
Dhabaleswar K. Panda (Ed.)
LN

CS
 1

20
82

6th Asian Conference, SCFA 2020
Singapore, February 24–27, 2020
Proceedings

Supercomputing Frontiers

Lecture Notes in Computer Science 12082

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Dhabaleswar K. Panda (Ed.)

Supercomputing Frontiers
6th Asian Conference, SCFA 2020
Singapore, February 24–27, 2020
Proceedings

Editor
Dhabaleswar K. Panda
Department of Computer Science
and Engineering
The Ohio State University
Columbus, OH, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-48841-3 ISBN 978-3-030-48842-0 (eBook)
https://doi.org/10.1007/978-3-030-48842-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-48842-0
http://creativecommons.org/licenses/by/4.0/

Preface

As the share of supercomputers in Asia continues to increase, the relevance of
supercomputing merits a supercomputing conference for Asia. Supercomputing Asia
(SCA 2020) was planned to be an umbrella of notable supercomputing events that
promote a vibrant HPC ecosystem in Asian countries. With over 600 speakers, par-
ticipants, and exhibitors already pre-registered to attend, SCA20 was on course to be
the biggest SCA conference yet. It was planned to be held during February 24–27,
2020, at Suntec Singapore Convention and Exhibition Centre. Unfortunately, the
physical conference was canceled due to the COVID-19 pandemic. However, the
current proceedings contain the list of papers selected under its technical paper
program.

The technical program of SCA19 provided a platform for leaders from both aca-
demia and industry to interact and to discuss visionary ideas, important global trends,
and substantial innovations in supercomputing. SCA19 was attended by over 700
delegates from over 20 different countries. In March 2017, the National Supercom-
puting Centre (NSCC) Singapore hosted the Supercomputing Frontiers (SCF 2017).
NSCC expanded the scope of SCF by embarking on the first Supercomputing Frontiers
Asia (SCFA) technical paper program at SCA 2018. NSCC was established in 2015
and manages Singapore’s first national petascale facility with available HPC resources
to support science and engineering computing needs for academic, research, and
industry communities.

SCFA represents the technical program for SCA 2020, consisting of four tracks:

– Application, Algorithms, and Libraries
– Architecture, Network/Communications, and Management
– Data, Storage, and Visualization
– Programming Models and Systems Software

The submitted papers for the technical papers program went through a rigorous peer
review process by an International Program Committee. A set of eight papers were
finally selected for inclusion in these proceedings. The accepted papers cover a range of
topics including file systems, memory hierarchy, HPC cloud platform, container image
configuration workflow, large-scale applications, and scheduling. I would like thank all
authors for their submissions to this conference. My sincere thanks to all Program
Committee members for doing high-quality and in-depth reviewing of the submissions
and selecting the papers for this year’s program. I would like to thank the conference
organizers for giving me an opportunity to serve this year’s conference as the technical
papers chair. To the readers, please enjoy these proceedings.

April 2020 Dhabaleswar K. (DK) Panda

Organization

Program Chair

Dhabaleswar K. (DK) Panda The Ohio State University, USA

Program Committee

Ritu Arora Texas Advanced Computing Center, USA
Costas Bekas IBM Zurich, Switzerland
Hal Finkel Argonne National Laboratory, USA
Piotr R. Luszczek University of Tennessee at Knoxville, USA
Antonio Pena Barcelona Supercomputing Center, Spain
Nathan Tallent Pacific Northwest National Laboratory, USA
Pradeep Dubey Intel Corporation, USA
Rajkumar Buyya The University of Melbourne, Australia
Albert Zomaya The University of Sydney, Australia
Kishore Kothapalli IIIT Hyderabad, India
Jianfeng Zhan Institute of Computing Technology (ICT), China
Amitava Majumdar San Diego Supercomputing Centre, USA
Nikhil Jain Google Inc., USA
Ron Brightwell Sandia National Laboratories, USA
John Kim Korea Advanced Institute of Science and Technology

(KISTI), South Korea
Ryota Shioya Nagoya University, Japan
R. Govindarajan Indian Institute of Science Bangalore, India
Quincey Koziol Lawrence Berkeley National Laboratory, USA
Amelie Chi Zhou Shenzen University, China
Ugo Varetto Pawsey Supercomputing Center, Australia
Fang-Pang Lin National Center for High-performance Computing

(NCHC), Taiwan
Olivier Aumage Inria, France
Sunita Chandrasekaran University of Delaware, USA
Bilel Hadri King Abdullah University of Science and Technology,

Saudi Arabia
Hai Jin Huazong University of Science and Technology, China
Arthur Maccabe Oak Ridge National Laboratory, USA
Naoya Maruyama Lawrence Livermore National Laboratory, USA
Ronald Minnich Google Inc., USA
Yogesh Simmhan Indian Institute of Science Bangalore, India
Sandra Gesing University of Notre Dame, USA

Michela Taufer University of Tennessee at Knoxville, USA
Depei Qian Sun Yat-sen University, China
Frances Lee Nanyang Technological University, Singapore
Martin Schulz Technical University of Munich, Germany
Tin Wee Tan National Supercomputing Centre, Singapore

viii Organization

Contents

File Systems, Storage and Communication

A BeeGFS-Based Caching File System for Data-Intensive
Parallel Computing . 3

David Abramson, Chao Jin, Justin Luong, and Jake Carroll

Multiple HPC Environments-Aware Container Image Configuration
Workflow for Large-Scale All-to-All Protein–Protein
Docking Calculations. 23

Kento Aoyama, Hiroki Watanabe, Masahito Ohue, and Yutaka Akiyama

DAOS: A Scale-Out High Performance Storage Stack for Storage
Class Memory . 40

Zhen Liang, Johann Lombardi, Mohamad Chaarawi,
and Michael Hennecke

Cloud Platform Optimization for HPC . 55
Aman Verma

Applications and Scheduling

swGBDT: Efficient Gradient Boosted Decision Tree on Sunway
Many-Core Processor . 67

Bohong Yin, Yunchun Li, Ming Dun, Xin You, Hailong Yang,
Zhongzhi Luan, and Depei Qian

Numerical Simulations of Serrated Propellers to Reduce Noise 87
Wee-beng Tay, Zhenbo Lu, Sai Sudha Ramesh, and Boo-cheong Khoo

High-Performance Computing in Maritime and Offshore Applications 104
Kie Hian Chua, Harrif Santo, Yuting Jin, Hui Liang, Yun Zhi Law,
Gautham R. Ramesh, Lucas Yiew, Yingying Zheng,
and Allan Ross Magee

Correcting Job Walltime in a Resource-Constrained Environment 118
Jessi Christa Rubio, Aira Villapando, Christian Matira,
and Jeffrey Aborot

Author Index . 139

File Systems, Storage and
Communication

A BeeGFS-Based Caching File System
for Data-Intensive Parallel Computing

David Abramson(&) , Chao Jin , Justin Luong ,
and Jake Carroll

The University of Queensland, St Lucia, QLD 4072, Australia
{david.abramson,c.jin,justin.luong,

jake.carroll}@uq.edu.au

Abstract. Modern high-performance computing (HPC) systems are increas-
ingly using large amounts of fast storage, such as solid-state drives (SSD), to
accelerate disk access times. This approach has been exemplified in the design
of “burst buffers”, but more general caching systems have also been built. This
paper proposes extending an existing parallel file system to provide such a file
caching layer. The solution unifies data access for both the internal storage and
external file systems using a uniform namespace. It improves storage perfor-
mance by exploiting data locality across storage tiers, and increases data sharing
between compute nodes and across applications. Leveraging data striping and
meta-data partitioning, the system supports high speed parallel I/O for data
intensive parallel computing. Data consistency across tiers is maintained auto-
matically using a cache aware access algorithm. A prototype has been built
using BeeGFS to demonstrate rapid access to an underlying IBM Spectrum
Scale file system. Performance evaluation demonstrates a significant improve-
ment in the efficiency over an external parallel file system.

Keywords: Caching file system � Large scale data analysis � Data movement

1 Introduction

In order to mitigate the growing performance gap between processors and disk-based
storage, many modern HPC systems include an intermediate layer of fast storage, such
as SSDs, into the traditional storage hierarchy. Normally, this fast storage layer is used
to build a burst buffer that stages data access to the disk-based storage system at back-
end [12, 16]. However, adding new tiers into the storage hierarchy also increases the
complexity of moving data among the layers [17, 18].

The burst buffer can be provided on I/O or compute nodes of a cluster. The latter
option, also called a node-local burst buffer [17, 18], equips each compute node with
SSDs to decrease I/O contention to back-end storage servers. This leads to a deep
hierarchical structure [12, 13] that contains, at the very least, a node private burst buffer
and a shared external storage tier. To exploit hardware advances, many innovative
software methods [5, 7, 16–18, 28–31] are proposed to utilize burst buffers efficiently.
The management of node-local burst buffers has not been standardized. Some projects
have investigated its use only for specific purposes, such as staging checkpoint data [7]

© Crown 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 3–22, 2020.
https://doi.org/10.1007/978-3-030-48842-0_1

http://orcid.org/0000-0003-0441-4596
http://orcid.org/0000-0002-9513-8111
http://orcid.org/0000-0002-0243-0237
http://orcid.org/0000-0002-7765-5772
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-48842-0_1

and caching MPI collective I/O operations [5]. Other projects, including BurstFS [28]
and BeeOND [3], create a temporary file system on the private storage of compute
nodes. However, these solutions manage the burst buffer independently of back-end
storage, and programmers need to handle the complexity of moving data between
storage tiers explicitly.

These tiers of persistent storage are typically used for different purposes in an HPC
environment. Normally, the privately-owned internal storage maintains transient data to
achieve faster I/O rates. In contrast, persistent data for long-term usage is stored
externally, often using a parallel file system. Managing both tiers separately increases
programming difficulties, such as maintaining data consistency and worrying the effi-
ciency of moving data between the tiers. In order to bridge these layers, several
challenges need to be addressed. First, the internal storage is isolated to individual
compute nodes. Aggregating these siloed storage devices is necessary to provide
scalable bandwidth for staging data more efficiently. Second, striping data across
compute nodes is essential to accelerate parallel I/O for HPC applications. Third,
programmers should be freed from having to move data explicitly between the storage
tiers. Fourth, exploiting data access patterns through the storage layers can improve the
performance of accessing the external parallel file system.

In this paper, we discuss the integration of the internal and external storage using a
uniform solution. In particular, the paper describes a caching file system that automates
data movement between a node-local burst buffer and a back-end parallel file system. It
is realized by extending an existing parallel file system, BeeGFS [2]. Data access is
unified across the storage layers with a POSIX-based namespace. In addition, the
caching system improves storage performance by aggregating bandwidth of private
storage, and exploiting data locality across the tiers. Furthermore, it increases SSD
utilization by sharing data between compute nodes and across applications. Leveraging
the inherent strengths of BeeGFS, such as data striping and meta-data partitioning, the
caching extension supports high speed parallel I/O to assist data intensive parallel
computing. Data consistency across storage tiers is maintained using a cache-aware
algorithm.

Specifically, this paper presents the following contributions:

• A BeeGFS-based caching file system that integrates node-local burst buffers
seamlessly with the back-end parallel file system;

• A unified data access abstraction that automates data movement and improves I/O
performance by exploiting data locality across storage tiers;

• The caching extension mechanism that leverages parallel file system strengths to
support scalable bandwidth and high-speed parallel I/O on the burst buffer.

The rest of this paper is organized as follows. Section 2 discusses related work and
our motivation. Section 3 introduces the design and architecture of BeeGFS caching
system. Section 4 presents the implementation details. Section 5 illustrates the per-
formance evaluation of the prototype. Our conclusions follow in Sect. 6.

4 D. Abramson et al.

2 Background and Related Work

Most HPC systems adopt a hierarchical storage system [17, 18] to make the tradeoff
between performance, capacity and cost. Recently, fast storage, such as SSDs, have
been added between memory and disks to bridge the performance gap. This leads to a
deep hierarchical structure. The top tier, such as the burst buffer [12, 16], provides high
performance data access, and is placed close to compute nodes for containing actively
used data. The bottom tier maintains long-term data persistently using disk-based
solutions to provide high storage capacity. With most existing solutions, the software
systems that manage different layers work separately [17, 18]. Accessing a disk-based
storage tier has been standardized using a parallel file system, such as Lustre [26] and
GPFS [22]. The appropriate way of managing a burst buffer is still under research [17,
18, 28, 29]. Currently, the internal storage layer cannot be directly utilized by most
back-end parallel file systems [17, 18]. There is a lack of automatic data movement
between storage tiers, and this causes a significant overhead to users [17, 18].

2.1 Burst Buffer Overview

Currently, there are two major options to provide a burst buffer, as illustrated in Fig. 1.
With the first option, compute nodes share a standalone layer of fast storage [16, 31,
33]. For example, the DoE Fast Forward Storage and IO Stack project [18] attaches the
burst buffer to I/O nodes. Augmenting I/O nodes using SSDs improves bandwidth
usage for disk-based external storage [31]. Cray DataWarp [10, 15] is a state-of-the-art
system that manages a shared burst buffer, and it stages write traffic using a file-based
storage space. Commands and APIs are supported for users to flush data from the burst
buffer servers to the back-end file system. Data elevator [6] automates transferring data
from the shared fast storage to the back-end servers. In addition, it offloads data
movement from a limited number of burst buffer servers to compute nodes for scalable
data transfer.

Efficiently organizing data for burst buffers has been investigated [29–31]. Data is
typically stored in a log-structured format, while meta-data is managed for efficient
indexing using Adelson-Velskii and Landis (AVL) tree, hash table, or a key-value
store. Optimizing the performance of flushing data to the external storage is critical. I/O
interference can be prevented by leveraging the scalability of distributed SSD array.

Compute nodes:

IO nodes or
bust buffer servers:

Disk-based storage servers:

Node private burst buffer

Shared burst buffer1

2

Fig. 1. Typical options of attaching a burst buffer.

A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing 5

Controlling concurrent flushing orders [30] and orchestrating data transfer according to
access patterns [14] have been proposed. SSDUP [23] improves SSD usage by only
directing random write traffic to burst buffers.

With the second option, the burst buffer is privately owned by each compute node
[17, 18]. This approach provides scalable private storage and further decreases I/O
contention to the back-end storage [20]. Presently, the software that manages a node-
local burst buffer is not standardized. There are mainly two ways of utilizing node-local
burst buffers. One approach exploits fast local storage only for specific purposes. For
example, locally attached SSDs are used to cache collective write data by extending
MPI-IO [5], and to build a write-back cache for staging checkpoint data [7]. Another
approach provides a general file system service. Research has shown that deploying a
parallel file system on compute nodes can substantially reduce data movement to the
external storage [34]. Distributed file systems, such as HDFS [24], have explored using
host-local burst buffers to support aggregated capacity and scalable performance. These
solutions are designed mainly for scalable data access, and lack of efficient support for
high performance parallel I/O required by most HPC applications. The ephemeral
burst-buffer file system (BurstFS) [28] instantiates a temporary file system by aggre-
gating host-local SSDs for a single job. Similarly, BeeGFS On Demand (BeeOND) [3]
creates a temporary BeeGFS [1] parallel file system on the internal storage assigned to
a single job. These file system solutions enable sharing a namespace across compute
nodes at front-end, but it is separated from the back-end file system. Therefore, users
have to transfer data between the internal and external storage layers explicitly.

2.2 Uniform Storage Systems for HPC Storage Hierarchy

A few projects share the same goals with our work. UniviStor [27] provides a unified
view of various storage layers by exposing the distributed and hierarchical storage
spaces as a single mount point. UniviStor manages the address space using a distributed
meta-data service and hides the complexity of moving data across storage layers. In
addition, adaptive data striping is supported for moving data in a load balanced manner.
Hermes [13] supports a caching structure to buffer data in the deep memory and storage
hierarchy transparently. With Hermes, data can be moved seamlessly between different
layers, from RAM and SSDs to disks. Hermes places data across storage layers
according to access patterns and supports both POSIX and HDF5 [9] interfaces. In
comparison, our approach takes advantage of an existing parallel file system to achieve
a similar outcome. By extending BeeGFS, we provide a caching system to integrate a
node-local burst buffer seamlessly with an external storage.

2.3 Parallel File System Overview

POSIX-based parallel file systems, such as Lustre [26], GPFS [22], and PVFS [4], are
widely used to manage a disk-based back-end storage system. Typically, parallel data
access and scalable bandwidth are provided by aggregating storage servers. Normally,
data is striped across servers and meta-data is partitioned to accelerate parallel I/O.
BeeGFS [1] is a parallel cluster file system with the POSIX interface. BeeGFS manages
meta-data and files separately and its architecture consists of meta servers, storage

6 D. Abramson et al.

servers and management servers. BeeGFS transparently spreads data across multiple
servers and scales up both system performance and storage capacity seamlessly.
A single namespace is provided by aggregating all servers. File chunks are maintained
by storage servers, whereas meta servers manage the meta-data, such as directories,
access permission, file size and stripe pattern. Meta-data can be partitioned at the
directory level such that each meta server holds a part of the file system tree. BeeGFS
clients can communicate with both storage and meta servers via TCP/IP based con-
nections or via RDMA-capable networks such as InfiniBand (IB). In addition, data
availability is improved using built-in replication: buddy mirroring.

Managing a node-local burst buffer using a parallel file system can inherently
leverage strengths, such as scalability and parallel data access, to assist data intensive
computing. We extend BeeGFS to provide a caching system that bridges both internal
and external storage tiers seamlessly. With the extension, BeeGFS allows moving data
between the storage layers automatically. In addition, it improves data access perfor-
mance by exploiting data locality across the storage tiers.

3 Design

The target environment consists of a compute cluster at the front-end and a persistent
storage system at the back-end. Each compute node in the cluster is equipped with a
large burst buffer, while the back-end storage system is managed using a POSIX-based
parallel file system. Parallel applications running on compute nodes analyze data stored
in an external file system. In order to decrease the I/O path of directly accessing the
external system, hotspot data can be placed close to processors in the top tier of the
storage hierarchy. Any applications running on the same cluster can access data stored
in the burst buffer to reduce sharing data across programs using the external file system.
Programmers are not required to know the exact location and long-term persistence for
accessed files. In addition, to alleviate the performance gap between processors and
storage, large files should be striped across compute nodes and serviced using parallel
I/O. Moving data between the internal and external storage needs to be scalable with
low I/O contention to avoid unnecessary network traffic.

Fig. 2. The architecture of BeeGFS caching file system.

A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing 7

To meet these requirements, the fast storage isolated across compute nodes should
be coordinated to provide a scalable caching pool. Each compute node contributes a
part of its private storage and makes it accessible by other nodes. An instance of
BeeGFS is deployed on the compute nodes to aggregate the siloed burst buffer.
Managed by BeeGFS, the burst buffer stages data access for both write and read
operations applied to back-end storage. Specifically, BeeGFS provides a parallel data
service by accessing the targeted data set from an external file system. To improve
performance, BeeGFS maintains most recently accessed files to avoid unnecessary
network traffic and I/O to the back-end.

To provide a caching functionality, BeeGFS keeps track of accessed files. When-
ever a file is requested, BeeGFS first verifies its existence and validity in the internal
storage. In case a request cannot be satisfied due to a cache miss or an invalid copy,
BeeGFS fetches data from the external file system transparently. Moving data, and
examining its validity, are achieved using an on-demand strategy. If any updates need
to be flushed to the external storage, BeeGFS synchronizes the permanent copy
automatically.

Files are cached on compute nodes persistently, and are managed in a scalable
manner by leveraging BeeGFS’s scalability. In addition, BeeGFS organizes files with
data striping and meta-data partitioning across the distributed fast storage to support
high speed parallel I/O. When the free caching space is insufficient, least recently
accessed files are evicted.

With the above design, programmers access files across storage tiers using a single
namespace without worrying the exact data location, while data is committed for long-
term usage automatically. Therefore, programmers are relieved from the complexity of
manipulating data, but instead focusing on algorithm developments.

The architecture of BeeGFS caching system is illustrated in Fig. 2, which consists
of two storage tiers. The top layer manages host-attached SSDs using BeeGFS. The
bottom tier is the external storage cluster hosted by a parallel file system, such as GPFS,
Lustre and others. To achieve the design targets, the following components extend
BeeGFS to support the caching functionality:

• A POSIX-based uniform namespace: a uniform namespace across storage tiers
enables accessing a piece of data regardless of its location. Most HPC applications
rely on a traditional file interface. Therefore, providing a uniform namespace using
the POSIX standard works with existing parallel applications seamlessly.

• Meta-data and data caching: files in the external file system are cached in the
internal storage. BeeGFS maintains a consistent view of the back-end file system
tree in the node-local burst buffer, and keeps track of cached objects by monitoring
the existence and validity for each requested file and directory. It automatizes data
movement across storage tiers, and exploits data locality to reduce unnecessary data
traffic.

• Data access abstraction: moving data from the back-end file system can be achieved
using file sharing. Each data site may be managed using different parallel file
systems. The mechanism of accessing data should be applied to any file systems
compliant with the POSIX standard. All of the data accessing details are hidden
from users by the data access abstraction component.

8 D. Abramson et al.

• Data consistency: maintaining a coherent view between cached objects and their
permanent copies needs to make an appropriate tradeoff between performance and
consistency. Synchronizing updates should be optimized by avoiding unacceptable
performance degradation.

• Optimization of data movement: moving data between the compute cluster and the
external storage must be optimized with low I/O contention. Data transfer perfor-
mance should be scalable with the number of involved compute nodes. In addition,
data movement must take full advantage of high bandwidth and low latency of the
storage network.

The performance target is to make both read and write operations applied to the
external storage, with a cache hit, match the native BeeGFS on the burst buffer. With a
cache miss, the read performance is restricted by the bandwidth of network and back-
end storage. Accordingly, the extension should not change typical BeeGFS behaviors,
such as high-performance data access, scalable storage capacity, load balancing and
fault tolerance.

3.1 Uniform Namespace

The caching system provides a uniform namespace for accessing both internal and
external files using the POSIX interface. Two sets of data are maintained in the internal
storage: transient files and permanent files. The transient files require no long-term
persistence, while each permanent file has a master copy in the external file system.
Each file is referred using a local name, actually the full path. However, the local name
for a permanent file also helps to identify its master copy in the external file system.
This is achieved by linking an external directory to the internal file system, as illus-
trated in Fig. 3. In particular, each BeeGFS instance caches one external directory. The
external director is specified when mounting the BeeGFS instance. The path name of
the external directory is used to construct the external full path for each permanent file.
Assume, a BeeGFS instance is mounted to the local directory /local/mounted that
caches files for an external directory /external/shared. The local file/local/mounted/a.
out has an external copy /external/shared/a.out, the name of which is produced by
concatenating the external path, /external/shared, and the relative path, a.out.

In another words, an internal directory is specified to hold the cache for an external
data set. Actually, multiple external data sets, which may originate from different
external file systems, can be linked to different internal directories. Therefore, the

The mounted directory

The external directory

the rela ve path

the rela ve path

The local name:

The external name:

BeeGFS caching:

The external directory:

Fig. 3. Constructing the external path using the local name.

A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing 9

POSIX file interface unifies storage access for both the internal burst buffer and
external file systems. From the perspective of users, accessing the cached directory is
no different than accessing other normal directories.

3.2 Caching Model

The caching model manages staging data for both read and write operations applied to
the back-end parallel file system, and hides the details of moving data from users. In
addition, it provides a consistent view on the shared external directory tree across
storage tiers. For each cached object, its permanent copy maintained by the external file
system is treated as the master version. To make an appropriate tradeoff between
improving performance and enforcing data consistency, different strategies are applied
to reading and writing files, and caching the namespace.

Writing files are staged using a write-back policy and reading files adopts a lazy
synchronization method, in order to reduce unnecessary data movement. In contrast,
the namespace is managed using an active strategy that guarantees a consistent global
view across storage tiers. Reading the namespace is realized using an on-demand
policy, while updating it is accomplished with a write-through method. The cache
consistency is not controlled by the external file system, but actively maintained by the
BeeGFS instance.

With the on-demand strategy, each level of the linked directory tree is cached only
when it is traversed. When accessing a directory, all of its children directories are
cached synchronously by duplicating its content to include name, creation time, update
time, permission and size etc. However, files under the accessed directory are initially
cached by only creating an empty position without copying the actual data. Subse-
quently, when the actual data is requested by any client, BeeGFS fetches the content to
replace the empty position. Similar strategies are applied to synchronize updates made
by the external file system.

To keep track of cached files and directories, BeeGFS meta-data, i.e. inode, is
enhanced to include caching state and validity information. In addition, the creation and
update times of the master copy are duplicated for consistency validation, the details of
which is described in Sect. 3.3.

3.3 Data Consistency

The caching layer provides a two-level data consistency model to incorporate the
performance difference between storage tiers. For concurrent data access applied to the
internal storage layer, a strong and POSIX compliant consistency model is inherently
supported by BeeGFS. Concurrent write operations can be coordinated by locking [2].

The caching model enforces data consistency between the cached objects and their
permanent copies. Most scientific applications share data across clusters using a single
writer model [1]. With this scenario, data is typically created by a single writer, even if
it is shared with multiple writers across computer clusters. Accordingly, a weak con-
sistency model is sufficient. The consistency is maintained per file. Validating the
consistency is accomplished by comparing the update time between the cached object
and its permanent copy. We assume each storage cluster uses a monotonically

10 D. Abramson et al.

increasing clock to identify time for an update operation. In addition, the compute
cluster and the back-end storage cluster may hold different clocks at the same time. The
update time of an external file is denoted as mtime. When creating a cached copy,
mtime is duplicated in its the meta-data, denoted as mtime0. During the lifetime of the
cached object, mtime0 does not change. At the back-end, mtime increases for each
update applied to the permanent copy. Consequently, the validity of a cached object is
examined using Eq. (1).

If mtime0 ¼ mtime; the cached copy is valid:
If mtime0 \mtime; the cached copy is invalid:

�
ð1Þ

An invalid cached copy means that the master copy has been updated by the
external file system. Therefore, synchronization is achieved by fetching the fresh copy
from the external file system to replace the staled file in BeeGFS. This consistency
semantic allows a single writer to spread its updates between multiple caching
instances that share the same external directory tree.

3.4 Data Movement

Moving data across storage tiers should be parallelized to improve data transfer per-
formance. Actually, data stored in the internal and external storage are both managed
using parallel file systems. Files are striped across multiple servers and are serviced
using parallel data access. Therefore, moving data across storage tiers should take
advantage of both features. Instead of using any intermediate I/O delegates, each
compute node should directly transfer file chunks that are managed by itself to the
back-end storage. With this approach, the number of concurrent data transfer streams is
scalable as the number of system nodes for both read and write operations. This type of
highly parallel data movement can fully utilize the scalable bandwidth of storage
network. In order to decrease I/O contention across files, transferring data can be
ordered per file.

4 Implementation

The current prototype is implemented by augmenting the original meta-data and
storage services. The meta server is extended to 1) keep track of each accessed object,
2) maintain data consistency between cached objects and their master copies in the
external file system, and 3) coordinate staging data in and out of the internal storage.
The storage server is improved to transfer data by leveraging BeeGFS data striping.
The interaction of major caching components is illustrated in Fig. 4.

BeeGFS servers are implemented using C++, while its client is mainly written in C.
BeeGFS clients, meta servers and storage servers communicate messages between each
other using Unix sockets. Both meta and storage severs manage separate tasks using
multiple worker threads. The caching extension expands the existing inode data
structure and adds new messages and worker threads to achieve the design goal. The
original BeeGFS structure is re-used as much as possible.

A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing 11

With the new BeeGFS caching system, both meta and storage servers are placed on
compute nodes to manage the internal storage. Typically, one storage server is placed
on each compute node, while the number of meta servers is configurable. The mem-
bership of BeeGFS cluster is maintained by a management service.

When mounting a BeeGFS instance, an external directory is linked, and it can be
accessed using the Linux Virtual File System (VFS) interface. BeeGFS services VFS
requests by accessing the external file system. For each VFS request, the BeeGFS client
queries the meta-data service to determine if the target file exists internally. If an
internal copy is valid, the request is serviced as normal. Otherwise, the meta server
initiates moving the requested data to storage servers from the external file system.

4.1 Data Distribution

The caching extension re-uses the existing BeeGFS stripe formula to place all the
chunks of a file across m storage servers in a round robin manner. Each cached file is
uniformly partitioned into n chunks, and the size of each chunk is denoted chunkSize.
The exact stripe formula is shown as Eq. (2):

offset ið Þ ¼ i� stripeSetSizeþ serverIndex � chunkSize: ð2Þ

in which stripeSetSize ¼ m� chunkSize and offset ið Þ stands for the ith stripe
assigned to a storage server (identified by serverIndex).

4.2 Meta Servers

The meta server coordinates storage servers to move data by adding new messages,
such as CachingFile, and a worker thread CacheEvictor. The data structure that keeps
track of cached objects must be persistent, otherwise, the caching system may become
inconsistent in case of failures. Therefore, the existing BeeGFS data structures are re-
used by leveraging its serialization logic to preserve included caching information
persistently. The BeeGFS inode structure contains essential information, such as an

Linux Virtual File System

BeeGFS Client

The external file system

Synchronization

Storage servers Meta servers

File chunk

Cache flags
Consistency

inode

Fig. 4. The components of BeeGFS caching file system.

12 D. Abramson et al.

entry id, which is used to identify each file and directory, the placement map for file
chunks, and a feature field used for buddy mirroring. The inode structure is augmented
to include the caching state for each file and directory, and to identify if the cached
object is up-to-date. The feature field is extended to represent two flags: caching and
dirty. The caching flag indicates if the associated file has a copy in the internal storage.
Caching is off means that the file is created just for holding a position or has been
evicted. After all the chunks of a file are duplicated in BeeGFS, caching is set on. The
dirty flag is set when any update is applied to the cached copy. The master copy’s
mtime is also duplicated into inode for verifying the validity of a cached copy.

Namespace Consistency. Namespace coherence is maintained transparently using a
polling approach to detect changes made by the external file system. However, an
aggressive polling approach that periodically verifies the entire cached namespace
causes a significant overhead for a deep directory tree. To implement an on-demand
policy of enforcing consistency, a lazy polling approach is adopted that only examines
the part of file system tree being traversed.

In particular, stat, open, lookup and readdir operations are intercepted. The external
path name is reconstructed to validate the existence of the target item. If any new
directory is detected, its content is cached immediately. For any new file created in the
external directory, an internal entry is instantiated without copying the actual data. In
addition, its caching flag is set off to indicate subsequent synchronization is required.

As described previously, updates applied to the internal directory tree are syn-
chronized with the external file system using a write-through policy. Updates generated
by operations, such as chmod, chgrp, mv, rm etc., are replicated to the back-end file
system simultaneously. For a new file or directory created in BeeGFS caching, the
external file system immediately holds a position for them. But the actual content is
synchronized when required. BeeGFS exclusively partitions meta-data across multiple
meta servers. Updates from different meta servers cause no conflicts.

Verifying namespace consistency changes the default behavior of read only meta-
data operations, such as stat, lookup and readdir. These operations make no changes to
the namespace in the original BeeGFS. However, with the caching extension, these
operations may detect modifications on the external namespace, the synchronization of
which causes updating the namespace cached in the internal storage.

File Consistency. File consistency is maintained by intercepting the open operation.
Upon opening a file, the meta server queries its caching flag for the internal copy. In
case the cached copy is present, its validity is examined using Eq. (1). If necessary, the
master version is copied to replace the local stale one, which is coordinated by the meta
server using a caching request. To avoid conflicts, multiple simultaneous open oper-
ations applied to the same file are serialized by the meta server. With this serialization,
only a single caching request is created for one open operation and all other operations
applied to the same file block until the requested file is ready to access. Synchronizing a
file needs to update chunks that are distributed across storage servers. During the
process, the target file should not be accessed, because its content may belong to
different versions. Therefore, locking is used to protect file synchronization.

The transaction of moving or updating a file typically involves multiple storage
servers. The exact process consists of two stages: 1) notifying all of involved storage

A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing 13

servers and 2) moving file chunks. In the first stage, a CachingFile message is sent to
all of the involved storage severs. The exact message includes file name, file size, and
data stripe pattern etc. This stage is protected using a read lock. After sending the
request, the second stage waits to start until all of the storage severs respond. At the end
of the first stage, the read lock is released and a write lock is obtained immediately for
the second stage. Both locks prevent other threads from opening the same file for
updates until all the chunks have been successfully synchronized. After the secondary
stage completes, the open operation continues as normal.

Optimization. Identifying an external file requires the concatenation of its internal
path with the name of cached external directory, as illustrated in Fig. 3. However,
reconstructing a path name in BeeGFS is not straightforward. BeeGFS does not keep a
full path for any file or directory. In addition, meta-data for each entry is stored in a
separate object, and each file is identified using its entry id and parent directory.
Therefore, constructing the path name for a file or directory must look up each entry’s
parent backwards by going through a number of separated objects, which is time-
consuming as it may require reloading the entry from storage. To improve the effi-
ciency of verifying data consistency, constructing a path name is accelerated. When
looking up a file from the root level, each parent entry is kept in memory for subse-
quent path construction.

4.3 Storage Servers

To assist file caching, eviction, and synchronization operations, BeeGFS storage ser-
vers are coordinated by the meta server. With file chunk distribution, each storage
server only keeps a part of a cached file, and the storage server maintains each chunk
using a local file. Upon receiving the request of transferring a file, the storage server
creates the working directory on the internal storage and then initiates copying file
chunks. Each storage server transfers data by only accessing a region of the target file
from the external file system, instead of going through the whole file. In order to
improve performance for accessing a file partially, instead of using lseek, read and
write system calls, pread and pwrite are adopted. In addition, storage I/O access to the
external file system must be efficient. The remote file is accessed using the recom-
mended block size, which is detected using stat. Therefore, the exact data transfer is
realized using a block-based algorithm, as shown in Algorithm 1.

Buddy Mirror. BeeGFS supports buddy mirroring to improve data reliability. Each
group of buddy mirrors consists of two servers: the primary and secondary, in which
each secondary server duplicates its primary counterpart. When the primary and sec-
ondary copies become inconsistent, it is required to synchronize buddies, which is
called resync.

The caching module takes advantage of buddy mirroring to improve data avail-
ability, which is configurable, and to increase bandwidth for hotspot files. Presently, the
replication for data caching is performed asynchronously such that the primary server
does not wait until the secondary one finishes the caching request. However, the

14 D. Abramson et al.

caching request must avoid interfering a resync process of buddy mirror. Specifically,
caching requests are serviced until a resync process is completed.

Algorithm 1. The block-based data transform algorithm on the storage server.

1 procedure BLOCKIO (fileDesc, buffer, len, offset, blocksize, isRead)
2 total 0
3 bytes 0
4 while total len do
5 if len – total blocksize then
6 iosize count total
7 else
8 iosize blocksize
9 if isRead
10 bytes pread (fileDesc, buffer + total, iosize, offset + total)
11 else
12 bytes pwrite (fileDesc, buffer + total, iosize, offset + total)
13 if bytes 0 then return error
14 total total + bytes
15 return success

4.4 Cache Eviction

When the free caching space is insufficient, some less accessed files should be evicted.
Clean copies that are not updated in the caching, can be deleted directly. In contrast, for
other dirty copies, updates should be flushed to the external file system.

The cache eviction routine is implemented by adding a worker thread,
CacheEvictor, to the meta-data service, which is launched on startup with other worker
threads. This eviction thread periodically selects less accessed files from storage servers
that are low in space and moves them out of BeeGFS to keep available free space as
required. The storage usage report created by the management service is re-used to
detect the whole system storage usage. The management service monitors storage
usage for each server and classifies them into emergency, low and normal capacity
groups. The storage usage report is collected for each storage server periodically and
sent to the meta servers. With this report, a Least Recently Used (LRU) policy is
adopted to make decisions on which files should be moved out. Upon eviction, flushing
dirty copies uses the same block-based data transfer algorithm as described in Sect. 4.3.
A write lock is acquired to guarantee the eviction process is not interrupted by normal
file operations.

A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing 15

5 Performance Evaluation

The prototype was built on BeeGFS version 6.1 and it was evaluated on the FlashLite
system at the University of Queenland [8]. FlashLite contains large amounts of main
memory and high-speed secondary storage, SSDs. The back-end storage is provided by
an IBM Spectrum Scale (GPFS) system, and all compute nodes communicate with the
GPFS system using the native Network Shared Disk (NSD) protocol [25]. High per-
formance networking, such as Dual rail 56Gbps Mellanox InfiniBand fabric, connects
FlashLite and GPFS servers. Each compute node of FlashLite has the following system
configuration:

• 2 � Xeon E5-2680v3 2.5 GHz 12core Haswell processors;
• 512 GB DDR4-2133 ECC LRDIMM memory (256 GB per socket);
• 3 � 1.6 TB Intel P3600 2.5” NVMe (SSD) drives of internal storage;
• 1 TB RAID 1 system disk;
• 2 � Mellanox 56 Gb/s FDR Single Port InfiniBand adapter.

The CentOS 7 operating system, with kernel version 3.10.0–693, is installed on
each node that manages SSDs using a standard ext4 filesystem. The BeeGFS caching
system was deployed for performance evaluation on 6 compute nodes of FlashLite. The
system was installed with one meta server, one management server, and 6 storage
servers. One BeeGFS storage server was placed on each compute node, while one
compute node was selected to run both meta and management servers. The BeeGFS file
system was mounted on each node at/mnt/beegfs for caching a remote directory in
GPFS. RDMA is enabled across the servers using the default BeeGFS OpenTk com-
munication library. File chunk size was set to 512 KB, and a striping pattern RAID0
using four targets of storage server was specified. Buddy mirroring was disabled during
the experiment. Performance was evaluated for both meta-data operations and file data
accesses.

5.1 Meta-Data Performance

The performance of meta-data operations was evaluated using MDTtest [19]. MDTest
measures meta-data performance through a series of create, stat and delete operations
on a tree of directories and files. The operations were conducted in parallel on up to 6
compute nodes, in which each node run one MDTest instance. We compared these
operations for three different situations: GPFS, BeeGFS caching prototype, and the
original BeeGFS system (version 6.1). The vanilla BeeGFS system was installed on the
same set of compute nodes in which the caching prototype was deployed, and was
instantiated with the same configuration. MDTest was configured with a branch factor
of 3, and a depth of 3. The number of items per tree node was set to 100, for a total of
4,000 files/directories per task. Each situation was evaluated using the number of
performed transactions per second as metrics. The averaged value with a standard
deviation was collected.

For read-only meta-data operations, such as stat for files and directories illustrated
in Fig. 5, vanilla BeeGFS performs faster than GPFS, because it is deployed on internal
storage. However, for write-intensive operations, such as creation and deletion of files

16 D. Abramson et al.

and directories, as shown in Fig. 6 and Fig. 7 respectively, GPFS performs better than
vanilla BeeGFS. This is because BeeGFS was created with only one meta-data server,
which is not scalable for highly concurrent meta-data operations.

Overall, the caching prototype performs the worst for both read- and write-intensive
meta-data operations. This is because the caching system not only conducts operations
on internal storage, but also replicates these operations on the back-end storage. Our
prototype performs both operations in a sequential manner, and this degrades perfor-
mance. However, as shown in Sect. 5.2, the performance degradation has a negligible
impact on the speed of accessing data in internal SSDs because meta-data operations
only compose a tiny fraction of data access activities. Future work will investigate how
to improve meta-data operations by maintaining consistency asynchronously.

6421
The number of clients

103

104

105

106

T
ra

ns
ac

tio
ns

/s

File Stat

GPFS
Vanilla BeeGFS
BeeGFS Caching

6421
The number of clients

103

104

105

106

T
ra

ns
ac

tio
ns

/s

Directory Stat

GPFS
Vanilla BeeGFS
BeeGFS Caching

Fig. 5. MDTest file and directory stat.

6421
The number of clients

102

103

104

105

T
ra

ns
ac

tio
ns

/s

Directory Creation
GPFS
Vanilla BeeGFS
BeeGFS Caching

6421
The number of clients

102

103

104

105

T
ra

ns
ac

tio
ns

/s

File Creation

GPFS
Vanilla BeeGFS
BeeGFS Caching

Fig. 6. MDTest file and directory creation.

6421
The number of clients

102

103

104

105

T
ra

ns
ac

tio
ns

/s

File Removal

GPFS
Vanilla BeeGFS
BeeGFS Caching

6421
The number of clients

103

104

105

T
ra

ns
ac

tio
ns

/s

Directory Removal

GPFS
Vanilla BeeGFS
BeeGFS Caching

Fig. 7. MDTest file and directory removal.

A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing 17

5.2 Data Performance

Interleaved or Random (IOR) [10] was performed on the same set of compute nodes to
evaluate the performance of accessing files stored in GPFS via the caching prototype.
We compared two scenarios: cache miss and cache hit, for different file sizes, from
100 MB to 100 GB. One IOR client was placed on each compute node, while up to 6
IOR clients were used during the experiment. When a cache miss occurs, the requested
file is fetched from back-end GPFS, while a cache hit means the requested file already
stays in the BeeGFS caching system. In order to amortize the disturbance of other
workloads present on GPFS, the IOR experiments were repeated over 24 h at hourly
intervals. For testing read operations, the tested files were generated in advance and
flushed out of the internal storage to enforce the behavior of cache-miss. The aggre-
gated bandwidth perceived by multiple IOR clients was collected. The averaged values
with a standard deviation were shown.

Overall, the experiment shows that accessing data from the caching layer is sig-
nificantly faster than directly accessing GPFS for both read and write operations,
regardless of data size. In addition, accessing 100 GB large files delivers higher
bandwidth than 100 MB files due to more efficient sequential operations on both
internal and external storage. The performance of reading data from GPFS and the
caching prototype is shown in Fig. 8, while Fig. 9 illustrates writing performance. The
caching prototype provides scalable data access with the number of clients for both
read and write operations. However, with a cache miss, the BeeGFS caching system is

6421
The number of clients

101

102

103

104

105

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Read Performance (100MB)

GPFS
Cache Hit
Cache Miss

6421
The number of clients

102

103

104

105

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Read Performance (100GB)

GPFS
Cache Hit
Cache Miss

Fig. 8. IOR read performance.

6421
The number of clients

102

103

104

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Write Performance (100MB)

GPFS
Cache

6421
The number of clients

102

103

104

105

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Write Performance (100GB)

GPFS
Cache

Fig. 9. IOR write performance.

18 D. Abramson et al.

slower than GPFS because the requested data need to be copied into the internal storage
first before being forwarded to applications. Therefore, the cache miss introduces an
extra overhead in comparison to accessing GPFS directly. Future work will explore
how to overlap data transfer across storage tiers to hide the extra latency for cache miss
cases.

6 Conclusions

In order to improve storage performance, many HPC systems include an intermediate
layer of fast storage, such as SSDs, between memory and the disk-based storage
system. In particular, compute nodes may contain a large amount of fast storage for
staging data access to the back-end storage. Frequently, this layer of node-local burst
buffer is managed independently of the back-end parallel file system. To integrate the
node-local burst buffer seamlessly with the existing storage hierarchy, we extend
BeeGFS to provide a caching file system that bridges both internal and external storage
transparently. Data access to the burst buffer and the back-end parallel file system is
unified using a POSIX-based namespace. Moving data between the internal and
external storage is automated and long-term data persistency is committed transpar-
ently. Accordingly, users are released from the complexity of manipulating the same
piece of data across different storage tiers. In addition, the extension investigates how
to utilize the burst buffer by leveraging the strengths of a parallel file system to
accelerate data-intensive parallel computing. Taking advantage of BeeGFS, scalable
I/O bandwidth is provided by aggregating siloed fast storage, and storage performance
is improved by exploiting data locality across storage tiers. Data striping across storage
servers not only supports high performance parallel IO, but also scales data transfer
between storage tiers. In addition, a block-based algorithm increases the efficiency of
data movement. The performance evaluation demonstrates that BeeGFS caching sys-
tem improves data access significantly over directly accessing GPFS for both temporal
and spatial locality patterns. However, the present prototype imposes additional
overhead on meta-data operations due to maintaining data consistency between storage
tiers synchronously. Our future work will explore how to reduce the extra overhead and
apply the extension mechanism to other general parallel file systems.

Acknowledgements. We thank HUAWEI for funding this research project. We also acknowl-
edge the University of Queensland who provided access to FlashLite. FlashLite was funded by the
Australian Research Council Linkage Infrastructure Equipment Fund (LIEF).

A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing 19

References

1. Abramson, D., Carroll, J., Jin, C., Mallon, M.: A metropolitan area infrastructure for data
intensive science. In: Proceedings of IEEE 13th International Conference on e-Science (e-
Science), Auckland (2017)

2. BeeGFS. https://www.beegfs.io/content/. Accessed 21 Nov 2019
3. BeeOND. https://www.beegfs.io/wiki/BeeOND. Accessed 21 Nov 2019
4. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: a parallel file system for Linux

clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference, pp. 317–327.
USENIX, Atlanta (2000)

5. Congiu, G., Narasimhamurthy, S., Süß, T., Brinkmann, A.: Improving collective I/O
performance using non-volatile memory devices. In: Proceedings of 2016 IEEE International
Conference on Cluster Computing (CLUSTER 2016). IEEE, Taipei (2016)

6. Dong, B., Byna, S., Wu, K., Prabhat, J.H., Johnson, J.N., Keen, N.: Data elevator: low-
contention data movement in hierarchical storage system. In: Proceedings of 23rd IEEE
International Conference on High Performance Computing (HiPC). IEEE, Hyderabad (2016)

7. Dong, X., Xie, Y., Muralimanohar, N., Jouppi, N.P.: Hybrid checkpointing using emerging
nonvolatile memories for future exascale systems. ACM Trans. Architect. Code Optim.
(TACO) 8(2), 6:1–6:29 (2011)

8. FlashLite. https://rcc.uq.edu.au/flashlite. Accessed 21 Nov 2019
9. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the HDF5

technology suite and its application. In: Proceedings of the EDBT/ICDT 2011 Workshop on
Array Databases, pp. 36–47. ACM, Uppsala (2011)

10. IOR. http://wiki.lustre.org/IOR. Accessed 21 Nov 2019
11. Henseler, D., Landsteiner, B., Petesch, D., Wright, C., Wright, N.J.: Architecture and design

of cray datawarp. In: Proceedings of 2016 Cray Users’ Group Technical Conference (CUG
2016). Cray, London (2016)

12. He, J., Jagatheesan, A., Gupta, S., Bennett, J., Snavely, A.: DASH: a recipe for a flash-based
data intensive supercomputer. In: Proceedings of the 23rd ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis (SC
2010), pp. 1–11. IEEE, New Orleans (2010)

13. Kougkas, A., Devarajan, H., Sun X.-H.: Hermes: a heterogeneous-aware multi-tiered
distributed I/O buffering system. In: Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC 2018), pp. 219–230. ACM,
Tempe (2018)

14. Kougkas, A., Dorier, M., Latham, R., Ross, R., Sun, X.-H.: Leveraging burst buffer
coordination to prevent I/O interferene. In: Proceedings of 12th IEEE International
Conference on e-Science (e-Science 2017). IEEE, Baltimore (2017)

15. Landsteiner, B., Pau, D.: DataWarp transparent cache: implementation, challenges, and early
experience. In: Proceedings of 2018 Cray Users’ Group Technical Conference (CUG 2019).
Cray, Stockholm (2018)

16. Liu, N., et al.: On the role of burst buffers in leadership-class storage systems. In:
Proceedings of 28th IEEE Symposium on Mass Storage Systems and Technologies (MSST
2012). IEEE, San Diego (2012)

17. Lockwood, G.K., Hazen, D., Koziol, Q., et al.: Storage 2020: a vision for the future of HPC
storage. Lawrence Berkeley National Laboratory (LBNL) Technical report, No. LBNL-
2001072. NERSC (2017)

20 D. Abramson et al.

https://www.beegfs.io/content/
https://www.beegfs.io/wiki/BeeOND
https://rcc.uq.edu.au/flashlite
http://wiki.lustre.org/IOR

18. Lofstead, J., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E.: DAOS and friends: a
proposal for an exascale storage system. In: Proceedings of the 29th ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC 2016), pp. 807–818. IEEE, Salt Lake City (2016)

19. MDTest. http://wiki.lustre.org/MDTest. Accessed 21 Nov 2019
20. Nisar, A., Liao, W.-K., Choudhary, A.: Scaling parallel I/O performance through I/O

delegate and caching system. In: Proceedings of the 21st ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis (SC
2008). IEEE, Austin (2008)

21. Ovsyannikov, A., Romanus, M., Straalen, B., Weber, G.H., Trebotich, D.: Scientific
workflows at DataWarp-speed: accelerated data-intensive science using NERSC’s burst
buffer. In: Proceedings of 1st Joint International Workshop on Parallel Data Storage and data
Intensive Scalable Computing Systems (PDSW-DISCS 2016), pp. 1–6. IEEE, Salt Lake City
(2016)

22. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing clusters. In:
Proceedings of 1st USENIX Conference on File and Storage Technologies (FAST 2002).
USENIX, Monterey (2002)

23. Shi, X., Li, M., Liu, W., Jin, H., Yu, C., Chen, Y.: SSDUP: a traffic-aware SSD burst buffer
for HPC systems. In: Proceedings of the International Conference on Supercomputing (ICS
2017). ACM, Chicago (2017)

24. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
26th IEEE Symposium on Mass Storage Systems and Technologies (MSST 2010). IEEE,
Incline Village (2010)

25. Volobuev, Y.: GPFS NSD Server Design and Tuning, IBM GPFS Development Document,
Version 1.0 (2015)

26. Wang, F., Oral, S., Shipman, G., Drokin, O., Wang, T., Huang, I.: 2010 Understanding
Lustre Filesystem Internals, Oak Ridge National Laboratory Technical report,
No. ORNL/TM-2009/117. National Center for Computational Sciences (2009)

27. Wang, T., Byna, S., Dong, B., Tang, H.: UniviStor: integrated hierarchical and distributed
storage for HPC. In: Proceedings of 2018 IEEE International Conference on Cluster
Computing (CLUSTER 2018). IEEE, Belfast (2018)

28. Wang, T., Mohror, K., Moody, A., Sato, K., Yu, W.: An ephemeral burst-buffer file system
for scientific applications. In: Proceedings of the 29th ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis (SC 2016), pp. 807–
818. IEEE, Salt Lake City (2016)

29. Wang, T., et al.: MetaKV: a key-value store for metadata management of distributed burst
buffers. In: Proceedings of the 31st IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2017), pp. 807–818. IEEE, Orlando (2017)

30. Wang, T., Oral, S., Pritchard, M., Wang, B., Yu, W.: TRIO: burst buffer based I/O
orchestration. In: Proceedings of 2015 IEEE International Conference on Cluster Computing
(CLUSTER 2015). IEEE, Chicago (2015)

31. Wang, T., Oral, S., Wang, Y., Settlemyer, B., Atchley, S., Yu, W.: BurstMem: a high-
performance burst buffer system for scientific applications. In: Proceedings of the 2014 IEEE
International Conference on Big Data (Big Data 2014). IEEE, Washington (2014)

32. Xie, B., et al.: Characterizing output bottlenecks in a supercomputer. In: Proceedings of the
25th ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2012). IEEE, Salt Lake City (2012)

A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing 21

http://wiki.lustre.org/MDTest

33. Zhang, W., et al.: Exploring memory hierarchy to improve scientific data read performance.
In: Proceedings of 2015 IEEE International Conference on Cluster Computing (CLUSTER
2015), pp. 66–69. IEEE, Chicago (2015)

34. Zhao, D., et al.: FusionFS: toward supporting data-intensive scientific applications on
extreme-scale high-performance computing systems. In: Proceedings of the 2014 IEEE
International Conference on Big Data (Big Data 2014). IEEE, Washington (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

22 D. Abramson et al.

http://creativecommons.org/licenses/by/4.0/

Multiple HPC Environments-Aware
Container Image Configuration Workflow
for Large-Scale All-to-All Protein–Protein

Docking Calculations

Kento Aoyama1,2, Hiroki Watanabe1,2, Masahito Ohue1 ,
and Yutaka Akiyama1(B)

1 Department of Computer Science, School of Computing,
Tokyo Institute of Technology, Tokyo, Japan
{aoyama,h watanabe}@bi.c.titech.ac.jp,

{ohue,akiyama}@c.titech.ac.jp
2 AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory,

National Institute of Advanced Industrial Science and Technology,
Tsukuba, Ibaraki, Japan

Abstract. Containers offer considerable portability advantages across
different computing environments. These advantages can be realized by
isolating processes from the host system whilst ensuring minimum perfor-
mance overhead. Thus, use of containers is becoming popular in computa-
tional science. However, there exist drawbacks associated with container
image configuration when operating with different specifications under
varying HPC environments. Users need to possess sound knowledge of
systems, container runtimes, container image formats, as well as library
compatibilities in different HPC environments. The proposed study intro-
duces an HPC container workflow that provides customized container
image configurations based on the HPC container maker (HPCCM)
framework pertaining to different HPC systems. This can be realized by
considering differences between the container runtime, container image,
and library compatibility between the host and inside of containers. The
authors employed the proposed workflow in a high performance protein–
protein docking application—MEGADOCK—that performs massively
parallel all-to-all docking calculations using GPU, OpenMP, and MPI
hybrid parallelization. The same was subsequently deployed in target
HPC environments comprising different GPU devices and system inter-
connects. Results of the evaluation experiment performed in this study
confirm that the parallel performance of the container application con-
figured using the proposed workflow exceeded a strong-scaling value of
0.95 for half the computing nodes in the ABCI system (512 nodes with
2,048 NVIDIA V100 GPUs) and one-third those in the TSUBAME 3.0
system (180 nodes with 720 NVIDIA P100 GPUs).

Keywords: Containers · Container image configuration · Singularity ·
Bioinformatics · Message passing interface

c© The Author(s) 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 23–39, 2020.
https://doi.org/10.1007/978-3-030-48842-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_2&domain=pdf
http://orcid.org/0000-0002-0120-1643
http://orcid.org/0000-0003-2863-8703
https://doi.org/10.1007/978-3-030-48842-0_2

24 K. Aoyama et al.

1 Introduction

Containers that contribute to application portability through process isola-
tion are now being widely used in computational applications. Today, many
researchers run containers in various computing environments such as laptops,
clouds, and supercomputers. Container technology is becoming essential for
retaining scientific reproducibility and availability beyond system differences [1–
3]. However, there remain certain limitations that need to be overcome to facili-
tate accurate configuration of container images for use in high-performance com-
puting (HPC) applications running in multiple HPC environments. This requires
users to understand systems, container runtimes, container image formats, and
their compatibility with those used in HPC environments [4]. In addition, when
an application establishes a message passing interface (MPI) communication
over containers, the MPI library compatibility between the host system and the
inside of the container must be ensured. This makes container deployment diffi-
cult. Therefore, these problems constitute a major obstacle facing the extensive
use of the container technology in HPC environments.

To introduce the container’s techniques and benefits to one of our HPC appli-
cations, MEGADOCK [5], the authors, in this study, propose use of a custom
HPC container image configuration workflow. The said workflow is based on the
HPCCM framework [6] to give users easier way to make containers when consid-
ering the specification differences between the hosts and containers in multiple
HPC environments. Furthermore, we also showed the performance results of
the containers configured using the proposed workflow in the target HPC envi-
ronments with a large-scale dataset for over a million protein–protein pairs of
docking calculations.

Key contributions of this research are listed hereunder.

– A container image configuration workflow for an all-to-all protein–protein
docking application (MEGADOCK) for HPC environments is proposed.

– The workflow provides functions to customize container image configurations
by considering specification differences between target HPC environments
using the HPCCM framework.

– It has been confirmed that the parallel performance of containers configured
using the proposed workflow exceeds a strong-scaling value of 0.95. The con-
tainer was run with more than 2,000 GPUs for docking calculations of over
a million protein–protein pairs.

2 Background

2.1 Containers for HPC Environment

Docker [7] is the most widely used container in general computing environments.
Its usage ranges from personal development to large-scale production systems in
cloud environments. This has been actively developed and great efforts have been

Multiple HPC Environments-Aware Container Image 25

made to standardize the container specification [8]. This, therefore, becomes a
de-facto standard format of the containers.

However, in Docker’s toolset design, there are several concerns about the per-
formance overhead, operational policies, and affinity for traditional HPC soft-
ware stacks, particularly those related to system privileges [9]. Owing to such
concerns in the HPC community, other container environments have been pro-
posed for use in HPC environments. These include Singularity [10], Shifter [11],
Chariecloud [12], and Sarus [13]. They are operated on HPC systems, and bench-
mark performances of HPC containers indicate that they perform nearly at par
with the bare-metal environment [14–16]. Those container environments provide
similar features, for example, they do not require privileges for users, thereby
solving the security concerns of HPC system policies unlike the general Docker
environment1. In addition, they also support the ‘pull’ function which downloads
a container image from general container registry services (e.g. Docker Hub [17])
and convert it to their own container image format.

Presently, the most emerging container environment in the HPC field is Sin-
gularity [10], which was originally developed by the Lawrence Berkeley National
Lab and subsequently moved to Sylabs Inc. It provides runtime support for host
GPU/MPI libraries to use those from the inside of the containers to meet the
requirements of HPC applications. It also provides original container building
toolsets along with its own registry service. This helps users upload container
images for improving the preservability and portability of the application [18].
These functions make it easy for users to use host GPU devices with GPU-
enabled container images that are available on Docker Hub, Singularity Hub [19],
and NVIDIA GPU Cloud (NGC) [20].

Consequently, the number of HPC systems that provide container environ-
ments is constantly increasing. This is due to the widespread use of Singularity
and other containers; however, there remain several difficulties in the deployment
of containers in HPC environments. Some of these difficulties are described in
the next section.

2.2 Problems of Container Image Configuration Workflow

Figure 1 describes an example of a typical container deployment workflow for
several environments, including HPC systems.

HPC container deployment workflows are generally expected to support both
Docker and Singularity to keep application portability in a wide range of com-
puting environments. However, supporting both container environments from
the level of container image specification (recipe) requires efforts for its mainte-
nance. To this end, Singularity provides functions to download a container image
from general registry services, and this image can be subsequently converted to
Singularity’s image format [10]. Therefore, it is possible to use various container
images including Docker’s images and run them on HPC systems using Singu-

1 The rootless-mode is available from Docker 19.03 (since July 2019).

26 K. Aoyama et al.

Fig. 1. Example of general container deployment workflow

larity. However, deployment of typical HPC applications nonetheless encounters
several problems.

A. Preparation Cost for Container Image Recipe with Host Depen-
dent Library. First, there exists a dependent library problem necessitating
the availability of local libraries for using high-speed interconnects within tar-
get HPC systems. These must be installed within containers. For example,
openib [25], ucx [26] or a similar library needs to be installed in the container if
it is running on the system with InfiniBand [27]. On the other hand, the psm2 [28]
library is required when it runs on the system with Intel Omni-Path [29].

Technically, it is possible to install almost all of the libraries in one container;
however, it is generally not recommended as a best practice for container image
configuration. Because most of the advantages of the containers originated from
its light-weightiness, the containers must be as simple as possible.

B. MPI Library Compatibility for Inter-containers Communication.
Second, if the process in a singularity container uses the MPI library to com-
municate with the process outside of the container, then the Application Binary
Interface (ABI) must be compatible between MPI libraries of the host and con-

Multiple HPC Environments-Aware Container Image 27

tainer. For instance, it is necessary to install the same (major and minor) version
of the library when OpenMPI [30] older than version 3.0 is used [2].

The problem pertaining to ABI compatibility can be overcome by using latest
releases of MPI libraries, such as MPICH [31] v3.1 (or newer) or IntelMPI [32]
v5.0 (or newer) given that they officially support compatibility between different
library versions. However, users must know what version of MPI libraries are sup-
ported in both host systems and container images. Deployment of containerized
MPI applications to HPC systems nonetheless involves large expenditures.

The above-mentioned problems are major difficulties to be considered when
configuring the container image for the HPC environments.

3 HPC Container Maker (HPCCM) Framework

To solve these difficulties and ease the configuration of container specifications,
use of the HPC Container Maker (HPCCM) framework was proposed by the
NVIDIA corporation [6]. HPCCM is an open source tool to ease generation
of container specification files for HPC environments. HPCCM supports both
the Docker and Singularity specification formats via use of a highly functional
Python recipe. This provides various useful functions to configure container
images along with their application and system dependencies.

FROM nvidia/cuda:10.0-devel-centos7

Mellanox OFED version 4.6-1.0.1.1
RUN yum install -y ¥

findutils ¥
libnl ¥
libnl3 ¥
numactl-libs ¥
wget && ¥

rm -rf /var/cache/yum/*
RUN mkdir -p /var/tmp && wget -q -nc --no-check-certifi

mkdir -p /var/tmp && tar -x -f /var/tmp/MLNX_OFED_L
find /var/tmp/MLNX_OFED_LINUX-4.6-1.0.1.1-rhel7.2-x
rm -rf /var/tmp/MLNX_OFED_LINUX-4.6-1.0.1.1-rhel7.2

OpenMPI version 3.1.3
RUN yum install -y ¥

bzip2 ¥
file ¥
hwloc ¥
make ¥
numactl-devel ¥
openssh-clients ¥
perl ¥
tar ¥
wget && ¥

rm -rf /var/cache/yum/*
RUN mkdir -p /var/tmp && wget -q -nc --no-check-certifi

mkdir -p /var/tmp && tar -x -f /var/tmp/openmpi-3.1
cd /var/tmp/openmpi-3.1.3 && ./configure --prefix
make -j$(nproc) && ¥
make -j$(nproc) install && ¥
rm -rf /var/tmp/openmpi-3.1.3.tar.bz2 /var/tmp/open

ENV LD_LIBRARY_PATH=/usr/local/openmpi/lib:$LD_LIBRARY_
PATH=/usr/local/openmpi/bin:$PATH

...

Select the base image from repository in Docker Hub
Stage0 += baseimage(image='nvidia/cuda:10.0-devel-centos7')

Select the version of libraries
ompi_version = USERARG.get('ompi', '3.1.3')
mlnx_ofed_version = USERARG.get('mlnx_ofed', '4.6-1.0.1.1')

Install the Mellanox OpenFabrics Enterprise Distribution
Stage0 += mlnx_ofed(version=mlnx_ofed_version)

Install the OpenMPI library of the selected version
Stage0 += openmpi(

version = ompi_version,
prefix = '/usr/local/openmpi',
cuda = True,
infiniband = True,
configure_opts = ['--enable-mpi-cxx']

)
...

HPCCM recipe (sample.py)

$ hpccm --recipe sample.py
--format docker
--userarg ompi=3.1.3 mlnx_ofed=4.6-1.0.1.1
> Dockerfile

Dockerfile

Fig. 2. Sample of HPCCM recipe and generated container specification (Dockerfile)

28 K. Aoyama et al.

Figure 2 shows a sample Python recipe of HPCCM and a generated container
specification in the ‘Dockerfile’ format. HPCCM contains the ‘building blocks’
feature, which transparently provides simple descriptions to install the specific
components commonly used in the HPC community. Additionally, it supports
flexible Python-based code generation functions, including recipe branch and val-
idating user arguments; thus, it provides users with an easy method to generate
the multiple container specifications from the same Python recipe file.

By adopting the HPCCM framework, the cost of container recipe preparation
can be reduced by implementing one Python recipe and setting parameters of
container specifications for HPC environments.

The authors used this HPCCM framework as a base for the proposed con-
tainer deployment workflow for target HPC environments. The following section
provides an overview of the target application and proposed workflow.

4 Container Deployment Workflow for MEGADOCK
Application Using HPC Container Maker

4.1 MEGADOCK: A High Performance All-to-All Protein–Protein
Docking Application

The authors selected MEGADOCK [5] as the proposed container configura-
tion workflow application. MEGADOCK is an all-to-all protein–protein dock-
ing application written in C++/CUDA for use in large-scale computing envi-
ronments. The internal process is based on Fast Fourier Transform (FFT)
calculations for grid-based protein–protein docking using FFT libraries (e.g.
FFTW [22], CUFFT [24]).

Fig. 3. Overview of docking calculations in MEGADOCK 5.0 (under development)
and its OpenMP/GPU/MPI hybrid parallelization

Multiple HPC Environments-Aware Container Image 29

In the latest implementation of MEGADOCK 5.0, which is under develop-
ment, each docking pair calculation is independently assigned to an OpenMP [23]
thread with CUDA streams [24]. The set of docking pairs is distributed by the
master to workers in a typical master–worker framework implemented in C++
using the MPI library (Fig. 3).

At present, the authors are working toward improving the performance of
the application as well as container portability in multiple environments while
upgrading to the next MEGADOCK version. Currently, Docker images and their
container specifications in the ‘Dockerfile’ format for GPU-enabled environments
are provided to users having access to the MEGADOCK public repository on
GitHub [33]. The authors reported scalable performance when operating those
containers in a cloud environment using Microsoft Azure [34].

However, it is required to solve several container configuration difficulties
when we assume the MEGADOCK application with Singularity containers on
different HPC systems that are presented in previous sections. Therefore, the
authors, in this study, propose use of an HPC container deployment workflow
using the HPCCM framework. The said workflow supports a wide variety of
computing environments and solves deployment problems in HPC systems for
further advancement in this project.

4.2 HPC Container Workflow for MEGADOCK with HPCCM

Figure 4 provides an overview of the proposed container configuration work-
flow for deploying MEGADOCK in different HPC environments while using the
HPCCM framework. Introducing the HPCCM framework in combination with
the MEGADOCK application workflow offers the following advantages.

1. Decreasing the cost of preparing container images
The workflow based on the HPCCM framework supports the configuration
of container specifications in different environments by setting appropriate
parameter values. Additionally, it supports both Docker and Singularity spec-
ification formats. This results in the reduction of management costs for con-
tainer specification files, thereby facilitating continuous integration (CI) of
container workflow.

2. Avoiding library compatibility problems
The workflow provides a clear opportunity to specify the versions of depen-
dent libraries by setting parameter values when container specifications are
generated. Explicit and easy specifications of library versions help in over-
coming problems associated with library compatibility. This is particularly
true in cases where the exact version of the MPI libraries pertaining to the
host HPC system and the inside of the container must match to avoid ABI
compatibility issues.

30 K. Aoyama et al.

Fig. 4. Proposed HPC container deployment workflow for different HPC environments

4.3 Example of User Workflow

First, a user generates a custom container specification for both the target system
and container environment by setting parameter values. Subsequently, the user
builds a custom container image by using the container specification file in local
environment (e.g. laptop, general cluster, etc.).2

Next, the user deploys custom containers to the target system for running
the MEGADOCK application. Here, a user selects a compatible host MPI mod-
ule and loads it while launching containers. The said containers can then com-
municate with processes over Singularity containers. Finally, custom containers
pertaining to the MEGADOCK application distribute docking tasks via MPI
communication in the target HPC system.

5 Evaluation Experiments

In this section, we evaluate the parallel performance of the custom contain-
ers in the target HPC environments. Container images were configured based

2 This process can be skipped if there already exists a custom container image prepared
for the target environment.

Multiple HPC Environments-Aware Container Image 31

on the workflow proposed in the previous section. Additionally, we conducted
a large-scale experiment involving over a million protein–protein pair docking
calculations requiring a large number of computing nodes of the target HPC
environment.

Target HPC environments used in both experiments correspond to
ABCI (Table 1), located at the National Institute of Advanced Industrial Sci-
ence and Technology, Japan, and TSUBAME 3.0 (Table 2), located at the Tokyo
Institute of Technology, Japan. Both these environments provide Singularity
environments and each computing node equips NVIDIA GPU devices; however,
the systems have different hardware and software specifications.

Table 1. ABCI system hardware specifications

Item Description #

CPU Intel Xeon Gold 6148, 2.4 [GHz] ×2

GPU NVIDIA Tesla V100 for NVLink ×4

Memory 384 [GB]

Local storage NVMe SSD, 1.6 [TB] ×1

Interconnect InfiniBand EDR, 100 [Gbps] ×2

Total number of computing nodes ×1,088

Table 2. TSUBAME 3.0 system hardware specifications

Item Description #

CPU Intel Xeon E5–2680 v4, 2.4 [GHz] ×2

GPU NVIDIA Tesla P100 for NVLink ×4

Memory 256 [GB]

Local storage NVMe SSD, 2.0 [TB] ×1

Interconnect Intel Omni-Path HFI, 100 [Gbps] ×4

Total number of computing nodes ×540

5.1 Experiment 1. Container Deployment for Target HPC
Environment

At first, we prepared custom container images for target environments and tested
their execution performance using a small number of computing nodes with a
benchmark dataset. The experiment aimed at validating the proposed workflow
and ensuring that the custom container functions properly in the target envi-
ronment.

32 K. Aoyama et al.

System and Container Specifications. Specifications of the system software
and container images used during experimentation are listed in Table 3.

Custom container images were prepared to those that are properly configured
with the GPU/MPI libraries so they are compatible with the system modules [21]
provided by the host (Table 3). The NVIDIA container image obtained from
the Docker Hub (nvidia/cuda:10.0-devel-centos7) was selected as a base
image because CUDA-10.0 [24] supports both GPU architectures in the target
environments.3

Additionally, we installed each version of the OpenMPI [30] library by using
different parameters to match the version of the host system module. The depen-
dent libraries for the InfiniBand EDR [27] and the Intel Omni-Path HFI [29] were
installed when necessary.

Table 3. Specifications of system software and container images used in Experiment 1

ABCI TSUBAME 3.0

System software specification

OS CentOS 7.5.1804 SUSE Linux Enterprise Server 12 SP2

Linux kernel 3.10.0 4.4.121

Singularity [10] singularity/2.6.1 singularity/3.2.1

CUDA [24] cuda/10.0/10.0.130 cuda/8.0.61

OpenMPI [30] openmpi/2.1.6 openmpi/2.1.2-opa10.9

Container image specification

Base image nvidia/cuda:10.0-devel-centos7 nvidia/cuda:10.0-devel-centos7

FFTW [22] fftw-3.3.8 fftw-3.3.8

CUDA [24] cuda-10.0.130 cuda-10.0.130

OpenMPI [30] openmpi-2.1.6 openmpi-2.1.2

Dataset. The dataset used during the experiment corresponds to the ZLab
Docking Benchmark 5.0 [35]. We selected 230 files of the PDB (protein 3-D
coordinates) format data labeled unbound. This was calculated for the protein–
protein docking of the all-to-all (230 × 230 = 52,900) pairs.

Computational Details. The input files are stored in a virtually distributed
shared file system, called BeeGFS On Demand (BeeOND) [36], which is tem-
porarily constructed on the set of non-volatile memory express (NVMe) storages
in computing nodes. The output files are generated for each local NVMe storage

3 The version of loaded CUDA modules were different in each environment; however,
we confirmed that they did not exhibit any significant performance differences.

Multiple HPC Environments-Aware Container Image 33

upon completion of each protein–protein pair docking calculation. When all cal-
culations are completed, the output files are compressed as a .tar archive and
moved to the global storage.

The measured execution time is obtained using the task distribution frame-
work in MEGADOCK. This indicates the duration time from the start of task
processing to the end of all tasks. The data point in the plot implies that
each execution time is chosen from a median of three executions for the same
calculations.

Fig. 5. Performance results of MEGADOCK docking calculations performed on ZLab
Docking Benchmark 5.0 (all-to-all, 52,900 pairs) dataset in ABCI and TSUBAME 3.0
environments.

Results. Figure 5 depicts the performance results of the docking calculations
using the benchmark dataset in both target environments. In all the docking
calculations, no fatal errors were detected. The demonstration of the proposed
custom container image configuration workflow was considered successful.

On average, the execution of the docking calculations in the ABCI environ-
ment was faster in comparison with that in TSUBAME 3.0 by 1.65 times at
each point. The parallel performance in strong-scaling was found to be 0.964
on ABCI and 0.948 on TSUBAME 3.0 in the comparison of the execution time
when running on 2 nodes versus 64 nodes. There are no significant differences
between the environments in terms of scalability because the dataset used for
this experiment was not sufficiently large.

The results obtained in the ABCI environment, which had four NVIDIA Tesla
V100 devices, demonstrated better performance in comparison with TSUBAME
3.0 that comprised four NVIDIA Tesla P100 devices. This indicates that the per-
formance of FFT-based docking calculations in MEGADOCK are computation-
ally expensive, which heavily depends on the performance of the CUFFT library

34 K. Aoyama et al.

with the NVIDIA GPU, and therefore, the performance is directly affected by
the host GPU device architecture.

5.2 Experiment 2. Performance Evaluation with Large-Scale
Computing Nodes and over a Million Protein–Protein Pairs

Next, we performed a large-scale experiment using a larger number of computing
nodes and over a million protein–protein pairs of docking calculations. To under-
stand the principles of biological systems and elucidate the causes of diseases,
over a million all-to-all protein pairs of docking calculations were considered in
this experiment.

We reserved and used half of the computing nodes of the ABCI system (512
nodes with 2,048 GPUs) and one-third of the TSUBAME 3.0 system (180 nodes
with 720 GPUs) for this experiment. The computational resources for calcu-
lations were supported by the “Grand Challenge” programs, which are open
recruitment programs for researchers, coordinated by AIST and Tokyo Tech,
respectively.

System and Container Specifications. Environmental specifications of the
system hardware were identical to that described for the first experiment. Addi-
tionally, system software and container images were nearly identical to those
corresponding to the first experiment. Several versions of libraries were modi-
fied, but no significant performance impact was observed.

Dataset. We used the dataset from the ZLab Benchmark 5.0 [35], which is
the same as in the first experiment. To validate the large-scale application per-
formance, we simply amplified the set of docking pairs to 25 times larger than
the whole of the original dataset and created a virtual large-scale benchmark
dataset. This dataset includes duplicated protein pairs; however, the docking
calculations in the MEGADOCK application are completely independent of each
other. Therefore, we computed 1,322,500 pairs of protein–protein docking calcu-
lations in total.

Computational Details. The application deployments, storage usage, and
measurement methods are the same as in the first experiment.

As for the number of computing nodes used in each environment, we selected
16, 32, 64, 128, 256, and 512 nodes in the ABCI environment, and 90, 120, 150,
and 180 nodes in TSUBAME 3.0. These node counts were set considering the
limitation of reserved computational resources as well as performance predictions
obtained from the previous experiment.

Results. Figure 6 depicts performance results obtained by performing large-
scale docking calculations in the ABCI and TSUBAME 3.0 systems. The scale
of computational resources and dataset size used in this experiment were larger

Multiple HPC Environments-Aware Container Image 35

Fig. 6. Performance results of the MEGADOCK docking calculations with 1,322,500
pairs of proteins on ABCI and TSUBAME 3.0.

compared to the previous experiment; however, the parallel performance in both
environments was observed to be similar.

The observed execution time equaled 1,657 s when using half the ABCI sys-
tem (512 nodes with 2,048 NVIDIA V100 GPUs) and 7,682 s when using one-
third of the TSUBAME 3.0 system (180 nodes with 720 NVIDIA P100 GPUs).
A direct comparison of the performance in each environment is not warranted
owing to differences between measured data points and computational resources.
However, ABCI clearly demonstrated better overall performance.

The parallel performance in strong-scaling was found to be 0.964 on ABCI
and 0.985 on TSUBAME 3.0 in the comparison of the execution time when run-
ning on each minimum-measured and maximum-measured number of computing
nodes. This indicated that our container application workflow is able to achieve
good scalability on the target HPC environments.

The older version of MEGADOCK required approximately half a day to run
a million protein–protein pairs of docking calculations using the entire TSUB-
AME 2.5 system [5]. However, the latest MEGADOCK version completes over
a million protein–protein docking-pair calculations within 30 min in the latest
HPC environment.

6 Discussion

The proposed workflow considers ABCI and TSUBAME 3.0 as target HPC
environments when deploying Singularity containers because they adopt similar
architectural concepts but different specifications pertaining to both hardware
and software. Thus, the environments are sufficient as targets for a proof-of-
concept of our workflow.

Further, we can easily switch specific dependent libraries in each environ-
ment using the proposed workflow to fill gaps caused by differences in specifica-

36 K. Aoyama et al.

tions. However, the proposed workflow does not cover other gaps, such as those
pertaining to binary optimization of CPU/GPU architectural differences, MPI
communication optimization for network architecture, and other performance
optimization approaches. These features must be included in future implemen-
tations to enhance the utility of the proposed workflow.

7 Conclusion

In this study, the authors incorporated the HPCCM framework into a large-scale
all-to-all protein–protein docking application called MEGADOCK to integrate
the container deployment workflow over multiple HPC systems with different
specifications. The proposed workflow provides users an easy means to config-
ure containers for different systems and offers the flexibility to operate on both
Docker and Singularity container formats. This helps users avoid container diffi-
culties within HPC systems, such as host-dependent libraries and ABI compat-
ibility of MPI libraries.

Further, we evaluated the parallel performance of container execution in
both ABCI and TSUBAME 3.0 systems using a small benchmark dataset and
a virtual large-scale datasets containing over a million protein–protein pairs.
Result demonstrate that the parallel performance achieved exceeds a strong-
scaling value of 0.95 when using half the ABCI system (512 nodes with 2,048
GPUs) and one-third of the TSUBAME 3.0 system (180 nodes with 720 GPUs).
This demonstrates that the latest HPC environment can complete over a million
protein–protein docking calculations within half an hour.

The authors believe that performance results obtained in this study can
contribute to accelerate exhaustive large-scale ‘interactome’ analysis for under-
standing principles of biological systems. Additionally, the authors believe the
proposed workflow would be beneficial for contributing to the portability of sci-
entific achievements.

Code Availability. The entire source code of proposed container workflow and
manual instructions are available in the following GitHub repository.

https://github.com/akiyamalab/megadock hpccm

Acknowledgments. Computational resources of the AI Bridging Cloud Infrastruc-
ture (ABCI) were awarded by the ABCI Grand Challenge Program, National Institute
of Advanced Industrial Science and Technology (AIST), and resource of the TSUB-
AME 3.0 was awarded by the TSUBAME Grand Challenge Program, Tokyo Institute
of Technology.

This work was partially supported by KAKENHI (Grant No. 17H01814 and
18K18149) from the Japan Society for the Promotion of Science (JSPS), the Program
for Building Regional Innovation Ecosystems “Program to Industrialize an Innova-
tive Middle Molecule Drug Discovery Flow through Fusion of Computational Drug
Design and Chemical Synthesis Technology” from the Japanese Ministry of Educa-
tion, Culture, Sports, Science and Technology (MEXT), the Research Complex Pro-
gram “Wellbeing Research Campus: Creating new values through technological and

https://github.com/akiyamalab/megadock_hpccm

Multiple HPC Environments-Aware Container Image 37

social innovation” from Japan Science and Technology Agency (JST), and conducted
as research activities of AIST-Tokyo Tech Real World Big-Data Computation Open
Innovation Laboratory (RWBC-OIL).

References

1. Zhang, J., Lu, X., Panda, D.K.: Is singularity-based container technology ready for
running MPI applications on HPC clouds? In: Proceedings of the 10th International
Conference on Utility and Cloud Computing (UCC 2017), Austin, TX, USA, pp.
151–160. ACM (2017). https://doi.org/10.1145/3147213.3147231

2. Veiga, V.S., et al.: Evaluation and benchmarking of Singularity MPI containers on
EU research e-infrastructure. In: Proceedings of the 1st International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE HPC), Denver, CO, USA, pp. 1–10. IEEE TCHPC (2019). https://
doi.org/10.1109/CANOPIE-HPC49598.2019.00006

3. Paolo, D.T., Palumbo, E., Chatzou, M., Prieto, P., Heuer, M.L., Notredame, C.:
The impact of Docker containers on the performance of genomic pipelines. PeerJ
3(3), e1273 (2015). https://doi.org/10.7717/peerj.1273

4. Canon, R.S., Younge, A.J.: A case for portability and reproducibility of HPC con-
tainers. In: Proceedings of the 1st International Workshop on Containers and New
Orchestration Paradigms for Isolated Environments in HPC (CANOPIE HPC),
Denver, CO, USA, pp. 49–54. IEEE TCHPC (2019). https://doi.org/10.1109/
CANOPIE-HPC49598.2019.00012

5. Ohue, M., Shimoda, T., Suzuki, S., Matsuzaki, Y., Ishida, T., Akiyama, Y.:
MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for
heterogeneous supercomputers. Bioinformatics 30(22), 3281–3283 (2014). https://
doi.org/10.1093/bioinformatics/btu532

6. McMillan, S.: Making containers easier with HPC container maker. In: Proceedings
of the SIGHPC Systems Professionals Workshop (HPCSYSPROS 2018), Dallas,
TX, USA (2018). https://doi.org/10.5281/zenodo.3552972

7. Docker. https://www.docker.com/. Accessed 9 Dec 2019
8. Open Container Initiative. https://www.opencontainers.org/. Accessed 9 Dec 2019
9. Jacobsen, D.M., Canon, R.S.: Contain this, unleashing Docker for HPC. In: Pro-

ceedings of the Cray User Group (2015)
10. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for

mobility of compute. PLoS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/
journal.pone.0177459

11. Gerhardt, L., et al.: Shifter: containers for HPC. J. Phys. Conf. Ser. 898(082021)
(2017). https://doi.org/10.1088/1742-6596/898/8/082021

12. Priedhorsky, R., Randles, T.: Charliecloud: unprivileged containers for user-defined
software stacks in HPC. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 2017), Denver,
CO, USA, no. 36, pp. 1–10. ACM (2017). https://doi.org/10.1145/3126908.3126925

13. Benedicic, L., Cruz, F.A., Madonna, A., Mariotti, K.: Sarus: highly scalable Docker
containers for HPC systems. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H.
(eds.) ISC High Performance 2019. LNCS, vol. 11887, pp. 46–60. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34356-9 5

https://doi.org/10.1145/3147213.3147231
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00006
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00006
https://doi.org/10.7717/peerj.1273
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00012
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00012
https://doi.org/10.1093/bioinformatics/btu532
https://doi.org/10.1093/bioinformatics/btu532
https://doi.org/10.5281/zenodo.3552972
https://www.docker.com/
https://www.opencontainers.org/
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1088/1742-6596/898/8/082021
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1007/978-3-030-34356-9_5

38 K. Aoyama et al.

14. Torrez, A., Randles, T., Priedhorsky, R.: HPC container runtimes have minimal
or no performance impact. In: Proceedings of the 1st International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE HPC), Denver, CO, USA, pp. 37–42. IEEE TCHPC (2019). https://
doi.org/10.1109/CANOPIE-HPC49598.2019.00010

15. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance
comparison of virtual machines and Linux containers. In: Proceedings of 2015
IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS 2015), Philadelphia, PA, USA, pp. 171–172 (2015). https://doi.org/
10.1109/ISPASS.2015.7095802

16. Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A.F.:
Performance evaluation of container-based virtualization for high performance
computing environments. In: 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, Belfast, pp. 233–240. IEEE
(2013). https://doi.org/10.1109/PDP.2013.41

17. Docker Hub. https://hub.docker.com/. Accessed 9 Dec 2019
18. Sochat, V.: Singularity registry: open source registry for Singularity images. J.

Open Source Softw. 2(18), 426 (2017). https://doi.org/10.21105/joss.00426
19. Sochat, V., Prybol, C.J., Kurtzer, G.M.: Enhancing reproducibility in scientific

computing: metrics and registry for singularity containers. PLoS ONE 12(11), 1–
24 (2017). https://doi.org/10.1371/journal.pone.0188511

20. NGC - GPU-Optimized Software Hub Simplifying DL, ML and HPC workflows.
https://www.nvidia.com/en-us/gpu-cloud/. Accessed 9 Dec 2019

21. Furlani, J.L., Osel, P.W.: Abstract yourself with modules. In: Proceedings of
the Tenth Large Installation Systems Administration Conference (LISA 1996),
Chicago, IL, USA, pp. 193–204 (1996)

22. Matteo, F., Steven, G.J.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). https://doi.org/10.1109/JPROC.2004.840301

23. Leonardo, D., Ramesh, M.: OpenMP: an industry standard API for shared-memory
programming. Comput. Sci. Eng. 5(1), 46–55 (1998)

24. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. Queue GPU Comput. 6(2), 40–53 (2008). https://doi.org/10.1145/
1401132.1401152

25. OpenFabrics Alliance. https://www.openfabrics.org/. Accessed 11 Dec 2019
26. Unified Communication X. https://www.openucx.org/. Accessed 11 Dec 2019
27. InfiniBand Architecture Specification, Release 1.3.1. https://cw.infinibandta.org/

document/dl/8125. Accessed 11 Dec 2019
28. intel/opa-psm2. https://github.com/intel/opa-psm2. Accessed 11 Dec 2019
29. Birrittella, M.S., et al.: Intel Omni-Path architecture: enabling scalable, high per-

formance fabrics. In: 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects, Santa Clara, CA, USA, pp. 1–9. IEEE (2015). https://doi.org/10.
1109/HOTI.2015.22

30. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30218-6 19

31. MPICH. https://www.mpich.org/. Accessed 11 Dec 2019
32. Intel MPI Library. https://software.intel.com/mpi-library. Accessed 11 Dec 2019
33. akiyamalab/MEGADOCK. https://github.com/akiyamalab/MEGADOCK. Acc-

essed 11 Dec 2019

https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/PDP.2013.41
https://hub.docker.com/
https://doi.org/10.21105/joss.00426
https://doi.org/10.1371/journal.pone.0188511
https://www.nvidia.com/en-us/gpu-cloud/
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1145/1401132.1401152
https://doi.org/10.1145/1401132.1401152
https://www.openfabrics.org/
https://www.openucx.org/
https://cw.infinibandta.org/document/dl/8125
https://cw.infinibandta.org/document/dl/8125
https://github.com/intel/opa-psm2
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1007/978-3-540-30218-6_19
https://www.mpich.org/
https://software.intel.com/mpi-library
https://github.com/akiyamalab/MEGADOCK

Multiple HPC Environments-Aware Container Image 39

34. Aoyama, K., Yamamoto, Y., Ohue, M., Akiyama, Y.: Performance evaluation of
MEGADOCK protein-protein interaction prediction system implemented with dis-
tributed containers on a cloud computing environment. In: Proceedings of the 25th
International Conference on Parallel and Distributed Processing Techniques and
Application (PDPTA 2019), Las Vegas, NV, pp. 175–181 (2019)

35. Vreven, T., et al.: Updates to the integrated protein-protein interaction bench-
marks: docking benchmark version 5 and affinity benchmark version 2. J. Mol.
Biol. 427(19), 3031–3041 (2015). https://doi.org/10.1016/j.jmb.2015.07.016

36. BeeGFS. https://www.beegfs.io/. Accessed 9 Dec 2019

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.jmb.2015.07.016
https://www.beegfs.io/
http://creativecommons.org/licenses/by/4.0/

DAOS: A Scale-Out High Performance Storage
Stack for Storage Class Memory

Zhen Liang1(&) , Johann Lombardi2 , Mohamad Chaarawi3 ,
and Michael Hennecke4

1 Intel China Ltd., GTC, No. 36 3rd Ring Road, Beijing, China
liang.zhen@intel.com

2 Intel Corporation SAS, 2 rue de Paris, 92196 Meudon Cedex, France
johann.lombardi@intel.com

3 Intel Corporation, 1300 S MoPac Expy, Austin, TX 78746, USA
mohamad.chaarawi@intel.com

4 Lenovo Global Technology Germany GmbH, Am Zehnthof 77,
45307 Essen, Germany

mhennecke@lenovo.com

Abstract. The Distributed Asynchronous Object Storage (DAOS) is an open
source scale-out storage system that is designed from the ground up to support
Storage Class Memory (SCM) and NVMe storage in user space. Its advanced
storage API enables the native support of structured, semi-structured and
unstructured data models, overcoming the limitations of traditional POSIX
based parallel filesystem. For HPC workloads, DAOS provides direct MPI-IO
and HDF5 support as well as POSIX access for legacy applications. In this paper
we present the architecture of the DAOS storage engine and its high-level
application interfaces. We also describe initial performance results of DAOS for
IO500 benchmarks.

Keywords: DAOS � SCM � Persistent memory � NVMe � Distributed storage
system � Parallel filesystem � SWIM � RAFT

1 Introduction

The emergence of data-intensive applications in business, government and academia
stretches the existing I/O models beyond limits. Modern I/O workloads feature an
increasing proportion of metadata combined with misaligned and fragmented data.
Conventional storage stacks deliver poor performance for these workloads by adding a
lot of latency and introducing alignment constraints. The advent of affordable large-
capacity persistent memory combined with a high-speed fabric offers a unique
opportunity to redefine the storage paradigm and support modern I/O workloads
efficiently.

This revolution requires a radical rethinking of the complete storage stack. To
unleash the full potential of these new technologies, the new stack must embrace a
byte-granular shared-nothing interface from the ground up. It also has to be able to

© The Author(s) 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 40–54, 2020.
https://doi.org/10.1007/978-3-030-48842-0_3

http://orcid.org/0000-0003-1402-7725
http://orcid.org/0000-0002-8553-5383
http://orcid.org/0000-0002-7405-2140
http://orcid.org/0000-0002-7412-5696
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-48842-0_3

support massively distributed storage for which failure will be the norm, while pre-
serving low latency and high bandwidth access over the fabric.

DAOS is a complete I/O architecture that aggregates SCM and NVMe storage
distributed across the fabric into globally accessible object address spaces, providing
consistency, availability and resiliency guarantees without compromising performance.

Section 2 of this paper describes the challenges that SCM and NVMe storage pose
to traditional I/O stacks. Section 3 introduces the architecture of DAOS and explains
how it integrates with new storage technologies. Section 4 gives an overview of the
data model and I/O interfaces of DAOS, and Sect. 5 presents the first IO500 perfor-
mance results of DAOS.

2 Constraints of Using Traditional Parallel Filesystems

Conventional parallel filesystems are built on top of block devices. They submit I/O
through the OS kernel block I/O interface, which is optimized for disk drives. This
includes using an I/O scheduler to optimize disk seeking, aggregating and coalescing
writes to modify the characteristics of the workloads, then sending large streaming data
to the disk drive to achieve the high bandwidth. However, with the emergence of new
storage technologies like 3D-XPoint that can offer several orders of magnitude lower
latency comparing with traditional storage, software layers built for spinning disk
become pure overhead for those new storage technologies.

Moreover, most parallel filesystems can use RDMA capable network as a fast
transport layer, in order to reduce data copying between layers. For example, transfer
data from the page cache of a client to the buffer cache of a server, then persist it to
block devices. However, because of lacking unified polling or progress mechanisms for
both block I/O and network events in the traditional storage stack, I/O request handling
heavily relies on interrupts and multi-threading for concurrent RPC processing.
Therefore, context switches during I/O processing will significantly limit the advantage
of the low latency network.

With all the thick stack layers of traditional parallel filesystem, including caches
and distributed locking, user can still use 3D NAND, 3D-XPoint storage and high
speed fabrics to gain some better performance, but will also lose most benefits of those
technologies because of overheads imposed by the software stack.

3 DAOS, a Storage Stack Built for SCM and NVMe Storage

The Distributed Asynchronous Object Storage (DAOS) is an open source software-
defined object store designed from the ground up for massively distributed Non
Volatile Memory (NVM). It presents a key-value storage interface and provides fea-
tures such as transactional non-blocking I/O, a versioned data model, and global
snapshots.

DAOS: A Scale-Out High Performance Storage Stack for SCM 41

This section introduces the architecture of DAOS, discusses a few core components
of DAOS and explains why DAOS can be a storage system with both high performance
and resilience.

3.1 DAOS System Architecture

DAOS is a storage system that takes advantage of next generation NVM technology
like Storage Class Memory (SCM) and NVM express (NVMe). It bypasses all Linux
kernel I/O, it runs end-to-end in user space and does not do any system call during I/O.

As shown in Fig. 1, DAOS is built over three building blocks. The first one is
persistent memory and the Persistent Memory Development Toolkit (PMDK) [2].
DAOS uses it to store all internal metadata, application/middleware key index and
latency sensitive small I/O. During starting of the system, DAOS uses system calls to
initialize the access of persistent memory. For example, it maps the persistent memory
file of DAX-enabled filesystem to virtual memory address space. When the system is
up and running, DAOS can directly access persistent memory in user space by memory
instructions like load and store, instead of going through a thick storage stack.

Persistent memory is fast but has low capacity and low cost effectiveness, so it is
effectively impossible to create a large capacity storage tier with persistent memory
only. DAOS leverages the second building block, NVMe SSDs and the Storage Per-
formance Development Kit (SPDK) [7] software, to support large I/O as well as higher
latency small I/O. SPDK provides a C library that may be linked into a storage server
that can provide direct, zero-copy data transfer to and from NVMe SSDs. The DAOS
service can submit multiple I/O requests via SPDK queue pairs in an asynchronous
manner fully from user space, and later creates indexes for data stored in SSDs in
persistent memory on completion of the SPDK I/O.

Libfabric [8] and an underlying high performance fabric such as Omni-Path
Architecture or InfiniBand (or a standard TCP network), is the third build block for
DAOS. Libfabric is a library that defines the user space API of OFI, and exports fabric
communication services to application or storage services. The transport layer of
DAOS is built on top of Mercury [9] with a libfabric/OFI plugin. It provides a callback
based asynchronous API for message and data transfer, and a thread-less polling API
for progressing network activities. A DAOS service thread can actively poll network
events from Mercury/libfabric as notification of asynchronous network operations,
instead of using interrupts that have a negative performance impact because of context
switches.

42 Z. Liang et al.

As a summary, DAOS is built on top of new storage and network technologies and
operates fully in user space, bypassing all the Linux kernel code. Because it is archi-
tected specifically for SCM and NVMe, it cannot support disk based storage. Tradi-
tional storage system like Lustre [11], Spectrum Scale [12], or CephFS [10] can be
used for disk-based storage, and it is possible to move data between DAOS and such
external file systems.

3.2 DAOS I/O Service

From the perspective of stack layering, DAOS is a distributed storage system with a
client-server model. The DAOS client is a library that is integrated with the application,
and it runs in the same address space as the application. The data model exposed by the
DAOS library is directly integrated with all the traditional data formats and middleware
libraries that will be introduced in Sect. 4.

The DAOS I/O server is a multi-tenant daemon that runs either directly on a data
storage node or in a container. It can directly access persistent memory and NVMe
SSDs, as introduced in the previous section. It stores metadata and small I/O in per-
sistent memory, and stores large I/O in NVMe SSDs. The DAOS server does not rely
on spawning pthreads for concurrent handling of I/O. Instead it creates an Argobots [6]
User Level Thread (ULT) for each incoming I/O request. An Argobots ULT is a
lightweight execution unit associated with an execution stream (xstream), which is
mapped to the pthread of the DAOS service. This means that conventional POSIX I/O
function calls, pthread locks or synchronous message waiting calls from any ULT can

DAOS Storage Engine

SPDK
NVMe
Interface

Metadata, low-latency I/Os &
indexing/query

Bulk data

PMDK
Memory
Interface

AI/Analytics/Simulation Workflow

DAOS library

POSIX I/O HDF5 Spark…

Compute Nodes

MPI-I/ O Python

Libfabric

Storage Nodes

3D-XPoint Memory 3D-NAND/XPoint SSD

Fig. 1. DAOS system architecture

DAOS: A Scale-Out High Performance Storage Stack for SCM 43

block progress of all ULTs on an execution stream. However, because all building
blocks used by DAOS provide a non-blocking user space interface, a DAOS I/O ULT
will never be blocked on system calls. Instead it can actively yield the execution if an
I/O or network request is still inflight. The I/O ULT will eventually be rescheduled by a
system ULT that is responsible for polling a completion event from the network and
SPDK. ULT creation and context switching are very lightweight. Benchmarks show
that one xstream can create millions of ULTs per second, and can do over ten million
ULT context switches per second. It is therefore a good fit for DAOS server side I/O
handling, which is supposed to support micro-second level I/O latency (Fig. 2).

3.3 Data Protection and Data Recovery

DAOS storage is exposed as objects that allow user access through a key-value or key-
array API. In order to avoid scaling problems and the overhead of maintaining per-
object metadata (like object layout that describes locality of object data), a DAOS
object is only identified by a 128-bit ID that has a few encoded bits to describe data
distribution and the protection strategy of the object (replication or erasure code, stripe
count, etc.). DAOS can use these bits as hints, and the remaining bits of the object ID
as a pseudorandom seed to generate the layout of the object based on the configuration
of the DAOS storage pool. This is called algorithmic object placement. It is similar to
the data placement technology of Ceph, except DAOS is not using CRUSH [10] as the
algorithm.

This paper will only describe the data protection and recovery protocol from a high
level view. Detailed placement algorithm and recovery protocol information can be
found in the online DAOS design documents [5].

CA
RT

Bl
ob

 I/
O

ULT

ULT

ULT

ULT

I/O XStream

RPC progress

utl_create(rpc_handler)

I/O submit

I/O complete

Reply send

1

2
3

7
9

SP
DK

/N
VM

e

Bulk transfer

5

VOS

I/O progress

PMDK

Index data 8

46

M
er

cu
ry

/O
FI

ULT

Fig. 2. DAOS server side I/O processing

44 Z. Liang et al.

Data Protection
In order to get ultra-low latency I/O, a DAOS storage server stores application data and
metadata in SCM connected to the memory bus, and on SSDs connected over PCIe.
The DAOS server uses load/store instructions to access memory-mapped persistent
memory, and the SPDK API to access NVMe SSDs from user space. If there is an
uncorrectable error in persistent memory or an SSD media corruption, applications
running over DAOS without additional protection would incur a data/metadata loss. In
order to guarantee resilience and prevent data loss, DAOS provides both replication
and erasure coding for data protection and recovery.

When data protection is enabled, DAOS objects can be replicated, or chunked into
data and parity fragments, and then stored across multiple storage nodes. If there is a
storage device failure or storage node failure, DAOS objects are still accessible in
degraded mode, and data redundancy is recoverable from replicas or parity data [15].

Replication and Data Recovery
Replication ensures high availability of data because objects are accessible while any
replica survives. Replication of DAOS is using a primary-slave protocol for write: The
primary replica is responsible for forwarding requests to slave replicas, and progressing
distributed transaction status.

The primary-slave model of DAOS is slightly different from a traditional replica-
tion model, as shown in Fig. 3a. The primary replica only forwards the RPC to slave
replica servers. All replicas will then initiate an RDMA request and get the data directly
from the client buffer. DAOS chooses this model because in most HPC environments,
the fabric bandwidth between client and server is much higher than the bandwidth
between servers (and the bandwidth between servers will be used for data recovery and
rebalance). If DAOS is deployed for a non-HPC use case that has higher bandwidth
between servers, then the data transfer path of DAOS can be changed to the traditional
model.

DAOS uses a variant of two-phase commit protocol to guarantee atomicity of the
replicated update: If one replica cannot apply the change, then all replicas should
abandon the change as well. This protocol is quite straightforward if there is no failure.

Client

data
server

storage

data
server

storage

parity
server

storage

data
server

storage

data

client

slave
server
storage

slave
server
storage

primary
server
storage

data
RPC

RDMA

parity

(a) Replicated write (b) Erasure coding write

Fig. 3. Message and data flow of replication and erasure coding

DAOS: A Scale-Out High Performance Storage Stack for SCM 45

However, if a server handling the replication write failed during the two-phase trans-
action, DAOS will not follow the traditional two-phase commit protocol that would
wait for the recovery of the failed node. Instead it excludes the failed node from the
transaction, then algorithmically selects a different node as a replacement, and moves
forward the transaction status. If the failed-out node comes back at some point, it
ignores its local transaction status and relies on the data recovery protocol to catch up
the transaction status.

When the health monitoring system of DAOS detected a failure event of a storage
target, it reports the event to the highly replicated RAFT [14] based pool service, which
can globally activate the rebuild service on all storage servers in the pool. The rebuild
service of a DAOS server can promptly scan object IDs stored in local persistent
memory, independently calculates the layout of each object, and then finds out all the
impacted objects by checking if the failed target is within their layouts. The rebuild
service also sends those impacted object IDs to algorithmically selected fallback
storage servers. These fallback servers then reconstruct data for impacted objects by
pulling data from the surviving replicas.

In this process, there is no central place to perform data/metadata scans or data
reconstruction: The I/O workload of the rebuild service will be fully declustered and
parallelized.

Erasure Coding and Data Recovery
DAOS can also support erasure coding (EC) for data protection, which is much more
space and bandwidth efficient than replication but requires more computation.

Because the DAOS client is a lightweight library which is linked with the appli-
cation on compute nodes that have way more compute resource than the DAOS ser-
vers, the data encoding is handled by the client on write. The client computes the
parity, creates RDMA descriptors for both data and parity fragments, and then sends an
RPC request to the leader server of the parity group to coordinate the write. The RPC
and data flow of EC is the same as replication: All the participants of an EC write
should directly pull data from the client buffer, instead of pulling data from the leader
server cache (Fig. 3b). DAOS EC also uses the same two-phase commit protocol as
replication to guarantee the atomicity of writes to different servers.

If the write is not aligned with the EC stripe size, most storage systems have to go
through a read/encode/write process to guarantee consistency of data and parity. This
process is expensive and inefficient, because it will generate much more traffic than the
actual I/O size. It also requires distributed locking to guarantee consistency between
read and write. With its multi-version data model, DAOS can avoid this expensive
process by replicating only the partial write data to the parity server. After a certain
amount of time, if the application keeps writing and composes a full stripe eventually,
the parity server can simply compute the parity based on all this replicated data.
Otherwise, the parity server can coordinate other servers in the parity group to generate
a merged view from the partial overwritten data and its old version, then computes
parity for it and stores the merged data together with that new parity.

When a failure occurs, a degraded mode read of EC-protected data is more heavy-
weight compared to replication: With replication, the DAOS client can simply switch to
read from a different replica. But with EC, the client has to fetch the full data stripe and

46 Z. Liang et al.

has to reconstruct the missing data fragment inflight. The processing of degraded mode
write of EC-protected data is the same as for replication: The two-phase commit
transaction can continue without being blocked by the failed-out server, instead it can
immediately proceed as soon as a fallback server is selected for the transaction.

The rebuild protocol of EC is also similar to replication, but it will generate sig-
nificantly more data movement compared to replication. This is a characteristic of all
parity based data protection technologies.

End to End Data Integrity
There are three types of typical failures in DAOS storage system:

• Service crash. DAOS captures this by running the gossip-like protocol SWIM [13].
• NVMe SSD failure. DAOS can detect this type of failure by polling device status

via SPDK.
• Data corruption caused by storage media failure. DAOS can detect this by storing

and verifying checksums.

In order to support end-to-end checksums and detect silent data corruption, before
writing the data to server the DAOS client computes checksums for the data being
written. When receiving the write, the DAOS server can either verify the checksums, or
store the checksums and data directly without verification. The server side verification
can be enabled or disabled by the user, based on performance requirements.

When an application reads back the data, if the read is aligned with the original
write then server can just return the data and checksum. If the read is not aligned with
the original write, the DAOS server verifies the checksums for all involved data
extents, then computes the checksum for the part of data being read, and returns both
data and checksum to the client. The client then verifies the checksum again before
returning data to the application. If the DAOS client detects a checksum error on read,
it can enable degraded mode for this particular object, and either switch to another
replica for the read, or reconstruct data inflight on the client if it is protected by EC. The
client also reports the checksum error back to the server. A DAOS server will collect all
checksum errors detected by local verification and scrubbing, as well as errors reported
by clients. When the number of errors reaches a threshold, the server requests the pool
service to exclude the bad device from the storage system, and triggers data recovery
for it.

Checksums of DAOS are stored in persistent memory, and are protected by the
ECC of the persistent memory modules. If there is an uncorrectable error in persistent
memory, the storage service will be killed by SIGBUS. In this case the pool service
will disable the entire storage node, and starts data recovery on the surviving nodes.

4 DAOS Data Model and I/O Interface

This section describes the data model of DAOS, the native API built for this data
model, and explains how a POSIX namespace is implemented over this data model.

DAOS: A Scale-Out High Performance Storage Stack for SCM 47

4.1 DAOS Data Model

The DAOS data model has two different object types: Array objects that allow an
application to represent a multi-dimensional array; and key/value store objects that
have native support of a regular KV I/O interface and a multi-level KV interface.
Both KV and array objects have versioned data, which allows applications to make
disruptive change and rollback to an old version of the dataset. A DAOS object always
belongs to a domain that is called a DAOS container. Each container is a private object
address space which can be modified by transactions independently of the other con-
tainers stored in the same DAOS pool [1] (Fig. 4).

DAOS containers will be exposed to applications through several I/O middleware
libraries, providing a smooth migration path with minimal (or sometimes no) appli-
cation changes. Generally, all I/O middleware today runs on top of POSIX and
involves serialization of the middleware data model to the POSIX scheme of directories
and files (byte arrays). DAOS provides a richer API that provides better and more
efficient building blocks for middleware libraries and applications. By treating POSIX
as a middleware I/O library that is implemented over DAOS, all libraries that build on
top of POSIX are supported. But at the same time, middleware I/O libraries can be
ported to work natively over DAOS, bypassing the POSIX serialization step that has
several disadvantages that will not be discussed in this document. I/O middleware
libraries that have been implemented on top of the DAOS library include POSIX, MPI-
I/O, and HDF5. More I/O middleware and frameworks will be ported in the future to
directly use the native DAOS storage API.

key1

val1

key3

val3

@

@

Application

NVMe SSD

DAOS

key1

val1

root @

key3

val3

@

val2

key2

@@

@

@

val2 con’d

val2

key2

@

Application

Fig. 4. DAOS data model

48 Z. Liang et al.

4.2 DAOS POSIX Support

POSIX is not the foundation of the DAOS storage model. It is built as a library on top
of the DAOS backend API, like any other I/O middleware. A POSIX namespace can be
encapsulated in a DAOS container and can be mounted by an application into its
filesystem tree.

Figure 5 shows the software stack of DAOS for POSIX. The POSIX API will be
used through a fuse driver using the DAOS Storage Engine API (through libdaos)
and the DAOS File System API (through libdfs). This will inherit the overhead of
FUSE in general, including system calls etc. This overhead is acceptable for most file
system operations, but I/O operations like read and write can actually incur a significant
performance penalty if all of them have to go through system calls. In order to enable
OS-bypass for those performance sensitive operations, an interception library has been
added to the stack. This library will work in conjunction with dfuse, and allows to
intercept POSIX read(2) and write(2) calls in order to issue these I/O operations
directly from the application context through libdaos (without any application
changes).

In Fig. 5, there is a layer between dfuse/interception library and libdaos,
which is called libdfs. The libdfs layer provides a POSIX like API directly on
top of the DAOS API. It provides file and directory abstractions over the native
libdaos library. In libdfs, a POSIX namespace is encapsulated in a container.
Both files and directories are mapped to objects within the container. The namespace
container can be mounted into the Linux filesystem tree. Both data and metadata of the
encapsulated POSIX file system will be fully distributed across all the available storage

Application / Framework

DAOS library (libdaos)

DAOS File System (libdfs)

Interception Library

dfuse

Single process address space

DAOS Storage Engine

RPC RDMA

End-to-end
user space
No system calls

Persistent memory NVMe SSD

Fig. 5. DAOS POSIX support

DAOS: A Scale-Out High Performance Storage Stack for SCM 49

of the DAOS pool. The dfuse daemon is linked with libdfs, and all the calls from
FUSE will go through libdfs and then libdaos, which can access the remote
object store exposed by the DAOS servers.

In addition, as mentioned above, libdfs can be exposed to end users through
several interfaces, including frameworks like SPARK, MPI-IO, and HDF5. Users can
directly link applications with libdfs when there is a shim layer for it as plugin of
I/O middleware. This approach is transparent and requires no change to the application.

5 Performance

The DAOS software stack is still under heavily development. But the performance it
can achieve on new storage class memory technologies has already been demonstrated
at the ISC19 and SC19 conferences, and first results for the IO500 benchmark suite on
DAOS version 0.6 have been recently submitted [16]. IO500 is a community activity
to track storage performance and storage technologies of supercomputers, organized by
the Virtual Institute for I/O (VI4IO) [17]. The IO500 benchmark suite consists of data
and metadata workloads as well as a parallel namespace scanning tool, and calculates a
single ranking score for comparison. The workloads include:

• IOR-Easy: Bandwidth for well-formed large sequential I/O patterns
• IOR-Hard: Bandwidth for a strided I/O workload with small unaligned I/O transfers

(47001 bytes)
• MDTest-Easy: Metadata operations on 0-byte files, using separate directories for

each MPI task
• MDTest-Hard: Metadata operations on small (3901 byte) files in a shared directory
• Find: Finding relevant files through directory traversals

We have adapted the I/O driver used for IOR and MDTEST to work directly over
the DFS API described in Sect. 4. The driver was pushed and accepted to the upstream
ior-hpc repository for reference. Developing a new IO driver is relatively easy since, as
mentioned before, the DFS API closely resembles the POSIX API. The following
summarizes the steps for implementing a DFS backend for IOR and mdtest. The same
scheme can also be applied to other applications using the POSIX API:

• Add an initialize callback to connect to the DAOS pool and open the DAOS
container that will encapsulate the namespace. A DFS mount is then created over
that container.

• Add callbacks for all the required operations, and substitute the POSIX API with the
corresponding DFS API. All the POSIX operations used in IOR and mdtest have a
corresponding DFS API, which makes the mapping easy. For example:
– change mkdir() to dfs_mkdir();
– change open64() to dfs_open();
– change write() to dfs_write();
– etc.
– Add a finalize callback to unmount the DFS mount and close the pool and

container handle.

50 Z. Liang et al.

Two lists of IO500 results are published: The “Full List” or “Ranked List” contains
performance results that are achieved on an arbitrary number of client nodes. The “10
Node Challenge” list contains results for exactly 10 client nodes, which provides a
standardized basis for comparing those IO500 workloads which scale with the number
of client nodes [3]. For both lists, there are no constraints regarding the size of the
storage system. Optional data fields may provide information about the number and
type of storage devices for data and metadata; when present in the submissions this
information can be used to judge the relative efficiency of the storage systems.

For the submission to IO500 at SC19 [16], the IO500 benchmarks have been run on
Intel’s DAOS prototype cluster “Wolf”. The eight dual-socket storage nodes of the
“Wolf” cluster use Intel Xeon Platinum 8260 processors. Each storage node is
equipped with 12 Intel Optane Data Center Persistent Memory Modules (DCPMMs)
with a capacity of 512 GiB (3 TiB total per node, configured in app-direct/interleaved
mode). The dual-socket client nodes of the “Wolf” cluster use Intel Xeon E5-2699 v4
processors. Both the DAOS storage nodes and the client nodes are equipped with two
Intel Omni-Path 100 adapters per node.

Figure 6 shows the IO500 IOR bandwidth of the top four storage systems on the
November 2019 edition of the IO500 “10-Node Challenge”. DAOS achieved both the
#1 overall rank, as well as the highest “bw” bandwidth score (the geometric mean of
the four IOR workloads). Due to its multi-versioned data model, DAOS does not
require read-modify-write operations for small or unaligned writes (which generates
extra I/O traffic and locking contention in traditional POSIX filesystems). This property
of the DAOS storage engine results in very similar DAOS bandwidth for the “hard”
and “easy” IOR workloads, and provides predictable performance across many dif-
ferent workloads.

Fig. 6. IO500 10-node challenge – IOR bandwidth in GB/s

DAOS: A Scale-Out High Performance Storage Stack for SCM 51

Figure 7 shows the mdtest metadata performance of the top four storage systems on
the November 2019 edition of the IO500 “10-Node Challenge”. DAOS dominates the
overall “md” metadata score (geometric mean of all mdtest workloads), with almost a
3x difference to the nearest contender. This is mainly due to the lightweight end-to-end
user space storage stack, combined with an ultra-low latency network and DCPMM
storage media. Like the IOR bandwidth results, the DAOS metadata performance is
very homogeneous across all the tests, whereas many of the other file systems exhibit
large variations between the different metadata workloads.

DAOS achieved the second rank on the November 2019 “Full List”, using just 26
client nodes. Much better performance can be expected with a larger set of client nodes,
especially for those metadata tests that scale with the number of client nodes. So a
direct comparison with other storage systems on the “Full List” (some of which were
tested with hundreds of client nodes) is not as meaningful as the “10-Node Challenge”.

The full list of IO500 results and a detailed description of the IO500 benchmark
suite can be found at Ref. [16].

6 Conclusion

As storage class memory and NVMe storage become more widespread, the software
stack overhead factors more and more as part of the overall storage system. It is very
difficult for traditional storage systems to take full advantage of these storage hardware
devices. This paper presented DAOS as a newly designed software stack for these new

Fig. 7. IO500 10-node challenge – mdtest performance in kIOP/s

52 Z. Liang et al.

storage technologies, described the technical characteristics of DAOS, and explained
how it can achieve both high performance and high resilience.

In the performance section, IO500 benchmark results proved that DAOS can take
advantage of the new storage devices and their user space interfaces. More important
than the absolute ranking on the IO500 list is the fact that DAOS performance is very
homogeneous across the IO500 workflows, whereas other file systems sometimes
exhibit orders-of-magnitude performance differences between individual IO500 tests.

This paper only briefly introduced a few core technical components of DAOS and
its current POSIX I/O middleware. Other supported I/O libraries like MPI-I/O and
HDF5 are not covered by this paper and will be the subject of future studies. Additional
I/O middleware plugins based on DAOS/libdfs are still in development. The roadmap,
design documents and development status of DAOS can be found on github [5] and the
Intel DAOS website [4].

References

1. Breitenfeld, M.S., et al.: DAOS for extreme-scale systems in scientific applications (2017).
https://arxiv.org/pdf/1712.00423.pdf

2. Rudoff, A.: APIs for persistent memory programming (2018). https://storageconference.us/
2018/Presentations/Rudoff.pdf

3. Monnier, N., Lofstead, J., Lawson, M., Curry, M.: Profiling platform storage using IO500
and mistral. In: 4th International Parallel Data Systems Workshop, PDSW 2019 (2019).
https://conferences.computer.org/sc19w/2019/pdfs/PDSW2019-6YFSp9XMTx6Zb1FALM
AAsH/5PVXONjoBjWD2nQgL1MuB3/6lk0OhJlEPG2bUdbXXPPoq.pdf

4. DAOS. https://wiki.hpdd.intel.com/display/DC/DAOS+Community+Home
5. DAOS github. https://github.com/daos-stack/daos
6. Seo, S., et al.: Argobots: a lightweight low-level threading and tasking framework. IEEE

Trans. Parallel Distrib. Syst. 29(3) (2018). https://doi.org/10.1109/tpds.2017.2766062
7. SPDK. https://spdk.io/
8. Libfabric. https://ofiwg.github.io/libfabric/
9. Mercury. https://mercury-hpc.github.io/documentation/
10. Weil, S.A., Brandt, S.A., Miller, E.L., Maltzahn, C.: CRUSH: controlled, scalable,

decentralized placement of replicated data. In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC 2006 (2006). https://doi.org/10.1109/sc.2006.19

11. Braam, P.J.: The Lustre storage architecture (2005). https://arxiv.org/ftp/arxiv/papers/1903/
1903.01955.pdf

12. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing clusters. In:
Proceedings of the First USENIX Conference on File and Storage Technologies, Monterey,
CA, 28–30 January 2002, pp 231–244 (2002). http://www.usenix.org/publications/library/
proceedings/fast02/

13. Das, A., Gupta, I., Motivala, A.: SWIM: scalable weakly-consistent infection-style process
group membership protocol. In: Proceedings of the 2002 International Conference on
Dependable Systems and Networks, DSN 2002, pp. 303–312 (2002)

14. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm (2014).
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf

DAOS: A Scale-Out High Performance Storage Stack for SCM 53

https://arxiv.org/pdf/1712.00423.pdf
https://storageconference.us/2018/Presentations/Rudoff.pdf
https://storageconference.us/2018/Presentations/Rudoff.pdf
https://conferences.computer.org/sc19w/2019/pdfs/PDSW2019-6YFSp9XMTx6Zb1FALMAAsH/5PVXONjoBjWD2nQgL1MuB3/6lk0OhJlEPG2bUdbXXPPoq.pdf
https://conferences.computer.org/sc19w/2019/pdfs/PDSW2019-6YFSp9XMTx6Zb1FALMAAsH/5PVXONjoBjWD2nQgL1MuB3/6lk0OhJlEPG2bUdbXXPPoq.pdf
https://wiki.hpdd.intel.com/display/DC/DAOS%2bCommunity%2bHome
https://github.com/daos-stack/daos
https://doi.org/10.1109/tpds.2017.2766062
https://spdk.io/
https://ofiwg.github.io/libfabric/
https://mercury-hpc.github.io/documentation/
https://doi.org/10.1109/sc.2006.19
https://arxiv.org/ftp/arxiv/papers/1903/1903.01955.pdf
https://arxiv.org/ftp/arxiv/papers/1903/1903.01955.pdf
http://www.usenix.org/publications/library/proceedings/fast02/
http://www.usenix.org/publications/library/proceedings/fast02/
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf

15. Barton, E.: DAOS: an architecture for extreme storage scale storage (2015). https://www.
snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_
Extreme_Scale.pdf

16. IO500 List, November 2019. https://www.vi4io.org/io500/list/19-11/start
17. Kunkel, J., et al.: Virtual institute for I/O. https://www.vi4io.org/start

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

54 Z. Liang et al.

https://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_Extreme_Scale.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_Extreme_Scale.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_Extreme_Scale.pdf
https://www.vi4io.org/io500/list/19-11/start
https://www.vi4io.org/start
http://creativecommons.org/licenses/by/4.0/

Cloud Platform Optimization for HPC

Aman Verma(&)

Microsoft, Redmond, WA 98052, USA
Verma.Aman@microsoft.com

Abstract. The special requirements of HPC have typically been tacked onto
existing cloud infrastructure and practices. As a result, most cloud offerings
aren’t completely optimized for HPC, or aren’t yet feature-complete as far as
traditional supercomputing experience is concerned. This work addresses the
progress made in (1) optimizing the performance of HPC workloads in a cloud
environment, and (2) evolving the usability of cloud HPC environments.
Specifically, this work discusses efforts made to minimize and eliminate the
impact of virtualization on HPC workloads on cloud infrastructure and move
towards a more familiar supercomputing experience. Initial experience with
“cloud-native” HPC is also discussed. In many aspects, this work is inspired by
and impactful for many HPC workloads in many disciplines including earth
sciences and manufacturing.

Keywords: HPC � Cloud � Performance � Scalability

1 Introduction

The advent of cloud computing offers the promise of virtually unlimited resources,
elasticity in scale, available on demand, with the appeal of access to the latest advances
in technology in both hardware and software. The availability, flexibility and elasticity
of cloud computing makes it appealing to a wide variety of workloads, including those
in science and engineering. Many of the problems in the domain of scientific com-
puting generally fall in at least one of the following 2 classes: (1) simulation of
modeled representation of the physical world (computational physics, chemistry,
mechanics, etc.), and (2) analysis of large amount of data (astrophysics, genomics,
etc.). Both classes of problems, but more so the first have special demands on the
computing infrastructure compared to other non-scientific computing workloads.
Hence, many of these computing-intensive scientific computing workloads resort to
“high performance computing (HPC)” primarily to minimize the time to solution or
“time-to-science”.

Cloud infrastructure has had to adapt to meet the “high performance” requirements
of such workloads but mostly as an afterthought. This is primarily due to the fact that
the vast majority of the public cloud as we know it had been built for, and has evolved
out of the demand for consumer applications such as hosting websites, databases,
object storage, content delivery, gaming, etc. Virtualization is one of the key tech-
nologies that has enabled the simulation and pooling of multiple dedicated resources
from limited physical hardware. Hence virtualization is a common technology adopted

© The Author(s) 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 55–64, 2020.
https://doi.org/10.1007/978-3-030-48842-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-48842-0_4

by cloud providers to reduce hardware, save energy and offer more customized
resource options to customers at attractive price points while leveraging the economies
of scale.

Given all its advantages though, virtualization does not come free and incurs
resource overhead. Ultimately, this overhead must be accounted for within the same
pool of physical hardware, leaving slightly reduced resources for the customer work-
load, or worse, noise or interruption adversely impacting the customer workload. This
is in stark contrast to the bare-metal environments the HPC community has been used
to, over decades, by dint of practice and familiarity. This work addresses the progress
made in (1) optimizing the impact of virtualization on HPC workloads in a cloud
environment, and (2) evolving the usability of cloud HPC environments. Specifically,
this work discusses efforts made to minimize and eliminate the impact of virtualization
on HPC workloads on cloud infrastructure and move towards a more familiar super-
computing experience. The impact of such work is felt resoundingly in all industries
that (1) traditionally have always been at the forefront of advancing HPC capabilities,
and (2) are currently undergoing an all-encompassing digital transformation leveraging
cloud computing.

2 Existing Gaps

The special requirements of HPC have typically been tacked onto existing cloud
infrastructure and practices. As a result, most cloud offerings aren’t completely opti-
mized for HPC, or aren’t yet feature-complete as far as traditional supercomputing
experience is concerned. The key gaps are in the areas of:

(1) minimizing and eliminating impact of the virtualization layer (hypervisor),
(2) bare-metal-like representation of the hardware to the workload, and
(3) the HPC software ecosystem.

While the third item concerns more with the readiness and usability of the envi-
ronment, the first two items directly impact the performance of HPC workloads.

The first two “performance” related items can be addressed by truly bare-metal
instances which many cloud providers offer, and which come with a different set of
considerations. Another common theme among cloud providers is that they offer
instances with specific features exposed natively, in as bare-metal a state as possible,
through the virtualization layer. The implementations differ and so do the feature-set
and underlying performance and ease of usage. The “usability” is commonly addressed
through one of two ways: (1) ready-to-use operating system images, preloaded with the
right drivers, packages and applications to use the features out of the box, and
(2) scripts or instructions to enable and use features. Solution approaches to address the
existing gaps as listed above are described in greater detail as follows.

56 A. Verma

3 Methods

The optimization performed on the cloud computing platform are described as follows.

3.1 Eliminate “Jitter”

One of the biggest concerns of running an HPC (or any) workload on shared resources
such as on the cloud is that of reduced performance due to a “noisy neighbor”. At least
on the aspect of sharing compute resources, this can be rather trivially addressed by
hosting only 1 customer virtual machine (VM) per compute node. While the economics
of this depends on the specifications of the compute node and the customer workload,
this arrangement makes complete sense for HPC workloads. Compute resource
intensive workloads, such as in HPC and AI, should first scale up (on the same
compute node) before scaling out (to multiple compute nodes). Hence providing a full
compute node per customer VM eliminates the “noisy neighbor” issue.

The issue of minimizing and eliminating the impact of the hypervisor can be
addressed separately for compute and networking. The compute resources allocated to
the hypervisor can be separate from the compute resources allocated to the customer
VM or workload. On Azure, where the hypervisor is essentially a very stripped down
version of Windows Server, this is accomplished using Minroot [1] and CpuGroups
[2]. Minroot is used to constrain and isolate the compute resources (host virtual pro-
cessors) allocated to the hypervisor. CpuGroups is used to group, constrain and isolate
the compute resources (host virtual processors) allocated to the customer VM(s). As
Fig. 1 illustrates, in the case of HPC on Azure HB-series, there is 1 customer VM per
node and the hypervisor resources (physical cores 0–3) are separate from the VM’s
resources (physical cores 4–63). The VM on this 64-core node sees 60 cores divided
across 15 NUMA nodes, isolated from any interference or “jitter” from the hypervisor.

Performance jitter due to noisy neighbors in networking is a different topic but is an
integral one when eliminating jitter holistically from a system. Such “networking jitter”

Fig. 1. Separation and isolation of the hypervisor from the VM to eliminate ‘jitter’.

Cloud Platform Optimization for HPC 57

can be trivially eliminated in a single node case when there is no inter-node commu-
nication over a network. However this trivial case is not interesting since the compute
hypervisor jitter really manifests and becomes important when involving inter-node
communication at a large enough scale. On Azure, the network jitter is attempted to be
mitigated with the use of a balanced, non-blocking, fat-tree cluster and Adaptive
Routing (AR) on the InfiniBand fabric [10]. With destination-based routing, AR
enables the source node to select alternate paths to the same destination, allowing
congested paths in the network to be avoided. This mitigation of networking jitter is
demonstrated in Fig. 2 where enabling AR improves application (Star-CCM+) per-
formance, particularly at scale on Azure HB-series with improvement up to 17% higher
at 96 nodes when compared to AR disabled.

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64 96

Ap
pl

ic
at

io
n

Ra
tin

g
(h

ig
he

r i
s b

et
te

r)

Nodes

Adaptive Routing Disabled

Adaptive Routing Enabled

Fig. 2. Adaptive routing in the InfiniBand fabric mitigates “networking jitter”.

3.2 Resource Virtualization

The impact of the virtualization on the networking is overcome through Single Root
Input/Output Virtualization (SR-IOV). This technology allows device virtualization
without using device emulation by enabling the PCIe resources to expose virtual
functions (VFs) to virtual components (such as network adapter). This allows the
hypervisor to map VFs to VM(s), which can achieve native device performance without
using passthrough [3]. For HPC on Azure (e.g. HC-series), this is used for the Infini-
Band network. This allows HPC and AI workloads to take advantage of all Message
Passing Interface (MPI) implementations (and other frameworks based on MPI such as
Horovod) and Remote Direct Memory Access (RDMA) verbs natively. SR-IOV for
InfiniBand allows (1) customers to bring over a familiar (and any) HPC stack to the
cloud, and (2) expose advanced networking features for optimized performance
(HCOLL, SHARP, etc.). Figures 3 and 4 demonstrate the native performance of MPI
point-to-point benchmarks – latency and bandwidth. This data is from running the OSU
microbenchmarks with 3 MPI implementations: HPC-X, IntelMPI 2018, MVAPICH2
on Azure HC-series and HB-series for the latency and bandwidth tests respectively.

Complementary to the work above, performance with SR-IOV for InfiniBand had
been shown to be comparable to that of bare-metal InfiniBand [4]. For compute

58 A. Verma

resources, there are other challenges with respect to mapping the physical CPU
topology as-is to the virtual representation. This is especially important for chiplet-like
designs with multiple NUMA nodes (or groups of L3-cache). On Azure HB-series and
HC-series, the absence such mapping in a deterministic and inconsistent manner has

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

nc
y

(u
s)

Message Size (bytes)

MPI Latency

HPC-X IntelMPI-2018 MVAPICH2

Fig. 3. Massive improvement in MPI latency due to platform updates, close to bare-metal
performance expectations.

0

2000

4000

6000

8000

10000

12000

14000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Ba
nd

w
id

th
 (M

B/
s)

Message Size (bytes)

MPI Bandwidth

HPC-X IntelMPI-2018 MVAPICH2

Fig. 4. MPI bandwidth near line rate (InfiniBand EDR 100 Gbps).

Cloud Platform Optimization for HPC 59

resulted in differing performance of different realizations of the same experiment.
Figure 5 is a fictional representation of the “scrambling” of the NUMA node num-
bering in the VM for a 2 socket, 16 NUMA node architecture. Applications may
experience the impact of this in the way of reduced performance when, for instance:

• the data it was sharing with a NUMA node it was assuming to a neighbor is actually
across an inter-socket link, or

• a process pinned to a core in a NUMA node assuming the NIC is affinitized nearby,
attempts to broadcast message elsewhere only to realize that the bandwidth is
reduced on account of the physical NIC being on a far NUMA node.

Having an accurate view of where the workload processes (within the VM) are
running on the physical node is important to plan out proper process placement and
pinning, and eke out optimal performance. This issue is addressed in later version of
the hypervisor which enables deterministic and consistent mapping of the NUMA
nodes from the physical topology to the virtual presentation (pNUMA->vNUMA
mapping). Note that corresponding pCore->vCore mapping at a granular core level is
still ongoing work.

3.3 Software Ecosystem

The above work has been focused on the “performance” aspects of the platform; the
“usability” side of the platform is equally important. Users of supercomputing facilities
are accustomed to seeing pre-configured scientific computing and HPC packages
available as ready-to-use, loadable modules. This greatly reduces the barrier to entry for
new, first time users for such platforms, maintain control over the proliferation of
custom environments, as well as provide some guarantees on function and performance
of the various applications and packages. Spack is gaining popularity among system

Physical Virtual

Fig. 5. Representation of the challenges of inconsistent NUMA node mapping.

60 A. Verma

administrators of such facilities as a flexible package manager to support multiple
versions, configurations, compilers and platforms.

An optimized, performant, and easy to use HPC software ecosystem allows cus-
tomers to get native and designed-for performance right away. To this end, the fol-
lowing are made available on Azure:

(1) optimized VM OS images based on CentOS 7.6 and 7.7, with popular MPI
implementations and scientific computing libraries [5],

(2) an optimized MPI implementation (MVAPICH2-Azure),
(3) native support for Open Container Initiative (OCI) format container images [6],

including Singularity.sif image files
(4) recipes for scientific computing containers [7, 8], and
(5) Spack repo with integrated buildcache on Azure Blob (object storage) [11].

4 Results

The composite result of the progress made in (1) optimizing the performance of HPC
workloads in a cloud environment, and (2) evolving the usability of cloud HPC
environments is illustrated in Figs. 6, 7, 8 and 9. Figure 6 shows the performance of an
open source reservoir simulator OPM Flow [9]. Expanding beyond the scope of tra-
ditional HPC applications, Fig. 7 shows the advantages offered by RDMA over Infi-
niBand for “big data” workflows leveraging SparkRDMA [12]. Figure 9 shows an
example of running Horovod, a popular distributed AI training framework for Ten-
sorFlow; the efficiency of RDMA over InfiniBand outpacing that of IPoIB even at the
relatively small scales. Both these experiments (Figs. 7 and 8) are performed on the
Azure HC-series, with the Horovod experiment using Intel MPI. Finally Fig. 9 shows
the scaling of a popular CFD application (Star-CCM+) up to 37000 cores on Azure
HB_v2-series. This has now been extended to 57,000 cores which is a record run for
HPC in the cloud.

Fig. 6. Comparison of the runtime for the OPM reservoir simulator on HB with 3 different cases
(0.5 M, 1 M and 6 M) for a combination of nodes and processes per node.

Cloud Platform Optimization for HPC 61

0 100 200 300 400 500 600

TeraSort - 320 GB

PageRank - 19GB

Execution Time (s)

Spark-RDMA

RDMA (100 Gbps) IPoIB (100 Gbps)

Fig. 7. Advantage of RDMA over InfiniBand for “big data” workloads using SparkRDMA.

100.00
96.78 95.58 94.93

100.00 98.86 98.37
96.94

50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00
100.00

0

200

400

600

800

1000

1200

1400

1600

2 4 8 16

%
 E
ffi

ci
en

cy

Im
ag

es
/s

ec
on

d

nodes

Horovod TensorFlow

IPoIB (100 Gb) RDMA (100 Gb)

IPoIB Efficiency RDMA Efficiency

Fig. 8. Running Horovod, a distributed AI training framework for TensorFlow on an HPC
platform.

62 A. Verma

5 Future Work

From an HPC platform perspective, the above work described the optimizations made
for compute and clustered networking to enable not just the traditional HPC workloads,
but also the emerging “big data” and AI workloads. A key piece of the puzzle to
achieve complete parity with on-prem infrastructure, ecosystem and experience is HPC
storage. While there is significant momentum in the convergence of HPC compute and
networking to support the traditional HPC and AI workloads, the storage space appears
to be evolving disjoint requirements and preferences. There may be a “divergence of
HPC and AI” as far as storage is concerned, but this is evolving. There is ongoing work
with “cloud-native” HPC which concerns “cloud-native” orchestration of resources,
monitoring, logging, and interaction with distributed data stores.

References

1. https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-
hyper-v-minroot-2016

2. https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-
hyper-v-cpugroups

3. Efficient High-Performance Computing with Infiniband Hardware Virtualization. http://datas
ys.cs.iit.edu/reports/2014_IIT_virtualization-fermicloud.pdf

0
5

10
15
20
25
30
35
40
45

0 64 128 192 256 320

Ap
pl

ic
a

on
 R

a
ng

(h
ig

he
r i

s
be

er
)

Nodes

Linear Scaling
75% Linear Scaling
v14.06, HBv2, PPN=112, HPCX 2.5.0
v14.06, HBv2, PPN=116, HPCX 2.5.0

Fig. 9. Scaling of the CFD simulator Star-CCM+ up to 37000 cores.

Cloud Platform Optimization for HPC 63

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-minroot-2016
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-minroot-2016
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-cpugroups
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-cpugroups
http://datasys.cs.iit.edu/reports/2014_IIT_virtualization-fermicloud.pdf
http://datasys.cs.iit.edu/reports/2014_IIT_virtualization-fermicloud.pdf

4. SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience. http://mvapich.
cse.ohio-state.edu:8080/static/media/publications/abstract/sriov-ccgrid13.pdf

5. https://techcommunity.microsoft.com/t5/Azure-Compute/Azure-CentOS-7-6-7-7-HPC-
Images/ba-p/977094

6. https://techcommunity.microsoft.com/t5/Azure-Compute/Singularity-on-Azure-Containers-
for-HPC/ba-p/464174

7. https://docs.nvidia.com/ngc/ngc-azure-setup-guide/index.html
8. https://github.com/vermagit/hpc-containers/tree/master/singularity/recipes
9. https://techcommunity.microsoft.com/t5/Azure-Compute/Reservoir-Simulation-on-Azure-

HPC-for-Oil-amp-Gas/ba-p/791986
10. https://community.mellanox.com/s/article/How-To-Configure-Adaptive-Routing-and-SHIELD
11. https://github.com/Azure/azurehpc/tree/master/apps/spack
12. https://github.com/Mellanox/SparkRDMA

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

64 A. Verma

http://mvapich.cse.ohio-state.edu:8080/static/media/publications/abstract/sriov-ccgrid13.pdf
http://mvapich.cse.ohio-state.edu:8080/static/media/publications/abstract/sriov-ccgrid13.pdf
https://techcommunity.microsoft.com/t5/Azure-Compute/Azure-CentOS-7-6-7-7-HPC-Images/ba-p/977094
https://techcommunity.microsoft.com/t5/Azure-Compute/Azure-CentOS-7-6-7-7-HPC-Images/ba-p/977094
https://techcommunity.microsoft.com/t5/Azure-Compute/Singularity-on-Azure-Containers-for-HPC/ba-p/464174
https://techcommunity.microsoft.com/t5/Azure-Compute/Singularity-on-Azure-Containers-for-HPC/ba-p/464174
https://docs.nvidia.com/ngc/ngc-azure-setup-guide/index.html
https://github.com/vermagit/hpc-containers/tree/master/singularity/recipes
https://techcommunity.microsoft.com/t5/Azure-Compute/Reservoir-Simulation-on-Azure-HPC-for-Oil-amp-Gas/ba-p/791986
https://techcommunity.microsoft.com/t5/Azure-Compute/Reservoir-Simulation-on-Azure-HPC-for-Oil-amp-Gas/ba-p/791986
https://community.mellanox.com/s/article/How-To-Configure-Adaptive-Routing-and-SHIELD
https://github.com/Azure/azurehpc/tree/master/apps/spack
https://github.com/Mellanox/SparkRDMA
http://creativecommons.org/licenses/by/4.0/

Applications and Scheduling

swGBDT : Efficient Gradient Boosted
Decision Tree on Sunway Many-Core

Processor

Bohong Yin1, Yunchun Li1,2, Ming Dun2, Xin You1, Hailong Yang1(B),
Zhongzhi Luan1, and Depei Qian1

1 School of Computer Science and Engineering, Beihang University, Beijing, China
{15061139,lych,youxin2015,hailong.yang,07680,depeiq}@buaa.edu.cn

2 School of Cyber Science and Techonology, Beihang University, Beijing, China
dunming0301@buaa.edu.cn

Abstract. Gradient Boosted Decision Trees (GBDT) is a practical
machine learning method, which has been widely used in various appli-
cation fields such as recommendation system. Optimizing the perfor-
mance of GBDT on heterogeneous many-core processors exposes several
challenges such as designing efficient parallelization scheme and mitigat-
ing the latency of irregular memory access. In this paper, we propose
swGBDT, an efficient GBDT implementation on Sunway processor. In
swGBDT, we divide the 64 CPEs in a core group into multiple roles
such as loader, saver and worker in order to hide the latency of irregular
global memory access. In addition, we partition the data into two gran-
ularities such as block and tile to better utilize the LDM on each CPE
for data caching. Moreover, we utilize register communication for collab-
oration among CPEs. Our evaluation with representative datasets shows
that swGBDT achieves 4.6× and 2× performance speedup on average
compared to the serial implementation on MPE and parallel XGBoost
on CPEs respectively.

Keywords: Gradient Boosted Decision Tree · Many-core processor ·
Performance optimization

1 Introduction

In recent years machine learning has gained great popularity as a powerful tech-
nique in the field of big data analysis. Especially, Gradient Boosted Decision
Tree (GBDT) [6] is a widely used machine learning technique for analyzing mas-
sive data with various features and sophisticated dependencies [17]. GBDT has
already been applied in different application areas, such as drug discovery [24],
particle identification [18], image labeling [16] and automatic detection [8].

The GBDT is an ensemble machine learning model that requires training
of multiple decision trees sequentially. Decision trees are binary trees with dual

c© The Author(s) 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 67–86, 2020.
https://doi.org/10.1007/978-3-030-48842-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-48842-0_5

68 B. Yin et al.

judgments on internal nodes and target values on leaves. GBDT trains the deci-
sion trees through fitting the residual errors during each iteration for predicting
the hidden relationships or values. Thus the GBDT spends most of its time in
learning decision trees and finding the best split points, which is the key hotspot
of GBDT [9]. In addition, GBDT also faces the challenge of irregular memory
access for achieving optimal performance on emerging many-core processors such
as Sunway [7].

Equipped with Sunway SW26010 processors, Sunway TaihuLight is the first
supercomputer that reaches the peak performance of over 125 PFLOPS [4].
The Sunway processor adopts a many-core architecture with 4 Core Groups
(CGs), each of which consists of a Management Processing Element (MPE) and
64 Computation Processing Elements (CPEs) [7]. There is a 64 KB manually-
controlled Local Device Memory (LDM) on each CPE. The Sunway many-core
architecture also provides DMA and register communication for efficient memory
access and communication on CPEs.

In this paper, we propose an efficient GBDT implementation for the Sunway
many-core processor, which is an attractive target for accelerating the perfor-
mance of GBDT with its unique architectural designs. The hotspot of GBDT
can be further divided into two parts: 1) sorting all the feature values before
computing the gains; 2) computing gain for every possible split. To speedup the
hotspot, we partition the data into finer granularities such as blocks and tiles
to enable efficient data access on CPEs. To improve the performance of sorting,
we divide CPEs into multiple roles for pipelining the computation of segment-
ing, sorting, and merging with better parallelism. We evaluate the optimized
GBDT implementation swGBDT with representative datasets and demonstrate
its superior performance compared to other implementations on Sunway.

Specifically, this paper makes the following contributions:

– We propose a memory access optimization mechanism, that partitions the
data into different granularities such as blocks and tiles, in order to leverage
LDM and register communication for efficient data access on CPEs.

– We propose an efficient sorting algorithm on Sunway by segmenting and sort-
ing the data in parallel and then merging the sorted sequences. During the
sorting and merging, we divide the CPEs into multiple roles for pipelining
the computation.

– We implement swGBDT and evaluate its performance by comparing with
the serial implementation on MPE and parallel XGBoost on CPEs using
representative datasets. The experiment results show 4.6× and 2× speedup,
respectively.

This paper is organized as follows. We give the brief introduction of GBDT
algorithm and Sunway architecture as background in Sect. 2. Section 3 describes
our design methodology for swGBDT. Section 4 shows the implementation details
of swGBDT. In Sect. 5, we compare swGBDT with both serial GBDT implemen-
tation and parallel XGBoost on synthesized and real-world datasets in terms of
performance. Related works are presented in Sect. 6 and we conclude our work
in Sect. 7.

swGBDT : Efficient GBDT on Sunway Processor 69

2 Background

2.1 Sunway Many-Core Processor

The Sunway SW26010 many-core processor is the primary unit in Sunway Tai-
huLight supercomputer. The illustration of the many-core architecture within a
single Core Group (CG) of SW26010 is in Fig. 1. There are four CGs in a single
SW26010 processor. The peak double-precision performance of a CG can be up to
765 GFLOPS, while the theoretical memory bandwidth of that is 34.1 GB/s.
Moreover, the CG is comprised of a Management Processing Element (MPE),
64 Computation Processing Elements (CPEs) in a 8× 8 array and a main mem-
ory of 8 GB. The MPE is in charge of task scheduling whose structure is similar
to mainstream processors, while CPEs are designed specifically for high com-
puting output with 16 KB L1 instruction caches and 64 KB programmable Local
Device Memories (LDMs). There are two methods for memory access from main
memory in the CG to a LDM in the CPE: DMA and global load/store (gld/gst).
DMA is of much higher bandwidth compared to gld/gst for contiguous memory
access. The SW26010 architecture introduces efficient and reliable register com-
munication mechanism for communication between CPEs within the same row
or column which has even higher bandwidth than DMA.

NoC

8*8
CPE

MESH

8*8
CPE

MESH

8*8
CPE

MESH

8*8
CPE

MESH

MPE

MPE

MPE

MPE

MC

MC

MC

MC

DDR3

D
D
R
3

D
D
R
3

DDR3

CPE CPE CPE CPE CPE CPE CPE CPE

CPE CPE CPE CPE CPE CPE CPE CPE

CPE CPE CPE CPE CPE CPE CPE CPE

CPE CPE CPE CPE CPE CPE CPE CPE

CPE CPE CPE CPE CPE CPE CPE CPE

CPE CPE CPE CPE CPE CPE CPE CPE

CPE CPE CPE CPE CPE CPE CPE CPE

CPE CPE CPE CPE CPE CPE CPE CPE

64k LDM

Fig. 1. The many-core architecture of a Sunway core group.

2.2 Gradient Boosted Decision Tree

The Gradient Boosted Decision Tree is developed by Friedman [6]. The pseudo-
code of GBDT algorithm is presented in Algorithm1 [20]. The training of GBDT
involves values from multiple instances under different attributes and there are

70 B. Yin et al.

several hyperparameters in GBDT: the number of trees N , the maximum depth
of tree dmax and the validation threshold of split points β. To store the dataset
of GBDT algorithm, the sparse format [20] is developed to reduce the memory
cost which only stores the non-zero values instead of values of all attributes in
all instances as the dense format. We use the sparse format for swGBDT.

Moreover, as shown in Algorithm 1, GBDT trains the decision trees itera-
tively using the residual errors when the loss function is set to mean squared
error. During each iteration, in order to find the best split points which is the
bottleneck of GBDT, the algorithm needs to search for the maximum gain in
one attribute, which will generate a preliminary split point that is appended to
set P , and finally the best split point will be extracted from the set P with a
validation threshold constant β. Thus the primary process in searching for best
split points are gain computation and sorting. The gain among all instances of
one attribute can be derived from Eq. 1, where GL and GR are the sum of first-
order derivatives of loss function in left or right node respectively, while HL and
HR are the sum of second-order derivatives of loss function in left or right node,
respectively. The first-order and second-order derivatives can be computed from
Eq. 2 and Eq. 3 respectively, where E is the loss function and it is set to be mean
squared error in swGBDT.

gain =
1
2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (GL + GR)2

HL + HR − λ
] (1)

gi =
∂E

∂yi
(2)

hi =
∂2E

∂y2
i

(3)

2.3 Challenges for Efficient GBDT Implementation on Sunway
Processor

In order to implement GBDT algorithm efficiently on Sunway, there are two
challenges to be addressed:

1. How to leverage the unique many-core architecture of Sunway to achieve
effective acceleration. Unlike random forest that each tree is independent of
each other, the computation of each tree in GBDT depends on the result
of the previous tree, which prevents the tree-level parallelism. Therefore, we
need to design a more fine-grained parallel scheme to fully utilize the CPEs
for acceleration.

2. How to improve the efficiency of memory access during GBDT training. The
large number of random memory accesses during GBDT training lead to
massive gld/gst operations with high latency. The poor locality with random
memory access deteriorates the performance of GBDT. Therefore, we need
to design a better way to improve memory access efficiency.

swGBDT : Efficient GBDT on Sunway Processor 71

Algorithm 1. GBDT Algorithm
1: Input: I, d max, β, N
2: Output: T
3: T ← φ
4: for i = 1 → N do
5: Ti ← Tree Init(T)
6: P ← φ
7: N ← RootNode(Ti)
8: A ← GetAttribute(I)
9: for n ∈ N do

10: if d > GetDepth(n) then
11: In ← GetInstance(n)
12: for each A ∈ A do
13: gm ← 0
14: Vn ← GetAttributeValue(A, n)
15: (gm, p) ← MaxGain(In, Vn, A)
16: P ← GetNewSplit(P , (A, gm, p))
17: end for
18: (A∗, g∗m, p∗)← 0
19: for each (A, gm, p)∈ P do
20: if (g∗ < g and g > β) then
21: (A∗, g∗m, p∗)←(A, gm, p)
22: end if
23: end for
24: if g∗m = 0 then
25: RemoveLeafNode(n, N)
26: else
27: (n1, n2) ← SplitNode(n, A∗, p∗)
28: UpdateLeaf(N, n1, n2)
29: end if
30: end if
31: end for
32: end for

3 Methodology

3.1 Design Overview

In this paper, data partitioning and CPE division are used to reduce the time
of memory access through prefetching. For data partition, as shown in Fig. 2,
firstly, we divide the data into blocks evenly according to the number of CPEs
participating in the computation. Then we divide the blocks into tiles according
to the available space of every CPE’s LDM. When calculating the data from a
tile, the DMA is used to prefetch the next tile. That’s how we use the double
buffering to hide the data access delay. When multi-step memory access or multi-
array access are simultaneously needed (such as computing A[i] = B[i] + C[i]
needs access array A, B and C simultaneously), we divide the CPEs into data
cores called loaders and computing cores called savers. Loaders prefetch data and

72 B. Yin et al.

then send it to savers for calculating by register communication. Meanwhile, for
the reason that sorting operation is the most time-consuming, we propose an
efficient sorting method. Firstly, we divide the data to be sorted evenly into 64
segments and sort them separately by 64 CPEs to achieve the maximum speedup
ratio. Then we merge the 64 segments by dividing the CPEs into different roles
and levels and register communication. Every 128 bits transferred by register
communication is divided into four 32-bit length part as shown in Fig. 3.

Fig. 2. The illustration of bistratal array blocking.

3.2 Data Prefetching on CPE

When there is a N -length big array named ARR participating in calculating,
we firstly partition it into K blocks evenly (normally 64 when the CPE division
in Sect. 3.1 is not needed, otherwise 32), so that every CPE processes a block.
Because normally the processing time of every element in ARR is the same, so
the static partition can achieve load balance. Then every CPE divides its block
into tiles according to its usable LDM size. If the size of a tile is too small, more
DMA transactions will be needed, whereas the size is too large, the tile will not
be able to fit the limit of LDM. As a result, we use the equation T = M∑n−1

0 Pi
to

calculate the number of tiles, in which T denotes the number of tiles, M denotes
the LDM usable space size, n denotes the number of arrays that participate
in the task, Pi denotes the element size of every array. Because the DMA is an
asynchronous operation, it needs no more computation after sending the request,
so it can be paralleled with computations. Thus we use the double buffering to
hide the DMA time. In the beginning, the CPE loads the first tile and sends the
DMA request for prefetching the next tile, then begins calculating. Every time
it finish the calculating of one tile, the next tile has been prefetched by DMA,
so the CPE sends a new DMA transaction for the next uncached tile and begins
calculating the cached tile. That’s how our double-buffering works.

In the training process of GBDT, we will face computing tasks like C[i] =
func(A[B[i]]) which need multi-step memory access. Due to the gld operation in
the second step, the memory access is of high latency and low bandwidth. Mean-
while, all CPEs access memory at the same time will cause the load of memory
controller too heavy. So, we use the CPE division mode at these times, set half
of CPEs as data cores called loader, another half of CPEs as computing cores
called saver because they also need to save the final result to the main memory.
There is a one-to-one relationship between saver and loader. The multiple roles

swGBDT : Efficient GBDT on Sunway Processor 73

data0 data1 data3data2

key0 value0 value1key1

key value_part0 optionvalue_part1

(a) Reg communication format 1

(b) Mergence reg communication format 1

(c) Mergence reg communication format 2

0 13 23 36 46 59 69 127

0 13 23 36 46 59 69 127

0 13 23 36 46 59 69 127

Fig. 3. The message formats used in register communication.

of CPEs and data communication are shown in Fig. 4. The loader firstly uses
the data partitioning to prefetch tiles from array B, then uses the gld to get the
value of A[B[i]], finally sends it to its saver by register communication. We use
the communication format in Fig. 3(a). The saver computes the C[i] and saves
C[i] into the buffer and saves the result to the main memory by a DMA request
when fills a buffer.

3.3 Sort and Merge

The sorting of large array is the main hotspot. To make full use of the 64
CPEs and to maximize parallelism, we firstly divide the array evenly into 64
segments, every CPE sorts a segment so that we can get 64 sorted sequences
A0, A1, A2, . . . , A63, then we merge them to get the final result. As shown in
Fig. 5, each round carries out two combined mergence, 32 sorted sequences are
got after the first round, 16 after the second round and so on, 6 rounds are needed
to get the final result. For the reason that unmerged data may be replaced,
as shown in Fig. 6, during every merging round, the data source and destina-
tion must be different. This means that at least two times of memory reading
and writing is needed, reading from source and writing to a temporary location
then reading from the temporary location and writing to the source. If we do
not implement the data reusage through register communication, each round
of merging requires a time of memory reading and memory writing, that are
reading data for merging and writing the result into memory. 6 times of data
reading and writing is needed for 6 rounds of mergence. This will lead to a large
amount of data movements which will cause unnecessary time consumption. In
this paper, we divide the CPEs into different roles and levels and use register
communication to reduce the times of memory reading and writing from six to
two. To achieve this goal, the 6 rounds of mergence is divided into two steps.
The first step only includes the first round of mergence, writes the merged data
into a temporary location. The second step includes all the last 5 rounds of
mergence and writes the final result back to source location. Because the CPEs

74 B. Yin et al.

WiS Llevel i workersaver loader Reg communication
Memory Reference

Register
LDM Memory

S0 L0 S3 L3

S28 L28 S31 L31

LDMLDM

REG REG

Data
Reg Message

A[B[i]]

L

LW0

W1

W2

W3S

W0

W1

W2

Merged Data

Merged Data

Merged Data

Merged Data

Merged Data
Merged Data

Merged Data
Merged Data

Merged Data

Fig. 4. The multiple roles of CPEs and data communication.

are divided into different roles and levels and compose a pipeline, the merging
results of intermediate rounds are all transmitted by register communication to
CPEs that doing the next rounds’ mergence instead of writing back to memory,
thus only one round of memory reading and writing is needed. The formats of
Fig. 3(b) and (c) are used for register communication.

In the first step, the CPEs are divided into two types, loaders and savers.
Each loader corresponds to a saver, they are in the same row so that register
communication can be directly performed. Every loader reads two sequences
with prefetching method mentioned in Sect. 3.1. Then loaders send the merged
data to its saver through register communication. The roles and data stream
are similar to the left part of Fig. 4, the difference is that in mergence, no gld
is needed and all the data is got by DMA. For the fact that the key of all the
data we will sort is non-negative integers, loaders send a message to its saver
with the key field set to −1 as the flag of data transmitting ended after all the
data is got and merged and sent to its saver. Each saver holds a double buffer,
it saves the data into its buffer every time it receives data from its loader. When
one part of its double buffer is full, it will write the data back to memory by
a DMA request and use another part of the double buffer for data receiving.
When savers receive the data with the value of the key field is −1 which means
the data transmitting is ended, they will write all the remaining data in their
double buffer back to memory and end working.

In the second step, the CPEs are divided into three types, loaders, savers
and workers. A part of CPEs’ hierarchical topology, division and data stream
are shown in the right part of Fig. 4. Workers are set to be in different levels

swGBDT : Efficient GBDT on Sunway Processor 75

A0 A1 A2 A3 A60 A61 A62 A63

SR SR SR SR

SR SR

Result

……

……

……… ………

0
0

0
1

0
30

0
31

4
0

4
1

Data

Fig. 5. The illustration of sequence merging.

· · · ·1 3 5 · · · ·0 2 4

· · · ·1 3 5 · · · ·0 2 4

· · · ·0 3 5 · · · ·0 2 4

Get the smaller one and write back

Move the iterator

(a) If do not use temporary memory

· · · ·1 3 5 · · · ·0 2 4

0

· · · ·1 3 5 · · · ·0 2 4

(b) Using temporary memory

OD

OD

OD

OD

T

OD

Fig. 6. The illustration of read-write conflict. (OD denotes the original data and T
denotes the temporary memory)

according to the flow of the data stream, the workers that directly receive data
from loaders are in the lowest level, the worker that directly sends data to the
saver is in the highest level and the level of the others are sequentially increased
according to the flow of the data stream. In Fig. 4, Wn means the level n worker.
Loaders read data of two different sequences from memory and merge them and
then send to the workers in the lowest level through register communication. The
workers of every level receive data from two different lower-level worker and send
the data to a higher-level worker after mergence through register communication.
There is only one highest level worker. It sends the merged data to the saver
instead of other workers. The saver saves the result back to memory. Also we
set key of communication to −1 as the end flag.

4 Implementation

In this section, we present the implementation details of swGBDT, especially
focusing on the gain computation and sorting process which are the major

76 B. Yin et al.

hotspots of GBDT. Moreover, we also describe the communication scheme for
CPEs in detail.

4.1 Processing Logic of Gain Computation

As shown in Algorithm 2, to find the best gains, we need to consider every
possible split and compute the gain of every split according to Eq. 1 to find the
best gains. As the GL and GR in the equation are the sum of the g of instances
on the left side and the right side, respectively. HL and HR are the same but
the sum of h. The computation of g and h are shown in Eq. 2 and 3. Naturally,
every feature value is a possible split point, but not all the instances have all the
features. So, there are two ways to handle those instances that do not have the
feature that the split uses. One is to divide the instances without this feature into
the left side, that is assuming the feature values of these instances are smaller
than the split point. Another is to divide them to the right side, that is assuming
the feature values of these instances are bigger than the split point.

Algorithm 2. The Processing Logic of Gain Computation
1: Input: S, fatherGH, missingGH, prefixSumGH, λ
2: Output: Gain
3: if thread id%2 == 0 then
4: for each split ∈ S do
5: REG GET(reg)
6: (f gh, m gh) ← reg
7: r gh ← prefixSumGH[split]
8: (l gain, r gain) ← ComputeTwoGain(f gh, r gh, m gh, λ)
9: if l gain > r gain then

10: Gain[split] ← l gain
11: else
12: Gain[split] ← −r gain
13: end if
14: end for
15: else
16: for each split ∈ S do
17: reg ←(fatherGH[split], missingGH[split])
18: REG SEND(reg, thread id − 1)
19: end for
20: end if

Through the prefix sum operation, we already know the sum of g/h of the
instance with the feature the split uses for all the possible split. The sum of g/h
of the missing instances has been calculated, too. Thus we can easily calculate
the GL and GR of two kinds of division by simple addition. The sum of g/h of
the father node which is the sum of g/h of all the instances is also known as the
result of the previous iteration. Thus we can get the GL and HL with a simple

swGBDT : Efficient GBDT on Sunway Processor 77

subtraction. So, they are all used as the input of the algorithm. In the algorithm,
we obtain the index of the node that is to be split at first and get father gh value
with the index. Then we calculate the gain of missing instances on the left and
right side, respectively. We only need the larger one and keep the original value if
they are on the left or take the opposite if they are on the right. Since getting the
fatherGH and missingGH are both two-step memory access, we cannot predict
the memory access location of the second step because it depends on the result of
the first step, so the data cannot be load into LDM by DMA easily. This means
gld with high latency is needed. To reduce the performance loss, we divide the
CPEs into loaders and savers. Loaders load the possible split into LDM using
DMA and then get the fatherGH and missingGH with gld. Finally they send
the data to their saver with register communication. Savers receive data, then
compute the gains and write back to memory using DMA.

4.2 Processing Logic of Sorting

For sorting, we need to split the whole sequence to be sorted evenly into
A0, A1, A2, . . . , A63, each element in the sequence consists of two parts: key and
value. It’s a key based radix sort. As the key is a 32-bit integer, the time com-
plexity is O(�32/r� × n), where r is the number of the bits of the base, that
is, r bits are used for calculation at each round. It can be seen that the larger
the r is, the lower the time complexity is. However, the rounding up operation
leads to the result that when r is set to r0 and is not the factor of 32, the time
complexity is the same with r using a factor of 32 that is the closest to r0 but
smaller than r0. The factors of 32 are 1, 2, 4, 8, 16, 32 and the capacity of
LDM is 64 KB which can only accommodate up to 16386 32-bit integers. When
r takes 16, 216 = 65536 buckets are needed, the LDM will be exceeded even if
the capacity of each bucket is 1. That is to say, the r can only take 8, so four
rounds are needed to finish sorting. Because every CPE sorts independently, only
64 internally ordered sequences, B0, B1, . . . , B63, are obtained after sorting. 64
sequences are unordered with each other. We need the merging operation to get
the final result.

For merging, we use the loader-saver mode to divide the CPEs in the first
step. For stable sorting, as shown in Algorithm 3, the ith loader reads the data
from B2i and B2i+1 and merges them. We can consider the two sequences as two
queues, the queue with data from B2i calls q0, the queue with data from B2i+1

calls q1. Reading a tile means the data in the tile enqueue the corresponding
queue. Comparing the key of the elements of the two queues continually, only
when the key of the head element of q1 is smaller than that of q0 or q0 is empty
with no more data to be enqueued, q1 can dequeue the head element, otherwise
q0 dequeue the head element. The dequeued element is sent to the corresponding
saver by register communication. Saver saves the received data into buffer and
writes the data into the main memory every the buffer is filled.

78 B. Yin et al.

Algorithm 3. The Processing Logic of the Loaders of Mergence
1: Input: sequences, sendto, seg id
2: readbuffer1 ← sequences[seg id[0]].tiles
3: readbuffer2 ← sequences[seg id[1]].tiles

/*refill from memory when readbuff is empty, the refill operation is skipped here*/
4: while Not (readbuffer1.empty And readbuffer2.empty) do
5: send =min(readbuffer1, readbuffer2)

/*get the min item from two buffers and remove it*/
/*if any buffer is empty then directly get from one the other*/

6: REG SEND(send, sendto)
7: end while
8: REG SEND(END, sendto)

In the second step, we use the loader-worker-saver mode to divide the CPEs.
Because the receiver of register communication cannot know the sender, a send-
flag in the message that indicates the sender is needed if there are more than
one sender in the same row or the same column with receiver. But the message
length is only 128 bits, the sum length of key and value is 64 bits. If sender-flag
is added, we can only send a pair of data a time which lower the efficiency. Thus,
we propose a method that each CPE receives data from only one same-row CPE
and one same-column CPE. And for stable sort, we ensure that the data received
from the same-column CPE is in the former sequence than which from the same-
row CPE by a carefully designed communication method. More specifically, the
ith worker in a level receives last-level’s (2i)th intermediate result by register
communication from the same-column CPE and the (2i + 1)th from the same-
row CPE and sends the merged data (the ith intermediate result of this level)
to the �i/2�th CPE of the next level as shown in Algorithm4. According to the

Algorithm 4. The Processing Logic of the Workers for Mergence
1: Input: sendto
2: No Input and Output
3: REG GETC(colrecv)
4: REG GETR(rowrecv)
5: while row recv! = END And col recv! = END do
6: (send, whichmin) = Min(colrecv, rowrecv)

/*readcache contains two queues, get the smaller item from the front*/
/*if one queue is empty then get the head item from the other one*/

7: REG SEND(send, sendto)
8: if whichmin == 0 then
9: REG GETC(col recv)

10: else
11: REG GETR(row recv)
12: end if
13: end while
14: REG SEND(END, sendto)

swGBDT : Efficient GBDT on Sunway Processor 79

design, when i mod 2 = 0, the data is sent to the same-column CPE, otherwise
to the same-row CPE. Meanwhile, the read buffer of register communication is a
queue with clear-after-reading, we do not need queues for merging. Loaders and
savers work similar to the first step.

4.3 Synchronization Among CPEs

Since the CPE senders and receivers perform register communications according
to the index of the array to be written or to be read and all the communica-
tions are one-to-one communications, no explicit synchronization mechanism is
required. In other words, the whole 128 bits of the message are usable data.
Therefore, our method can make full use of the bandwidth of register communi-
cation and thus improve communication performance.

5 Evaluation

5.1 Experiment Setup

Datasets. To evaluate the performance of our swGBDT, we use 6 datasets from
LIBSVM Data [2] and 4 synthesized datasets named dataset1–4. The details of
the datasets are shown in Table 1.

Table 1. The datasets for evaluation.

DataSet Instances Features NNZ

dataset1 779,412 17,293 1,339,361

real-sim 72,309 20,958 3,709,083

news20 19,996 155,191 9,097,916

dataset2 7,245,157 179,232 12,445,475

dataset3 9,206,499 54,357 15,821,051

e2006 16,087 150,360 19,971,015

YearPredictionMSD 463,715 90 41,734,350

rcv1.test 677,399 47,236 49,556,258

dataset4 31,354,632 447,882 53,868,233

SUSY 5,000,000 18 88,938,127

Evaluation Criteria. We conduct our experiments on a CG of Sunway
SW26010 processor. We compare the performance of our swGBDT with serial
implementation on MPE and parallel XGBoost [3] on CPEs. The serial imple-
mentation is the naive implementation of our GBDT algorithm without using
CPEs. We port the popular open source implementation1 of XGBoost for parallel
1 https://github.com/dmlc/xgboost.

https://github.com/dmlc/xgboost

80 B. Yin et al.

execution on CPEs (with LDM used for better performance). In our experiments,
we set the parameter depth to 6 and the number of trees to 40. All experiments
run in single precision.

5.2 Performance Analysis

We use the average training time of a tree for comparison and use the MPE
version as baseline. The results are shown in Fig. 7, Fig. 8 and Table 2, we can
see clearly that swGBDT is the best one on all datasets. Compared to the MPE
version, swGBDT can reach an average speedup of 4.6× and 6.07× for maximum
on SUSY. Meanwhile, compared to XGBoost, we can achieve 2× speedup for
average, 2.7× speedup for maximum. The advantage of swGBDT comes from
the CPEs division that reduces the memory access time.

Fig. 7. The performance of swGBDT and XGBoost on real-world datasets

Fig. 8. The performance of swGBDT and XGBoost on synthesized datasets

swGBDT : Efficient GBDT on Sunway Processor 81

Table 2. The training results for swGBDT and XGBoost.

DataSet Training RMSE

Name swGBDT XGBoost

dataset1 576 577

real-sim 0.47 0.5

news20 0.48 0.52

dataset2 575 577

dataset3 575 577

e2006 0.23 0.24

YearPredictionMSD 8.8 8.9

rcv1.test 0.43 0.43

dataset4 564 577

SUSY 0.37 0.37

5.3 Roofline Model

In order to analyse the efficiency of our implementation, we apply the roofline
model [22] to swGBDT on a CG of Sunway processor. Giving a dataset with
m instances and n features, assuming the non-zero numbers is nnz, we store it
in CSC format. N split is the number of possible splits during every training
round. Let Q, W and I represent the amount of data accessed from memory, the
number of floating point operations and the arithmetic intensity [23] respectively.
The calculation of Q, W , I is shown in Eq. 5, 4, 6 respectively.

W = 19.5 ∗ nnz + 37 ∗ n split (4)

Q = 22 ∗ nnz + 32.5 ∗ n split (5)

I =
W

Q ∗ 8bytes
= 0.125 +

1.8 ∗ n split − nnz

70.4 ∗ nnz + 104 ∗ n split
(6)

In our experiments, in most of the dataset, the n split is about 0.9 of nnz. In
this situation, I = 0.1288, the ridge point of Sunway processor is 8.46, we can see
that the bottleneck of GBDT is memory access. The version without memory
access optimization (the MPE version) gets the I = 0.108. Our optimization
increases the arithmetic intensity for about 20%.

5.4 Scalability

To achieve better scalability, we divide the features into n segments evenly when
the number of CGs is n. The ith CG only stores and processes the ith feature
segment. Each CG computes its 2depth splits and then determines the 2depth best
splits for all, where depth is the depth of the tree currently. As shown in Fig. 9,
we use up to 4 CGs on a processor for evaluating the scalability of swGBDT.
Comparing to one CG, we can reach an average of 8×, 11.5× and 13× speedup
when scaling to 2, 3 and 4 CGs, respectively.

82 B. Yin et al.

6 Related Work

6.1 Acceleration for Gradient Boosted Decision Tree

To improve the performance of the GBDT algorithm, on one hand, some of
the recent researches have been making efforts to modify the GBDT algorithm
for acceleration. LightGBM [9] accelerate the time-consuming gain estimation
process by eliminating instances with small gradients and wrapping commonly
exclusive features, which can reduce computation. Later, Biau et al. [1] optimize
the GBDT through combining Nesterov’s accelerated descent [15] for param-
eter update. On the other hand, researches have been trying to transfer the
GBDT to novel accelerators like GPU. Mitchell and Frank [14] implement the
tree construction within GBDT algorithm in XGBoost [3] to GPU entirely to
reach higher performance. Besides, Wen et al. [20] develop GPU-GBDT which
enhance the performance of GBDT through dynamic allocation, data reusage
and Run-length Encoding compression. The GPU-GBDT is further optimized
to ThunderGBM [21] on multiple GPUs which incorporates new techniques like
efficient search for attribute ID and approximate split points. However, those
implementations do not target at Sunway architecture and there have not been
any efficient GBDT algorithm designed to leverage the unique architecture fea-
tures on Sunway to achieve better performance.

6.2 Machine Learning on Sunway Architecture

There have been many machine learning applications designed for Sunway archi-
tecture since its appearance. Most of the previous researches focus on optimiz-
ing neural networks on Sunway. Fang et al. [5] implement convolutional neural
networks (CNNs) on SW26010 which is named swDNN through systematic opti-
mization on loop organization, blocking mechanism, communication and instruc-
tion pipelines. Later, Li et al. [10] introduce swCaffe which is based on the popu-
lar CNN framework Caffe and develop topology-aware optimization for synchro-
nization and I/O. Liu et al. [13] propose an end-to-end deep learning compiler on
Sunway that supports ahead-of-time code generation and optimizes the tensor
computation automatically.

Moreover, researchers have paid attention to optimize the numerical algo-
rithms which are kernels in machine learning applications on Sunway architec-
ture. Liu et al. [12] adopt multi-role assignment scheme on CPEs, hierarchical
partitioning strategy on matrices as well as CPE cooperation scheme through
register communication to optimize the Sparse Matrix-Vector Multiplication
(SpMV) algorithm. The multi-role assignment and CPE communication schemes
are also utilized by Li et al. [11] who develop an efficient Sparse triangular solver
(SpTRSV) for Sunway. What’s more, Wang et al. [19] improve the performance of
SpTRSV on Sunway architecture through Producer-Consumer pairing strategy
and novel Sparse Level Tile layout. Those researches provide us the inspiration
of accelerating GBDT algorithm for Sunway architecture.

swGBDT : Efficient GBDT on Sunway Processor 83

(a) dataset1 (b) real-sim

(c) news20 (d) dataset2

(e) dataset3 (f) e2006

(g) YearPredictionMSD (h) rcv1.test

(i) dataset4 (j) SUSY

Fig. 9. The scalability of swGBDT.

84 B. Yin et al.

7 Conclusion and Future Work

In this paper, we present an efficient GBDT implementation swGBDT on Sun-
way processor. We propose a partitioning method that partitions CPEs into mul-
tiple roles and partitions input data into different granularities such as blocks
and tiles for achieving better parallelism on Sunway. The above partitioning
scheme can also mitigate the high latency of random memory access through
data prefetching on CPEs by utilizing DMA and register communication. The
experiment results on both synthesized and real-world datasets demonstrate
swGBDT achieves better performance compared to the serial implementation
on MPE and parallel XGBoost on CPEs, with the average speedup of 4.6× and
2× respectively. In the future, we would like to extend swGBDT to run on CGs
across multiple Sunway nodes in order to support the computation demand of
GBDT at even larger scales.

Acknowledgments. This work is supported by National Key R&D Program of China
(Grant No. 2016YFB1000304), National Natural Science Foundation of China (Grant
No. 61502019, 91746119, 61672312), the Open Project Program of the State Key Lab-
oratory of Mathematical Engineering and Advanced Computing (Grant No. 2019A12)
and Center for High Performance Computing and System Simulation, Pilot National
Laboratory for Marine Science and Technology (Qingdao).

References

1. Biau, G., Cadre, B., Rouvière, L.: Accelerated gradient boosting. Mach. Learn.
108(6), 971–992 (2019). https://doi.org/10.1007/s10994-019-05787-1

2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://
www.csie.ntu.edu.tw/∼cjlin/libsvm

3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

4. Dongarra, J.: Sunway TaihuLight supercomputer makes its appearance. Nat. Sci.
Rev. 3(3), 265–266 (2016)

5. Fang, J., Fu, H., Zhao, W., Chen, B., Zheng, W., Yang, G.: swDNN: a library
for accelerating deep learning applications on sunway TaihuLight. In: 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 615–
624. IEEE (2017)

6. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189–1232 (2001)

7. Fu, H., et al.: The sunway TaihuLight supercomputer: system and applications.
Sci. China Inf. Sci. 59(7), 072001 (2016)

8. Hu, J., Min, J.: Automated detection of driver fatigue based on eeg signals using
gradient boosting decision tree model. Cogn. Neurodyn. 12(4), 431–440 (2018)

9. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:
Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

10. Li, L., et al.: swCaffe: a parallel framework for accelerating deep learning applica-
tions on sunway TaihuLight. In: 2018 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 413–422. IEEE (2018)

https://doi.org/10.1007/s10994-019-05787-1
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

swGBDT : Efficient GBDT on Sunway Processor 85

11. Li, M., Liu, Y., Yang, H., Luan, Z., Qian, D.: Multi-role SpTRSV on sunway
many-core architecture. In: 2018 IEEE 20th International Conference on High Per-
formance Computing and Communications, IEEE 16th International Conference
on Smart City, IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 594–601. IEEE (2018)

12. Liu, C., Xie, B., Liu, X., Xue, W., Yang, H., Liu, X.: Towards efficient SpMV on
sunway manycore architectures. In: Proceedings of the 2018 International Confer-
ence on Supercomputing, pp. 363–373. ACM (2018)

13. Liu, C., Yang, H., Sun, R., Luan, Z., Qian, D.: swTVM: exploring the auto-
mated compilation for deep learning on sunway architecture. arXiv preprint
arXiv:1904.07404 (2019)

14. Mitchell, R., Frank, E.: Accelerating the XGBoost algorithm using GPU comput-
ing. PeerJ Comput. Sci. 3, e127 (2017)

15. Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate o

(
1
k2

)
. Soviet Math. Dokl. 27, 372–376 (1983)

16. Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., Kohli, P.: Decision tree
fields: an efficient non-parametric random field model for image labeling. In: Cri-
minisi, A., Shotton, J. (eds.) Decision Forests for Computer Vision and Medical
Image Analysis. ACVPR, pp. 295–309. Springer, London (2013). https://doi.org/
10.1007/978-1-4471-4929-3 20

17. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost:
unbiased boosting with categorical features. In: Advances in Neural Information
Processing Systems, pp. 6638–6648 (2018)

18. Roe, B.P., Yang, H.J., Zhu, J., Liu, Y., Stancu, I., McGregor, G.: Boosted decision
trees as an alternative to artificial neural networks for particle identification. Nucl.
Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detectors Assoc. Equip.
543(2–3), 577–584 (2005)

19. Wang, X., Liu, W., Xue, W., Wu, L.: swSpTRSV: a fast sparse triangular solve
with sparse level tile layout on sunway architectures. In: ACM SIGPLAN Notices,
vol. 53, pp. 338–353. ACM (2018)

20. Wen, Z., He, B., Kotagiri, R., Lu, S., Shi, J.: Efficient gradient boosted decision tree
training on GPUs. In: 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 234–243. IEEE (2018)

21. Wen, Z., Shi, J., He, B., Chen, J., Ramamohanarao, K., Li, Q.: Exploiting GPUs
for efficient gradient boosting decision tree training. IEEE Trans. Parallel Distrib.
Syst. 30, 2706–2717 (2019)

22. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

23. Xu, Z., Lin, J., Matsuoka, S.: Benchmarking sw26010 many-core processor. In: 2017
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 743–752. IEEE (2017)

24. Xuan, P., Sun, C., Zhang, T., Ye, Y., Shen, T., Dong, Y.: Gradient boosting deci-
sion tree-based method for predicting interactions between target genes and drugs.
Front. Genet. 10, 459 (2019)

http://arxiv.org/abs/1904.07404
https://doi.org/10.1007/978-1-4471-4929-3_20
https://doi.org/10.1007/978-1-4471-4929-3_20

86 B. Yin et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Numerical Simulations of Serrated Propellers
to Reduce Noise

Wee-beng Tay1(&) , Zhenbo Lu1 , Sai Sudha Ramesh1 ,
and Boo-cheong Khoo2

1 Temasek Laboratories, National University of Singapore, T-Lab Building,
5A, Engineering Drive 1, #02-02, Singapore 117411, Singapore

tsltaywb@nus.edu.sg
2 Department of Mechanical Engineering, National University of Singapore,

10 Kent Ridge Crescent, Singapore 119260, Singapore

Abstract. The objective of this research is to investigate the effect of serrations
on quadcopter propeller blades on noise reduction through numerical simula-
tions. Different types of the 5 inch 5030 propellers, such as the standard,
modified and serrated, are tested. The modified propeller has a portion of its
blade’s trailing edge cut off to achieve the same surface area as that of the
serrated blades to ensure a fairer comparison. Three-dimensional simulations
propellers have been performed using an immersed boundary method
(IBM) Navier–Stokes finite volume solver to obtain the velocity flow fields and
pressure. An acoustic model, based on the well-known Ffowcs Williams-
Hawkings (FW-H) formulation, is then used to predict the far field noise caused
by the rotating blades of the propeller. Results show that due to the reduction in
surface area of the propeller’s blades, there is a drop in the thrust produced by
modified and serrated propellers, compared to the standard one. However,
comparing between the modified and serrated propellers with different wave-
length, we found that certain wavelengths show a reduction in noise while
maintaining similar thrust. This is because the serrations break up the larger
vortices into smaller ones This shows that there is potential in using serrated
propellers for noise reduction.

Keywords: Serrated trailing edge � Noise reduction � Propeller � Immersed
boundary method

1 Introduction

Today, renewed attention is being focused on the first aeronautical propulsion device:
the propeller. This is due to the increased use of unmanned air vehicles (UAVs), the
growing market of general aviation, the increasing interest in ultralight categories or
light sport air vehicles, and the growing importance of environmental issues that have
led to the development of all-electric emissionless aircraft. One of the most popular
small aircraft choices (weighing around 250-350 g) nowadays is the quadcopter,
mostly in part due to its low cost, mechanical simplicity and versatile applications.
However, one disturbing problem of propeller-driven aircrafts is their noise, which may

© The Author(s) 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 87–103, 2020.
https://doi.org/10.1007/978-3-030-48842-0_6

http://orcid.org/0000-0001-6615-7885
http://orcid.org/0000-0001-9297-4037
http://orcid.org/0000-0003-1775-184X
http://orcid.org/0000-0003-4710-4598
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-48842-0_6

limit the aircraft’s operation. This can be a serious concern if a UAV wishes to remain
tactical, especially indoors since the audible noise level indoors is much lower.

Reducing propeller’s noise can be achieved by a systematic or novel design of the
propeller’s geometry and aerodynamic characteristics. Most of the research work has
been directed towards conventional engineering strategies to achieve good propeller
designs. For instance, the performance of propellers can be improved by adjusting the
number of blades, diameter, airfoil shape/distribution, chord, pitch distribution and
coning angle [1]. Another method is through the use of contra-rotating propellers [2].

Alternatively, we can look to nature for inspirations. In contrast to conventional
engineering strategies, studies on the application of bio-inspired features in propeller
designs have been initiated recently [3–5]. One example is the owls, which developed
serrated feathers on their wings and downy feathers on their legs that minimize aero-
dynamic noise, giving them silent flight. The serrations give the owl a better ability to
control airflow, therefore allowing it to fly faster and achieve noise reduction at the
same time. Another bio-inspired design is the porous trailing edge [6]. Ziehl-Abegg,
Inc. primarily a ventilator company harnessed this feature by adding winglets to the
blade tip and creating a serrated trailing edge on the rotor blades for achieving a quiet
axial fan (FE2owlet axial fan). This resulted in a significant noise reduction up to
12dBA. However, due to the patent protection, only a few reference works related to
this product can be found from the website. Thus, systematic research work for further
developing a quiet UAV propeller system using this bio-propeller noise reduction
concept is required.

The objectives of the present study are to preliminarily explore this bio-propeller
concept using numerical modelling and further develop a low noise bio-propeller
design strategy which can be used to optimize the propeller’s blade geometry of the
small (<20 cm) quadcopter. We will develop numerical models for calculating the
aerodynamics and aero-acoustic performances of the propeller with focus on biomi-
metic serrated blades design using an in-house 3D Immersed Boundary Method
(IBM) [7] Navier-Stokes solver, coupled with a Ffowcs Williams and Hawkings (FW-
H) [8] acoustic code. A systematic analysis will be performed to improve the aero-
acoustic performance of a bio-inspired propeller with a tentative goal of reducing its
acoustic signature. Lastly, experimental validation will be performed to ensure that the
numerical simulations have been performed accurately.

2 Numerical Setup

2.1 Aerodynamic Solver

For our simulations, an immersed-boundary method (IBM) [7] Navier-Stokes numer-
ical solver [9] is used in this study. The reason for using an IBM based solver is
because the blades of the propeller rotate. In some standard grid conforming numerical
solvers which use the Arbitrary Lagrangian–Eulerian (ALE) [10] formulation, there is a
need to constantly perform grid deformation or remeshing due to the blades’ rotation.

This slows down the solver and affects the quality of the solution. A workaround is
to enclose the propeller in a cylindrical domain and rotate that entire domain. However,

88 W. Tay et al.

there is also another problem with regards to the serrated propellers, as it is not trivial
creating meshes in the vicinity of the serrations on the blades.

On the other hand, in IBM, the entire domain is composed of Cartesian grid and our
bodies of interest are “immersed” in this grid, as shown in Fig. 1. To simulate the
presence of the bodies, we need to add an additional forcing term fc to the momentum
equation to give:

@u
@t

¼ �u � ruþ 1
Re

r2u�rpþ fc; ð1Þ

where u is the velocity vector, t is the time, p is the pressure and Re is the Reynolds
number. Equation (1) has been non-dimensionalized using the blade’s velocity (Uref, at
distance of 75% from its root) and mean chord length (c) as the reference velocity and
length respectively.

Out of the different variants of IBM, the discrete forcing approach is chosen
because it is more suitable for our current Reynolds number (Re) of 31,407. This
approach is based on a combination of the methods developed by Yang and Balaras
[11], Kim et al. [12] and Liao et al. [13]. In the scheme, fc is provisionally calculated
explicitly using the 1st order forward Euler and 2nd order Adams Bashforth (AB2)
schemes for the viscous and convective terms, respectively, to give:

fcnþ 1 ¼ uf � un

Dt
þ 3

2
r:ðuuÞn � 1

2
r:ðuuÞn�1

� �
� r2u

Re

� �n

þrpn; ð2Þ

where n refers to the time step.

r � u ¼ 0: ð3Þ

Equation (3) is the continuity equation. To solve the modified non-dimensionalized
incompressible Navier-Stokes equations (Eq. (1) and Eq. (3)), the finite volume

Fig. 1. Body of interest immersed inside Cartesian grid.

Numerical Simulations of Serrated Propellers to Reduce Noise 89

fractional step method, based on an improved projection method, is used. For the time
integration, the second order AB2 and Crank Nicolson (CN2) discretization are used
for the convective and viscous terms, respectively. For the spatial derivatives, the
convective and viscous terms are discretized using the second order central differencing
on a staggered grid. We solve Eq. (1) and (3) using the fractional step method as
described by Kim and Choi [14], whereby the momentum equation is first solved to
obtain a non-divergence free velocity field. Using this non-divergence free velocity, we
solve the Poisson equation to obtain the pressure field, which in turn updates the
velocity to be divergence free. The open source linear equation solvers PETSc [15] and
HYPRE [16] are used to solve the momentum and Poisson equations respectively. At
this relatively low Re of 31,407, no turbulence modelling is necessary because the flow
is still largely laminar.

2.2 Force Calculations

Due to the fact that the body is not aligned with the Cartesian grid in the IBM, the
forces acting on the bodies are calculated in a different way, as compared to the
standard grid conforming solvers. In this case, we use the forcing term fcn+1 obtained
earlier to calculate the non-dimensional force Fi on the body. More details about this
method can be found in the paper by Lee et al. [15]:

Fi ¼ �
Z
solid

fcnþ 1
i dV þ

Z
solid

@ui
@t

þ @uiuj
@xj

� �
dV ; ð4Þ

where V is the volume of the wing.
The thrust coefficients ct is then given by:

ct ¼ 2c2Ft

S
; ð5Þ

where V is the volume of the wing.
The thrust coefficients ct is then given by:

ct ¼ 2c2Ft

S
; ð6Þ

where c and S refer to the reference wing mean chord length and wing surface area,
respectively.

2.3 Solver Validation

The current IBM solver has been validated many times with different experiments.
Some of the examples are:

1. Plunging wing placed in a water tunnel at a Re of 10,000 with an angle of attack of
20o [17]

90 W. Tay et al.

2. Simultaneous sweeping and pitching motion of a hawkmoth-like wing in a water
tunnel at a Re of 10,000 [18].

More details about the validation can be found in the paper by Tay et al. [9].

2.4 Acoustic Solver

We use a permeable form of FW-H equation, wherein the integration surface (a fic-
titious control surface) surrounds the non-linear flow region. This enables representa-
tion of the non-linear flow effects through the surface source terms in the equation [19].
The fictitious control surface onto which the CFD flow variables are projected, is
assumed to be stationary. In the present study, the permeable control surface onto
which the CFD flow variables (namely, pressure and velocity components) are pro-
jected, is assumed to be stationary. Hence, for a stationary control surface with neg-
ligible density fluctuations, the solution for acoustic pressure is given as follows:

4pp0ðx; tÞ ¼ R
S

q0 _un
r

h i
s
dSðyÞþ R

S

_pn̂�̂r
c0r

h i
s
dSðyÞþ

R
S

pn̂�̂r
r2

h i
s
dSðyÞþ R

S

q0 ðunurÞ
�

c0r

� �
s

dSðyÞþ R
S

q0unur
r2

� �
sdSðyÞ

; ð7Þ

where q0 denotes the ambient fluid density; c0 is the speed of sound; un denotes the dot
product of the velocity vector with the unit normal vector n̂; s refers to the source time
and t is the observer time given as t ¼ sþ r=c0ð Þ; y denotes the source location;
r denotes the source observer distance. The subscripts n and r denote dot products with
the unit vectors in the normal n̂ and radiation r̂ directions respectively. The Farassat 1A
formulation has been used to transfer the time derivatives in the observer time into the
surface integral terms in the FW-H equation, in order to prevent numerical instabilities.
This results in a retarded-time formulation, which is solved using a mid-panel
quadrature method and a source time-dominant algorithm [20]. Once the observer time
pressure history is obtained, a fast Fourier transform (FFT) of the time series is per-
formed to obtain the sound pressure level in frequency domain.

2.5 Simulation Setup and Grid Convergence Study

In this study, the reference velocity U∞ is chosen as the tangential velocity 75% of the
blade length from the propeller’s root, which is calculated to be 44.77 m/s, with the
blade length = 0.127 m and rotation speed = 9,000 rpm. The reference length is the
average blade’s chord length, which is 0.011 m. This gives a Re of 31,407. The
reduced frequency is given as:

fr ¼ fc
U1

¼ 0:037; ð8Þ

where f and c are the frequency and chord length respectively.
Since the solver is IBM based, only Cartesian grids are used. The size of the

computational domain is 24 � 24 � 25 (in terms of non-dimensional chord length c)

Numerical Simulations of Serrated Propellers to Reduce Noise 91

in the x, y and z-directions respectively. The domain varies from -12 to 12, -12 to 12
and 0 to 25 in the x, y and z-directions respectively. The propeller is placed at the x = 0,
y = 0, z = 6 location. Refinement is used in the region near the propeller and this
region consists of uniform grid cells of length dx, which is the minimum grid length
and it gives an indication of the resolution of the overall grid. We perform the simu-
lations in quiescent flow, similar to the experimental setup.

Fig. 2. Comparison of thrust with experiment and at dx = 0.024, 0.018 and 0.012.

Table 1. Average thrust obtained by experiment and at at dx = 0.024, 0.018 and 0.012

Avg thrust/g Experiment dx = 0.024 dx = 0.018 dx = 0.012
87.5 75.2 82.1 89.1

Fig. 3. Isosurfaces plotted at Q criterion = 2 superimposed with pressure contour at
time = 0.12T with dx = a) 0.024, b) 0.018 and c) 0.012.

92 W. Tay et al.

For the grid convergence study, we perform simulations at dx = 0.024c, 0.018c and
0.012c, which translate to total grid sizes of 605 � 605 � 249, 792 � 792 � 307 and
1161 � 1161 � 416 respectively. Figure 2 shows the thrust at these resolutions,
together with the average experimental result while Table 1 shows the average thrust
obtained by experiment and simulations. The comparison between the experimental
and numerical thrust improves as the grid resolution increases. Figure 3 shows iso-
surfaces plotted at Q criterion = 2, superimposed with pressure contour at time =
0.12T for different grid resolutions. We observe that as resolution increases, the iso-
surfaces increases due to having more number of grid cells. However, at dx = 0.024,
there is much less isosurfaces as compared to dx = 0.018 and 0.012.

We next move on to the acoustic analysis at different grid resolutions. The sensi-
tivity of CFD grid resolution on acoustic results has been studied for the baseline case.
Further, the effect of different control surfaces on the overall sound pressure level has
been studied to determine the use of appropriate permeable control surface for sub-
sequent analyses of serrated propellers. Figure 4 shows two types of fictitious control
surfaces namely, CS_0 (cylinder without end cap), CS_1 (cylinder with end caps)
employed in the present study which are located at a distance of 1.1R (R is the radius of
the propeller) from the centre of the propeller. Figure 5 shows the observer point
locations at which the acoustic results will be monitored. The control surfaces are
discretized into 42467 and 53044 triangular panels respectively, with finer discretiza-
tion near the downstream end to enable accurate representation of acoustic sources,
especially the contribution from tip vortices. The reason for studying the two surface
types is to understand the effect of end caps (i.e. closure) on acoustic prediction. The
use of open surface avoids wake penetrating the downstream end cap. The quadrupole
source term in the porous FW-H equation has been neglected, since the control surface
is assumed to reasonably contain the non-linear sound sources within it. Also, given
that the propeller speed is subsonic, the effect of non-linear source terms is weaker in
the far-field. However, they will be predominant when the observer point is located
closer to the propeller axis of rotation, in the downstream end due to contributions from
the tip vortices.

Fig. 4. Geometry and mesh of fictitious control surface located at 1.1 R from the center of
propeller (a) CS_0 (b) CS_1.

Numerical Simulations of Serrated Propellers to Reduce Noise 93

From Table 2, it can be observed that grid B furnishes acoustic results that are
closer to the fine grid resolution C. Hence, from these analyses, we decide that the
minimum grid length of 0.018c will be used for all simulations in this study. Running a
case for one period in parallel using 960 Intel(R) Xeon(R) CPU E5-2690 v3 @
2.60 GHz processors takes about 70 h. As for the acoustic part, we used a maximum of
8 processors in parallel for computing the acoustic results at 8 observer locations which
took about 4 h.

3 Experimental Setup

The acoustic and thrust measurements are conducted inside the anechoic chamber
(located at the Temasek Laboratories@National University of Singapore). The pro-
peller is mounted on the ATI mini40 Load Cell SI-20-1, which provides the thrust
measurement, and the microphones are mounted at Points 1-5. The five points are
aligned along a circle of radius, R = 600 mm, with Point 1 directly beneath the pro-
peller and Point 5 directly above the propeller. The rest of the Points 2, 3 and 4 are
spaced out equally along the circumference of the circle at 45° angle between each

Fig. 5. Locations of observer points.

Table 2. Effect of CFD grid on acoustic results.

Control surface Observer position OASPL (dBA)
A (0.024) B (0.018) C (0.012)

CS_0 00 67.68 65.85 66.51
30 67.85 66.44 66.54
45 68.26 66.07 66.74
60 68.15 65.86 66.25
90 67.83 66.33 66.22

CS_1 0 70.77 71.18 72.11
30 70.24 69.92 70.27
45 70.13 70.12 69.68
60 70.37 70.10 70.16
90 69.38 69.54 69.06

94 W. Tay et al.

point as seen in Fig. 6. The acoustics and thrust measurements of the 5030 propeller
will be taken at rotation speeds of 9000 rpm, for validation against the numerical data.

The microphones (Brüel & Kjær Model 4953 ½ inch condenser microphone) are
connected to a preamplifier and signal conditioner (Brüel & Kjær Model 2669, and
NEXUS 2690-A, respectively). The analog signal of the microphone was sampled at
fs = 100 kHz by a fast analog-to-digital board (National Instruments PXI 6221). Each
recording consists of 106 samples.

To avoid aliasing, a Butterworth filter was used to low-pass filter the signals at
fLP = 0.499 fs - 1 (49,899 Hz). The corresponding power spectrograms were computed
using a short-time Fourier transform providing a spectral resolution of about 0:1Hz.
Using the microphone sensitivity and accounting for the amplifier gain setting, the
voltage power spectrograms were converted to the power spectrograms of p´/pref,
where p´ is the fluctuating acoustic pressure and pref = 20lPa is the commonly used
reference pressure. Converted to decibels and time averaged, these become sound
pressure level spectra SPL fð Þ, where f is the measured frequency. An A-weighting
correction was applied to the SPL spectra to account for the relative loudness perceived
by the human ear. The corresponding overall sound pressure level (OASPL) is obtained
by integrating the SPL spectra:

OASPL ¼ 10log10

Z fupper

0
100:1SPLðf Þdf ; ð9Þ

where fupper is the highest frequency of interest which in this study is 10kHz.
The thrust generated by the propeller is measured by an ATI mini40 load cell SI-

20-1 whose force range and accuracy in the measured direction (Z direction) are 60 N

Fig. 6. Schematic of the experimental setup inside the anechoic chamber

Numerical Simulations of Serrated Propellers to Reduce Noise 95

(�6000 g) and ±0.01 N (�1 g), respectively. The analog signal of the load cell was
sampled at fs = 5 kHz by a fast analog-to-digital board (National Instruments PXI
6221). Each recording consists of 5 � 104 samples, the recorded signal is filtered with
a low-pass filter at fLP = 20 Hz and then the mean value of the filtered data is calculated
as the thrust of propeller. A tachometer is used to measure rotational speed of the
propeller.

4 Methodology

The objectives of the present study are to preliminarily explore the serrated bio-
propeller concept using numerical modelling and further develop a low noise bio-
propeller design strategy which can be used to optimize the propeller’s blade geometry
of the small (<20 cm) quadcopter. The general steps of our methodology are:

1. Selection of a baseline propeller for our current study and measurement of its thrust
and acoustic performance experimentally.

2. Use of our in-house numerical aerodynamic and acoustic solver to perform
validation.

3. Re-design the propeller by adding serration to the its blades using CAD software
and perform simulations to evaluate the performance of propellers with different
serration parameters.

4.1 Initial Baseline Propeller Selection and Serrated, Cut-off Propeller
Design

As mentioned earlier, our objective is to reduce the noise signature due to the propellers
of small quadcopters weighing around 250-350 g. Hence, in this study, we have chosen
the 5030 propeller as our baseline case. Each propeller can provide a thrust of around
80 to 90 g, rotating at 9000 rpm, and this give a total thrust of 320-360 g.

Fig. 7. Schematics of saw tooth serration parameters.

96 W. Tay et al.

Next, we move on to the serrated propeller design. The saw tooth serrated design is
represented in Fig. 7. The height of each saw tooth is = 2 h and the distance between
each saw tooth peak is k. In accordance with other references [21], the key parameter
often used in literature is the ratio of k/h. In this study, we fix h while varying the value
of k. The values k/h selected are given in Table 3.

In the current design, part of the blade material is removed to create the serrations.
This is different from the method used by some other studies [21], whereby the ser-
rations are added onto the blades of the propeller. Due to the reduction in the surface
area of the blades, it would not be fair to simply compare the baseline with the serrated
propellers, even when using force coefficients which takes into account the surface
area. Hence, a special type of propeller known as the cut-off propeller is created, as
shown in Fig. 8. It has approximately the same surface area as the serrated propellers.
One concern is that this modification changes the profile of the propeller’s blade.
However, this is inevitable because the adding of serrations modifies the propeller
blade’s profile as well. Hence, we will be comparing the serrated propellers with the
baseline and cut-off propellers for a more comprehensive analysis.

5 Results and Discussions

5.1 Force Comparison

Figure 9 shows the thrust of the propellers over one period while Table 4 shows the
average thrust. The experimental result is also given for comparison. Due to cost and
time constraint, only two of the better performing serrated propellers have been 3D
printed for validations.

Table 3. Range of k/h selected

k/h 0.5 0.75 1 1.25 2

Fig. 8. Frontal CAD view of the cut-off propeller.

Numerical Simulations of Serrated Propellers to Reduce Noise 97

Comparing between the surface area of the baseline and cut-off propellers, there is a
12.8% decrease in surface area. The serrated propellers have similar surface areas as the
cut-off propeller. The average thrust of the cut-off propeller is 16.2% lower than that of
the baseline case. Hence, the drop in thrust is higher than the surface area. However, we
must also understand that the cut-off is simply a shortcut alternative to compare
between serrated and unserrated propellers of similar area. It is not an aerodynamically
ideal design and therefore will generate a lower than expected thrust. Moreover, thrust
increase or decrease is usually exponential, instead of linear.

If we compare the cut-off propeller with the serrated ones, we observe that there can
be a drop or increase in the thrust, although the surface areas of these propellers are
similar. These vary from -2.7 to -11.7%.

5.2 Flow Visualizations

We now turned our attention to the comparison of the baseline, cut-off and serrated
propellers. The k/h = 1 serrated propeller is chosen since it gives the highest thrust.
Similar to the previous comparison, there is only minor difference in the surface
pressure distribution on the propellers. The key differences in this case lies in the vortex
shedding at the trailing edge. As shown on the circled regions in Fig. 10, the serrated

Fig. 9. Thrust generated by different propellers over one period.

Table 4. Surface area and average thrust generated by the different propellers

Baseline Cut-off k/h = 0.5 k/h = 0.75 k/h = 1 k/h = 1.25

Surface area/cm2 15.6 13.6 13.6 13.6 13.4 13.6
Average numerical thrust/g 80.4 67.4 65.6 61.6 62.5 59.5

98 W. Tay et al.

propeller tends to produce elongated, narrow and long vortices. It has been mentioned
in some papers that the serration breaks up the larger vortices into smaller ones, and
this in turn reduces the noise level of the propeller. This is because larger vortices are
more energetic and they created larger pressure fluctuations during shedding.

5.3 Acoustic Analysis

We now present the results for propellers with various serrated trailing edge configu-
rations. Table 5 presents the OASPL values at an observer distance of 10R from the
propeller hub. In all the cases, the height of serration is fixed while the amplitude of
serrations is varied to study the influence of trailing edge serrations on the acoustic
field. Owing to computational time, the CFD results are extracted for one cycle after
steady state convergence is achieved, followed by acoustic analysis. Figure 11 presents
the plot of overall sound pressure level (dBA) for various serrated configurations at
various observer locations. In general, the effect of including serrations at the trailing
edge reduced noise level, especially in the vicinity of the downstream end. As evi-
denced in the isosurface plots in Fig. 10, the propeller with (k/h = 1) reduces the
intensity of trailing edge vortices compared to baseline and cut-off propeller configu-
rations. As they are convected downstream, reduced noise levels are perceived near
downstream observer locations. This is also reflected in OASPL plot in Fig. 11 and
Table 5. However, the role of serrations in reducing noise levels are not effective for
the in-plane observer point and its immediate vicinity. This supports the fact that dipole
sources resulting from oscillating surface pressure distribution on the propeller are the
main sources of noise at these locations. Furthermore, based on numerical investiga-
tions, there seems to be an optimal serrated configuration corresponding to (k/h = 1)
which can reduce downstream noise levels from 2.3 to nearly 5 dBA. Further
numerical investigations will be conducted in future to substantiate the above fact. The
amplitude and spacing of serrations play a crucial role in controlling the intensity of the

Fig. 10. Isosurface plotted at Q criterion of 2, superimposed with pressure contour of the a)
baseline, b) cut-off and c) k/h = 1 propellers at time = 0.24T and 0.88T. Circle regions denote
differences.

Numerical Simulations of Serrated Propellers to Reduce Noise 99

shed vortices, especially those shed from the blunt roots of the serrations. This is
possibly one of the reasons why the noise levels begin to increase beyond an optimal
spacing of serrations [22, 23]. For instance, the noise levels begin to increase for
k/h < 0.75. Therefore, the effect of introducing serrations at the trailing edge eventually
results in lower noise levels by enhancing the bypass transition to turbulence, compared
to conventional transition to turbulence through laminar boundary layer.

Table 5. Comparison of OASPL values (dBA) at various locations for baseline and serrated
5030 propellers at 9000 rpm.

Propeller Angle CS_0 CS_1 Experiment

Baseline 0 65.85 71.18 67.17
30 66.44 69.92 –

45 66.07 70.12 67.68
60 65.86 – –

90 66.33 – 65.21
Cut-off 0 67.78 71.23 68.49

30 67.03 70.28
45 65.85 69.31 69.37
60 65.05 –

90 65.71 – 66.36
SR – 1.25 (k/h = 1.25) 0 66.92 68.73

30 67.20 70.30
45 66.60 70.54
60 66.43 –

90 65.30 –

SR - 1 (k/h = 1) 0 65.63 65.65 68.94
30 67.12 66.52
45 67.57 67.56 67.33
60 66.57 –

90 64.94 – 63.48
SR – 0.75 (k/h = 0.75) 0 66.13 69.25 69.87

30 65.79 68.65
45 66.54 68.39 67.42
60 67.15 –

90 66.15 – 66.04
SR – 0.5 (k/h = 0.5) 0 65.94 68.97

30 66.62 70.45
45 65.42 69.88
60 65.87 –

90 66.26 –

100 W. Tay et al.

6 Conclusions and Recommendations

Results show that when the serrated propellers are compared to the cut-off propeller, it
is a decrease of 2.7% to 11.7%. There is a general trend of lower acoustic noise. The
optimum case lies in the k/h = 1 case, whereby while there is only a small change in
the thrust, it can have up to 5 dB decrease in acoustic noise. These results demonstrated
that serrations can be used to lower the noise level of propeller. More importantly, we
have created a computational framework that links the numerical solver to the acoustic
solver (based on FWH methodology) to study acoustic performance of propellers. This
will be very useful for the systematic testing of future bio-mimetic propeller designs.

For the aero-acoustic part, the results show that the present solver can capture the
tonal frequencies occurring at the harmonics of the blade passage frequency. The
broadband components of the sound spectrum associated with small scale turbulent
velocity fluctuations cannot be captured since the CFD solver is based on an incom-
pressible flow averaged Navier Stokes equation.

References

1. Gur, O., Rosen, A.: Design of quiet propeller for an electric mini unmanned air vehicle.
J. Propul. Power 25, 717–728 (2009). https://doi.org/10.2514/1.38814

2. Sato, S.: Design and characterization of hover nano air vehicle (HNAV) propulsion system
(2009). https://doi.org/10.2514/6.2009-3962

3. Agarwal, N.: Study of the unsteady aerodynamics associated with a cycloidally rotating
blade (2017)

4. Clark, I.A., et al.: Bio-inspired canopies for the reduction of roughness noise. J. Sound Vib.
385, 33–54 (2016). https://doi.org/10.1016/j.jsv.2016.08.027

Fig. 11. Comparison of OASPL values for various propeller types.

Numerical Simulations of Serrated Propellers to Reduce Noise 101

https://doi.org/10.2514/1.38814
https://doi.org/10.2514/6.2009-3962
https://doi.org/10.1016/j.jsv.2016.08.027

5. Geyer, T., Sarradj, E., Fritzsche, C.: Nature-inspired porous airfoils for sound reduction. In:
Tropea, C., Bleckmann, H. (eds.) Nature-Inspired Fluid Mechanics. NNFMMD, vol. 119,
pp. 355–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28302-4_21

6. Barone, M.F.: Survey of techniques for reduction of wind turbine blade trailing edge noise
(2011)

7. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261
(2005). https://doi.org/10.1146/annurev.fluid.37.061903.175743

8. Williams, J.E.F., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary
motion. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 264, 321–342 (1969). https://doi.
org/10.1098/rsta.1969.0031

9. Tay, W.B., Deng, S., van Oudheusden, B.W., Bijl, H.: Validation of immersed boundary
method for the numerical simulation of flapping wing flight. Comput. Fluids 115, 226–242
(2015). https://doi.org/10.1016/j.compfluid.2015.04.009

10. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary lagrangian–eulerian computing method
for all flow speeds. J. Comput. Phys. 135, 203–216 (1997). https://doi.org/10.1006/jcph.
1997.5702

11. Yang, J., Balaras, E.: An embedded-boundary formulation for large-eddy simulation of
turbulent flows interacting with moving boundaries. J. Comput. Phys. 215, 12–40 (2006).
https://doi.org/10.1016/j.jcp.2005.10.035

12. Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of
flow in complex geometries. J. Comput. Phys. 171, 132–150 (2001). https://doi.org/10.1006/
jcph.2001.6778

13. Liao, C.-C., Chang, Y.-W., Lin, C.-A., McDonough, J.M.: Simulating flows with moving
rigid boundary using immersed-boundary method. Comput. Fluids 39, 152–167 (2010).
https://doi.org/10.1016/j.compfluid.2009.07.011

14. Kim, D., Choi, H.: A second-order time-accurate finite volume method for unsteady
incompressible flow on hybrid unstructured grids. J. Comput. Phys. 162, 411–428 (2000).
https://doi.org/10.1006/jcph.2000.6546

15. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in
object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.
P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202 (1997). https://doi.
org/10.1007/978-1-4612-1986-6_8

16. Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hyper, a library of
parallel high performance preconditioners. In: Bruaset, A.M., Tveito, A. (eds.) Numerical
Solution of Partial Differential Equations on Parallel Computers, pp. 267–294. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-31619-1_8

17. Calderon, D.E., Wang, Z., Gursul, I.: Lift enhancement of a rectangular wing undergoing a
small amplitude plunging motion. In: 48th AIAA Aerospace Sciences Meeting, Orlando,
Florida, pp. 1–18 (2010)

18. Lua, K.B., Lim, T.T., Yeo, K.S.: Scaling of aerodynamic forces of three-dimensional
flapping wings. AIAA J. 52, 1095–1101 (2014). https://doi.org/10.2514/1.J052730

19. Brentner, K.S., Lyrintzis, A., Koutsavdis, E.K.: A Comparison of computational
aeroacoustic prediction methods for transonic rotor noise. In: American Helicopter Society
52nd Annual Forum (1996)

20. Vieira, A., Lau, F., Mortágua, J.P., Cruz, L., Santos, R.: A new computational tool for noise
prediction of rotating surfaces (fact) (2015). https://doi.org/10.5281/ZENODO.1099577

21. Ning, Z., Hu, H.: An Experimental study on the aerodynamic and aeroacoustic performances
of a bio-inspired UAV propeller. In: 54th AIAA Aerospace Sciences Meeting, pp. 1–19
(2016). https://doi.org/10.2514/6.2017-3747

102 W. Tay et al.

https://doi.org/10.1007/978-3-642-28302-4_21
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1098/rsta.1969.0031
https://doi.org/10.1098/rsta.1969.0031
https://doi.org/10.1016/j.compfluid.2015.04.009
https://doi.org/10.1006/jcph.1997.5702
https://doi.org/10.1006/jcph.1997.5702
https://doi.org/10.1016/j.jcp.2005.10.035
https://doi.org/10.1006/jcph.2001.6778
https://doi.org/10.1006/jcph.2001.6778
https://doi.org/10.1016/j.compfluid.2009.07.011
https://doi.org/10.1006/jcph.2000.6546
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1007/3-540-31619-1_8
https://doi.org/10.2514/1.J052730
https://doi.org/10.5281/ZENODO.1099577
https://doi.org/10.2514/6.2017-3747

22. Parchen, R., Hoffmans, W., Gordner, A., Bran, K.A.: Reduction of airfoil self-noise at low
mach number with a serrated trailing edge. In: International Congress on Sound and
Vibration (1999)

23. Gruber, M.: Aerofoil noise reduction by edge treatments (2012)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Numerical Simulations of Serrated Propellers to Reduce Noise 103

http://creativecommons.org/licenses/by/4.0/

High-Performance Computing
in Maritime and Offshore Applications

Kie Hian Chua(B), Harrif Santo, Yuting Jin, Hui Liang, Yun Zhi Law,
Gautham R. Ramesh, Lucas Yiew, Yingying Zheng, and Allan Ross Magee

Technology Centre for Offshore and Marine, Singapore (TCOMS),
Singapore, Singapore

chua kie hian@tcoms.sg

Abstract. The development of supercomputing technologies has
enabled a shift towards high-fidelity simulations that is used to com-
plement physical modelling. At the Technology Centre for Offshore
and Marine, Singapore (TCOMS), such simulations are used for high-
resolution investigations into particular aspects of fluid-structure inter-
actions in order to better understand and thereby predict the generation
of important flow features or the complex hydrodynamic interactions
between components onboard ships and floating structures. In addition,
by building on the outputs of such simulations, data-driven models of
actual physical systems are being developed, which in turn can be used
as digital twins for real-time predictions of the behaviour and responses
when subjected to complex real-world environmental loads. In this paper,
examples of the high-resolution investigations, as well as the development
of digital twins, are described and discussed.

Keywords: Maritime and offshore · Digital twin · Deepwater ocean
basin · Autonomous vessel

1 Introduction

The maritime and offshore industries are transforming to improve efficiency,
safety and sustainability. With the advancement of sensing, computational and
communication technologies, engineers are now able to gain better insights into
how ships and offshore structures respond when subjected to environment loads.
This enables better risk management and reduces downtime. The ability to carry
out full-order simulations of fluid-structure interactions with higher fidelity, also
enables us to attain deeper insights into the complex flow processes that may be
present in scaled model tests. Concurrently, there is a push towards harnessing
data in order to evolve digital twins of physical systems that can be used for the

Supported by A*STAR, National Research Foundation and National Super Computing
Centre.

c© The Author(s) 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 104–117, 2020.
https://doi.org/10.1007/978-3-030-48842-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-48842-0_7

High-Performance Computing in Maritime and Offshore Applications 105

performance prediction of assets such as ships and offshore structures, as well as
systems such as TCOMS’ deepwater ocean basin (DOB) facility.

In this paper, the preliminary efforts using Harmonic Polynomial Cell (HPC)
method to develop high-fidelity numerical models are described. The first exam-
ple is to create a digital twin of the TCOMS’ deepwater basin facility. The
movement of wave paddles, the generated wave components, as well as the fully-
nonlinear interaction between those wave components are modelled and simu-
lated. High-fidelity simulations are carried out to investigate the potential onset
of small-scale flow phenomena that may arise from the wave paddle mechanisms
and the influence on the quality of generated waves. In the meantime, the appli-
cation of parallel computations on evaluating the hydrodynamics of autonomous
vessels is discussed. The objective is to develop a digital twin of the vessel for
testing and implementing remotely-operated and autonomous navigation control
systems and algorithms. The two series of work will be integrated into TCOMS’
cyber-physical modelling framework later on, and to be coupled with physical
model tests of marine structures. This is expected to generate new insights into
the behaviour of marine systems in real operating environments.

2 Digital Twin of a Large-Scale Wave Basin

Ships and offshore structures need to be designed for high sea states where the
predominant forcing is due to wave loading. Mooring line failures arising from
large-amplitude slow drift motions, under-deck slamming due to vanishing air
gap and wave-overtopping are possible scenarios that may require investigations.
Due to their large displaced volume of offshore floating structures, the wave loads
are dominated by inertial effects with viscous processes playing a secondary role.
It is thus reasonable to use a physical wave basin facility to carry out scaled-down
experiments based on Froude similarity to estimate the hydrodynamic loads and
responses of these structures.

Within the context of the linear potential flow theory, the boundary ele-
ment method (BEM) in frequency-domain has been widely applied, and it is the
most efficient because the unknowns are only distributed over the mean wetted
hull surface with the utilization of Green’s identity. In the fully-nonlinear free-
surface flow problems, however, the computational time and memory required by
the BEM solving in time-domain increase strongly as the number of unknowns
increases because the coefficient matrix for the unknowns is full. [11] argue that
a field-solver based on the finite element method (FEM) is faster than the BEM
for solving the wave-making problem because a sparse matrix is involved in the
solution. The conventional BEM involves quadratic memory usage, O(N2), and
requires O(N2) operations for an iterative solver or O(N3) operations if a direct
method is used. Here, N is the number of unknowns; thus, large-scale storage and
inefficient computation are considered bottleneck problems in the conventional
BEM.

In order to enhance the investigation of the fore-mentioned hydrodynamic
phenomena and facility better understanding of the underlying flow physics, a

106 K. H. Chua et al.

high-fidelity numerical wave tank has been developed to augment the physical
deepwater ocean basin (DOB) in TCOMS. The numerical wave tank has the
same dimensions (60 m × 48 m × 12 m) as the DOB and is similarly equipped with
numerical representations of hinged-flap wave paddles on two sides. This allows
us to simulate the wave generation, as well as the wave propagation across the
domain of the DOB. A potential-flow based Harmonic Polynomial Cell (HPC)
method, which is a numerical solver with accuracy higher than third order, is
used [10].

A three-dimensional Cartesian coordinate system Oxyz is defined with the
Oxy plane coinciding with the undisturbed free surface and Oz axis orienting
positively upwards. The fluid domain is discretised into overlapping hexahedral
cells with 26 grid points. The velocity potential within each cell is represented
as a linear combination of N harmonic polynomials:

φ (X,Y,Z) =
N∑

j=1

bjPj (X,Y,Z) (1)

where Pj (X,Y,Z) with j = 1, 2, . . . , N mean harmonic polynomials associ-
ated with Legendre polynomials in a spherical coordinate system. Here, X, Y
and Z are local coordinates relative to the stencil centre. Because the harmonic
polynomials satisfy the Laplace equation naturally, there is no need to impose
the Laplace equation. By imposing Eq. (1) on the 26 stencil points, one can
obtain a linear equation system in the form of:

[A] · {b} = {Φ} with Ai,j = Pj (X,Y,Z) , i = 1, 2, . . . , 26 (2)

Here, N is not necessarily equal to 26. If N < 26, the least square fitting can
be used. By taking the inverse of Eq. (2), we can obtain the vector {b}:

bj =
26∑

i=1

ci,jΦi with j = 1, . . . , N, (3)

where ci,j are elements of the matrix [A]−1 or
[
[A]T · [A]

]−1

· [A]T . Substi-
tuting Eq. (3) into Eq. (2) gives rise to:

Φ(X,Y,Z) =
N∑

j=1

[
M∑

i=1

ci,jΦi

]
Pj(X,Y,Z) =

M∑

i=1

⎡

⎣
N∑

j=1

cj,iPj(X,Y,Z)

⎤

⎦ Φi (4)

Equation (4) indicates that the velocity potential at any point in the cell can
be interpolated by the velocity potential on the surrounding nodes of the cell.
By setting x = 0, y = 0 and z = 0, one can obtain the continuity equation at
the stencil centre:

Φ27 =
M∑

i=1

ViΦi with Vi = c1,i (5)

High-Performance Computing in Maritime and Offshore Applications 107

On the solid boundaries, the Neumann-type boundary condition requiring
the derivative of the potential is implemented by directly taking the derivative
of harmonic polynomials:

∇Φ (X,Y,Z) =
M∑

i=1

UiΦi with Ui =
N∑

j=1

cj,i∇Pj (X,Y,Z) (6)

The HPC method will yield a sparse coefficient matrix with a maximum
band-width 27. On the solid boundaries, the Neumann-type boundary condition
is satisfied. On the free surface, the kinematic and dynamic free-surface boundary
conditions are satisfied:

∂E
∂t

+
∂Φ

∂x

∂E
∂x

+
∂Φ

∂y

∂E
∂y

− ∂Φ

∂z
= 0 on z = E(x, y, t), (7a)

∂Φ

∂t
+ gE +

1
2

[(
∂Φ

∂x

)2

+
(

∂Φ

∂y

)2

+
(

∂Φ

∂z

)2

= 0

]
on z = E(x, y, t) (7b)

where E(x, y, t) represents the free-surface elevation.
In the time-domain HPC method, the Dirichlet-type condition is satisfied

via prescribing the velocity potential and elevation on the free surface. A semi-
Lagrangian scheme is used to track the free surface. The explicit fourth-order
Runge-Kutta scheme is used to integrate the boundary conditions Eqs. (7a) and
(7b) to update the potential and elevation of the free surface at each time step.
To ensure stability, a Savitzky-Golay filter [9] is used to remove possible saw-
tooth waves.

In contrast to the industry-standard Computational Fluid Dynamics (CFD)
solvers, such as Star-CCM+, Fluent and OpenFOAM, which solves the Navier-
Stokes equations and the Poisson equation for pressure, there is only one
unknown (velocity potential) on each node in the present HPC method com-
pared to four unknowns (three velocity components and pressure) in the CFD
solvers. Therefore, the present HPC solver is relatively efficient.

To give an example, Fig. 1 shows a snapshot of wave field with heading angle
45◦ for a rectangular wave basin with dimension of 30 m× 30 m × 4 m. The same
numerical domain was used to investigate the physics of spurious waves generated
by a row of wave paddles, for more details see [5]. In this numerical example,
there are roughly 1.6 × 107 unknowns and the non-zero elements in the sparse
matrix will be up to 4.24×108. In order to capture the important flow physics as
much as possible, paddle movements are accounted for - this requires updating
meshes attached to paddles at every time step.

108 K. H. Chua et al.

Fig. 1. Snapshot of wave field with heading angle 45◦.

When numerically implementing the HPC method, the local coefficient
matrix with dimension 26× 26 was solved by the Linpack library, and the global
sparse matrix was solved by the GMRES solver within Portable, Extensible
Toolkit for Scientific Computation (PETSc) library [1]. The computation was
conducted on the platform of National Supercomputing Centre (NSCC) with
CPU of Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60 GHz, and a total of 5 nodes
at 24 cores per node were used. It takes 23s to run each time step, and the
efficiency is acceptable for the present application using the NSCC facilities.
Nevertheless, the computational load for the numerical DOB is still non-trivial
due to the large size of the domain being modelled. The method shows a great
ability to resolve small scale wave features which are important to understand
the remaining uncertainties inherent in the simulations.

3 Investigation of Gusset Effect in Between Wave Paddles

The DOB uses a dry-back wave paddle system, where gussets are used between
the individual paddles to prevent water from entering the rear side of the pad-
dles. Given that there will be a small amount of water trapped in the groove
formed by the gusset, it is of interest to investigate whether there are any ‘jet-
ting’ effects arising from the movement of the paddles as they generate waves,
and whether there are higher harmonic wave components arising from the gap
between paddles, which may affect the quality of the underlying generated waves.

CFD analysis is used to investigate this phenomenon and to quantify whether
the ripples or ‘jetting’ effects could affect the shape of the underlying generated

High-Performance Computing in Maritime and Offshore Applications 109

waves downstream of the wavemaker. Figure 2(a) shows the initial set up of two
wave paddles and a layout of a gusset between two adjacent paddles and ripple
strips. Figure 2(b) illustrates the shape and different parts of the gusset.

Fig. 2. (a) Initial set up of two paddles and a gusset/ripple strip layout between the
adjacent paddles. (b) The shape and different parts of the gusset.

The gusset is modelled and simplified for CFD simulations. Bolts, nuts, wash-
ers and other joining mechanisms are removed and the geometry of the rubber
bladder is modelled using a B-Spline curve to fit the manufacturer’s require-
ments. The gap is intended to be as small as possible and there is an overlap in
the ripple strip in the manufactured geometry. However, during operation, the
forces acting on the flexible ripple strips create a gap due to the deformation.

In these simulations, the gap is modelled at a constant width of 5 mm. The
wave paddles are modelled with mesh morphing using the B-Spline morphing
method [4]. The paddle motion is generated using a first-order (linear) wave
paddle signal.

The simulation solves Reynolds-Averaged Navier-Stokes equations by using
the concept of a turbulent eddy viscosity prescribed by the Boussinesq approxi-
mation. This is achieved via k−ω SST model by solving the transport equations
of turbulent kinetic energy, k and specific dissipation rate, ω [7]. The air-water
interface is captured using a Volume of Fluid (VoF) method where the distri-
bution of phases and the position of the interface are described by the fields of
phase volume fraction. A high order interface capturing (HRIC) method is used
to mimic the convective transport of immiscible fluid components such as air
and water [8].

The computational requirements to simulate the gusset effects are extensive,
due to the following considerations:

– Requirement of very fine mesh in and around the gusset and gaps to resolve
the local flow features;

– Requirement of fine mesh at free surface to resolve the higher harmonic wave
components;

110 K. H. Chua et al.

– Requirement of moving mesh - rigid body motion to simulate paddle flapping
motion; and

– High fidelity spatial and temporal discretisation.

For the cases presented in this paper, the mesh size for the computation is
14.4 million cells. The simulation was run on National Supercomputing Cen-
tre (NSCC) compute nodes equipped with Intel(R) Xeon(R) CPU E5-2690 v3
2.60 GHz, and a total of 5 nodes at 24 cores per node were used. This amounted
to a total of 120 CPU cores running the simulation. The total compute time for
each time step of 0.001 s and 5 inner iterations for the pressure–velocity coupling
took approximately 3.6 s and the simulation was run for 30 s.

Preliminary results from a simulation of a row of 6 paddles with 5 gussets in
between the paddles are shown in Fig. 3. It is observed that the combined effect
of the gusset and ripple strips produce scattering (ripple) of higher harmonic
wave components, similar to Huygens principle.

Closer examination of the higher harmonic wave components is conducted by
looking at the simulated surface elevation (wave) - time series at several locations
along the centreline of the computational domain. Figure 4 shows the results
at three locations (0.05 m, 0.1 m and 0.7 m downstream of the wave paddles).
It can be observed that the higher harmonic wave components decay rapidly
within 0.7 m of advection along the tank. Therefore, it can be concluded that the
presence of such higher harmonic waves do not alter the form of the underlying
primary waves downstream of the wave paddles. It is important to note that high
resolution computations are required to adequately resolve the fine flow details
of interest. Therefore the capabilities afforded by NSCC are essential to achieve
the outcome through adequate computational power.

4 Digital Twin of Marine Vessel for Remote and
Autonomous Navigation

The maritime industry evolves quickly towards remotely controlled and
autonomous vessels for more reliable and sustainable missions. This transfor-
mation is driven partly by the digitalisation trend, involving sensing, big data
and deep learning analytics, and partly by the need to reduce the operating cost
of manning a vessel. The marine autonomous surface vessel (MASS) technologies
adopted as of this date are typically rely on situational awareness and predic-
tive analytics methods in relatively calm sea-states. One of TCOMS’ missions
is to carry out further investigations and gain deeper understanding of MASS
hydrodynamic response in challenging sea-states, essentially the manoeuvrabil-
ity of vessels under the disturbance of wind, waves and currents. This enables
the development of the hydrodynamic digital twin for smart vessels, in terms
of providing accurate projection of their future states and therefore improves
the effectiveness of steering actions, particularly for route planning and collision
avoidance.

High-Performance Computing in Maritime and Offshore Applications 111

Fig. 3. Snapshot of a wavefield produced from a row of wave paddles.

Fig. 4. Simulated surface elevation (or waves) - time series at three locations down-
stream of the wave paddles (0.05 m, 0.1 m and 0.7 m) along the centreline of the com-
putational domain.

In order to capture vessel’s seakeeping and manoeuvring behavior, and the
non-linear interactions between hull, propellers, rudder and environmental loads,
we adopted the unsteady RANS-based CFD computations, applying the overset
grid technique to solve for the fluid flow pressure distribution, resulting force
and hence 6-DoF global motions of the vessel. The conservation equations of
mass and momentum are discretised using the Finite Volume Method (FVM).
Often, a significant number of grid points (6.0 M–15.0 M) is required to resolve
the complex physical shape of ship hull and its appendages, as well as the sharp
interface between water and air over a sufficiently large volume. Simulations as
such can only be carried out by parallel computations with hundreds of CPUs
under the MPI communication protocol, which are accessible from NSCC.

112 K. H. Chua et al.

CFD computations carried out in this section share the common assumption
of incompressible Newtonian fluid properties. The conservation equations for
mass, momentum and energy are used in their integral form as the mathematical
basis. The fluid is regarded as a continuum, which assumes that the matter
is continuously distributed in space. The concept of continuum enables us to
define velocity, pressure, temperature, density and other important quantities
as continuous functions of space and time. When solving high Reynolds number
problems, turbulence has to be considered, and to fully resolve the turbulent flow
physics with Direct Numerical Simulations (DNS), grid size close to Kolmogorov
scale (in micrometer) is necessary. However, this is considered to be unrealistic
for ship hydrodynamic applications where the domain size is usually in hundreds
of meters. Therefore, Reynolds-averaged Navier-Stokes (RANS) is introduced to
simplify the calculation of turbulence quantities. The generic transport equation
of the RANS model can be written in the following form [3],

∂

∂t

∫

V

ρφdV +
∮

S

ρφv · ds =
∮

S

Γφgradφ · ds +
∮

S

qφS · ds +
∫

V

qφV dV (8)

where φ stands for the transported variable such as velocity potentials, Γφ is
the diffusion coefficient and qφS and qφV stand for the surface exchange terms
and volume sources, respectively. The momentum and energy equations can also
be written in the discrete form to facilitate the numerical solution. The closure of
the transport equation is by the k −ω SST turbulence model [7]. Terms in Eq. 8
can be replaced by the turbulence kinetic energy k and the specific dissipation
rate ω in Table 1. Details of the closure coefficients and the auxiliary relations
can be found in the above mentioned literature.

Table 1. k and ω equations in the RANS turbulence modelling

φ-equation k-equation ω-equation

Γφ μ +
μt

σω
μ +

μt

σω

qφS 0 0

qφV ρP̃k − ρβ∗ωk ρ
γ

νt
Pk − ρβω2 + ρ(1 − F1)2σω2

1

ω

∂k

∂xj

∂ω

∂xj

The FVM method of descretisation is applied to solve for the numerical
solution of the transport equations. The solution domain is discretised by an
unstructured mesh composed of a finite number of contiguous control volumes
(CVs) or cells. Each control volume is bounded by a number of cell faces which
compose the CV-surface and the computational points are placed at the center
of each control volume. The discretisation of each particular term in Eq. 8 is
summarised in Table 2.

High-Performance Computing in Maritime and Offshore Applications 113

It is noted the pressure does not feature in the continuity equation of incom-
pressible fluid which therefore cannot be directly used as an equation for pres-
sure. A possible way around this problem is to solve the momentum and continu-
ity equations simultaneously in a coupled manner. The strategy adopted in most
of our unsteady computations to resolve the pressure-velocity coupling is based
on the PIMPLE algorithm, a combination of Pressure Implicit with Splitting
of Operator (PISO) and Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) [2]. The computation of pressure-velocity coupling normally takes a
significant amount of CPU power especially for cases with large amount of grids.

Table 2. Discretisation schemes of individual term from the transport equation

Numerical term Expression Discretisation method

Rate of change
∂

∂t

∫

ΔV

ρφdV Mid-point approximation

Convection

N∑
j=1

∮

S

ρφv · ds Blended Central differencing
& Upwind differencing
scheme

Diffusion

N∑
j=1

∮

S

Γφgradφ · ds Gauss’s theorem & Mid-point
approximation

Surface source
N∑

j=1

∮

S

qφS · ds Central differencing scheme

Volume source
N∑

j=1

∫

V

qφV dV Mid-point approximation

Computations carried out under this part of scope focus on evaluation of
the manoeuvring and seakeeping performance of the MASS. One of the most
computational intensive cases is to compute the free running dynamic manoeu-
vres under self-propelled conditions. The simulation mesh normally consists of
several layers and hierarchies of overset grids, to resolve the motions of pro-
pellers or thrusters meanwhile capturing the ship dynamics. A typical case as
demonstrated in Fig. 5 consists of a number of grid around 10.0 M. The time-
step for the computation to march forward has to be sufficiently small to solve
for the propeller blade rotational motion. Pressure over the ship’s hull and its
appendages are integrated to a force and moment matrix and feed into the 6-
DoF motion equations of the vessel with respect to its centre of gravity. The
solved ship motions are inherited to the overset region of the computational
domain at each time step, and perform hole-cutting, and flow interpolation
between reconstructed stencils. The MASS self-propulsion case in Fig. 5 utilised
600 CPUs on NSCC, and was computed for 120 h to produce a simulation of
vessel motions lasts 60 s. The simulation provides a full-order prediction of the
vessel’s states (motions & velocities) over time when it is undertaking prescribed

114 K. H. Chua et al.

steering actions. System identification techniques such as the Support Vector
Machine [6] and the Extended Kalman Filter [12] are intended to be applied on
the full-order CFD results to derive the mathematical model of the MASS.

Fig. 5. Free running manoeuvring simulation of a conceptual MASS featuring thruster
induced vortices and overset grid movement

The carried out computations also enable us to gain deeper understanding
of the MASS’ hydrodynamics under environmental disturbances. Figure 6 is one
of the cases we carried out to investigate the seakeeping behaviour of our MASS
design. The focus here is to evaluate the second-order mean drift force in surge

Fig. 6. Computation of TCOMS’ conceptual MASS design advancing in regular waves

High-Performance Computing in Maritime and Offshore Applications 115

direction, which is also known as the wave added resistance. Both model and
full scale computations are carried out in order to minimise uncertainties of scale
effects. The numerical case consists 15.0M grids, and requires 600 CPUs to run
for 5–7 days for each scenario.

Another aspect that is vital for the development of MASS hydrodynamic
digital twin is the mathematical model of the azimuth thrusters, which is repre-
sented as torque and thrust curves under a variety of inflow conditions. Figure 7
presents the attempts we made for quantifying the thruster performance through
RANS based CFD simulations. A typical CFD computation here consists of 4.0
to 5.5M mesh grids, and normally runs on 120 CPUs for approximately 24 h of
wall time. More parametric studies will be carried out in near future to capture
more complex flow physics involved in hull-thruster and thruster-thruster inter-
actions. Studies on how to optimise the grid and domain discretisation while
retaining the required accuracy of the solutions are ongoing to ease the compu-
tational burden as much as possible.

Fig. 7. Computation to evaluate the performance of TCOMS’ generic design of azimuth
thrusters

5 Concluding Remarks

In this paper, we have provided examples of how high-fidelity simulations of
fluid-structure interactions are used to investigate the complex wave generation
and interaction in the TCOMS DOB, the small-scale ‘jetting effects’ and the
possible generation of undesirable higher-harmonic waves. The former example

116 K. H. Chua et al.

can be considered to be an initial effort into the creation of a digital twin of
the wave basin facility, complemented by the deeper understanding local flow
phenomena provided by the latter. These efforts, together with other research
and development work being undertaken at TCOMS, will pave the way towards
the development of a coupled numerical-physical modelling capabilities.

We have also described the digital twinning of MASS through the use of full-
order CFD simulations, where the seakeeping and manoeuvring characteristics
of vessel, as well as the propulsive performance of the thrusters are captured.
This effort will be extended in the coming months to include parametric studies
to account for interactions between each of the two thrusters, as well as between
the thruster and the ship hull. Outputs from the parametric studies and the
simulations of the full vessel model will subsequently be used to evolve data-
driven models that will enable real-time predictions of how the MASS will behave
and respond under various control inputs and environmental conditions. This is
necessary for the development of autonomous navigation systems that is able
to accurately steer the vessel along the planned route, under the influence of
environmental loads and in tight operational scenarios.

Acknowledgements. This research is supported by A∗STAR Science and Engineer-
ing Research Council with grant number 172 19 00089 under the Marine & Offshore
Strategic Research Programme (M&O SRP). The computational work for this arti-
cle was performed on resources of the National Supercomputing Centre, Singapore
(https://www.nscc.sg).

References

1. Balay, S., et al.: PETSc Web page (2019). https://www.mcs.anl.gov/petsc
2. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer,

Cham (2020). https://doi.org/10.1007/978-3-319-99693-6 9
3. Hadzic, H.: Development and application of finite volume method for the computa-

tion of flows around moving bodies on unstructured, overlapping grids. Technische
Universität Hamburg (2006)

4. Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B-
splines. IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997)

5. Liang, H., Law, Y.Z., Santo, H., Chan, E.S.: Effect of wave paddle motions on
water waves. In: Proceeding of the 34th International Workshop on Water Waves
and Floating Bodies, Newcastle, Australia (2019)

6. Liu, B., Jin, Y., Magee, A., Yiew, L., Zhang, S.: System identification of Abkowitz
model for ship maneuvering motion based on ε-support vector regression. In:
ASME: 38th International Conference on Ocean. American Society of Mechani-
cal Engineers Digital Collection, Offshore and Arctic Engineering (2019)

7. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering
applications. AIAA J. 32(8), 1598–1605 (1994)

8. Muzaferija, S.: Computation of free surface flows using interface-tracking and
interface-capturing methods. In: Nonlinear Water-Wave Interaction, Computa-
tional Mechanics, Southampton (1998)

9. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified
least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

https://www.nscc.sg
https://www.mcs.anl.gov/petsc
https://doi.org/10.1007/978-3-319-99693-6_9

High-Performance Computing in Maritime and Offshore Applications 117

10. Shao, Y.L., Faltinsen, O.M.: A harmonic polynomial cell (HPC) method for 3D
Laplace equation with application in marine hydrodynamics. J. Comput. Phys.
274, 312–332 (2014)

11. Wu, G.X., Eatock Taylor, R.: Time stepping solutions of the two-dimensional non-
linear wave radiation problem. Ocean Eng. 22(8), 785–798 (1995)

12. Yiew, L.J., Jin, Y., Magee, A.R.: On estimating the hydrodynamic coefficients
and environmental loads for a free-running vessel in waves. In: Journal of Physics:
Conference Series, vol. 1357, p. 012007. IOP Publishing (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Correcting Job Walltime
in a Resource-Constrained Environment

Jessi Christa Rubio(B), Aira Villapando(B), Christian Matira,
and Jeffrey Aborot

Department of Science and Technology, Advanced Science and Technology Institute,
Quezon City, Philippines

{jessi,aira.villapando,christianmatira,jep}@asti.dost.gov.ph
http://asti.dost.gov.ph

Abstract. A resource-constrained HPC system such as the Comput-
ing and Archiving Research Environment (COARE) facility provides a
collaborative platform for researchers to run computationally intensive
experiments to address societal issues. However, users encounter job pro-
cessing delays that result in low research productivity. Known causes
come from the limited system capacity and the relatively long and rarely
modified default walltime. In this study, we selected and characterized
real HPC workloads. Then, we reviewed and applied the recommended
runtime or walltime-based predictive-corrective scheduling techniques to
reduce long job queues and scheduling slowdown. Using simulations to
determine walltime scheduling performances on environments with lim-
ited capacity, we proved that our proposed walltime correction, especially
its simple version, is enough to increase scheduling productivity. Our
experiments significantly reduced the average bounded scheduling slow-
down in COARE by 98.95% with a predictive-corrective approach, and
99.90% with a correction-only algorithm. Systems with large job diver-
sity as well as those comprising of mostly short jobs significantly lowered
delays and slowdown, notably with walltime correction. These simulation
results strengthen our recommendation to resource-constrained system
administrators to start utilizing walltime correction even without pre-
diction to eventually increase HPC productivity.

Keywords: Resource-constrained environment · Walltime ·
Prediction · Correction · Job scheduling

1 Introduction

High-performance computing (HPC) systems comparable to the Computing and
Archiving Research Environment (COARE) [1] of the Department of Science and
Technology - Advanced Science and Technology Institute (DOST-ASTI) cater to

Supported by the Department of Science and Technology - Advanced Science and
Technology Institute.

c© The Author(s) 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 118–137, 2020.
https://doi.org/10.1007/978-3-030-48842-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-48842-0_8

Correcting Job Walltime in a Resource-Constrained Environment 119

data scientists and researchers who have growing demands for computing power.
In particular, COARE HPC users work on computationally intensive research
to address societal issues such as rice genome analysis for securing public health
nutrition [2] and flood hazard mapping for disaster preparedness [3]. These stud-
ies are relevant and applicable to highly urbanized areas. On the path to mod-
ernizing solutions to these pressing concerns, initiatives from several research
institutes in the country (in partnership with COARE) encounter hindrances in
their resources. COARE and similar facilities have capacity limitations because
of policy and budgetary constraints in operational and capital expenditures.
Especially for government research institutes, it may take a while to enact new
policy changes [4,5] and to add more compute and storage servers that must
undergo a notoriously long procurement process [6]. Thus, a shared environment
among researchers where they can collaborate and concurrently calculate solu-
tions to complex computing tasks is essential. Practicing resource management
or job scheduling enables this sharing. Improving job scheduling performance
then becomes crucial to optimizing the usage of resource-constrained HPC sys-
tems.

Such systems practice default job scheduling configuration with the wall-
time request (WTR) set to the maximum. Depending on the demand for longer
simulation, COARE sets a default WTR to 7 or 14 days for all jobs. System
administrators approximated this WTR setting based on the runtimes of the
first few jobs that had been submitted to the facility when its operations began.
The scheduler reads this walltime or kill time as the hard limit to process a
job to give way for other jobs to run. However, not all jobs take as long as the
estimated walltime to finish; most jobs need just under a day to complete. Fur-
thermore, COARE users rarely adjust their WTRs (see Sect. 3.1) and instead
use the default settings. This situation introduces inaccurate scheduling, which
hampers processing more jobs. Moreover, setting the walltime to the maximum
disables the backfilling of small and lower priority jobs [7]. From our analysis
of jobs submitted to COARE (detailed in Sect. 2), most of these encounter long
job queues to give way to higher priority ones that have huge computational
resource requirements to finish. This processing delay has been one of the most
pressing critical complaints of the COARE HPC users.

For years, several researchers continue to analyze and perform thorough
development of walltime-based scheduling to improve scheduling accuracy [8–
10]. In this work, we analyzed how COARE and other resource-constrained HPC
systems (defined in Sect. 3) can take advantage of existing predictive-corrective
WTR-based scheduling algorithms (expounded in Sect. 4). Specifically, we con-
tribute the following:

– walltime corrective algorithms even without prediction can reduce scheduling
slowdown and eventually eliminate unwanted job delays, and

– a simple version of walltime correction, a more practical approach than exist-
ing corrective algorithms that systems like COARE could immediately utilize.

We additionally developed a regression-based walltime prediction that considers
job size diversity and accounts more features not limited to the recommended

120 J. C. Rubio et al.

CPU and walltime [11] to ensure finer predictions. After performing schedul-
ing simulations (Sect. 5) on identified real HPC workloads, our results (Sect. 6)
proved a significant increase in scheduling productivity. We conducted this study
to gain useful insights to revise current HPC operations policies not only for
COARE but to guide similar resource-constrained environments as well.

2 Productivity in Resource-Constrained HPC Systems

2.1 Job Delays

Of the total responses on DOST-ASTI COARE’s client satisfaction survey, 30.5%
have reservations on the performance and reliability of the service with the cur-
rent system. Not only is there a high demand for faster and larger computational
power, but there were also helpful comments on long job queues. In particular,
an end-user raised his concern about experiencing a one-week waiting time for
one of his jobs. A week’s time is the default walltime in COARE, which pri-
marily contributed to the long waiting time. About 99.5% of the total jobs from
COARE have waiting times of less than 3 days. These 198,386 jobs, however,
should not discount the 142 jobs that queued for more than 7 days, as depicted in
Table 1. These queued jobs generally had large CPU and memory requirements
that could not necessarily fit available nodes. If these large jobs have short run
times, more than 7 days of waiting could really be frustrating especially if the
user’s experiment is highly relevant in creating social impact.

Table 1. Distribution of jobs in COARE grouped according to their waiting time.

Waiting time (days) No. of jobs

<3 198,386

[3, 7) 526

[7, 14) 115

≥14 27

Upgrading the facility’s computational capacity faces challenges that require
careful planning to meet growing demands and adhere to existing policies.
Because of operational and capital cost restrictions for each fiscal year, the length
of time to acquire such equipment could render longer productivity delays or,
worse, obsolete hardware by the time it operates at the production level. Capac-
ity management, though recommended [6], is still an ongoing process and is yet
to be established in COARE. Given these limitations, it is imperative to find
ways to maximize usage with existing resources such as shortening job queues.
Reducing job delays requires implementing an accurate walltime scheduling.

Correcting Job Walltime in a Resource-Constrained Environment 121

2.2 Walltime Accuracy Effect on Productivity

Since walltime is user-specified, walltime accuracy may depend on its closeness
to the actual runtime in terms of underestimates or overestimates. A job with
underestimated runtime gets paused or killed if the WTR is less than its actual
duration. Meanwhile, overestimation hinders the scheduler to correctly orga-
nize jobs because the compute nodes are already reserved for other jobs. This
situation is particularly evident when most or all WTRs are set to the maxi-
mum default timelimit [7], which resembles the case in COARE. Alike resource-
constrained systems suffer from inaccurate scheduling that leads to long queues.
Because of the limited hardware capacity and an increase in the number of
users, more jobs need to be processed in the same period, subsequently resulting
in even longer queues. These job delays imply an irony of performing high-speed
calculations, which defeats productivity. The length of a job correlates to the
user acceptance of the waiting time [12]. Hence, if most jobs have small resource
requirements and shorter runtimes get stuck in a long queue, their waiting time
consequently increases. This scenario then becomes unacceptable.

3 Understanding Real HPC Workloads

3.1 Walltime Charactertics

If we look closely, Fig. 1 shows that COARE is mostly comprised of fixed wall-
time requests at either 7 or 14 days, which demonstrate overestimates with the
maximum timelimit. Sizeable wide gaps between the actual runtime and the
WTR are observable. These differences cause scheduling walltime inaccuracies.
Though real and large computer systems from the Parallel Workloads Archive
[13] may not fully represent resource-constrained facilities, we used several of
these workloads in comparison to COARE’s that depict real-world scenarios
for reproducibility. Alternatively, we could use the simulated results from these
workloads to find out if correction-only WTR scheduling is sufficient and appli-
cable for large HPC systems. We selected workloads from the archive that are
similar to COARE, which comprise jobs with diverse or heterogeneous geome-
tries [14]. This heterogeneity is currently an architectural trend in HPC systems
[15].

A comparable workload is from the University of Luxembourg Gaia Cluster
[16], which also portrays differences between runtime and WTR but at mini-
mal distinction. MetaCentrum2 [17] has larger WTR and runtime gaps similar
to COARE’s but more accurate WTRs at the latter part. The CEA Curie sys-
tem [18] primarily consists of jobs having runtime and WTR difference slightly
distinguishable and within a day’s length. To extend our analysis to other possi-
ble HPC setups beyond the small heterogeneous systems, we consider the large
Curie workload and the homogeneous HPC2N Seth workload [19]. Further, with
the Gaia workload primarily composed of specialized biological and engineer-
ing computing experiments and the homogeneous Seth workload, these systems
may represent resource-constrained environments dedicated to specific scientific

122 J. C. Rubio et al.

Fig. 1. Daily average job walltime requests and daily average job runtimes in various
real HPC systems.

applications. Less variation in the job sizes in a homogeneous workload could
mean similar experiments. As observed in Fig. 1, the Seth workload depicts an
ideal case of walltime estimates that are comparable to job duration.

3.2 Job Diversity and Walltime Scheduling

Job geometry or size refers to a combination of compute and walltime resources
[14]. Jobs with small geometry may consist of a few compute requirements and
short walltime while large ones may be composed of hundreds of CPUs and may
span for days. In Fig. 2, we characterized the jobs of each selected HPC workload
to give context on their job geometry distribution and to learn how this variation
in job sizes influences scheduling performance. We applied hexbin plotting of the
workloads, where each bin constitutes the number of counts for each number of
CPU and runtime combination as represented in the color bar for guidance.
These plots require logarithmic scaling of the bins to easily differentiate the
small jobs from the large ones. To elucidate further, small jobs take the bottom
left corner of the plot while longer jobs occupy the right side. This representation
allowed us to understand the implications of workload heterogeneity among HPC
clusters with respect to scheduling policies presented in Table 2.

The COARE workload (Fig. 2a), as well as the MetaCentrum2 (Fig. 2c), con-
sists of predominantly small jobs and notably long jobs with small CPU require-
ments and long runtime. With a relatively wide distribution of large or long jobs,
we can say that the COARE workload is highly heterogeneous or diverse. Also
heterogeneous, the Gaia workload (Fig. 2b) has a good concentration of jobs at

Correcting Job Walltime in a Resource-Constrained Environment 123

(a) (b) (c) (d)

Fig. 2. Job size distribution of HPC workloads from (a) ASTI COARE, (b) UniLu
Gaia, (c) MetaCentrum2 and (d) HPC2N Seth where the color bar represents a scaled
count n of each hexbin, given by log10(n).

Fig. 3. Job size distribution of workload from CEA CURIE.

Table 2. Scheduling scenarios of predictive and corrective policies.

WTR policy Prediction Correction

user-estimate none user-estimates

EASY++ AV E2 simple

power

regression AdaBoost simple

power

simple none simple

power none power

the bottom and the left corner depicting small jobs mainly with a dispersed set
of long jobs. Similar to Gaia, the homogeneous Seth (Fig. 2d) has mostly short
jobs concentrated at the bottom left corner. On one hand, the expansive Curie
workload may have short jobs with less than a day’s duration but these jobs
have huge CPU requirements (Fig. 3). Given these workloads, we also must note
that results may vary from one workload to another [20].

Heterogeneity in a workload may decrease the job waiting time predictabil-
ity: the more diverse the job geometries, the harder it is to determine when jobs
would finish [14]. In an environment with high job diversity such as those in

124 J. C. Rubio et al.

resource-constrained systems, there must be a way to refine scheduling require-
ments such as having accurate WTRs. To reduce long queues, accurate walltime
will enable the scheduler to precisely assign jobs to allocated nodes [21]. Thus
for heterogeneous workloads, developing accurate walltime prediction becomes
relevant in the scheduling performance.

4 Walltime-Based Scheduling

4.1 Walltime Prediction and Correction

The goal of WTR-based prediction is to generate walltime values close to the
actual duration for efficient scheduling. Prediction techniques along with correc-
tion and backfilling algorithms form a heuristic triple in walltime-based schedul-
ing [11]. Scheduling performance varies depending on the combination of algo-
rithms in the triple. As an illustration, if the runtime should reach the predicted
walltime and the job is not yet done, correcting the kill time will prevent pre-
mature job termination. Instead of letting the scheduler kill jobs based on user-
estimates, corrective techniques will automatically extend the walltime of jobs
either incrementally or by doubling its value before the kill time.

We derived combinations of predictive and corrective algorithms and com-
pared these to a user-estimate walltime request-based scheduling (see Table 2 for
a summary of scheduling scenarios). We define user-estimates as user-specified
approximates of their jobs’ runtime. The existing practice in HPCs similar to
COARE is to set user-estimate walltime request as the kill time.

The user-estimate scheduling has no predictive algorithm, but it allows the
user to indicate the job walltime. In the case of COARE, user-estimates are
generally the default WTR values. This prevents the continuation of jobs with
duration more than the walltime. If set too high relative to the mean dura-
tion of all jobs, the scheduler will fail to accurately estimate the length of jobs.
This will cause jobs to pile up leading to a long queue. To counter this inef-
ficiency, a walltime-based predictive approach empowers the scheduler to have
better foresight of each job’s probable duration and thus precisely assigns jobs
to appropriate resources. Prediction comes best with correction when avoiding
underestimated walltime.

In the third part of the triple, the scheduler backfills queued jobs to available
nodes. An efficient strategy is to backfill the shortest job first as it is with
the EASY++-SJBF [7]. Along with backfilling, the EASY++-SJBF implements
averaging the runtime of the previous two jobs of the same user to predict the
walltime and automatically increases the time limit to correct underestimates.
Because backfilling is already in effect in the COARE’s scheduler, we focused
on analyzing the triple’s prediction and correction parts (as in Table 2) and set
the backfilling configuration as fixed. We did this to differentiate and isolate the
scheduling improvements brought by walltime prediction and correction.

Correcting Job Walltime in a Resource-Constrained Environment 125

4.2 User-Based Prediction

Another prediction method uses soft walltime estimates by taking as a factor
the most accurate walltime with respect to the previous job duration of the same
user [9]. If the posted walltime becomes underpredicted, the soft method then
kills the job once its runtime reaches the user estimate. Setting the predictor to
use the past 2 jobs as a reference would suffice [7] compared to considering all
past jobs’ duration.

While both EASY++ and soft techniques employ prediction, the accuracy of
the prediction becomes limited due to its user-based only characteristics. These
methods are dependent on the historical job duration of the same user. Predicting
the walltime on the assumption that users consecutively run the same experiment
fails to recognize that these jobs may have different lengths. Illustratively, if
the user sequentially runs a 2-h job and another at 16 h, how are we certain
that the next job is within their 9-h average? Correction (detailed in Sect. 4.4)
becomes helpful at this point as it extends the walltime should there be an
underestimation. This leads us to another question, how often does this case of
the same user with different jobs occur?

Upon inspecting the distribution of runtime per user in COARE, numerous
users have jobs of different lengths. Dissecting this distribution aids in analyzing
how runtime varies for every user.

Fig. 4. Runtime distribution of user37 and user67 in COARE.

Looking closely at the job runtimes of user67 in Fig. 4, around 80% of its jobs
were largely varying from 15 to 165 h. On the contrary, 65% of jobs submitted
by user37 had runtimes ranging at a narrow 15 to 25 h. From these observations,
we deduced that the prediction in EASY++ will be ineffective in user67 but will
yield more accurate WTR in user37. We cannot say the EASY++ prediction
would work properly if the user67 and the like scenario happens frequently.
For this study, we are curious on how effective predictive algorithms are in the

126 J. C. Rubio et al.

scheduling process because if correction would always take place then this would
be enough and we no longer need to implement prediction.

4.3 User and Job-Based Prediction

The same user’s jobs that have similar characteristics may also have comparable
runtime though not necessarily submitted consecutively. To incorporate both
user and job-based prediction, an existing scheduling algorithm alerts users of
potential underestimates wherein the jobs are patterned on the runtime behavior
of other jobs from the same scientific application [10]. The premise of this algo-
rithm approximates the duration of jobs meant for solving a particular type of
differential equation problem the same runtime as future jobs of similar nature.
But this algorithm focuses on walltime underestimates only and would require
a large database of experiments and their runtime behavior that may result in
inefficient scheduling. Further, scientific applications vary from one computer
system to another. Other resource-constrained environments collaborating with
COARE either have specific patterns of experimental calculations or cater to
experiments that are as diverse as research from different scientific fields [2].
A numerical modeling type of problem has a myriad of resource requirements
and the extent of this variation must be carefully considered when adopting this
job-based prediction to actual HPC systems.

Narrowing the job-based prediction to available standard workload logs [13]
instead of depending on the jobs’ scientific application, a regression model can
consider CPU resource and walltime requests of each job. This method is dis-
tinctly relevant for those with large geometries as predicting this type of job
properly will lead to better scheduling performance [11]. Because most sched-
ulers rely on the CPU requirement, gauging other job features, such as burst
buffers when it comes to I/O intensive processing, can lead to improved per-
formance [22]. With the available parameters from the workload logs in mind,
we disregarded burst buffer then we accounted for other features such as mem-
ory size. As recommended [11], we developed a regression-based prediction of
runtime estimates suited for COARE with more features considered other than
CPU and WTR to ensure finer prediction accuracy.

We implemented our version of this prediction using the established
AdaBoost algorithm [23] in conjunction with decision trees to extract poten-
tial runtime in a regression manner (see Algorithm 1). Instead of utilizing both
squared and linear error functions as suggested [11], we applied the closely com-
parable AdaBoost, a commonly implemented and relatively accurate regression
model for prediction [24]. For every learning iteration m, the model equally
weighs WTR predictions made by fitting the decision tree regressor, ym(x),
regardless of accuracy to minimize the linear error function

Jm =
N∑

i=1

w
(m)
i I[yi(xn) �= hi(xm)], (1)

where h is an output hypothesis. AdaBoost works by tweaking these weights
resulting from the first learner depending on the error of prediction. The larger

Correcting Job Walltime in a Resource-Constrained Environment 127

Algorithm 1. regression-based WTR policy using AdaBoost
Input: dataset of size n with feature space Xn and runtime Yn, weak learner decision

tree
Output: regression model F (x)
1: Initialize the data weights wn.
2: for m = 1 to M do
3: fit decision tree regressor ym(x) by minimizing weighted error function Jm

4: compute for the weighted training error εm

5: evaluate coefficient αm = log(1−εm
εm

)

6: update data weights w
(m+1)
n

7: end for
8: predict using the final model F (x) = sign(

∑M
m=1 αmym(x))

the prediction error εm, the smaller and more negative the weight wn becomes.
The predicted WTR is the weighted median prediction by the learners. In this
writing, we considered working on historical data from Xn features comprising
user, job runtime, and requested CPU and memory resources. In the instance
that a job continues to run within 60 s of the estimated WTR, the scheduling
invokes a corrective algorithm. A potential downfall of this regression technique
lies in the large historical data that the prediction has to always check which
could lead to an even greater slowdown.

If the same user adjusted the compute requirements of the same experiment
say requested for 60 CPUs instead, then the length of the new job’s duration will
most probably be different. The regression approach assumes that the same user
can run different experiments at various points in time, contrary to EASY++.
If the same user has another experiment with the same compute requirements,
specifically numerical modeling this time compared to last time’s statistical anal-
ysis, and the duration becomes 10 h, then prediction in the regression should still
be effective because duration is one of the assumed features and will correctly
classify the change as an entirely different experiment.

4.4 Correction

As indicated in Table 2, the predictive-corrective EASY++ [7] engages a tech-
nique to predict the runtime and then increments the walltime before the prema-
ture termination of jobs with underestimated walltime. Correction can be in the
form of user-estimates or doubling WTRs [11]. Another form is the power func-
tion 15× 2i−2, where i = 2, . . . , n minutes, as exercised in EASY++ and proven
to deliver more accurate WTRs than the other correction methods. Aside from
the power correction, we considered a simpler approach to correct the underes-
timated walltime. We invoked our version of an incremental walltime correction
called simple as soon as the current runtime of a job reaches 60 s before the set
walltime (see Algorithm 2).

The simple corrective method basically checks if a job is still running within
a minute of its set time limit. If it is, the scheduler will automatically extend the

128 J. C. Rubio et al.

Algorithm 2. simple walltime correction
Input: job object instance job, user-estimate walltime wtr, job start time s, current

running time t
Output: updated walltime wtr
1: Query current running job by user job.user id.
2: while job.user id is running do
3: if wtr − t < 60 then
4: if 0 ≤ t − s ≤ 604800 then
5: wtr = wtr + 3600
6: end if
7: end if
8: end while

walltime limit to 1 h. It continues to check and update the time limit until the
job completes or the hard time limit of 7 days is reached, whichever comes first.

Figure 5 details a comparison of the two corrective techniques and how fast
their correction would reach a job’s actual duration. Correction stops as soon as
the corrected walltime is greater than or equal to the runtime. At iteration 0,
WTRs of jobs are arbitrarily initialized to 2 h and 6 h. This headstart represents
the set walltime prediction before correction takes place. For an 8-h job, a 6-h
headstart is a closer prediction than 2 h. If prediction is more accurate, then
the simple method will approach the runtime sooner and will produce accurate
walltime scheduling. Conversely, if prediction is bad, the power method converges
faster with the actual duration.

Fig. 5. Walltime iteration comparison of the two correction methods with respect to
actual runtimes arbitrarily given 2-h (in black) and 6-h (in white) headstart.

To determine how correction-only algorithms perform compared to
predictive-corrective ones, we implemented the proposed simple and the power
correction WTR policies and assumed a default prediction of 10 min. Setting
prediction to this value invokes underestimation that should trigger correction.
Based on the runtime distribution of our identified workloads (see Fig. 6 and

Correcting Job Walltime in a Resource-Constrained Environment 129

Sect. 3.1 for more information), most jobs are approximately less than 1 h. Thus,
to ensure underprediction takes place, we kept the default to 10 min instead of
1 h or 10 h or more.

Fig. 6. Cumulative distribution of jobs with respect to runtime of various real HPC
workloads.

Walltime underestimation from coarse-grained user-estimates is seen as the
primary source of scheduling inaccuracies [9–11,25]. Predicting walltime is like-
wise prone to error that correction could address. This strategy avoids lost
scheduling opportunities in overestimation and reduces the gap between the
user-estimates and the actual runtime. If the correction part is always taking
place, then we can disregard prediction and implement correction-only in the
scheduling. Moreover, if correction even without prediction improves scheduling
performance in resource-constrained facilities, then we can therefore solidify our
recommendation to adopt this policy to other similar HPC environments.

5 Experimental Setup

5.1 Workload Preparation

To demonstrate our idea, we performed simulations on the WTR policies
(Table 2) using several real HPC workloads. If we repeat the same test sce-
nario, simulation results will not converge [20]. Hence, to conduct reliable exper-
imentation, we tested the reproducibility of our assumptions by comparing job
traces from DOST-ASTI COARE to other computer systems from the Parallel
Workloads Archive [13]. Specifically, we implemented our theories by simulating
workloads from the UniLu Gaia (2014-2 logs [16]) and MetaCentrum2 (2013-3
logs [17]). We sampled the MetaCentrum2 workload to one month period of the
most recent jobs to simplify our simulations. These workloads are from heteroge-
neous systems similar to COARE’s. We additionally examined the workload from

130 J. C. Rubio et al.

the CEA Curie (2011-2.1 cleaned logs [18]), likewise heterogeneous, which com-
prises of more than 93,000 CPUs that may not accurately represent a resource-
constrained environment. We regard the Curie system in our experiments since
it utilizes the same scheduler as COARE’s called Slurm (to be discussed in
Sect. 4.2). Including this workload in our experiments will help us understand
how large HPC systems influence predictive-corrective walltime scheduling per-
formance. Further, we considered the HPC2N Seth (using the 2002-2.2 clean ver-
sion [19]) to include homogeneous systems, expanding our simulations to other
probable HPC setup in terms of job size distribution. Table 3 illustrates selected
features of each computer system.

Table 3. Generic composition of real HPC workloads used in the experiments.

DOST-ASTI COARE UniLu Gaia MetaCentrum2 CEA Curie HPC2N Seth

No. of jobs (cleaned) 199, 054 51, 834 197, 368 11, 268 45, 333

No. of nodes 48 151 495 5, 544 240

No. of CPUs 2, 304 2, 004 8, 412 93, 312 240

Period (month) 12 3 1 1 12

There were specific workload anomalies that must be filtered [8] depending
on the system. For instance, the Curie workload log portion considered contains
jobs submitted only after February 2012. This takes into account the changes
made in the infrastructure design since 2011. In HPC2N Seth, we removed flurry
of very high activity by a single user, which constitutes more than 55% of the
whole log. Finally, we disregarded all jobs that ran for more than 7 days across
all HPC systems. These filters were generally applied to remove occurrences of
flurries that could introduce unwanted biases.

In aggregating our simulation results, we removed the first 1% of the simu-
lated jobs as prescribed [7]. This would help reduce the warm-up effects brought
about by the learning period at the start of the prediction algorithms.

As of this writing, the COARE workload log in SWF format as prescribed
[20] as well as other relevant scripts used in this work are available online [26].

5.2 Scheduling Simulator

The Slurm Workload Manager (Slurm) [27] is a widely adopted open-source
workload manager for various HPC environments. This tool facilitates the con-
current running of multiple experiments or jobs through a scheduling algorithm
to assign jobs to server nodes. Because COARE uses Slurm as its scheduler, we
performed our experiments using a Slurm simulator [28].

We adjusted the Slurm simulator source code to carry out either simple or
power correction algorithms, as required (see Table 2). Likewise, we modified the
Slurm configuration scripts to suit system setup such as nodes, processors and
memory specifications for each workload [1,16–19]. We selected appropriate data
fields from the SWF that are in congruence with the Slurm simulator and then

Correcting Job Walltime in a Resource-Constrained Environment 131

converted it into CSV format. A pre-processing tool from the Slurm simulator
package would read the CSV file and then translate it into a binary equivalent
that the simulator will process.

The SWF, in an attempt to create a generalized workload format, considers
only bare minimum parameters. This discrepancy means that the Slurm sim-
ulator would require parameters, particularly the number of nodes (n-nodes)
and the number of tasks (n-tasks), that are not explicitly specified in workloads
in SWF. Closely related to these data fields, the SWF consists of number of
CPUs per job only and each workload generalizes the total system node count
information instead of node count per job. To supply the simulator with these
missing SWF parameters, we modeled a decision tree regressor (apart from the
one discussed in Sect. 4.3) according to COARE users’ behavior and fitted it to
relevant parameters in other workloads.

The decision tree regressor, which is a machine learning model, predicts val-
ues based on a logic-based tree structure [29], and is inherently non-parametric.
This means prediction would still be reliable even if the distribution is not nor-
mal. Compared to a single source of learning input with the traditional linear
regression, we utilized the decision tree logic to consider several features of the
workload format compatible with the simulator. Because the raw COARE work-
load log follows through Slurm accounting, it provides data fields congruent to
what the Slurm simulator requires. In this case, our input training data were
from the COARE workload, where we used the number of CPUs, required mem-
ory, WTR, and runtime as predictor variables. The regressor would learn from
the trend of the input training workload parameters based on the decision tree
logic to produce predictions of n-nodes and n-tasks.

Because COARE has a maximum of 48 CPUs per node, systems of less capac-
ity could still encounter inaccurate regressor predictions should the requested
number of nodes exceed the system’s limit. Based on the 48 CPU per node in
COARE, the regressor model would return 2 nodes only for a 96 CPU request
which a 36 CPU per node system would insufficiently service 72 CPUs at most.
To address this error, we divided the 96 CPUs by the system’s CPU per node
limit and used its ceiling result of 3 nodes instead.

Before running a simulation, we recompiled the simulator to read changes in
the source code, and then repopulated the database with the new configuration.
Upon generating a job trace file, we can then run an experiment to simulate the
scheduling process. Also, simulation time lags with respect to increasing node
count [28]. Therefore, we limited our analysis to shorter time ranges for some
workloads (as in Sect. 5.1).

5.3 Performance Metric

We utilized the average wait time metric to evaluate the effectiveness of each
scheduling policy, as is recommended to have better convergence [20]. The wait
time ω is equivalent to the absolute difference between the submit time (Tsubmit)
of a job to the time it starts running (Tstart) or |Tsubmit − Tstart|. Note that this
wait time is exclusive of the runtime and returns results in seconds. To better

132 J. C. Rubio et al.

realize the delay effect on productivity, instead of seconds, we converted the
results into minutes in our analysis. Greater ω value means more job processing
delays, which consequently entails lowered user and system productivity.

To validate our results further, we used the average bounded slowdown
(avgBSLD) of the scheduler as practiced [7,11,20]. We defined this performance
metric as

avgBSLD =
1
n

∑
max

(
ω + R

max(R, τ)
, 1

)
, (2)

where R is the actual runtime, and τ is a threshold value, set to 10 s as generally
practiced. The max function guarantees that each job’s BSLD should be greater
than or equal to 1 to ensure boundedness in the results. The avgBSLD would
then result to a factor such that the greater its value, scheduling slows down
even more and likewise impedes overall HPC productivity.

6 Simulation Results Analysis

In this section, we consolidated the results of our simulations and analyzed
the WTR policies’ impact on resource-constrained HPC systems. Again, in
this paper, our goal is to evaluate the effectiveness of implementing predictive-
corrective scheduling to resource-constrained systems like COARE. We used this
evaluation to support our proposal that correction can independently reduce job
processing delays in terms of wait time and slowdown metrics. Because of the
accurate WTRs in Gaia, Seth, MetaCentrum2 and Curie, using the user-estimate
as the baseline for the other policies would lead to incomparable improvement
results. Instead, we compared these WTR policies from one another in all work-
loads.

6.1 Wait Time Performance

Upon comparing workloads from one another (Table 4), we can immediately
observe that the wait time performances among scheduling policies are not dis-
cernible enough to differentiate any improvement in COARE. We associate this
discrepancy from getting the mean of jobs which are mostly with less than 3
days wait time (in Table 1). To resolve this inconsistency, we considered looking
into the avgBSLD metric (to be discussed in Sect. 6.2).

Again, the sampled MetaCentrum2 workload used in the simulation
(Sect. 5.1) has more accurate user-estimates than COARE. Thus the improve-
ment in the other policies are at a minimum. All predictive-corrective policies
have less than 30 min of ω. A 30-min wait time is generally not deterrent to user
productivity compared to COARE’s waiting time range as depicted in Table 1.
The EASY++-simple ω of around 21 min considerably reduced waiting time at
most 7 min in comparison to the other WTR policies.

Also, keep in mind that Gaia and Seth workloads have similar job diver-
sity (Fig. 2) as well as closer WTRs to the actual duration compared to COARE
(Fig. 1). The predictive-corrective ω performance of the Gaia workload exhibited

Correcting Job Walltime in a Resource-Constrained Environment 133

Table 4. Average wait time (in minutes) among workloads for each WTR policy.

DOST-ASTI
COARE

UniLu Gaia MetaCentrum2 CEA Curie HPC2N Seth

user-estimate 4.89 260.96 28.21 313.94 93.38

EASY++ (power) 5.01 289.54 28.09 234.94 111.13

EASY++ (simple) 4.88 185.93 21.50 237.62 108.66

regression (power) 4.95 247.22 25.68 183.37 53.09

regression (simple) 5.16 243.91 25.75 171.31 52.61

power 4.85 1,148.76 28.05 148.20 70.00

simple 4.90 1,137.67 26.93 151.41 59.63

interesting results where the EASY++ prediction produced a closer headstart
and elicited speedier approach to the actual duration with simple and lagged
with power. Regression is at a point where its prediction is not as accurate
as EASY++ but close enough to the actual runtime compared to those of the
plain corrective methods. The extremely negative simple and power correction
results in this workload showed the necessity for a more accurate walltime pre-
diction. We can observe the same pattern in the Seth’s wait time results but
the EASY++ yielded inaccurate predictions compared to regression and even in
correction. The EASY++ predictions cannot go below where a correction-only
algorithm started and thus resulted in walltime overestimation. Even if the jobs
are mostly short in these workloads, regression works best when the same user
runs consecutive jobs of different sizes. For resource-constrained systems with
job geometry distribution as Gaia and Seth, the simple correction along with an
appropriate prediction method can promise favorable results.

Meanwhile, the large Curie workload generated a sizeable wait time reduc-
tion for all policies. Again, regression produced more accurate predictions than
EASY++ because of the high variation among job sizes in the workload. Simple
and power correction methods in Curie were almost the same. Across all HPC
clusters in our experiments, the correction-only method in a large system pri-
marily composed of short jobs though big ones garnered the most distinguishable
improvement with a notable 160 min or 2.7 h reduced waiting time compared to
the user-estimate in the Curie workload.

6.2 Scheduling Slowdown

The wait time experiments generated varying outcomes across HPC systems. At
this point, the wait time metric is still insufficient to discern the differences from
one policy to another, particularly for COARE-like systems. Hence, we derived
the avgBSLD. Table 5 showcases the performance of predictive-corrective algo-
rithms across workloads and at a glance, simple and power corrective algorithms
produced the same outputs.

All workloads suffer heavy slowdown with walltime set to user-estimate com-
pared to predictive-corrective algorithms. Scheduling slowdown in COARE is
gravely around 29,447 avgBSLD. The implemented predictive-corrective policies

134 J. C. Rubio et al.

consistently eliminated this severe scheduling slowdown in COARE by 98.95%,
and by 99.90% with a correction-only approach.

The heterogeneous workloads from COARE, Gaia and Curie measurably
improved with predictive-corrective scheduling. These workloads performed
noteworthy slowdown reduction with EASY++ and regression compared to
user-estimates. Between prediction algorithms, these HPC systems obtained an
increase in slowdown with regression compared to EASY++. Because of the
large number of jobs and the job size diversity in these workloads, prediction
may take much time and thereby contribute to a slowdown of less than 567
in regression. Correction-only policy remarkably removed scheduling slowdown
on these workloads. In large HPC systems like Curie, we recommend using a
corrective-only scheduling as this yielded more beneficial results than those with
prediction.

Wait time and slowdown results from the regression and corrective walltime
policies both agreed in Gaia. We can observe the same pattern in Seth. Though
EASY++ contributed the largest avgBSLD, we note that the user-estimate
policy in the Seth workload also has accurate WTRs. A 650 slowdown factor
is better than COARE’s extreme 29,447. For systems like Gaia and Seth that
are focused on specific scientific applications and composed of mostly short jobs,
applying correction techniques along with an appropriate prediction strategy
could greatly reduce scheduling slowdown and job processing delays.

The sampled portion of the heterogeneous MetaCentrum2 (described in
Sect. 5.1) had accurate user-estimates that are as comparable to those of Seth
and Gaia (refer to Fig. 1). Slowdown results in the user-estimate and predictive-
corrective approaches for MetaCentrum2 were almost the same. Correction out-
performed the other slowdown results from more than 739 to an improved 6
avgBSLD. Particularly for resource-constrained systems with large job diver-
sity, a correction-only walltime scheduling consistently guarantees reduced per-
formance slowdown.

Table 5. Average bounded slowdown among workloads for each WTR policy.

DOST-ASTI
COARE

UniLu Gaia MetaCentrum2 CEA Curie HPC2N Seth

user-estimate 29, 447 1, 182 806 958 637

EASY++ (power) 160 53 813 53 655

EASY++ (simple) 160 53 822 53 655

regression (power) 259 412 739 567 2

regression (simple) 259 412 739 567 2

power 30 5 6 19 16

simple 30 5 6 19 16

6.3 Results Synthesis

Understanding the characteristics of a resource-constrained system should lead
to effective implementation of walltime-based scheduling. While job dependen-

Correcting Job Walltime in a Resource-Constrained Environment 135

cies [9] and interarrival times [30] may have an effect on WTR accuracy, we
leave this for future work. Instead in this study, we focus on analyzing the work-
loads along with the wait time and slowdown metrics to shed light on which
WTR policy works best. Performing any predictive-corrective technique could
immensely reduce delays from using user-estimates only. Resource-constrained
environments similar to COARE, especially those with highly varying job size
distribution, should start practicing walltime correction in their scheduling. The
same goes for workloads consisting of mostly short jobs that could be catering
to specific research applications. Adding prediction in these types of systems
would slightly reduce scheduling slowdown up to 822 across all workloads. Thus,
we suggest that walltime correction without prediction, particularly our simple
version, is enough and more practical to implement in the production level.

7 Conclusion

Challenges in resource-constrained HPC systems such as COARE could be ini-
tially addressed with proper implementation of appropriate walltime prediction-
correction scheduling. In this study, scrutinizing workload characteristics is
essential to discern system-appropriate walltime policies. Systems with large job
size diversity such as COARE produced desirable scheduling slowdown reduc-
tion with predictive-corrective algorithms and remarkably in our proposed simple
corrective-only approach. We can now apply a walltime corrective-only schedul-
ing policy in the upcoming production release of COARE’s new HPC cluster.
Resource-constrained environments similar to COARE can correspondingly fol-
low through the evaluation process in this paper to fit their workload conditions
and more importantly practice walltime correction even without prediction.

Acknowledgments. We thank the Department of Science and Technology -
Advanced Science and Technology Institute (DOST-ASTI) for supporting us in con-
ducting this research to improve COARE’s HPC facility and user experience. We would
also like to thank Arvin Lamando and most especially Jay Samuel Combinido for
their invaluable contributions during the first stages of this research. Additionally,
we acknowledge real HPC workload contributors from the Parallel Workloads Archive
namely: Joseph Emeras for Gaia and Curie, Dalibor Klusáček for MetaCentrum2, and
Ake Sandgren for Seth.

References

1. DOST-ASTI: Computing and Archiving Research Environment (COARE) (2019).
https://asti.dost.gov.ph/projects/coare

2. COARE stakeholders, collaborations, and partnerships. https://asti.dost.gov.ph/
coare/wiki/Main/other-info/stakeholders/

3. DOST-ASTI: DATOS remote sensing and data science help desk. https://asti.dost.
gov.ph/projects/datos/

4. Morton, A.L.: Assessing policy implementation success: observations from the
Philippines. World Dev. 24(9), 1441–1451 (1996)

https://asti.dost.gov.ph/projects/coare
https://asti.dost.gov.ph/coare/wiki/Main/other-info/stakeholders/
https://asti.dost.gov.ph/coare/wiki/Main/other-info/stakeholders/
https://asti.dost.gov.ph/projects/datos/
https://asti.dost.gov.ph/projects/datos/

136 J. C. Rubio et al.

5. Quah, J.S.: Public bureaucracy and policy implementation in Asia: an introduction.
Southeast Asian J. Soc. Sci. 15(2), vii–xvi (1987)

6. Navarro, A., Tanghal, J.: The promises and pains in procurement reforms
in the Philippines (2017). https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/
pidsdps1716.pdf

7. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated pre-
dictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst.
18(6), 789–803 (2007)

8. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel work-
loads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

9. Klusáček, D., Chlumskỳ, V.: Evaluating the impact of soft walltimes on job schedul-
ing performance. In: Klusáček, D., Cirne, W., Desai, N. (eds.) JSSPP 2018. LNCS,
vol. 11332, pp. 15–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
10632-4 2

10. Guo, J., Nomura, A., Barton, R., Zhang, H., Matsuoka, S.: Machine learning pre-
dictions for underestimation of job runtime on HPC system. In: Yokota, R., Wu,
W. (eds.) SCFA 2018. LNCS, vol. 10776, pp. 179–198. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-69953-0 11

11. Gaussier, E., Glesser, D., Reis, V., Trystram, D.: Improving backfilling by using
machine learning to predict running times. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
p. 64. ACM (2015)

12. Schlagkamp, S., Renker, J.: Acceptance of waiting times in high performance com-
puting. In: Stephanidis, C. (ed.) HCI 2015. CCIS, vol. 529, pp. 709–714. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21383-5 120

13. Feitelson, D.G.: Parallel workloads archive. https://www.cse.huji.ac.il/labs/
parallel/workload

14. Rodrigo, G.P., Östberg, P.O., Elmroth, E., Antypas, K., Gerber, R., Ramakrish-
nan, L.: Towards understanding HPC users and systems: a NERSC case study. J.
Parallel Distrib. Comput. 111, 206–221 (2018)

15. Flórez, E., Barrios, C.J., Pecero, J.E.: Methods for job scheduling on computational
grids: review and comparison. In: Osthoff, C., Navaux, P.O.A., Barrios Hernandez,
C.J., Silva Dias, P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp. 19–33. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26928-3 2

16. Emeras, J.: The University of Luxembourg Gaia cluster log. https://www.cse.huji.
ac.il/labs/parallel/workload/l unilu gaia/index.html

17. Klusáček, D., Tóth, Š., Podolńıková, G.: Real-life experience with major reconfig-
uration of job scheduling system. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016.
LNCS, vol. 10353, pp. 83–101. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61756-5 5

18. Emeras, J.: The CEA Curie log. https://www.cse.huji.ac.il/labs/parallel/
workload/l cea curie/index.html

19. Sandgren, A., Jack, M.: The HPC2N Seth log. https://www.cse.huji.ac.il/labs/
parallel/workload/l hpc2n/index.html

20. Feitelson, D.G.: Metrics for parallel job scheduling and their convergence. In: Feitel-
son, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 188–205. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X 11

21. Chiang, S.-H., Arpaci-Dusseau, A., Vernon, M.K.: The impact of more accurate
requested runtimes on production job scheduling performance. In: Feitelson, D.G.,
Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36180-4 7

https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/pidsdps1716.pdf
https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/pidsdps1716.pdf
https://doi.org/10.1007/978-3-030-10632-4_2
https://doi.org/10.1007/978-3-030-10632-4_2
https://doi.org/10.1007/978-3-319-69953-0_11
https://doi.org/10.1007/978-3-319-21383-5_120
https://www.cse.huji.ac.il/labs/parallel/workload
https://www.cse.huji.ac.il/labs/parallel/workload
https://doi.org/10.1007/978-3-319-26928-3_2
https://www.cse.huji.ac.il/labs/parallel/workload/l_unilu_gaia/index.html
https://www.cse.huji.ac.il/labs/parallel/workload/l_unilu_gaia/index.html
https://doi.org/10.1007/978-3-319-61756-5_5
https://doi.org/10.1007/978-3-319-61756-5_5
https://www.cse.huji.ac.il/labs/parallel/workload/l_cea_curie/index.html
https://www.cse.huji.ac.il/labs/parallel/workload/l_cea_curie/index.html
https://www.cse.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html
https://www.cse.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html
https://doi.org/10.1007/3-540-45540-X_11
https://doi.org/10.1007/3-540-36180-4_7

Correcting Job Walltime in a Resource-Constrained Environment 137

22. Fan, Y., et al.: Scheduling beyond CPUs for HPC. In: Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed Comput-
ing, pp. 97–108. ACM (2019)

23. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

24. Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and
model fitting. Stat. Sci. 22 (2008). https://doi.org/10.1214/07-STS242

25. Tsafrir, D.: Using inaccurate estimates accurately. In: Frachtenberg, E.,
Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp. 208–221. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16505-4 12

26. COARE workload in SWF. https://github.com/erangvee/slurm sim vanilla/blob/
master/ASTI-COARE-2018-cln.swf

27. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

28. Simakov, N.A., et al.: A Slurm simulator: implementation and parametric analysis.
In: Jarvis, S., Wright, S., Hammond, S. (eds.) PMBS 2017. LNCS, vol. 10724, pp.
197–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72971-8 10

29. Lewis, R.J.: An introduction to classification and regression tree (CART) analy-
sis. In: Annual Meeting of the Society for Academic Emergency Medicine in San
Francisco, California, vol. 14 (2000)

30. You, H., Zhang, H.: Comprehensive workload analysis and modeling of a petascale
supercomputer. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U.
(eds.) JSSPP 2012. LNCS, vol. 7698, pp. 253–271. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35867-8 14

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1214/07-STS242
https://doi.org/10.1007/978-3-642-16505-4_12
https://github.com/erangvee/slurm_sim_vanilla/blob/master/ASTI-COARE-2018-cln.swf
https://github.com/erangvee/slurm_sim_vanilla/blob/master/ASTI-COARE-2018-cln.swf
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/978-3-319-72971-8_10
https://doi.org/10.1007/978-3-642-35867-8_14
http://creativecommons.org/licenses/by/4.0/

Author Index

Aborot, Jeffrey 118
Abramson, David 3
Akiyama, Yutaka 23
Aoyama, Kento 23

Carroll, Jake 3
Chaarawi, Mohamad 40
Chua, Kie Hian 104

Dun, Ming 67

Hennecke, Michael 40

Jin, Chao 3
Jin, Yuting 104

Khoo, Boo-cheong 87

Law, Yun Zhi 104
Li, Yunchun 67
Liang, Hui 104
Liang, Zhen 40
Lombardi, Johann 40
Lu, Zhenbo 87
Luan, Zhongzhi 67
Luong, Justin 3

Magee, Allan Ross 104
Matira, Christian 118

Ohue, Masahito 23

Qian, Depei 67

Ramesh, Gautham R. 104
Ramesh, Sai Sudha 87
Rubio, Jessi Christa 118

Santo, Harrif 104

Tay, Wee-beng 87

Verma, Aman 55
Villapando, Aira 118

Watanabe, Hiroki 23

Yang, Hailong 67
Yiew, Lucas 104
Yin, Bohong 67
You, Xin 67

Zheng, Yingying 104

	Preface
	Organization
	Contents
	File Systems, Storage and Communication
	A BeeGFS-Based Caching File System for Data-Intensive Parallel Computing
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Burst Buffer Overview
	2.2 Uniform Storage Systems for HPC Storage Hierarchy
	2.3 Parallel File System Overview

	3 Design
	3.1 Uniform Namespace
	3.2 Caching Model
	3.3 Data Consistency
	3.4 Data Movement

	4 Implementation
	4.1 Data Distribution
	4.2 Meta Servers
	4.3 Storage Servers
	4.4 Cache Eviction

	5 Performance Evaluation
	5.1 Meta-Data Performance
	5.2 Data Performance

	6 Conclusions
	Acknowledgements
	References

	Multiple HPC Environments-Aware Container Image Configuration Workflow for Large-Scale All-to-All Protein–Protein Docking Calculations
	1 Introduction
	2 Background
	2.1 Containers for HPC Environment
	2.2 Problems of Container Image Configuration Workflow

	3 HPC Container Maker (HPCCM) Framework
	4 Container Deployment Workflow for MEGADOCK Application Using HPC Container Maker
	4.1 MEGADOCK: A High Performance All-to-All Protein–Protein Docking Application
	4.2 HPC Container Workflow for MEGADOCK with HPCCM
	4.3 Example of User Workflow

	5 Evaluation Experiments
	5.1 Experiment 1. Container Deployment for Target HPC Environment
	5.2 Experiment 2. Performance Evaluation with Large-Scale Computing Nodes and over a Million Protein–Protein Pairs

	6 Discussion
	7 Conclusion
	References

	DAOS: A Scale-Out High Performance Storage Stack for Storage Class Memory
	Abstract
	1 Introduction
	2 Constraints of Using Traditional Parallel Filesystems
	3 DAOS, a Storage Stack Built for SCM and NVMe Storage
	3.1 DAOS System Architecture
	3.2 DAOS I/O Service
	3.3 Data Protection and Data Recovery

	4 DAOS Data Model and I/O Interface
	4.1 DAOS Data Model
	4.2 DAOS POSIX Support

	5 Performance
	6 Conclusion
	References

	Cloud Platform Optimization for HPC
	Abstract
	1 Introduction
	2 Existing Gaps
	3 Methods
	3.1 Eliminate “Jitter”
	3.2 Resource Virtualization
	3.3 Software Ecosystem

	4 Results
	5 Future Work
	References

	Applications and Scheduling
	swGBDT: Efficient Gradient Boosted Decision Tree on Sunway Many-Core Processor
	1 Introduction
	2 Background
	2.1 Sunway Many-Core Processor
	2.2 Gradient Boosted Decision Tree
	2.3 Challenges for Efficient GBDT Implementation on Sunway Processor

	3 Methodology
	3.1 Design Overview
	3.2 Data Prefetching on CPE
	3.3 Sort and Merge

	4 Implementation
	4.1 Processing Logic of Gain Computation
	4.2 Processing Logic of Sorting
	4.3 Synchronization Among CPEs

	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance Analysis
	5.3 Roofline Model
	5.4 Scalability

	6 Related Work
	6.1 Acceleration for Gradient Boosted Decision Tree
	6.2 Machine Learning on Sunway Architecture

	7 Conclusion and Future Work
	References

	Numerical Simulations of Serrated Propellers to Reduce Noise
	Abstract
	1 Introduction
	2 Numerical Setup
	2.1 Aerodynamic Solver
	2.2 Force Calculations
	2.3 Solver Validation
	2.4 Acoustic Solver
	2.5 Simulation Setup and Grid Convergence Study

	3 Experimental Setup
	4 Methodology
	4.1 Initial Baseline Propeller Selection and Serrated, Cut-off Propeller Design

	5 Results and Discussions
	5.1 Force Comparison
	5.2 Flow Visualizations
	5.3 Acoustic Analysis

	6 Conclusions and Recommendations
	References

	High-Performance Computing in Maritime and Offshore Applications
	1 Introduction
	2 Digital Twin of a Large-Scale Wave Basin
	3 Investigation of Gusset Effect in Between Wave Paddles
	4 Digital Twin of Marine Vessel for Remote and Autonomous Navigation
	5 Concluding Remarks
	References

	Correcting Job Walltime in a Resource-Constrained Environment
	1 Introduction
	2 Productivity in Resource-Constrained HPC Systems
	2.1 Job Delays
	2.2 Walltime Accuracy Effect on Productivity

	3 Understanding Real HPC Workloads
	3.1 Walltime Charactertics
	3.2 Job Diversity and Walltime Scheduling

	4 Walltime-Based Scheduling
	4.1 Walltime Prediction and Correction
	4.2 User-Based Prediction
	4.3 User and Job-Based Prediction
	4.4 Correction

	5 Experimental Setup
	5.1 Workload Preparation
	5.2 Scheduling Simulator
	5.3 Performance Metric

	6 Simulation Results Analysis
	6.1 Wait Time Performance
	6.2 Scheduling Slowdown
	6.3 Results Synthesis

	7 Conclusion
	References

	Author Index

