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Main Topics You Can Find in This “ICME-13
Topical Survey”

• Digital dynamic representations and cognition;
• Sharing mathematical knowledge and collaborative learning with technology
• Emerging technologies;
• Mathematical activities enhanced by technology at upper secondary school;
• New teacher competencies required by the use of technology and teacher

education.
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Uses of Technology in Upper Secondary
Mathematics Education

1 Introduction

The use of technology in upper secondary mathematics education is a multifaceted
topic. This topical survey addresses several dimensions of the topic and attempts at
referring to international research studies as it is written by a team of several authors
from five countries of three different continents. The survey is structured into four
subchapters, each of them addressing a theme of the TSG 43 at ICME 13.

• Technology in secondary mathematics education: theory
Technology is often arousing enthusiasm as well as reluctance among teachers
and mathematics educators. Therefore it was necessary to start the survey with a
theoretical analysis of features of digital technologies from an epistemological
and a cognitive perspective. A unique epistemological feature of mathematics is
their symbolic dimension. It is impossible to gain direct access to mathematical
objects as to physical objects. The only way is to access them is through
representations. Digital technologies mediate mathematics and some of them
offer new kinds of representations, like dynamic and socially distributed rep-
resentations. Based on a Vygostkian perspective and an instrumentation
approach, the use of digital technologies is analyzed as a coaction or a creative
interplay between tool and human and as social coaction with socially dis-
tributed technology. This theoretical analysis is presented in the first subchapter
and the second subchapter also refers to it.

• The role of new technologies: changing interactions
Part of the role of new technologies is to change the process toward an outcome
for learning. This process includes developing a mathematical discourse, pro-
viding opportunities to conjecture and test, and active not passive learning. New
technologies can add to these processes by connecting learners in different ways
with each other and the phenomena under study, mediating learning in different
ways, and can offer the opportunity for students to build on the work of one

© The Author(s) 2017
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another through the ability to share products or problem solving strategies. In
particular technologies offering mobility, multimodality (using various sensory
modalities: sight, touch, sound) and connectivity can support student learning.
The knowledge and practices that result from the process of learning using
digital technologies might be new. Through operationalizing the definition of
“new” in terms of how we interact with the learning environment, three orga-
nizing principles structures this subchapter: 1. Advances in Activity Spaces, 2.
Multimodality, and 3. Moving from Outside to Inside the classroom.

• Interrelations between technology and mathematics
Digital tools support visualization of mathematical concepts in various ways of
expressions, and as such may foster versatile thinking, especially when these
representations are dynamically linked. At the upper secondary education, these
tools can be used for exploring and discovering mathematical correlations and
for modeling real complex phenomena. New possibilities are offered by the
combination of different environments like CAS and dynamic mathematics
environments.
The use of all these possibilities foster processes that cannot be developed so well
in absence of technology, for example: exploration and experimentation, inter-
pretation processes or checking processes. A major consequence is that teaching
should be organized differently. Those issues are discussed in the third subchapter.

• Teacher education with technology: what, how and why?
The preceding subchapters show that teachers need new knowledge and skills to
efficiently use technology in upper secondary education. The institutional
demands differ from the required teacher competencies elicited by research
studies. Usually the institutional demands are not subject matter specific
whereas often research studies link a specific type of technology with a math-
ematical domain. There are many attempts for organizing professional devel-
opment developing new knowledge and skills, especially in interaction with
research. The evaluation of these courses may vary deeply from dissatisfaction
to successful outcomes. The theoretical frameworks and research methods on
professional development of teachers in using technology as well as their
rationale are also presented in this subchapter.

2 Survey

2.1 Technology in Secondary Mathematics Education:
Theory

2.1.1 The Challenges of Mathematical Reference

As we approach mathematical cognition in classroom learning environments, the
symbolic dimension of mathematics becomes sharply salient. Mathematical
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discourse is always social, always culturally situated and always shaped by its
institutional context; thus the semiotic dimension is always important. However, in
learning settings the nature of mathematical objects is very often in question and not
(yet) taken-as-shared, so that efforts to evoke these objects and to communicate
clearly about them receive particular attention and social pressure.

As a way of framing the problems involved in the relationships between
mathematical representations and objects, consider Magritte’s The Treachery of
Images. This famous painting explores issues of representation, in ways that are
relevant to mathematical representations. The artist has written “Ceci n’est pas une
pipe” (“This is not a pipe”), in painted script, under the painted image of a pipe. The
focus is on the viewer’s idea of a pipe: within the painting, there are two explicit
“pipes”—the pictorial image of a pipe and the painted words “une pipe.” The
painting puts these two “pipes” in conversation with one another and with the
viewer’s Pipe idea. The image falls short of the idea: it is “not a pipe”—one cannot
hold it, fill it with tobacco, or smoke it.

Now suppose, instead of a pipe, Magritte had painted a circle with the inscribed
legend, “Ceci n’est pas un cercle.” A different dynamic would have emerged.
Magritte would not, even in theory, have been able to reach into his pocket and
produce the geometric circle that had served as the model for the painting, and that
the painted image is not. In fact, one might argue that the legend, “Ceci n’est pas un
cercle” would be false: at least in the sense that every representation of a circle does
express circle-ness in some degree, and that, further, nothing except a collection of
such representations does so.

This essentially symbolic dimension of mathematical thought and discourse
highlights a unique epistemological feature. Because mathematical objects cannot
be pointed at independently of its manifestations within one or more representa-
tions, mathematical work and mathematical learning must occur in settings that are
entirely mediated by representations. This raises the importance of symbolic pro-
duction in the learning process, both as learners formulate their thoughts and as
teachers and they exchange symbols and representations in attempting to create
shared meanings and understandings. Duval (1999) remarks that “the use of sys-
tems of semiotic representation for mathematical thinking is essential because,
unlike the other fields of [scientific] knowledge (botany, geology, astronomy,
physics), there is no other way of gaining access to mathematical objects but to
produce some semiotic representations” (p.4).1

2.1.2 The Permanence of Symbolic Beings

Although mathematical objects are wholly symbolic beings that can only be found,
expressed, or conjured up through representations, this also paradoxically gives

1We amend Duval’s text by adding “scientific” because the forms of knowledge in the arts and the
humanities, for example, do also face the challenge that the objects of their study are inextricably
embedded in semiotic/symbolic representations.
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them a permanence that cannot be achieved by physical beings or objects. Indeed,
they connect with and express very general features of the human experience of the
world. This is why, if we were to read in the newspaper tomorrow morning that the
Natural Numbers had been destroyed in a fire, we would smile. We know this is not
possible, even though there are many instances of representations of the Natural
Numbers in perishable material media.

Part of the reason for the more enduring nature of symbolic entities like the
Natural Numbers is the very fact that they do not refer directly to specific objects in
the physical or cultural world. That is, the representational and symbolic challenges
with which we opened this discussion are also sources of mathematical power. To
understand the nature and power of symbolic entities, we can look first at how they
emerged in human history and then at how they operate in modern discourse.

2.1.3 The Emergence of Symbolic Entities

Among the first symbolic entities in human history may have been the records that
have been found scratched in bones and dating from about 35 thousand years ago.
These marks may have been used to keep track of the number of animals killed in a
hunt or the number of days in a lunar cycle. Any external mark or trace that carried
and communicated meaning was already a symbolic object: that is, a thing whose
purpose was to represent another thing. Moreover, it was perhaps the infeasibility of
making an iconographic symbol that led these early humans to produce represen-
tations that were loosely coupled to the particular animals or days they described,
capturing instead the notion of quantity. The loose coupling of the symbol to its
referent made it possible to see relations between two such symbols, even when
there was no relation between the objects whose quantities these symbols repre-
sented. Thus, the “five-ness” of five sheep, five days, or five pieces of fruit could
come to be represented, rather than, and independently of the “sheepness”, the
“dayness” or the “fruitiness” of the objects. In this way, the number five came to be
lifted off of the concrete groups of objects that it described, to gain the status of an
independent symbolic entity. A symbol can be thought of as a crystallized action—
in this case the action of counting.

As symbolic entities, mathematical objects have a doubly paradoxical relation to
the physical world. They exist on a different plane from physical objects, having
been decoupled from that world through processes of abstraction and generaliza-
tion. Moreover, as we have suggested, they cannot be depicted directly or com-
pletely. Instead, through representations, certain facets of symbolic entities can be
captured, but it is in the nature of generalized symbolic entities that they supersede
any particular representation. For instance, consider the mathematical symbolic
entity of a straight line. In a geometric drawing, we can represent the line as an
object in a plane. Applying a coordinate system, we can produce the equation of
that line, another representation. Neither of these two representations of the line
encompasses the entire mathematical nature of the line; yet each of which captures a
facet of its nature. In general, each system of representation reveals an aspect of the
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mathematical entities it describes, and each conceals or leaves behind other aspects.
Thus the choice of a representation is always a consequential choice that constitutes
the view and access we have to mathematical object.

Symbolic entities shared some features with early concrete physical tools, while
they also differed from early tools in other respects. Vygotsky’s (1978) famous
analysis of this relation was that while tools enabled humans to operate on and exert
control over the world, symbolic entities also enabled humans to exert control over
themselves and regulate their own internal thinking processes-being a central part of
these processes. In coming to operate with tools and symbolic entities, human
beings gained enormous new powers. Donald (2001) describes this process as the
advent of “theoretical culture” and it is the centerpiece of the Baldwinian inter-
pretation of cultural evolution (Baldwin 1896). With tools, humans encoded pro-
cesses of labor and craft in physical objects, which afforded (Gibson 2014) the
actions that constituted those processes. In this way, tools began to structure human
society, so that emerging habits of mind, ways of life, and classes of society were
reflected and transmitted in the characteristics sets of tools that supported them.
Thus, these extensions to human nature also supported intergenerational develop-
ment, capturing successful innovations in a transmission medium more flexible and
more easily shareable than the biological substrate of DNA. With the symbolic
system of written language, communications could be detached from particular
interpersonal contacts, enabling new forms of literature, history, science, and phi-
losophy. And with the symbolic system of mathematical discourse, the study of
abstract form and structure could take shape and transcend the lives of individual
thinkers.

2.1.4 Mediated Activity

This shift in human history is so significant that now many thinkers view human
activity as essentially and distinctively mediated activity (e.g., Wertsch 1991):

The most central claim I wish to pursue is that human action typically employs mediational
means such as tools and language and that these mediational means shape the action in
essential ways (p. 12).

For instance, consider the relationship between an expert musician and her
instrument, as, for example in Jacqueline du Pré’s rendering of Elgar’s cello con-
certo. During the performance, the artist and the instrument appear to become one.
It is certainly not the case that the performance appears effortless; the striking thing
about it is that it appears to be co-produced by the musician and the instrument. It
seems incorrect to describe the performance as “Du Pré playing on the cello;”
instead, it seems appropriate to say, “Du Pré and her cello co-produced the music.”
Moreover, “her cello” here represents the conceptual image of the cello that Du Pré
was able to internalize over the course of many years of hard, reflective practice.
There is fluidity in this human-artifact integration, making the cello acquire a sound
and texture distinctive to the artist (that is, the source of the music is Du Pré and her
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cello”). We use the term co-action (Moreno-Armella and Hegedus 2009) to describe
this generative and creative interplay between humans and tools or symbol systems.

Gleick’s (1993) biography of Richard Feynman records an exchange between
Feynman and the historian Charles Weiner. Feynman reacted sharply to Weiner’s
statement that Feynman’s notes offer “a record” of his “day-to-day work.”

“I actually did the work on paper”, Feynman said.

“Well,” Weiner said, “the work was done in your head, but the record of it is still here.”

“No, it’s not a record, not really. It’s working. You have to work on paper, and this is the
paper. Okay?” (Gleick 1993, p. 409)

The distinction that Feynman makes here shows how he sees his work as
intrinsically interconnected with the symbolic system that he is working with. His
ideas do not occur separately from their realization in written symbols; rather, they
emerge through interaction with that symbol system. It is the same as with Du Pré
and her cello, where there is no music without both the artist and the instrument
being present.

Indeed, the process of coming to be able to operate fluently and effectively with
tools and symbols is common to all learners as they appropriate the practices and
“habits of mind” of a discipline. The human mind (and indeed the human brain)
re-forms itself to accommodate these new discipline-specific ways of operating. For
instance, Donald (2001, p. 302) has explained that literacy skills transform the
functional architecture of the brain and have a profound impact on how literate
people perform their cognitive work. The complex neural components of a literate
vocabulary, Donald explains, have to be built into the brain through years of
schooling to rewire the functional organization of our thinking. Similar processes
take place when we appropriate numbers at school. It is easy to multiply 7 by 8
without representational supports, but if we want to multiply 12,345 by 78,654 then
we write the numbers down and follow the specific rules of the multiplication
algorithm. It is because we have been able to internalize reading and writing and the
decimal system, that we are able to perform the corresponding operations with an
understanding of their meaning.

2.1.5 Democratizing Access to Co-action

Nevertheless, the kind of rich and generative interplay between mind, tool, and
symbolic system that we see with Du Pré and Feynman have historically been
accessible only to the maestros of a discipline. A key question for the design of
technology-enhanced learning environments is whether the cognitive tools that
have been developed in the last 30 years might play a role in democratizing access
to this generative mode of interacting with disciplinary structures.

If the most sophisticated users of representations and symbolic systems in the
past have been able to engage in active and creative interplay with these systems, it
is in part because they were able to create a dynamic relationship between their
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thinking and inquiry on one hand and the symbolic system on the other. This is
possible because they have internalized the system so thoroughly that they are able
to mentally simulate it as a dynamic field of potential, enabling them to engage in
“what-if” interactions of an exploratory, conversational form. In mathematics, this
ability is particularly powerful, because of the dependence on representations that
we have described above.

We will describe several classes of technology environments that provide
dynamic and/or socially-distributed interfaces with important representational sys-
tems in mathematics. These environments offer the potential for learners (even very
young learners) to enter into a relationship with those systems, which we describe
as co-action. We argue that the experience of relationships of co-action with
mathematical structures can contribute to a transformative educational program. Of
course, we do not argue that a technology that opens a possibility for co-action is
sufficient in itself to give learners access to mathematical understandings that were
the hard-won rewards of a lifetime of study for mathematicians of the past.
However, we do suggest that carefully planned educational experiences with such
environments can remove barriers to broader participation in a culture of mathe-
matical literacy and fluency.

Extreme care is necessary here, as the long history of teaching and learning with
static representations should not be ignored in the work to envision its future
successor. Instead, we must proceed by pondering how digital and socially dis-
tributed representations of mathematical entities can contribute in new ways to
genuine mathematical understanding. We see digital and shared representations as
capable of adding dimensions to static representational systems and further
improving the cycle of: exploration, conjecture, explanation, and justification.
Moreover, as educational systems incorporate such environments and experiences,
traditional pathways of learning—will gradually give way to new cultural and
institutional structures that realize the potential of these innovations. In the sections
below, we give two brief examples of co-action, one emphasizing dynamic rep-
resentations, and the other highlighting socially distributed representations.

2.1.6 Co-action with Dynamic Digital Representations

Consider the family of triangles ABC (Fig. 1a) whose side AC contains a given
point P in the interior of angle B. The particular triangle in which A and C are
chosen so that P is the midpoint of side AC has the least area among all possible
triangles.

We explored this situation with teachers, making use of a dynamic geometry
environment (in this case GeoGebra). Beginning from triangle ABC (Fig. 1a), the
teachers built a construction that allowed them to vary a point H along the side BA,
thus determining a point D on BC for which triangle HBD included point
P. Experimenting with the diagram and watching the area measure, they began to
believe that the proposition about minimum area was true. Nevertheless, significant
doubt remained. Following the logic of the construction, the teachers then extended
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the aspect of their sketch that hinged on the dependency relation between point H
and area. They used the length BH as the domain of a function that at each point
delivers the area of the corresponding triangle (Fig. 1b). Of course we could have—
and we did—graph the function using a traditional coordinate system as well. But
we show the hybrid Euclidean/Cartesian construction that emerged because we
want to emphasize the possibilities that digital media offer learners to manipulate
the objects under study, in service of exploring and building conjectures.

The interaction between learners and dynamic geometry environments can be
theoretically addressed in terms of the complex process Rabardel (1995) studied
under the name instrumental genesis, which casts light on the mutually defining
relationships between a learner and the artifact she is trying to incorporate into her
strategies for solving problems. Initially the learner feels the resistance the artifact
opposes but eventually she can drive it. In the case of GeoGebra, teachers needed to
understand, in particular, the syntactical rules inherent to the software in order to
use the medium as a mediator of mathematical knowledge. For this to happen, there
must be a melody to be played, that is, teachers need an appropriate mathematical
task. This task acts as an incentive to integrate in meaningful ways the dynamic
power of the symbolic artifact with their own intellectual resources. If this happens,
we say with Rabardel, that the artifact has become an instrument and the activity for
solving problems in partnership with it, becomes an instrumented activity.

Fig. 1 a Finding the triangle
with the least area,
b Introducing a graphical
representation of the value of
the area changing with
placements of vertices along
the rays BA and BC
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In such activities the mobility of the dynamic digital representation becomes a
crucial feature of the represented entity for the learner. Exploring what remains
invariant under dragging, for instance, reveals structural aspects of mathematical
objects: motion and invariance enable us to see structure. Importantly, too, the
motion is induced by the learner, who takes advantage of the executability of the
digital representation to reveal structure and meaning. Perceiving structure through
motion is a deeply embodied act—similar to how the bird sees the moth as the latter
moves on the bark of the tree. These features, absent from static symbolic repre-
sentations, help the learner to develop new strategies as she explores mathematical
problems. Moreover, they are particularly important for the mathematics taught at
upper school, supporting a focus on variables and functions. The digital repre-
sentation here becomes a semiotic mediator—that is, an artifact that supports the
creation of meaning in the mathematical system and its objects. Because the
interaction depends on the particular learner’s ways of thinking, there is also a
strong social dimension to this co-action. The learner makes sense in the context of
others, and also through others—co-acting together.

2.1.7 Co-action with Socially-Distributed Representations

Even apparently individual co-action becomes social as learners work together to
process the meaning of representations. However, the social dimension can become
even more pronounced through collective work with distributed representations. Our
second example of co-action involves students interacting collaboratively with the
representation and communication infrastructure (Hegedus and Moreno-Armella
2009) of a classroom network of graphing calculators. Within that setting, we can
give each student control of a single point in a Cartesian environment, which she can
move using the calculator’s arrow keys. In real time, the points of all the students in
the class are displayed in a shared Cartesian space, which is projected at the front of
the classroom. The following activity was created by a teacher to support the idea of
the perpendicular bisector of a segment as the locus of points equidistant from the
segment’s endpoints. As students move their point (point C), they see it represented
on their calculator screen as the third vertex of a triangle with the segment AB as its
opposite side, where the measures of the variable sides of the triangle are also shown
(Fig. 2a, c). The teacher asks the class to search for points where the distances from
point C to points A and B are the same.2 As students locate points that satisfy the
condition, a pattern emerges in the shared space, indicating the perpendicular
bisector of AB as a locus of points, with ever-increasing clarity (Fig. 2b).

Of course, a dynamic geometry environment can provide this representation on
an individual’s screen. However, the socially distributed nature of the locus of
points in this activity provides an important experience and tool for thinking for the

2If the class contains fewer than 25 or so students, the activity can be modified to allow students to
mark or stamp their point at two or more locations that satisfy the condition.

2 Survey 9



classroom group. As individuals, they have “felt their way around” the Cartesian
space, searching for points that meet the equidistant criterion. On finding one, they
recognize an isosceles triangle and experience a particular sensation of symmetry.
However, based on their own point-based explorations, they can see each of the
points in the shared space as a solution to a local problem. This supports a deep and
flexible way of thinking about the locus of points and the perpendicular bisector,
which has value beyond that which would be gained from the individual experience
of a dynamic geometry environment alone.

2.1.8 Conclusion: Mathematical Cyborgs

In speaking of mediated action, we have suggested that human culture is constituted
and extended through the creative production of cognitive and symbolic tools.
These tools express ways of being in the world, and once internalized, they
transform how people perceive and conceive of their worlds. Thus, humans are
essentially cyborgs: biological beings who express themselves through tools. In
particular, we are already behaving as cyborgs when we engage even in “tradi-
tional” mathematical thinking, leveraging the power of Arabic numerals, of the
Cartesian system, and so forth.

But we have emphasized the power and interest of dynamic and distributed
representations to support new ways of learning how to think and operate with the
symbolic entities of mathematics. In the classroom, co-action and the integration of
artifact + learner, open the potential to democratize access to these powerful ways
of operating with representations. Instrumental genesis, we argue, should be a
keystone in the design of new digital curricula that take full advantage of these
opportunities. International efforts show ample evidence that this process has
already begun. However, school cultures are expressed through institutional forms
that have developed over centuries and that are not well adapted to the rapid
changes characteristic of new technologies. Engaging in the mathematics of
co-action requires a gradual but permanent re-orientation of classroom and school

Fig. 2 a, c Students search for points for which the two variable sides of the triangle are of equal
length (i.e., which are equidistant from the endpoints of the segment shown in bold). b The
perpendicular bisector emerges as the locus of such points in the shared space
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practices, and of the cognitive and epistemological assumptions that underlie them.
Our argument here is that as members of a society in which mediated action is
deeply entrenched and constitutive, humans are always-already cyborgs. Thus the
question is not whether to involve learners in symbiotic relations with technologies,
but rather which technologies to choose for which purposes, and how to integrate
them, so as to maximize all students’ agency.

2.2 The Role of New Technologies: Changing Interactions

The integration of communicational and representational infrastructures can yield
forms of representational expressivity (Hegedus and Moreno-Armella 2009),
including gestures, new forms of physical interactions, sharing of a product of
activity, and verbal forms of communication in which students can engage in. The
questions for educational researchers and designers of curricular activities will be
how to take advantage of these rich infrastructures (through design with attention
given to multimodal affordances) to provide opportunities for learning and meaning
making while keeping the student (the learner and user) central to the activity and
design. By utilizing the ways in which students (learners) interact with represen-
tations of their world, and with one another in the development or design of
mathematical activities, digital technologies keep the student central, as authors of
their mathematical activity, and the activities of the learners incorporate aspects of
their natural function of interaction.

2.2.1 Advances in Activity Spaces

Advances in Activity Spaces have occurred in two broad areas in mathematics
education. We investigate both of these with respect to the research and findings
conducted as well as offering some concrete examples. First, we look at intentional
design in Dynamic Geometry Environments (DGEs) where we posit there has been
a trend through the history of DGE implementation of a move towards different
forms of activity spaces. This began with construction-heavy based approaches to
secondary and post-secondary mathematics to construction-light activities mini-
mizing interface controls and limiting user-drag action to focus the attention of the
learner on what is variant or invariant in a well-defined configuration. Such inter-
actions enhance the role of semiotic mediation as one which potentially offers the
interactor to “make visible” the hidden mathematical structure or embedded rules.
Second, we look at classroom connectivity and how such environments allow the
passing and sharing of mathematical artefacts across devices through networks that
offer shifts between personal workspaces to public spaces aggregating “pictures of
contributions” for whole-class examination and discussing generalizations of
mathematical concepts.
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Intentional design in DGE

The activity within a DGE has a didactic dimension that transforms the tasks by
taking the features and affordances of the dynamic representations into account in
activity design (Laborde and Laborde 2014). This purposeful structure of the
activity can focus the attention of the learner. The drag tool, or trace feature for
example, serve as important tools in design of explorative tasks and can direct
learner attention to variant and invariant properties of a mathematical object.
A further move in intentional design in DGE’s has led to utilizing touch-screen
devices enabling individuals to work in a way that is aligned with their out-of-class
interactions with touch-screen technologies. Not all use of DGEs on a touch-screen
device fully capture the affordances of the DGE. For example, the possibility for
mathematical construction is not available in SketchPad Explorer for the iPad,
however the possibility of using more than one digit on the screen to interact with
the activity sketch, and interact with other students or the teacher in the manipu-
lation of a mathematical object, adds potential to this type of design and the
activities that could be developed for such an environment. For example, in work
using a DGE to understand the notion of function, Falcade et al. (2007) utilized the
dragging and trace tool in the design of activities which have a direct correspon-
dence between the tools of the DGE and the meanings related to the idea of
function. The implementation of these designed activities enabled students to
explore functional relationships and move towards using the tool to deliberately
solve a new problem. Additional work involving DGEs include specific designed
activities within the environment for different purposes but to take advantage of
specific tools or affordances within the environment and to direct the attention of
the learner, (see Ng and Sinclair 2015; Arzarello et al. 2014).

As an example, the authors draw upon work using Sketchpad Explorer for the
iPad in which four related activities were designed to allow for a deeper investi-
gation of properties of four triangle centers (circumcenter, centroid, incenter, and
orthocenter) and relationships between triangles and these center points. These
activities were designed for a small group of students to engage with the tasks and
each activity was composed of multiple shorter tasks. The shorter tasks within a
broader activity, led to cycles of small group work followed by whole class dis-
cussion followed again by small group work. As an example, the third activity
explores the incenter through four smaller tasks. In the first task students are
exploring the location of the incenter (which is already constructed) for various
types of triangles and differentiating it from the previously explored centroid and
the circumcenter. In the second task the three angle bisectors are constructed in the
sketch and analyzed for various types of triangles through dragging the vertices to
create different types of triangles. The trace feature is also utilized to trace the
location of the incenter. The third task introduces a grid space to focus attention on
the relationship between the distances from the incenter to the sides of the triangle.
In the fourth task, students are estimating a circle inscribed inside a triangle, and
responding to questions about the relationship between this circle and the triangle
and how the circle relates to the incenter. As an example from the classroom in the
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second task the teacher is editing with a group and draws their attention to the
differences in the trace marks when one vertex is changed versus when multiple
vertices are changed simultaneously.

Teacher: Now, did you notice when you had the trace, like… if I move one of these
[the teacher starts moving a single vertex of the triangle horizontally on the iPad
while students observe the trace of Point S, the incenter, left behind, see Fig. 3], see
it stays on the line [angle bisector ray].
S1: Yeah. … it won’t go off.
Teacher: When you move two of them [the teacher starts moving two vertices
simultaneously on the iPad], it goes … totally off.
S2: Awry.

The teacher leaves the group after this discovery in which she has interacted
directly with the student device. Through her direction and focus on a particular
mathematical relationship exposed by the trace feature, the teacher has utilized the
technology to interact with students and potentially mediate their future action by
dragging a single vertex point in a purposeful way followed by dragging multiple
vertex points in a non-purposeful way to explore this relationship between the
incenter and the triangle.

Classroom Connectivity

For the second advancement in activity spaces we focus on classroom connectivity
that allow the passing and sharing of mathematical artefacts across devices through
networks. This work includes projects such as the SimCalc projects, NetLogo
projects, TI-Navigator system projects, and work using Sketchpad Explorer for the
iPad with connectivity. These projects have investigated ways to support collabo-
ration in the classroom as well as private versus public in the sharing of mathe-
matical work.

In environments utilizing classroom connectivity there is a consideration for
activity design related to the coherence between how a student or small group of
students are able to interact with the activity individually or within a pair or small
group and how the individual or small group is able to interact with the activity
when their contribution is public. In the previously introduced work of the authors
using dynamic geometry software to investigate triangle centers in a connected
classroom environment, this distance seemed to manifest itself in the discourse. In

Fig. 3 Screen capture where
a vertex (P) of a triangle has
been dragged while the
incenter (S) leaves a trace on
the angle bisector ray
(orange)
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many instances there was a move from speaking and referencing in a dynamic way
about the sketch within the small group to speaking and referencing in a static way
about the sketch at the whole class level. In small groups students edited in a
dynamic way, sometimes with another person. When contributing their triangle
configuration to the teacher, the process of their editing became a static image of
their end product. In a whole-class discussion students did not incorporate language
around their dynamic manipulation into the mathematical discourse of their con-
tributions. This led to a discrepancy between the ways in which the small groups
could interact with the specific mathematical activity and their peers at the group
level, and the ways the small groups could interact with their own contributions at
the whole class level.

Drawing upon the first task investigating the incenter, students are asked to
identify similarities or differences between the circumcenter, centriod, and this new
unknown center point (the incenter). In one small group of three, the discourse
includes directions to one another on how to move a point, “move around that
point” and “maybe if we edit all three vertices, [to a third student] you change that
one”, intentional statements to one another about the type of triangle to create
“make it really obtuse”, and statements about what they are finding, “You can make
it as obtuse as you want. It doesn’t work” and “there is no kind of triangle [where
the incenter will be located outside the triangle] it cannot happen”. These statements
are inextricably linked to the dynamic editing of the group members. In the whole
class discussion, however, a single sketch is shown from the work of this
group. The display of a single sketch does not capture the various types of inter-
actions the students had with one another and within the activity. The sketch is
static and the student justification for their finding summarizes their work together
but does not bring to light the forms of interaction of the group to determine their
findings. This distance between small group and whole class activity in which
connectivity is used to support collaboration in the classroom is something to
consider for activity design in this type of environment. There are connected
classroom designs that seek to close this distance, such as the NetLogo work
(Wilensky and Stroup 1999) and the TI-Navigator work (Stroup et al. 2005; White
et al. 2012).

The SimCalc project has spent more than 15 years investigating the impact of
combining representational affordances of the SimCalc software and connectivity
affordances (Hegedus and Roschelle 2012). Classroom connectivity reformats the
interaction patterns between students, teachers and technology. This work stresses
the importance of the student experience being mathematical. As students partici-
pate in mathematical ways, ownership of their constructions can become personal
and deeply affective, triggering various forms of interaction after their work is
shared and projected into a public display space. As an example, we pull from an
activity in an Algebra 2 course in high school in which students are investigating
mathematics of change for second-degree functions, their representations, and the
role of the parameters “a”, “b”, and “c” in y = ax2 + bx + c. The mathematical
aims of this activity include: investigating varying rate, interpreting the x-intercepts
of a linear velocity function as a change in direction in position and associated
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vertex point of a parabolic position graph, and solving a problem set in a motion
context. These aims link connections between position and velocity across various
representations. In this activity, the representations available to the student are
limited to focus attention on specific relationships between position and velocity.
Students work in small groups of four where the parameter “c” corresponds to their
group number, given as the starting position of a rocket traveling in space and the
acceleration for the rockets is invariant across groups, i.e. “2a”. Small group work
on a TI-graphing calculator is sent to the teacher via a classroom network and all
representations are available for the teacher to display. Before displaying student
work, students are asked to make conjectures about the family of functions created
in both a position versus time context and a velocity versus time context given they
have utilized representations from each. In this way, students are asked to abstract
from the specific work of the small group to something more general that would
describe all groups in the class. They have ownership over an individual contri-
bution, but this individual contribution is now a piece of the whole in which,
together, the class aims to make sense of in terms of the mathematical goals of the
activity. This structure of the environment in a connected classroom plays a central
participatory role and supports co-action (Moreno-Armella and Hegedus 2009)
between the students and the representational affordances of the software.

2.2.2 Multimodality

With the addition of multi-modal devices in various domains, there are new
opportunities for designing tools and instructional activities that can leverage
gestural resources and additional modes of interaction with mathematics to overall
support student learning. In their work investigating haptic force feedback devices
for education Güçler et al. (2012) exploited the technological affordances of
force-feedback devices to touch and feel attributes of shapes as well as allow
students to directly manipulate complex mathematical constructions in simple and
successively iterative ways. The authors investigated how learning experiences can
be created by the integration of dynamic geometry with new haptic hardware as a
multi-modal environment. Multi-modal approaches have also focused on the role of
gesture and mathematical expressivity. The work of Güçler et al. (2012) has also
explored conceptual benefits of adding direct touch and feedback to dynamic fig-
ures in order to explore the meditational effects through discourse.

New technologies taking advantage of multimodality will increase and evolve
over the next decade. These types of technology will allow students and teachers to
use various sensory modalities (e.g., sight, touch, sound) in their mathematical
work and will link or connect the various sensory modalities to help transform the
landscape of mathematical inquiry. These types of technologies also have offerings
to students with disabilities or of limited modalities. For instance Toennies et al.
(2011) describe initial feasibility studies in their paper on use of haptic touchscreen
devices to convey graphical and mathematical concepts to students with visual
impairments. The authors use auditory and vibratory tactile feedback in the teaching
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of mathematical concepts that are traditionally taught through a visual modality
only. Their initial results indicate that both sensory channels can be valuable in user
perception. Recent studies (Güçler et al. 2012) have defined new forms of inter-
action that establish access routes for students to explore mathematical structures
through multiple modalities. In the example below young learners are utilizing the
Geomagic® Touch™ Haptic device (formerly Sensable’s PHANTOM Omni®

Fig. 4a, b). User interactions with the models within a scene are graphically dis-
played through the haptic pointer on the computer screen; and physically meditated
by the haptic device, by moving the haptic stylus or pressing the buttons on the
stylus. In the application, when a user moves the haptic pointer onto the frictional
surface of the cube and presses a haptic button, the position and rotation of the cube
is synced to those values of the haptic stylus until the button is released. Learners
have the opportunity to physically interact and focus on mathematically important
attributes. In our studies (Hegedus and Tall 2015), students offer a variety of
metaphors and discursive moves in making sense of complex mathematical
surfaces.

2.2.3 From Outside to Inside the Classroom: Augmented Reality

There is work also being done to bridge the gap between technology used outside of
an educational setting and the technology used inside an educational setting. The
work of Chris Dede and team on EcoMuve and EcoMobile aim to capitalize on
mobile devices as a way to collect data in the world for analysis and discussion in
the classroom, or some other educational setting. One could argue this work aims to
balance the pragmatic and the epistemic value of technologies linking an individual
or groups of individuals with the world around them enabling them to mathematize
their world, and integrate their actions as a connected individual with their actions
as a classroom student.

Fig. 4 a A student operates the PHANTOM Omni® haptic device. b Students’ view of the
multi-modal environment
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We draw on the example of EcoMOBILE (Ecosystems Mobile Outdoor Blended
Immersive Learning Environment), which provides a learning experience in which
students access virtual information and simulated experiences (Augmented
Reality-AR) while immersed in real world ecosystems in students’ own area
(Kamarainen et al. 2015). This science education project was designed to com-
plement the EcoMUVE curriculum, which is based on Multi-User Virtual
Environments (MUVEs) experienced on computers in the classroom. Within the
EcoMUVE environment, students investigate ecosystems and collect data in
immersive simulated ecosystems. This environment is designed to help students
learn the system dynamics and complexity within ecosystems and causal rela-
tionships from introducing or changing something to, or within, the system. In their
work, students collected data using smartphones from a local field trip to nearby
pond and brought their data and field notes back to the classroom for further
investigation in the virtual pond within the EcoMUVE system.

In their work in next-generation virtual reality interfaces for mathematics and
geometry education Kaufmann and Schmalstieg (2003) developed a
three-dimensional geometric construction tool called Construct 3D. The system
uses Augmented Reality (AR) to provide a natural setting for face-to-face collab-
oration between teachers and students. All construction steps are carried out via
direct manipulation in 3D using a stylus tracked with six degrees of freedom. AR
affords users to see their own body and hand as well as the effects of their actions
while working, so the construction process physically involves the students and
resembles handcraft more than traditional computer operation.

The possible opportunities using AR in combination with dynamic geometry
components has the possibility to create further advancements in mathematics
education research. These advancements could include student interactions with 3D
objects in the world that may have a particular feature of interest to be shared and
investigated within the classroom.

2.3 Interrelations Between Mathematics and Technology

This state-of-the-art overview is based on reviewed journals, namely the Journal for
Mathematics Teacher Education, Educational Studies in Mathematics, Technology,
Knowledge and Learning, ZDM Mathematics Education, as well as on proceedings
of international conferences such as CERME congresses, ICMI studies, ICTMA and
research done in this area, especially in Germany, and also well known anthologies,
for example Springer International Handbooks of Education, Encyclopedia of
Mathematics Education or Handbuch Mathematikdidaktik. No systematic research
is done on interrelations between mathematics and technology but it is a long and
intensively discussed topic in papers as can be seen in Drijvers (2014), Artigue
(2002), Stacey and Wiliam (2013), Li and Ma (2010), Bardini et al. (2010) or
Weigand (2001, 2006). The core area of mathematics education is teaching how to
identify and understand mathematical connections and is described in a lot of
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curricula all over the world (e.g., NCTM 2000). Laborde (2002, p. 312) describes
the challenge for using technology therefore:

This requires teachers to conceive possible interrelations between the new conceptual
aspects introduced by technology and the actual curriculum.

By observing those standards (mathematical) knowledge as well as skills should
be conveyed, so that Whitehead’s request can be complied (Whitehead 1911 found
in Schweiger 2010, p. 9):

This science, as it is presented to young students, must lose its esoteric face. It has to deal
with a few general ideas of far-reaching significance in an obvious, immediate and simple
way.

Since the introduction of electronic calculators in mathematics education in the
1970’s, the discussion of using those aids has been ongoing. Many studies have
been conducted (cf. Barzel 2012) and many questions have been surveyed:

• Which specifications are necessary for designing tasks in mathematics education
as well as in mathematics assessments by considering technology?

• How is it possible to work meaningfully in mathematics classrooms by using
technology?

• Is it possible to raise the motivation for discussing mathematical problems by
using technology in mathematics education?

• Where is it possible to identify mathematics in everyday life and what is the role
of technology?

• Is it possible to form another picture of mathematics when using technology in
mathematics education?

• How does the use of technology influence mathematical skills and competencies
of students?

It is beyond controversy that the use of technology broadens the palette of tools
in mathematics education. By using digital tools as a black-box (cf. Buchberger
1989), complex and real problems can be discussed (cf. Rousseau and Saint Aubin
2008). Besides real-life applications, problems of everyday life that do not have an
explicit connection to mathematics can be discussed (cf. Siller 2015). Meaningful
questions like evacuating a special region or a football stadium, finding the optimal
path on a mountain or position-planning can be discussed because the complex
mathematical part and the mathematical solution can be outsourced to technology.
There are only the personal requirements of identifying and understanding math-
ematical connections and applying mathematical skills. These are the (new) chal-
lenges in mathematics education. Laborde (2002, p. 285) writes:

When a new element such as technology is introduced, the system is perturbed and has to
make choices to ensure a new equilibrium is attained, choices that may be related to the
various interrelated elements of the teaching system mentioned […].

Mathematical objects are changed by the mediation of the digital technology,
which gets obvious in dynamic geometry as Laborde (2007) or Gawlick (2002)
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mentions: dynamic representations of geometrical objects do not exist in the
axiomatics of geometry, they are new objects with new behaviours. Digital tech-
nologies in mathematics are technologies of a new type; they embody mathematical
knowledge.

2.3.1 Digital Tools

Mathematics education is characterized by a high conceptual standard in regard to
the development of central terms and through the construction of numerous algo-
rithmic processes. In both areas, great importance can be attached to the use of
digital mathematics tools.

Thus, the learning process of the formation of concepts can be supported by
visualization at the symbolic, graphical and numerical level. Through the interac-
tivity of the representation levels and the transfer between them, comprehensive
multimodal ideas about concepts and their properties can be developed. On the
other hand, calculative computations, e.g. calculating the zero points or the deter-
mination of primitives, can be outsourced to digital tools. This way, teaching
mathematics can be relieved of performing arithmetic operations, and priorities can
be set in other areas. However, such ‘outsourcing’ should be considered thoroughly,
because a comprehensive management of calculations has to be given top priority in
mathematics education.

Digital tools are not only a pedagogical medium for organizing processes in
education, in particular they strengthen the activity of doing mathematics, such as
experimenting, visualizing, applying, etc.—cf. Barzel et al. (2005) or Weigand and
Weth (2002).

It is a didactic and methodological question when and how digital tools should
be used in the teaching process (cf. Weth 1999). For this, there are no standard
guidelines; the answer to this question rather depends on the goals that shall be
achieved in the teaching process. For example when calculating the square root
according to the Heron method, it makes sense to carry out the first steps of this
iterative method by hand. The aim is to understand the basic ideas of the process, to
reflect on accuracy and limitations and to think about generalizations. The explicit
implementation of the method can then be carried out, for instance, by using a
spreadsheet.

According to a well-considered use of technology, learning in the classroom is
not being degraded to programmed instruction. The tools used are and will remain
cognitive tools. They help to represent and work on the individual problem (after
input by the person that is working on them). The work on this should be designed
so that it supports the mental processes of the learners, who control the learning
process, however, they should by no means be restricted. Another important point is
‘platform independence’. It should be possible to carry out the tasks on the com-
puter as well as on graphing-capable calculators (with CAS). The technology takes
over a large part of the repetitive calculations; graphical and interactive presentation
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forms are available at an impressive scope. This leaves more time for essential
mathematical skills, e.g. interpreting, reflecting, arguing and also modeling or
model building for which there is mostly no time in traditional teaching.

In the German educational standards (KMK 2012, p. 13), the importance of
digital mathematics tools for the development of mathematical skills is being
specified:

“The potential of these tools unfolds in mathematics education

• when exploring mathematical interrelations, in particular through interactive
exploration during modeling and problem solving;

• by promoting the understanding of mathematical interrelations, not least through
a variety of representation options;

• with the reduction of schematic processes and the processing of large amounts
of data;

• by supporting individual preferences and approaches when working on tasks
including the reflected use of control options.”

2.3.2 Discovering Mathematical Correlations

In view of the discovery of mathematical interrelations, digital mathematics tools
are of particular importance for example in simulations, understood as experi-
menting with models (cf. Greefrath and Weigand 2012). Here, experiments are
carried out on a real or mathematical model, e.g. in relation to population trends,
traffic situations, or the functionality of technical devices. The use of technology
can lead to the simplification of difficult and complex modeling operations, espe-
cially when solving, as Galbraith et al. (2003, p.114) has shown (Fig. 5).
Sometimes it is even unavoidable to use technological tools, especially when
computing-intensive or random processes are being studied, when one wants to
structure or process large data sets, when varying processes and results are being
displayed, or when one is working experimentally. Especially in the teaching
process, deep rethinking of the use of technology is necessary. Traditional content
can be discussed with students, however, the use of technological aids also calls for
new examples that will be discussed in the classroom using a variety of tech-
nologies, and that, at best, lead to different models.

Those models have to be evaluated concerning their quality. Normally this is
done through simulations, which can be implemented in, and executed by, tech-
nology. By the help of such simulations the process of modelling can be supported
as well. Especially if a corresponding reference to reality is being examined,
simulations can support the design of varying, more elaborated models (cf. Siller
2015). Here, real situations are chosen as a starting point and a mathematical
description of the situation for further examination is generated with the help of
models. Geiger (2011, p. 312) shows this analogously to Fig. 6. Monaghan (2004,
p. 243f) describes this situation following Kent (1999):
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This appears to be an important general difference concerning technology lessons and it
interrelates with the fact that technology is often not just a tool for doing the mathematics
but a medium for expressing the mathematics.

The use of technology allows a ‘flexible’ handling of problems because routine
procedures can be delegated to the ‘number cruncher’. Dörfler and Blum (1989,
p. 184) mention this at the beginning of the discussion about the use of techno-
logical tools in the classroom:

As a mathematical tool, the computer initially allows a relief of the execution of calculatory
computations or routine drawings, which can also be a great advantage particularly for an
application orientation.

Fig. 5 Using technology
when working on problems
for mathematical modelling

Fig. 6 Mathematical
Modelling including the use
of technology
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This epistemic dimension of using techniques introduced by digital tools leads
students to deepen their conceptual understanding of mathematical objects they
involve, as Artigue (2002) or Heid and Blume (2008) has shown.

2.3.3 Possibilities and Constraints in the Interrelation of Technology
and Mathematics

Despite all the (possible) advantages the use of technology brings, they should be
used in a reflected and considerate way. If technology is used merely as a means to
an end, and students do not have to give any feedback on mathematical processes or
solutions they have used, the use of technology will not make any sense at all.
Nevertheless, the use of digital tools in education offers a lot of different oppor-
tunities for routines in mathematics education (cf. Greefrath et al. 2016).

• Use of representation options

With digital mathematics tools, various representations can be produced ‘at your
fingertips’—it is possible to easily switch between representations (cf. Kaput 2001)
and, at the same time, multiple representations can be produced on the screen that
are also interactively linked (Weigand and Weth 2002, p. 36 f). These technical
possibilities are offset by the challenge of the learning process, which is that stu-
dents have to cognitively cope with this variety of representations and visualiza-
tions in order to use them for a better understanding of mathematical content
(Bartolini Bussi and Mariotti 2008).

For example, functions can be represented symbolically, graphically and
numerically. When using a computer algebra system, automatic transformations on
the symbolic level receive a greater importance; with function plotters, the effects of
changes in the functional equation can be graphically traced; and the use of a
spreadsheet in particular allows the local visualization of gradual boundary pro-
cesses at the numerical level. This variety of representations must be cognitively
assembled into a mental model by students (see for example, Falcade et al. 2007;
Ekol 2015).

• Reduction of schematic processes

Especially through the use of computer algebra systems (CAS), a reduction of
schematic processes can be achieved. By this, an overemphasis on
calculation-oriented work (e.g., in ‘curve sketching’) can be countered with CAS.
Here, setting up functional equations and the interpretation of the solutions will
have an increased importance, whereas the algorithmic calculations are being
performed automatically. With this, the target in the classroom is, and has to be,
connected to giving central mathematical ways of thinking a more important
meaning.
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• Checking options

Monitoring and checking the resulting solutions is an important mathematical
activity. Digital mathematics tools can support these checking processes, for
example with graphical representations of numerical calculations, when solving
equations, with term conversions or when working with discrete functional models.

2.3.4 Conclusion

In summary there is an important and remarkable interrelation of mathematics and
technology:

• graphical and numerical methods are given more weight;
• substantive concepts on the formation of notions are important, whereby the

construction of basic notions and their use play a central role in appropriate
problem situations;

• modeling gains importance by a greater variety of available methods for the use
of mathematics and for working with mathematical models, for instance in terms
of discrete and continuous processes or the function types used;

• a clarification of the technical language in terms of constructive communication
with the digital tools is necessary;

• the documentation of results becomes increasingly important as results supplied
by the computer have of course to be noted comprehensively for others;

• experimental methods continue to gain importance because the operating prin-
ciple comes up frequently in the form of typical questions like ‘What if …?’ or
‘Why is it that …?’.

As written by Waits (2000, quotation in NCTM 2000, p. 25):

Some mathematics becomes more important because technology requires it. Some math-
ematics becomes less important because technology replaces it. Some mathematics
becomes possible because technology allows it.

Students learn to work in a structured way, modularize mathematical tasks, use
representation options, verbalize and are able to use the mathematical syntax—in
short: students learn to prescind.

Technology can be used for promoting essential competencies as described in
Siller (2011). In summary, the learning process changes to an experimental way of
awareness when teachers are aware of the interrelations between mathematics and
technology.

The use of technology allows students multifaceted findings, which are
uncontroversial when using those tools. Hence mathematics becomes more mean-
ingful and more respected. Digital technology relieves students from routines or
algorithmic processes. But in the same way it introduces new techniques that the
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students need to use. These techniques have both an epistemic and pragmatic value
according to Artigue (2002). It is important for teaching mathematics with tech-
nology that these techniques are coherent with the mathematical content that is
taught. Researchers must provide analyses of this underlying epistemology in order
to make teachers aware of it.

2.4 Teacher Education with Technology:
What, How and Why?

2.4.1 Introduction

This report is based on a review of research papers published during the last fifteen
years in four leading journals in mathematics education: Journal for Mathematics
Teacher Education, Educational Studies in Mathematics, Technology, Knowledge
and Learning (formerly International Journal of Computers in Mathematics
Learning), and ZDM Mathematics Education, as well as in proceedings of major
international conferences in this area: technology groups at CERME 3–9 con-
gresses, ICTMT 10 and 11 conferences and ICMI studies 1 and 17. A selection of
forty or so papers considered as relevant to this overview were analyzed. Clearly,
we do not claim to have done an exhaustive search, yet we can deem that these
papers are representative of current trends in research on teacher education.

Some of the studies address prospective mathematics teacher education, while
others focus rather on professional development of practicing mathematics teachers,
and we consider both. This paper is organized around the following four questions
from the point of view of integrating technology to upper secondary mathematics
instruction: (1) What knowledge and skills do the teachers need to efficiently use
technology? (2) How these knowledge and skills can be developed in teachers?
(3) How do researchers design their studies to follow teachers’ development? and
(4) What theoretical frameworks inform the research in teacher education? The
concluding section brings to the fore issues highlighted in the literature review that
seem worth being addressed in the TSG 43.

2.4.2 Knowledge and Skills Teachers Need to Efficiently Use
Technology in Upper Secondary Mathematics Classes

When considering teacher education, the question of teacher professional knowl-
edge and skills to be learnt or developed comes up naturally. We address this issue
both from the institutional and the research points of view.
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Institutional point of view: ICT standards

The ISTE3 Standards-T (2008) define five skills teachers “need to teach, work
and learn in the digital age”. They are rather general related to various aspects of a
teacher profession:

(1) “Teachers use their knowledge of subject matter, teaching and learning, and technology
to facilitate experiences that advance student learning, creativity, and innovation”,
(2) “Teachers design, develop, and evaluate authentic learning experiences and assessments
incorporating contemporary tools and resources”, (3) “Teachers exhibit knowledge, skills,
and work processes representative of an innovative professional”, (4) Teachers […] exhibit
legal and ethical behavior in their professional practices, and (5) “Teachers continuously
improve their professional practice […], exhibit leadership in their school and professional
community by promoting and demonstrating the effective use of digital tools and
resources”.

NCTM (2011) claims that

Programs in teacher education and professional development must continually update
practitioners’ knowledge of technology and its application to support learning. This work
with practitioners should include the development of mathematics lessons that take
advantage of technology-rich environments and the integration of digital tools in daily
instruction, instilling an appreciation for the power of technology and its potential impact
on students’ understanding and use of mathematics.

This NCTM position emphasizes three conditions for an efficient integration of
technology, which should guide the development of teacher education programs:
teachers’ awareness of the technology added value in terms of students’ under-
standing of mathematics, teachers’ continuous upgrading of their knowledge of
technology and its use in teaching, and designing teaching resources taking
advantage of affordances of digital tools.

UNESCO ICT Competency Framework for Teachers (2011) sets out “the
competencies required to teach effectively with ICT” (p. 3) and stresses that

it is not enough for teachers to have ICT competencies and be able to teach them to their
students. Teachers need to be able to help the students become collaborative, problem
solving, creative learners through using ICT so they will be effective citizens and members
of the workforce (ibid.)

The Framework is organized around three stages of ICT integration:
(1) Technology Literacy “enabling students to use ICT in order to learn more
efficiently”, (2) Knowledge Deepening “enabling students to acquire in-depth
knowledge of their school subjects and apply it to complex, real-world problems”,
and (3) Knowledge Creation “enabling students, citizens and the workforce they
become, to create the new knowledge required for more […] prosperous societies”
(p. 3). Examples of methods for professional learning of skills related to each aspect
of teachers’ work (understanding ICT in education, curriculum and assessment,

3International Society for Technology in Education, http://iste.org.
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pedagogy, ICT, organization and administration, and teacher professional learning)
at the three stages are provided.

The above mentioned standards (except from NCTM) are usually not subject
matter specific. The NCTM standards have the merit of stressing the importance of
teachers’ awareness of the technology added value for students’ learning mathe-
matics as a first step toward an efficient ICT use.

Research point of view: professional knowledge and skills addressed in sci-
entific papers

In this section we attempt to synthesize what professional competencies are con-
sidered by the researchers as important for using ICT by mathematics teachers.
Surprisingly, references to standards, either national or international, are very rare.
Only Bowers and Stephens (2011) mention the NCTM (2000) “Technology
Principle”: each teacher should use technology in “appropriate and responsible
ways” (p. 286), which the authors interpret as “using technology to explore
mathematical relations.” (ibid.).

The Technology, Pedagogy and Content Knowledge (TPACK) framework
(Mishra and Koehler 2006) is the most frequently used frame that offers “a helpful
way to conceptualize what knowledge prospective teachers need in order to inte-
grate technology into teaching practices” (Bowers and Stephens ibid). However,
this framework allows for a variety of interpretations. While some authors attempt
to define specific TPACK knowledge pieces, others consider the TPACK rather as
an orientation enabling the teacher educators “to develop a greater sense of how to
plan and focus instruction for prospective math teachers” (ibid. p. 301). The former
approach is adopted by Robová (2013) who defines what she calls “Specific Skills
for work in GeoGebra”, and she proposes a set of such skills instantiated to the case
of functions: e.g., “making functions visible (on the screen)” or “using dynamic
features of GeoGebra”. The latter approach is advocated by Bowers and Stephens
(2011), who draw on literature review to claim that

teachers need not acquire one particular expertise or pick one particular role; instead,
teachers (and prospective teachers) need to become aware of how to design rich tasks that
integrate technology into the classroom discourse so that technology-based conjectures and
arguments become normative (p. 290).

Although most research is inscribed within a specific context linking a mathe-
matics domain and a type of technology at stake, three different approaches to
defining teachers’ knowledge and skills related to the technology use can be
identified:

• setting out knowledge/skills needed to teach a particular mathematical concept
or area with technology, such as functions (Borba 2012) or algebra (Clay et al.
2012);

• setting out knowledge/skills required to use a particular piece of software, such
as CAS (Ball 2004; Zehavi and Mann 2011) or dynamic geometry (Robová
2013; Robová and Vondrová 2015),
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• considering more general knowledge/skills, such as the ability of supporting
students’ problem solving in a technological environment (Lee 2005), of ana-
lyzing digital resources in order to evaluate their pedagogical affordances and
relevance (Trgalová and Jahn 2013), of encouraging students to use a tool of
their choice to observe mathematical relations at stake (Bowers and Stephens
2011) or of using ICT to develop reasoning capacities in students (Zuccheri
2003).

2.4.3 How These Knowledge and Skills Can Be Developed
in Teachers?

A growing interest in delivering teacher education courses via online platforms is
observed: a small number of professional development courses use both synchronic
and/or a-synchronic internet platforms blended with face-to-face meetings (e.g.,
Clark-Wilson et al. 2015; Borba 2012; Bowers and Stephens 2011). Most of the
courses use either face-to-face platform (e.g., Lee 2005) or online platform (e.g.,
Clay et al. 2012).

Several researchers consider creating communities of practice, composed of
teachers with different expertise, as a relevant platform for teachers’ development.
Thus, for example, Zehavi and Mann (2011) report on face-to-face collaboration
between course instructors and participating teachers: at first the activity was guided
by the instructors, however the use of unusual mathematical results in CAS envi-
ronment caused the novice participants to raise a mathematical challenge which was
resolved together, in a way that promoted the mathematical knowledge of all the
community. Borba and Llinares (2012) provide an overview of online teacher
education centered on creating communities of practice. Specifically, in
a-synchronic communications, participants with different expertise are encouraged
to express their ideas and relate to others’ ideas. By written reflections and elab-
orations of these ideas, all members deepen their pedagogical and mathematical
insights.

Many professional development opportunities are organized around iterative
sequences of activities of different nature. Lee (2005) uses a sequence of planning a
mathematical activity with technology for students, experiencing as facilitators of
that activity with a pair of students reflection on the design versus enactment of the
activity. The sequence was repeated twice for each prospective teacher, to allow for
changes in all three phases. While Lee studies a face-to-face course, Clay et al.
(2012) report on an online course: a more refined sequence of activities, starting
with setting a mathematical goal and designing a related set of tasks by the
instructor, and inviting participants to perform the following activities:

(1) reviewing an expert model, (2) creating initial responses to the task (in the form of a
multimedia screen capture with voice), (3) listening to/viewing others’ responses, (4) re-
viewing and commenting on others’ responses, (5) discussing, and (6) revising initial
responses. (p. 765).
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Only few studies include an evaluation of the reported professional develop-
ment. Robová and Vondrová (2015—to appear) use teachers’ final project quality
as evidence for the success of instruction, reporting that “Still, the quality of the pre-
service teachers’ projects did not meet our expectation”. Zuccheri (2003) also notes
her dissatisfaction: “They seem to give attention only to partial aspects of the
didactical use of the software, or to technical aspects, or to enjoying the use of the
tool itself”.

A similar dissatisfaction led Emprin (2007) to analyze training courses aimed at
the use of ICT by means of interviews with teacher educators and observations in
several professional development courses. Emprin (2007) claims that the main
reason is a gap between teachers’ needs and potentialities presented by teacher
trainers during professional development courses. Specifically, he notes a lack of
reflectively analyzing the complexity of practice.

One exceptional study in terms of evaluating the program was done by Jiang
et al. (2013). The authors randomly assigned 64 high school teachers to two groups,
both studying geometry: one learned with technology and the other without. A pre-
post design allowed the authors to report that teachers who learned with dynamic
geometry (DG) scored higher in conjecturing and proving compared to teachers
who learned in a traditional environment. Moreover, a geometry achievement pre-
and post-tests applied on students of all participating teachers show that students of
the teachers who learned in DG environment significantly outperformed those of
the other teachers.

2.4.4 How Do Researchers Design Their Studies to Follow Teachers’
Development?

Case studies are the dominant methodology used. The studies were cases of: (1) one
specific course, and (2) specific issue from a particular course, like a specific
activity, or the work done by specific participants. Usually, the authors are among
the professional development leaders. For example, Sacristán et al. (2011) report on
professional development program which was an integral part of six teachers’
dissertation for MA program, in which the participants reflect on their experience of
integrating ICT to their own teaching. Lee (2005) describes her qualitative
methodology which includes analyzing videos and comparing cases to look for
patterns.

Among studies with a different methodology, Tripconey et al. (2013) provide
one-day training course to practicing teachers with two types of training: one
devoted to exploring ICT packages while the other focusing on developing specific
subject knowledge, incorporating ideas for using ICT. The researchers were
interested in changes in teachers’ ICT uses in their class after the one-day training
course. A written questionnaire was sent via the internet asking the teachers to
report if they used ICT for math teaching. In both groups there was a slight increase
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in the number of teachers using ICT to demonstrate in class. The ICT specific group
seemed to have a marginally greater increase. However, the researchers concluded
that for the majority of teachers there was no change in all surveyed categories in
the amount of time they used ICT. It appears that the impact of a one-day course,
albeit ICT focused or incorporated, is limited.

Clark-Wilson et al. (2015) try to find a method to follow a large group of
teachers from 113 schools in an attempt to evaluate the teachers’ fidelity to a
specific learning unit. They used teachers’ self-report questionnaire to evaluate
teachers’ fidelity to their program, accompanied by two case studies. The authors
discuss the limitations of such approach, both in terms of a low rate of responses,
and the subjectivity of the reports. Nevertheless, they could get insight in the way
teachers and schools appropriated the use of ICT with the specific curriculum to be
implemented.

Yet another approach was taken by Trgalová and Jahn (2013). The authors were
concerned with teachers’ ability to identify from the growing collection of online
resources the ones most relevant to their educational needs. They designed a quality
questionnaire for the i2geo repository aiming at framing the analysis of available
resources by the platform users. Their study thus focused on teachers’ changing
ability to evaluate online resources and their changes in practices stemming from
their awareness of the quality criteria.

2.4.5 Why the Researchers Acted the Way They Did

This section focuses on theoretical grounding of research papers on teacher edu-
cation. The TPACK framework has already been mentioned.

Besides TPACK, there is a big variety of theoretical frames, some of which are
specific to technology while others are more general, such as the anthropological
theory of didactics (Chevallard 1992) or the theory of semiotic registers of repre-
sentation (Duval 2006). Most of research draws on a combination of two or more
theoretical frames showing that the technology element should not be taken sepa-
rately but rather as an element of a whole system composed of actors (students and
teacher), knowledge at stake and a set of other resources coming into play in
teaching and learning mathematics.

Among the technology specific frameworks, the instrumental approach
(Rabardel 2002) is certainly the most widely used. Elaborated in the field of cog-
nitive ergonomics, it brings to the fore the acknowledgment of the importance of a
person’s activity with a tool rather than considering uses guided by the tool. This
framework further developed within mathematics education (Artigue 2002) led to
the introduction of new concepts, e.g., instrumental orchestration (Trouche 2004;
Drijvers et al. 2010) or double instrumental genesis (Haspekian 2011) focusing on
teacher’s role in managing students’ interactions with ICT. The documentational
approach (Gueudet and Trouche 2009) addressing teachers’ work with resources,
either digital or not, draws as well on the instrumental approach.

2 Survey 29



The theoretical concept of humans-with-media introduced by Borba and
Villareal (2005) sheds light on how technological tools, but also non-technological
media, influence and reorganize the way humans know and produce knowledge.
This framework is mainly used to address issues related to online pre-service and
in-service teacher education (Borba 2012; Clay et al. 2012).

Another concept widely used, mainly in relation with teacher professional
development, is the notion of community: community of practice or community of
inquiry (Jaworski 2005). Such communities are either created purposefully by the
researchers to accompany teachers’ efforts with integrating ICT in their everyday
practice (e.g., Fuglestad 2007), or they develop spontaneously around Web2.0 tools
enabling sharing resources and practices (Trgalová and Jahn 2013). Drawing on the
concept of community, researchers mostly address the issue of teachers’ learning
and development within communities.

2.4.6 Concluding Remarks

The literature review presented above highlights four striking issues. First, ICT
competency standards for teachers seem to have limited impact on the orientations
of teacher education programs. Certainly these standards are too general, neither
subject matter (except from NCTM), nor school level specific. Elaboration of ICT
standards for mathematics teacher education might become one of the goals of the
international community. The second issue is the acknowledgment, in a number of
research papers, of a disappointment with the outcomes of teacher education pro-
grams. The gap between teachers’ needs and the teacher education contents is
deemed as the main reason. This brings to the fore a necessity for teacher educator
training, which is an under-represented issue in the field of mathematics education
research, as well as a necessity for teacher educators to understand better teachers’
needs, which brings back the issue of ICT competency standards. Third, regarding
the theoretical frameworks referred to in research papers, a large variety of frames
can be noticed, which can be seen as a wealth of the research field, but there is a risk
of “the framework compartmentalization that could hinder the capitalization of
knowledge and its practical exploitation” (Artigue et al. 2011, p. 2381).
A development of “an integrated theoretical framework” based on networking
theories appears as a means “to support the capitalization of research on digital
technologies in mathematics education” (ibid. p. 2387). Finally, some competencies
seem to be under-estimated in teacher education: teachers’ ability to decide when it
is worth using technology and when it is not, to analyze a piece of software so that
the teachers are able to face unwelcome phenomena linked to the computational
transposition such as consequences of working with approximate values. We pro-
pose these four issues to the discussion in the topic study group 43.
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3 Summary and Looking Ahead

• Various research theoretical frameworks are used to analyze the learning and
teaching processes.
Some of them deal with the new ways digital technology mediates mathematical
objects and relationships and consider interaction of students and teachers with
technology (coaction, humans-with-media). The instrumental approach is used
in analyzing both the processes through which students construct solving
strategies by making use of technology and the teaching processes. A double
instrumental genesis is required from teachers for doing mathematics using
technology and for organizing learning conditions through the use of technology
for their students, in particular by designing appropriate tasks taking advantage
of technology.

• New ways of learning how to think, operate and interact with dynamic and
distributed technologies are presented.
Research studies show that these technologies offer a potential to the learners to
interact with mathematical structures, in particular improve the cycle of
exploration, conjecture, explanation and justification. It also can offer the
opportunity for students to build on the work of another through the ability to
share products and problem solving strategies. These dynamic and distributed
technologies have a potential to democratize access to powerful mathematical
ideas and ways of operating with mathematical symbols and structures.
A final and significant point is the impact of “new” learning technologies as
operationalized through how we interact in a learning environment on the
mindset of teachers. As Hegedus and Tall (2015) have noted, a long-term critical
issue will be the professional development of teachers in order to understand
how to use these new tools, take advantage of the affordances and possibilities,
and understand the pedagogical implications. Teachers might be faced with
re-thinking how technologies can enhance the learning environment or even
transform the very nature of the classroom.

• Digital technologies may shift emphasis on some mathematical activities while
making others less important

Modeling, interpreting graphical representations, experimental activities,
checking processes gain importance that may lead to critical thinking and creative
acting.

• Importance of the teacher in the use of technology
The role of the teacher is still critical as earlier in absence of the technologies
described in our account. However the use of technology may require different
skills and competencies as for example: find new ways of introducing concepts
with technology, designing new kind of tasks, understanding the new students
exploring and solving processes allowed by technology, and using ICT to
develop reasoning capacities in their students.
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Some thinking points. Practically, for teachers in the classroom: is there, or
could there be, a taxonomy for orchestrating student digital work? How can the
teacher make best use of student created contributions? What new opportunities
of interaction are there between the teacher and the students and what is the role
of the teacher within these new forms of interactions? How can the teacher
mediate rich interactions between students and content through (or in con-
junction with) the technology in order to fully utilize the representational and
communicational infrastructure of the classroom?

• Gap between the teachers’ needs and the contents of teacher education programs
Teacher education programs should include more the required skills and com-
petencies that, according to research, teachers need for integrating digital
technology into the usual teaching practice.
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