȳ = Cȳȳ + C4ȳ4ȳ .
8: for j = 1; j ≤ N ; j + + do
9: Estimate the jth MUST, ŝj(n) = cTsj ȳC

−1
ȳȳ 4 ȳ(n).

10: Classify ŝj(n) into spike or base-line noise de-
pending on the Euclidian distance to T1j and T2j .

11: Initialize Ψj = ∅ and put the newly identified
spikes into Ψj , Ψj = {n1, n2, ..., nk}.

12: Update csj ȳ with ` = 0.1, csj ȳ = csj ȳ + ` ·
1

card(Ψj)

∑
nk∈Ψj

4ȳ(nk).
13: Update T1j and T2j with w1 = 5 and w2 = k,

Tij =
w1Tij+w2T

′
ij

w1+w2
, i = 1, 2.

14: STj = STj ∪Ψj .
15: end for
16: end while

Time (s)

Maximum excitation

Rest

(a)

(c)

(d)

(b)

Fig. 3. Illustration of the profile of variations of excitation level.

The motor unit recruitment thresholds were distributed
following an exponential function, in order of size [39], as
previously modeled in [40]. Each motor unit discharged at 8
Hz when initially recruited, then the discharge rate increased at
0.3 Hz/% excitation until a maximum value of 35 Hz [40]. The
inter-spike interval variability followed a Gaussian distribution
with a coefficient of variation of 20%.

Three datasets of synthetic EMG signals were simulated
(Sim1-Sim3). In dataset Sim1, three contraction conditions
were simulated with different input excitation levels (10%,
30%, or 50%). In this dataset, the input excitation was constant
and lasted for 70 s. The number of recruited motor units was
52 (10% excitation), 77 (30%), and 89 (50%).

MU 1 MU 2 MU 3 MU 4

5 ms

Fig. 4. Four simulated MUAPs with time-varying waveform shapes. Four
channels from the center column of the grid are illustrated. Blue and red lines
represent the MUAP shapes with muscle fully shortened and fully extended,
respectively.

In dataset Sim2, the excitation was constant for 10 s and
then varied over time for 60 s, as shown in Fig.3. The
variations over time were in cycles of durations 30 s, 20 s,
10 s, and 6 s (Fig.3 (a)-(d)). There were 12 conditions in total
(3 excitation levels × 4 excitation changing speeds) in dataset
Sim2.

In dataset Sim3, the excitation level was maintained con-
stant but the MUAP waveforms changed over time. The muscle
shortening affects the MUAP shapes acting as a low-pass
filter that suppresses high frequencies [41], [42]. The MUAP
waveforms were varied by stretching the MUAP duration and
compressing the MUAP amplitude:

g′(x) =
1

γ
g(
x

γ
) (8)

where g(x) is the raw MUAP waveforms, g′(x) is the changed
waveforms, and γ is the coefficient of stretching and com-
pressing (Fig.4). The coefficient γ was set to 1.2 under fully
extended conditions. The profiles for variation of γ were the
same as those for the variations of excitation level in Sim2,
with 12 conditions in total (3 excitation levels × 4 MUAP
changing speeds).

The synthetic EMG signals were generated as the convo-
lution of MUSTs and MUAPs. colored zero-mean Gaussian
noise with signal-to-noise ratio (SNR) 10-30 dB (5 dB in-
crements) was added to the simulated signals. The simulated
signals were sampled at 2048 Hz, and bandpass filtered
between 20 and 500 Hz. We conducted 5 simulation runs for
each condition in three datasets (27 conditions in total). In
each simulation run, 100 motor units were randomly selected
from a motor unit pool with over 400 motor units.

In each simulation run, the first 10-s signals were used
for offline training, while the remaining 60-s signals were
used to test the performance of the online decomposition. To
investigate the effect of the update strategy for the estimation
parameters, the simulated EMG signals were also decomposed
without the update strategy, where the step 6, 7, 12, and 13 in
Algorithm 1 were not performed during online decomposition.
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Sensitivity and precision were used to evaluate the decom-
position accuracy for each motor unit [41]:

Sensitivity =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

where TP (true positive) denotes the number of correctly
identified discharges, FN (false negative) denotes the number
of non-identified discharges, and FP (false positive) stands
for the number of incorrectly identified discharges. In the
decomposition of simulated EMG signals, only MUSTs with
sensitivity > 50% were kept for the following analysis, which
were regarded to be correctly identified.

A signal-based metrics, the pulse-to-noise ratio (PNR), was
applied to evaluate the decomposition accuracy [28]. The PNR
of the jth MUST was calculated as:

PNRj = 10 · log(
E(ŝj(n)|ŝj(n)≥r)

E(ŝj(n)|ŝj(n)<r)
) (11)

where E(x|ŝj(n)≥r) and E(x|ŝj(n)<r) denote the mean across
all time moments in which the jth motor unit is estimated to
have or not have discharged, respectively [28]. To investigate
the correlation between two accuracy measurements and the
PNR, a regression line y = 100 − a1

(x−a2)4 was fitted with
the nonlinear least-squares fitting method between the sensi-
tivity/precision (y) and PNR (x), where a1 and a2 were the
parameters to be trained.

All the simulations, decompositions, and analysis were
implemented in MATLAB 2018b (Matlab Inc. USA).

B. Experimental EMG signals

Five able-bodied subjects (4 males, 1 female, aged 26±3
years) participated in the experiment. They had no neuro-
logical disorders, and signed an informed consent before
participating to the experiments. The experiments were in
compliance with the Declaration of Helsinki.

In the experiments, the subjects were instructed to finish
three sessions of grasping tasks (Exp1-Exp3), corresponding
to three simulated datasets.
• In the session of Exp1, subjects were instructed to perfor-

m isometric grasping with constant force at 10%, 30%,
and 50% of the maximum voluntary contraction (MVC)
force.

• In Exp2, subjects were instructed to follow a force trace
as the one described in Sim2. Only ramps of 6 s at three
levels were kept to simplify the experiment.

• In Exp3, subjects were instructed to perform non-
isometric dynamic grasping, and the grasp cycle was
set as 6 s. The subjects were instructed to try to keep
the contraction level during dynamic grasping, but not
strictly.

There were 9 conditions in total in the three experimental
sessions and each condition included two identical trials. Each
trial lasted for 40 s. The first 10-s signals were used for offline
training, and the remaining 30-s signals were used for online
decomposition, as in the simulations.

10 mm

10 mm

10 mm

10 mm

(a)

(b) (c)

Fig. 5. Experimental setup. (a) The EMG recording area and the data glove
used to measure dynamic grasping. Fourteen channels of finger angles, includ-
ing 5 metacarpophalangeal joints (green circles), 5 proximal interphalangeal
joints (blue circles), and 4 abduction angles (yellow circles), were recorded
with the data glove. (b) The force transducer used to measure isometric
grasping force. (c) The high-density electrode grid.

In Exp1 and Exp2, the grasping force was measured with a
customized transducer (Fig.5(b)) and sampled at 2048 Hz. In
Exp3, 14 channels of finger angles were recorded with a data
glove (5 DT Data Glove 14 Ultra, 5DT Inc. USA) and sampled
at 100 Hz (Fig.5(a)). The angles were averaged across the 14
channels to depict the dynamic grasp kinematics. During the
experiments, the grasp force or angles were displayed on the
screen to provide a visual feedback to the subjects.

High-density surface EMG signals were acquired with three
electrode grids of 64 channels each (ELSCH064NM3, 8×8
channels, OT Bioelettronica, Italy). The grids were mounted
around the proximal third of the forearm of the dominant
arm. The electrode diameter was 3 mm with inter-electrode
distance of 10 mm in both directions. The electrode grids
were connected to a multichannel amplifier (EMG-USB2+,
OT Bioelettronica, Italy), with a gain of 500 and sampling
frequency of 2048 Hz. The experimental EMG signals were
bandpass filtered between 20 and 500 Hz. In addition, a comb
filter was applied to reject the 50-Hz power-line interference
and its harmonics. The decomposition was applied to each grid
separately.

IV. RESULTS

The real-time decomposition was implemented with a slid-
ing window of 200 ms. The calculation complexity of the
MUST estimation and the updating process in the sliding
window had computational cost ≤ 50 ms, resulting a delay
≤ 250 ms during online decomposition. The offline training
took about 100 s for 10-s signals.

The decomposition results for simulated signals using the
proposed real-time scheme are illustrated in Fig.6 - Fig.8. For
simulated EMG signals with constant excitation and without
changes in MUAP waveforms (dataset Sim1), on average,
35±3 (32±1, 30±3) MUSTs were identified correctly with
sensitivity and precision > 95% at the excitation level of 10%
(30%, 50%), when no additional noise was added. The number
of correctly identified MUSTs decreased to 11±1 (8±0, 7±1)
when noise was added at 10 dB SNR. Nevertheless, the
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(a)
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Fig. 6. Decomposition results for the dataset Sim1. (a) The average number
of correctly identified MUSTs under different conditions. The MUSTs with
sensitivity < 50% were discarded after decomposition. (b) and (c) illustrate
the average sensitivity and precision of the identified MUSTs. N in the
horizontal axis denotes conditions for which no noise was added to the
simulated signals.

Excitation: 10% Excitation: 30% Excitation: 50%

(a)

(b)

(c)

Fig. 7. Decomposition results for the dataset Sim2. (a)-(c) illustrate the
average number of correctly identified MUSTs, sensitivity, and precision under
different conditions, as in Fig.6. N in the horizontal axis denotes the conditions
for which no noise was added. R1-R4 depicts four different excitation ramps
(cycles from 30 s to 6 s).

average sensitivity and precision were both over 80% for these
identified MUSTs from dataset Sim1.

For simulated EMG signals with varying excitation, the
number of correctly identified MUSTs was always > 7, with
sensitivity in decomposition > 80% and precision > 70%.
For simulated EMG signals with varying MUAP shapes, the
average sensitivity was > 80% in all cases and the precision
was > 70% in all cases with the exception of a few conditions.
The relation between PNR and the two accuracy measurements
is illustrated in Fig.9.

The comparison between decomposition results with or
without update strategy are shown in Fig.10. There was no
significant difference between the two methods for the decom-
position results in dataset Sim1 and Sim2, whereas the update

Excitation: 10% Excitation: 30% Excitation: 50%

(a)

(b)

(c)

Varying MUAPDecomp_loop200-
65_TD1_BD0_BP1_CostFcn1_interval48_dIPI2ms

Fig. 8. Decomposition results for the dataset Sim3. (a)-(c) illustrate the
average number of correctly identified MUSTs, sensitivity, and precision under
different conditions, as in Fig.6. N in the horizontal axis denotes the conditions
for which no noise was added. R1-R4 depicts four different MUAP varying
ramps (cycles from 30 s to 6 s).

Excitation: 10% Excitation: 30% Excitation: 50%

(a)

(b)

Fig. 9. Relation between the PNR and two decomposition accuracy mea-
surements. The results are accumulated over all simulations with the specific
excitation levels.

Sim1 Sim2 Sim3

(a)

(b)

(c)

Fig. 10. The decomposition results with or without update strategy. (a)-(c)
illustrate the average number of correctly identified MUSTs, sensitivity, and
precision for three simulation datasets. The results were averaged across all
simulation runs of three excitations.



REAL-TIME IDENTIFICATION OF MOTOR UNIT DISCHARGES 7

0 3010 15 20 255

0 3010 15 20 255

0 3010 15 20 255
Time (s)

(c)

Fully grasp

Rest 

(a)

30% MVC

0% MVC 

(b)

30% MVC

0% MVC 

Sub4

Sub4

Sub1

Fig. 11. Representative decomposition results of experimental EMG signals recorded with grid 2 from subject 4. (a)-(c) illustrate the decomposition results
corresponding to session Exp1-Exp3 in the experiments. Black lines depict the EMG signals. Each vertical bar depicts one motor unit discharge, with different
MUSTs depicted in different colors. The kinematics (force-(a)(b) or angle-(c)) are depicted in grey lines.

TABLE I
SUMMARY OF DECOMPOSITION RESULTS FOR EXPERIMENTAL EMG SIGNALS

Number of motor units PNR of motor units (dB) SNR of EMG (dB)
Session Excitation Grid 1 Grid 2 Grid 3 All Offline Online Offline Online

1
10% 14±6 9±4 15±5 39±11 29.0±1.9 22.8±5.2 13.3±1.7 11.8±1.6
30% 13±5 7±5 12±3 34±11 28.9±1.7 23.6±5.7 20.2±2.7 19.8±3.1
50% 15±10 10±4 11±4 38±16 28.8±1.5 23.5±5.1 25.2±2.1 24.8±3.1

2
10% 14±4 8±4 10±4 33±6 28.9±1.6 23.7±5.9 14.1±1.5 13.5±2.2
30% 13±3 7±4 10±6 29±9 28.8±1.5 23.7±6.0 20.8±3.6 19.1±2.8
50% 13±5 9±3 13±6 33±8 29.3±1.8 26.2±7.5 22.8±4.6 20.9±4.7

3
10% 13±7 12±7 12±5 37±13 29.2±2.0 26.1±5.7 14.9±2.2 17.4±3.9
30% 11±5 9±2 9±4 29±6 28.9±1.4 26.3±5.8 18.6±6.1 22.2±8.2
50% 17±13 12±5 11±4 42±20 29.1±1.6 28.7±6.4 24.5±3.6 26.8±4.2

strategy improved the decomposition accuracy significantly in
Sim3, with the increase of sensitivity or precision of about
20%.

Fig.11 illustrates an example of decomposition results
for experimental EMG signals at 30% contraction level. In
Fig.11(c), the decrease of the grey line means that the subject
stopped grasping and was opening the hand, resulting that
most motor units stopped firing since they were identified
during grasping tasks. The detailed decomposition results can
be seen in Tab. I. The average PNR of MUSTs identified from
online decomposition was greater than 24 dB, corresponding
to sensitivity ≥ 80% and precision ≥ 75%.

V. DISCUSSION

An adaptive real-time decomposition method for the iden-
tification of motor units was proposed based on high-density

surface EMG signals and validated with simulated and experi-
mental signals. The results demonstrated good decomposition
accuracy and robustness under non-stationary conditions. The
processing delay including signal recording and computation
was ≤ 250 ms, demonstrating the feasibility of applying the
proposed method for real-time neural interfacing.

The EMG mixing process is typically modelled as a
multiple-input-multiple-output system by linearly convolving
the MUSTs and the MUAPs using Equ. 1. In isometric
contractions, the MUAPs recorded by the surface electrodes
are relatively stationary, and therefore have been assumed
constant in several offline decomposition algorithms [20], [23].
In isometric contractions, the EMG non-stationarity mainly re-
sults from motor unit recruitment/derecruitment and discharge
rate modulation. These two factors only affect the source
signals in Equ. 1 rather than the mixture process. Therefore,
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the update strategy had weak effect on the decomposition
accuracy in Sim1 and Sim2, as Fig.10 shows. Nevertheless, the
high accuracy of the decomposition results in Sim1 and Sim2
demonstrated that the proposed method is robust to motor unit
recruitment/derecruitment or firing rate variation, and could
decode MUSTs in real time during isometric contractions.

As to the dynamic non-isometric contractions, the changes
in muscle length influence the relative position between the
muscle fibers and the surface electrodes, and results in changes
in MUAP waveforms and the following mixture process. In the
CKC-based decomposition algorithm, the separation vectors
are calculated based on the mixture process. The mixture
matrix H in Equ. 1 is constant in isometric contractions, but
varies over time in non-isometric conditions, which requires
the corresponding update of separation vectors. Therefore,
we proposed an update strategy for the separation vectors
(C−1

ȳȳ csj ȳ) to trace the changing in mixing matrix. In dataset
Sim3, the decomposition accuracy with the update strategy
was significantly greater than that without updating, demon-
strating the robustness of the proposed method to changes in
MUAP shape during non-isometric contractions.

The non-stationary factors (varying excitations or MUAPs)
had a small influence on the decomposition accuracy with
the proposed update strategy, as the average sensitivity or
precision of the correctly identified MUSTs in dataset Sim2
or Sim3 were only slightly lower than that in Sim1 in
most conditions. It is noteworthy that neither the number
of correctly identified MUSTs nor their accuracy measure-
ments changed considerably when the rate of change in
excitation or MUAP waveform shapes increased, regardless
of the excitation or noise level, showing the robustness of
the proposed decomposition scheme to the speed of non-
stationarities. Compared with the non-stationary factors, the
noise level had more significant effects on the decomposition
accuracy. The number of correctly identified MUSTs and the
corresponding accuracy measurements decreased substantially
with increasing noise level. For this reason, increasing the SNR
by improving the signal pre-processing can be an efficient way
to improve decomposition accuracy. In this work, only the
intrinsic non-stationarities (excitation or MUAP varying) were
taken into consideration. As to the clinical application, several
extrinsic factors such as sweating and electrode misplacement,
may affect the actual implementation performance and should
also be taken into consideration. In the future, the proposed
method will be further validated in real-life applications such
as clinical diagnosis and HMI systems.

The number of correctly identified MUSTs slightly declined
with the increase of excitation level, which is likely caused
by the increase in complexity of the mixing process. The
number of accurately identified MUSTs in real-time from
simulated stationary signals was always ≥ 10 and comparable
to the results of offline decomposition. This number was also
related to the number of decomposition runs in the offline
training. In this study, the number of decomposition runs
was set to 100. The number of accurately identified MUSTs
may increase with the number of decomposition runs, at the
cost of computational time in the offline training. The time
cost of offline training will slightly affect the decomposition

accuracy of online step, since the EMG signals during the
offline decomposition were assumed to be stationary and could
not be adapted. However, the real-time decomposition results
still showed over 70% accuracy for non-stationary conditions,
demonstrating the efficiency of the proposed approach.

The offline decomposition methods have been generalized
into online conditions in several reports [32], [33], while most
of which are limited in isometric contractions. The EMG
signals are usually assumed to be stationary and the non-
stationarities are not taken into consideration. Methods for
identification of motor unit discharges during dynamic muscle
contractions have been investigated, but limited in offline
conditions [41]. In this work, the proposed decomposition
approach could not only realize the real-time identification
of motor unit discharges, but also adapt to the non-stationary
conditions. It should be noted that the online decomposition
accuracy of the proposed algorithm was slightly lower than the
offline decomposition in [41]. For the purpose of real-time de-
composition, the MUSTs were estimated by directly multiply-
ing the trained separation vectors and the pre-processed EMG
signals. However, in the offline decomposition, the separation
vectors are calculated iteratively to optimize the estimation
of MUSTs, increasing the discrimination capacity between
discharges and noise. The difference in separation procedure
explains the slight decrease in decomposition accuracy without
iteration.

The signal-based measurement, PNR, has been previously
demonstrated to be highly correlated with the decomposition
accuracy [28], [41]. Similarly, the PNR increased monotonical-
ly with the real-time decomposition accuracy in this work. The
simulation results demonstrated that the PNR was a reliable
measurement to evaluate the online decomposition perfor-
mance. Moreover, compared with sensitivity or precision, the
calculation of the PNR needs no prior information of the motor
unit activities. Therefore, the PNR was used to evaluate the
decomposition accuracy for experimental EMG signals. The
average PNR of MUSTs identified in the online decomposition
was slightly lower than that in offline decomposition, which
was caused by the difference of the separation procedure, as
discussed above.

The feasibility of applying decoding techniques to HMI has
been demonstrated in previous work [5], [7], [14]. However,
these previous studies were all performed offline. In this
study, a real-time decomposition algorithm was tested on
experimental EMG signals recorded from forearm muscles
during grasping tasks. The identified motor unit activities were
highly correlated with the grasping kinematics (e.g. Fig.11),
indicating the potential for the real-time HMI based on neural
signals.

VI. CONCLUSION

We have proposed a real-time decomposition method for the
identification of motor unit discharges based on high-density
surface EMG signals. The proposed algorithm demonstrated
high decomposition accuracy and robustness to variation of
excitations and MUAP waveforms. These results support the
wide application of EMG decoding techniques for neural
interfacing.
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